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Abstract. Using threshold secret sharing, we propose a solution tai-
lored for forgetful clients (i.e., not required to keep any cryptographic
secret) while accommodating the dynamic nature of multi-cloud deploy-
ments. Furthermore, we delegate the computation and distribution of
shares to an intermediate server (proxy), effectively minimizing the client
workload. We propose two variants of a keyless, space-efficient multi-
cloud storage scheme named KAPRE and KAME. Our solution KAPRE
requires less communications and computations, while KAME preserves
data confidentiality against a colluding proxy. Our protocols offer robust
guarantees for data integrity, and we demonstrate the proxy’s ability to
identify and attribute blame to servers responsible for sending corrupted
shares during data reconstruction. We establish a comprehensive secu-
rity model and provide proofs of the security properties of our protocols.
To complement this theoretical analysis, we present a proof-of-concept
to illustrate the practical implementation of our proposed scheme.

1 Introduction

Cloud storage services like Amazon S3, OVHcloud, or Google Drive are increas-
ingly popular, both among companies and users to store large amounts of sensi-
tive data. However, handing data over to a single third party often raises avail-
ability, integrity and confidentiality issues [31, 22]. The user does not want to
neither lose access to its data in case of server failure, nor retrieve data that has
been altered in any way (maliciously or not). It also should not have to reveal
any of its sensitive content to the Cloud Storage Provider (CSP). Multi-cloud,
the simultaneous use of several cloud services, counterbalances data centralisa-
tion [9]. It introduces redundancy in the stored data, hence providing availability
and integrity even in the case of several server failures (e.g., as in Strasbourg,
France where several OVH servers were destroyed in a fire).

Numerous solutions exist to ensure data confidentiality within multi-cloud
architecture. The seminal work of Shamir on secret sharing [32] showed an ele-
gant solution to split a file into shares and to distribute them to a set of CSPs.
It provides information-theoretic secrecy [25], meaning that no party can learn
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anything about the content of the data without the cooperation of the others.
A perk of secret sharing is that its security relies on the need of other parties’
cooperation rather than on the knowledge of a cryptographic secret. Hence, the
security of the data does not rely on any cryptographic secret. Otherwise, this
can lead to great loss, as in cryptocurrencies where losing the secret key results
in the inability to access the money.

Despite its security, secret sharing is memory-consuming, as the shares must
be as large as the secret. This means that storing a secret S of size |S| requires
|S| storage space for each CSP, which scales poorly. Memory-efficient algorithms
as Rabin’s Information Dispersal Algorithm [28] (IDA) produce shares of optimal
size, which depends on the number of shares needed to reconstruct the initial
data. They achieve high fault-tolerance and small buffer size, but they were often
not designed to provide confidentiality [29].

In multi-cloud setting, delegating the sharing and reconstruction of its data to
a third party can benefit the user. For the user, it can be a hassle to communicate
with each CSP, distribute its data and check the CSPs availability for download.
This task is even more complicated if the user wants to make sure its data has
not been altered during recovery and detect any corrupted share. All of this can
be delegated to a proxy (a particular CSP with additional tasks). However, if the
client does not trust the CSPs with its data content, it should not have to trust
the proxy either. A solution can be to encrypt the data before sending it to the
proxy with a block cipher [10]. But, as the key is needed for data retrieval, this
shifts the problem from protecting the files to protecting the key: if the key is
compromised, so is the data.

We tackle the problem of storage in multi-cloud infrastructure, where the
client delegates most of the computations to an untrusted proxy, which handles
the communications with the CSPs. The data must remain: (1) confidential, (2)
available even if some of the CSPs are unavailable, (3) unaltered, any modification
must be detected, and (4) liable to the entity that produce a fault. We consider
a forgetful user, so no security values are stored between the upload and the
download phases (e.g., long-term keys or hashes for integrity). The keyless design
not only simplifies the overall storage infrastructure but also eliminates the risk
of key exposure, reducing the attack surface and enhancing the overall security.

Our Contributions. We design a Keyless Multi-Party Storage (KMPS) scheme,
depicted in Fig. 1, to split client’s data through n+1 shareholders (one proxy and
n providers) such that only k ≤ n+ 1 of them are needed for data recovery. We
enforce data confidentiality with regards to the proxy and up to k− 1 colluding
CSPs. We prove the size of the shares is almost optimal (|S|/k+λ for initial data
of size |S| and the security parameter λ). We expect a setup independent of any
long-term key, nor any additional value to check data integrity. Thanks to the
proxy, we minimise the computations and communication overhead on client-
side. To our knowledge, there is no multi-cloud storage protocol delegating all
the communications and most of computations to a proxy with a keyless client,
while guaranteeing data’s integrity without storing any additional value.
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Fig. 1. Overview of KMPS upload and download phases for k = 3, n+ 1 = 4 (Here we
consider that the proxy also holds a share, just as the CSPs).

KMPS Threat model: Let k be the secret sharing threshold and n the number
of providers. We define a generic model for a KMPS scheme formalizing strong
security properties, namely:
N−collusion-secrecy: a proxy colluding with N providers cannot learn any-

thing on the client’s data. We assume the proxy follows the protocol during
the upload.

Provider-secrecy: a collusion of k − 1 malicious providers cannot learn any-
thing on the client’s data.

User-Integrity: any collusion of the proxy with less than k − 2 malicious
providers cannot alter the data without the user noticing. The proxy is as-
sumed to follow the protocol during upload.

Accountability: if a share has been corrupted, the proxy will detect it and
blame the corresponding CSP with overwhelming probability.

We leave open the design of a system that allows a malicious proxy to handle
user data during upload, without compromising security and integrity.
Two protocols: We propose two KMPS variants, KAPRE (Keyless Archivage
with Proxy REencryption) relying on homomorphic proxy re-encryption [14]
and KAME (Keyless Archivage with Multikey Encryption) relying on homomor-
phic multikey encryption [27]. Both rely on Shamir’s secret sharing [32] and
an IDA [28]. Our two solutions balance in between efficiency and security. In-
deed, KAPRE is round optimal in communications but some trust should be
kept toward the proxy while KAME requires less trust in the proxy, but has an
additional round of communication. We formally model and prove the security
of our protocols. We prove that both schemes provide accountability and user-
integrity. As for data’s secrecy, we show that KAPRE has 0−collusion secrecy
and provider-secrecy while KAME achieves (k − 2)−collusion secrecy.



4 P. Lafourcade et al.

Implementation: We provide an implementation of our two solutions. This allows
us to give an overview of the efficiency, and show a linear complexity on the user-
side for both schemes.

External authentication. Our security model does not consider user’s authen-
tication. In download, any user could retrieve another user’s data so we assume
authentication throughout the protocol. Hence, our schemes are compatible with
any pre-existing identity system such as mutual TLS [30] or other solutions [21].

Related Work. Usually, multi-cloud storage protocols security relies on the
user encrypting its data before storing it, often with a symmetric encryption
for cost efficiency [37, 26, 19]. This preserves data’s privacy against the CSPs.
The user must keep long-term keys, which shifts the concern of protecting data
to protect the keys. To tackle this issue, the authors in [23] use a Credentials-
less Permission Mechanism. While the user has access to its key, it uses it to
actively block any demand for a new key generation. Hence, if the user loses its
key, there is no one to block its request for a new one. However, this system can
be broken if the attacker guesses whenever the user loses its key, and outruns
the user in its request for a new key. Filecoin [5] is another example of using
long-term keys. Filecoin is a decentralized storage network using blockchain to
provide privacy, proof of spacetime and replication. Yet, the use of blockchain
makes their protocol quite slow and prevents from deleting data. We prefer a
solution which does not require the user to keep any cryptographic secret.

Some multi-cloud storage protocols use secret sharing to ensure confidential-
ity without permanent keys [10, 22]. However, the secret sharing must be done
by a trusted party, i.e., the user itself, hence no delegation is possible. Addi-
tionally, secret sharing is not memory efficient. The authors of [22] proposed an
improved variant of Shamir’s secret sharing achieving a storage ratio of about 2
to 4 times the initial data size, this is still far for the optimal ratio of n/k which
we achieve. Krawczyk proposed a solution to obtain small shares by pairing an
information-theoric secret sharing with erasure codes [17]. His scheme is used in
both [9, 10]. Their protocol encrypts the user’s data with a symmetric encryp-
tion, and distributes it with an erasure code for each CSP. The key is shared
with a secret sharing. However, in these schemes all the sharing must be done
by the user itself or a fully trusted third-party, when our solution relieves the
user from these tasks. When multi-cloud protocols involve a proxy, it is usu-
ally a trusted-party [36, 26, 38]. Some protocols only consider server failure in
their threat model [34, 24]. They aim for efficiency and data’s availability, and
do not consider confidentiality or trust issues. Some protocols do consider data’s
confidentiality w.r.t. individual cloud providers, but do not consider colluding
CSPs [35]. Our model addresses all of these cases, as we consider the proxy as
trustworthy as any other CSP.

Regarding integrity, most storage protocols also rely on keeping long-term
values as hashes [37, 19], or long-term keys by signing the data [22, 38]. For ex-
ample, the solution in [38] uses blockchain to provide integrity, which makes it
quite slow. Also, the user must keep a secret key to sign its data, which we want
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Proxy CSPs Coll. Keyless Integrity
[37] ✗ ✓ − ✗ Merkle Tree
[23] ✓ ✓ ✓ ✗ ✗

[35] ✗ ✗ − ✗ ✗

[26, 19] ✓ ✓ ✗ ✗ Hashes [19]
[22, 10, 13] ✗ ✓ − ✓ Signature [22],Quorum [10]

[36] ✓ ✗ ✗ ✗ ✗

[38] ✓ ✓ ✗ ✗ Signature
KAPRE ✓ ✓ ✗ ✓ auth. encryption/PRF
KAME ✓ ✓ ✓ ✓ auth. encryption/PRF

Fig. 2. Comparison of existing storage schemes (Proxy: the file splitting is delegated to
a proxy, CSP: confidentiality is preserved against CSPs colluding, Coll: confidentiality
is preserved against the proxy colluding with CSPs, Keyless: the client does not hold
permanent key, Integrity: whether/how data integrity is checked).

to avoid. We summarize all of these properties in Fig. 2, and compare previ-
ous works with ours. Finally, most of these works [37, 10, 36, 26, 19, 38] do not
formally prove the security of their solutions, which we do in our long version [2].

Outline. In Section 2, we present a technical overview of our scheme. In Sec-
tion 3, we present a generic model for KMPS schemes and their security prop-
erties. In Section 4, we propose two instantiations which differ in upload, and a
common download. Security is discussed in Section 5. In Section 6, we discuss
our implementation for both schemes. Section 7 concludes.

2 Technical Overview

Notations. We write negl for any negligible function in the security param-
eter λ. Sampling an element x uniformly from a set S is denoted x ←$ S.
The set of possible outputs for any given inputs is denoted as [Alg(·)]. Also, by
P⟨E1(i1),E2(i2)⟩, we denote the protocol P played between parties Ej , taking as
input ij . We denote concatenation of elements by ||. By C, we denote the chal-
lenger of a security experiment and by A the adversary, both being probabilistic
polynomial-time algorithms.

Overview. To achieve small data shares, the user encrypts its data with an
authenticated symmetric encryption [7]. The proxy distributes the encrypted
data among the clouds with an IDA. Then, the key is shared between the clouds,
with secret sharing as the data’s confidentiality relies on the secrecy of the key.

2.1 Symmetric Encryption

We use a symmetric encryption to let the user encrypt its data at a low cost. To
provide integrity on the user side, we use an authenticated encryption mode [8].

Definition 1 (Symmetric Encryption [33]). A symmetric-key encryption
scheme E = (KeyGen,Enc,Dec) is a triple of the following algorithms:
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ExpIND-CPA
A (λ)

1 : k ←$ E.KeyGen(λ), b←$ {0, 1}
2 : m0,m1 ← A
3 : c← E.Enc(mb, k)

4 : b
′ ← AOEnck (c)

5 : return (b = b
′
)

ExpAUTHA (λ)

1 : k ← E.KeyGen(λ)

2 : for i ∈ J1, qK :

3 : m← A, ci ← E.Enc(m, k)

4 : c← A({ci}qi=1)

5 : if ∃i, c = ci : return ⊥
6 : return E.Dec(c, k) ̸= ⊥

Oracle ORk(i, j)

1 : if (i ∈ Hon ∧ j ∈ Corr)

2 : return ⊥
3 : return PRE.ReKey(ski, pkj)

Oracle OKey(λ, b)

1 : (pknbk
, sknbk

)← PRE.KeyGen(λ)

2 : increment nbk

3 : if b = 0: add nbk to Corr

4 : return (pknbk
, sknbk

)

5 : add nbk to Hon

6 : return pknbk

Oracle ORenc(i, j, cti)

1 : if (i ∈ Hon ∧ j ∈ Corr)

2 : return ⊥
3 : return PRE.ReEnc(cti, rki→j)

Oracle OEnck(m)

1 : return E.Enc(m, k)

ExpPREA -IND(λ)

1 : nbk ← 0,Hon,Corr← ∅
2 : b←$ {0, 1}

3 : nbk,Hon,Corr← AOKey
(λ)

4 : rki→j ← PRE.ReKey(pki, ski)

5 : i,m0,m1 ← AORk,ORenc
(nbk)

6 : if i ∈ Hon, c← PRE.Enc(pki,mb)

7 : else c←⊥

8 : b
′ ← A(c)

9 : return (b = b
′
)

ExpINT
A (λ)

1 : pk0 ← A(λ), b←$ {0, 1}

2 : (pki, ski)
n
i=1 ← MKE.KeyGen(λ)

3 : i,m0,m1 ← A(pk1, . . . , pkn)

4 : c← MKE.Enc(mb, pk0, . . . , pkn)

5 : ∀j ̸= i, pj ← MKE.PartDec(c, skj)

6 : b
′ ← A({pj}j ̸=i)

7 : return (b = b
′
)

ExpPSA (λ, k, n)

1 : m0,m1 ← A(λ)

2 : b
$← {0, 1}

3 : {si}ni=1 ← SS.Split(mb, n, k)

4 : b
′ ← A(s1, . . . , sk−1)

5 : return (b = b
′
)

Fig. 3. Security games: secret sharing perfect-secrecy ExpPSA (λ, k, n), multi-key en-
cryption internal security ExpINTA (λ), and proxy re-encryption indistinguishability
ExpPREA -IND(λ) with their oracles.

E.KeyGen(λ)→ k: returns a key k according to the security parameter λ.
E.Enc(m, k)→ c: outputs a ciphertext c.
E.Dec(c, k)→ m/⊥: outputs a message m such that E.Dec(E.Enc(m, k), k) = m,

outputs ⊥ if the ciphertext is invalid.
It must be IND-CPA for symmetric encryption (Definition 2).

Definition 2 (Chosen Plaintext Security [6]). Let λ be a security param-
eter and q ∈ N a value polynomial in λ. A symmetric-key encryption scheme E is
IND-CPA if for any A in game ExpIND-CPA

A (λ) (Fig. 4), we have: AdvINDλ -CPA(A) :=∣∣Pr
[
ExpIND-CPA
A (λ) = 1

]
− 1/2

∣∣ ≤ negl.
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Definition 3 (Authenticated Encryption [7]). A symmetric-key encryption
scheme E has authenticity if for any A in game ExpAUTHA (λ) (Fig. 4) we have:
AdvAUTHλ (A) := Pr

[
ExpAUTHA (λ) = 1

]
≤ negl.

2.2 Information Dispersal Algorithm

In our scheme, the user’s encrypted data are stored using a memory-efficient
Information Dispersal Algorithm (IDA) [28]. In essence IDA works similarly to
secret sharing: splitting a message into n shares with only k of them allowing
recovery. However shares do not retain the secrecy of the message, allowing
better memory efficiency (e.g., for a threshold k, Rabin’s IDA creates shares of
size |S|/k for initial message of size |S|).

Definition 4 (IDA [28]). An Information Dispersal Algorithm scheme IDA is
given by the following set of algorithms:
IDA.Split(m,n, k)→ r1, . . . , rn : outputs n shares of m.
IDA.Rec(k, r1, . . . , rj)→ m : given that j ≥ k, recovers the initial message such

that for all I ⊂ {1, . . . , n} with |I| = k, IDA.Split(m,n, k) → {ri}ni=1, we
have IDA.Rec(k, {ri}i∈I) = m.

2.3 Secret Sharing

The symmetric key used to encrypt the user’s data is split in shares using secret
sharing.

Definition 5 (Secret Sharing [32]). A (k, n) secret sharing scheme SS is
given by:
SS.Split(m, k, n)→ (s1, . . . , sn): on input a secret m, returns the shares (s1, . . . ,

sn) according to n and k,.
SS.Rec(k, s1, . . . , sj) → m: reconstructs the secret from the shares given that

j ≥ k such that SS.Rec(k, SS.Split(m, k, n)) = m.
It must achieve perfect secrecy(Definition 6).

Definition 6 (Perfect Secrecy [25]). A secret sharing scheme SS has perfect
secrecy if for any k, n such that 1 < k ≤ n, any A in game ExpPSA (λ, k, n) (Fig. 4)
we have:

AdvPSλ (A) :=
∣∣Pr

[
ExpPSA (λ, k, n) = 1

]
− 1/2

∣∣ ≤ negl.

We use Shamir’s secret sharing described in Fig. 4, which perfect secrecy is
shown in [32]. As we want to delegate the sharing to the proxy, the user encrypts
the key with an homomorphic encryption, such that the proxy can compute a
secret sharing on the encrypted key resulting on encrypted shares of the key.
Indeed as we want our setup to be independant of any long-term key, the CSPs
need to store the key shares in plaintext. The key point of our constructions is
using an asymmetric encryption PKE = (KeyGen,Enc,Dec) that commutes with
a secret sharing. We model this property in the following definition:
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SS.Split(m ∈ Zp, n, k)

1 : x1, . . . , xn ←$ Z
∗
p

2 : all distinct
3 : a1, . . . , ak−1 ←$ Zp

4 : ∀i, yi = m+

k−1∑
j=1

ajx
j
i

5 : return {xi, yi}ni=1

SS.Rec(k, (x1, y1), . . . , (xl, yl))

1 : if l < k : return ⊥
2 : for i ∈ J1, kK :

3 : ℓi =

k∏
j ̸=i,j=1

−xj

xi − xj

4 : return

k∑
i=1

yiℓi

Fig. 4. Description of Shamir’s secret sharing algorithms.

Definition 7. We say that PKE commutes with a secret sharing SS if it verifies
∀(pk, sk)← PKE.KeyGen(λ), ∀m ∈ {0, 1}∗,∀k, n ∈ N such that k ≤ n and
∀(s1, . . . , sn) ∈ [SS.Split(PKE.Enc(m, pk), n, k)], we have
∀I ⊆ J1, nK, |I| = k, SS.Rec(k, {PKE.Dec(si, sk)}i∈I) = m.

As Shamir’s secret sharing produces shares of a secret m which are linear rela-
tions in m and the random coefficients ai, any additively homomorphic encryp-
tion scheme (integer scalar multiplication is given) PKE commutes with it by
computing encrypted shares as:

PKE.Enc(m, pk) +
∑k−1

j=1 PKE.Enc(aj , pk)x
j
i ∈

[
PKE.Enc(yi, pk)

]
.

Reciprocally, recovering the encrypted secret is given by:∑k
i=1 PKE.Enc(yi, pk)ℓi ∈

[
PKE.Enc

(∑k
i=1 yiℓi = m, pk

)]
.

The shares of the key cannot be accessible to the proxy. This is where our
two protocols differ: our first solution KAPRE uses proxy re-encryption [27, 15]
to tackle this issue, while KAME uses multikey encryption [14, 18]. At the end,
our two protocols result in the same state, and have a common download phase.

2.4 Proxy Re-Encryption Scheme

Our first protocol KAPRE uses proxy re-encryption [27, 11] to let each provider
decrypts its share with its own private key.

Definition 8 (Proxy Re-encryption [27]). A proxy re-encryption scheme
PRE is given by:
PRE.KeyGen(λ)→ (pk, sk) : outputs a key pair according to λ.
PRE.Enc(m, pk)→ c : on input pk and a message m, outputs a ciphertext.
PRE.Dec(c, sk)→ m : returns a decryption m of c.
PRE.ReKey(ski, pkj) → rki→j: returns a re-encryption key which allows to

transform ciphertexts under pki into ciphertexts under pkj.
PRE.ReEnc(ci, rki→j) → cj: on input a ciphertext encrypted under pki and a

re-encryption key rki→j, returns a ciphertext encrypted under pkj.
It must be correct and have IND-CPA security for PRE (PRE-IND) (Defini-
tion 9).
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Definition 9 (PRE-IND [15]). The scheme PRE is PRE-IND if for any A in
game ExpPRE-INDA (Fig. 3), AdvPRE-INDλ (A) :=

∣∣Pr
[
ExpPRE-INDA (λ) = 1

]
− 1/2

∣∣ ≤
negl.

2.5 Multikey Encryption Scheme

In our second protocol KAME, we use multi-key encryption [20, 14]. That way, the
providers can also each decrypt their own share, this time with the cooperation
of the others.

Definition 10 (Multi-key Encryption [14]). A multi-key encryption scheme
MKE is given by:
MKE.KeyGen(λ)→ (pk, sk) : outputs a key pair (pk, sk).
MKE.Enc(m, pk)→ c : on input pk and a message m, outputs a ciphertext.
MKE.PartDec(c, ski)→ pi : returns a partial decryption pi of c.
MKE.FinDec(p1, . . . , pn)→ m: given all the partial decryptions, outputs m.

It must be correct and internally secure (Definition 11).

Definition 11 (Internal Security [18]). The MKE has internal security if for
any A in ExpINTA (Fig. 3), we have: AdvINTλ (A) :=

∣∣Pr
[
ExpINTA (λ) = 1

]
− 1/2

∣∣ ≤
negl.

During download, the proxy checks the shares integrity using commitments
computed by the user from key-homomorphic pseudorandom function (PRF)
families [33, 4, 16]. This avoids sending the user any corrupted data. As the proxy
receives shares that have been re-randomized, usual methods like keeping hashes
cannot be used to provide integrity.

2.6 Pseudorandom Function Family

To let the proxy check the data’s integrity, we create commitments using key-
homomorphic pseudorandom function families [12, 4]. Consider three finite sets:
D, R, and S, and let ΓD,R represent the set of all functions from D to R.

Definition 12 (Pseudo-random Function Family [33]). Let F = {Fs}s∈S
be a family of keyed functions mapping D to R. The familly F is pseudorandom
if the PRF-advantage of any adversary A is negligible:

AdvPRFλ (A) := |Pr[s←$ S : AFs = 1]− Pr[f ←$ ΓD,R : Af = 1]|.

Definition 13 (Key-Homomorphic PRF [4]). A PRF family F = {Fs}s∈S
is key-homomorphic if S has a group structure and if there is a polynomial time
algorithm that, given Fs(x) and Ft(x), outputs Fs+t(x).
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2.7 Asymmetric Encryption

We use asymmetric encryption in download to let the user send secret values to
the providers without having to deal with any key agreement.

Definition 14 (Asymmetric Encryption). An asymmetric encryption scheme
PKE = (KeyGen,Enc,Dec) is defined by:
PKE.KeyGen(λ)→ (pk, sk) : on input λ, outputs a key pair (pk, sk).
PKE.Enc(m, pk)→ c : outputs a ciphertext c.
PKE.Dec(c, sk)→ m : outputs m such that PKE.Dec(PKE.Enc(m, pk), sk) = m.

It must be IND-CPA for asymmetric encryption (Definition 15).

Definition 15 (IND-CPA).
Any adversary A verifies the following∣∣∣∣∣∣∣∣∣∣

Pr


(sk, pk)←$ PKE.KeyGen(1λ),
(m0,m1)← A(pk),
b←$ {0, 1},
c← PKE.Enc(mb, pk),
b∗ ← A(c)

: b = b∗

− 1

2

∣∣∣∣∣∣∣∣∣∣
≤ negl.

3 Generic Model

Our Keyless Multi-Party Storage (KMPS) scheme involves three types of party:
a User interacting with a Proxy which interacts with n Cloud Storage Providers
CSPi, for i ∈ J1, nK. There are two phases: an upload where the user stores some
data m interacting only with the proxy, and a download where at least k − 1 of
the CSPs cooperate with the proxy (gathering a total of k shares) to send back
m to the user.

3.1 Multi-Party Storage scheme

Definition 16 (Keyless Multi-Party Storage). A Keyless Multi-Party Stor-
age scheme KMPS is a tuple KMPS = (Setup,KeyGen,Transform,Distrib,Open,
Designate,Hide,Merge,Recover) of probabilistic polynomial time algorithms with:
Setup(λ, n, k)→ param: sets the global parameters.

The parameters param, n and k are implicit parameters of all algorithms.
KeyGen(λ)→ (pk, sk): returns a key pair (pk, sk) according to λ.

Upload
Transform(m, pk0, . . . , pkn)→ comU, partsU: on input a message m, the proxy

and providers’ public keys, outputs partsU and a commitment comU to m.
Distrib(partsU)→ {hi}ni=0: produces shares {hi}ni=0 from partsU, h0 being the

proxy’s share and {hi}ni=1 the providers shares.
Open: This is either an algorithm Open(hi, ski)→ si or a protocol between the

providers and the proxy taking as input each party’s shares {hi}ni=0 and each
party’s secret keys {ski}ni=0, outputting {si}ni=0 .
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KMPS Upload phase

User(m) Proxy(pk0, sk0) CSPi(pki, ski)
n
i=1

comU, partsU ←

Transform(m, {pki}
n
i=0)

comU, partsU

{hi}ni=0 ← Distrib(partsU)

hi

s0 ← Open(h0, sk0) si ← Open(hi, ski)

store s0, comU store si

KMPS Download phase

User Proxy((pk0, sk0), s0, comU) CSPi((pki, ski), si)
k−1
i=1

comD, stateU, {nci}
k−1
i=0 ←

Designate({pki}
k−1
i=0 )

{nci}k−1
i=0 , comD nci

s
′
0 ← Hide(s0, nc0, sk0) s

′
i ← Hide(si, nci, ski)

s
′
i

(partsD, I)← Merge(comU, comD, {s′i}
k−1
i=0 )

if I ̸= ⊥ : abort blame {CSPi}i∈I

partsD

m← Recover(partsD, stateU)

Fig. 5. Overview of an KMPS protocol.

We write Upload(m)→ {si}ni=0, comU for the concatenation of the three previous
algorithms with keys as implicit input and Dec executed for each share.

Download

Designate(pk1, . . . , pkk)→ comD, stateU, {nci}ki=1: The user computes for each
provider involved in download an encryption nci of a nonce ni under its
public key pki, and a commitment comD to the nonces. It also returns in
stateU the values needed for the final recovery.

Hide(si, nci, ski)→ s′i: a provider or the proxy encrypts its share si with nci.
Merge(comU, comD, {s′i}

k−1
i=0 )→ (partsD, I): if there are invalid shares, partsD =

⊥ and I contains their indexes. Otherwise, I = ⊥ and partsD is computed
from the shares.

Recover(partsD, stateU)→ m/⊥: outputs m from partsD, stateU and the nonces,
⊥ if the data has been corrupted.
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Note that between upload and download, the algorithms run by the user
Transform, Designate and Recover only require the public keys of the CSPs and
the proxy (which can be updated between the two phases). This is what we
mean by keyless: the user do not keep any cryptographic secret between these
two phases.

3.2 KMPS Security Model

We give formal definitions of the security properties for a secure KMPS scheme.

Correctness. The composition of the algorithms of a KMPS scheme must allow
to recover the original data from the n + 1 shares (n for the providers and one
for the proxy).

Definition 17 (Correctness). A KMPS scheme is correct if it verifies the
following ∀λ ∈ N,∀n ∈ N∗, ∀m ∈ {0, 1}∗: ∀k s.t. k ≤ n + 1, ∀param ∈
[Setup(λ, n, k)],
∀i ∈ J0, nK, ∀(pki, ski) ∈ [KeyGen(λ)], ∀I ⊆ J0, nK s.t. |I| = k,
∀comU, partsU ∈ [Transform(m, {pki}ni=0)], ∀comU, {hi}ni=0 ∈ [Distrib(partsU)],
∀comD, stateU, {nci}i∈I ∈ [Designate({pki}i∈I)],
∀i ∈ I, h′i ∈ [Hide(Open(hi, ski), nci, ski)],
∀(partsD, I) ∈ [Merge(comU, comD, {hi}i∈I)], Recover(partsD, stateU) = m.

Data’s Secrecy. We model the data’s secrecy properties through indistinguisha-
bility games [33]. The adversary chooses two messages, and tries to guess which
one is being uploaded and downloaded by the challenger. There are two prop-
erties depending on the adversary’s capacities. The first one, provider-secrecy,
considers the proxy is trusted. The adversary models k − 1 colluding providers
while the challenger simulates the other parties (game ExpCSPA in Fig. 6).

Definition 18 (Provider-Secrecy). A KMPS scheme is Provider-secret if for
any adversary A we have AdvCSPλ (A) :=

∣∣Pr
[
ExpCSPA (λ) = 1

]
− 1/2

∣∣ ≤ negl.

The second property N -collusion-secrecy, depicted in game ExpCollA,N (Fig. 6),
considers the proxy colluding with N CSPs as the adversary. The challenger plays
the role of the user and the remaining n−N honest CSPs. To model the fact that
the proxy follows the protocol, the challenger executes the proxy’s algorithms but
reveals all intermediate values to the adversary. Note that 0−collusion-secrecy
means that data are confidential for a proxy not colluding with any provider.

Definition 19 (N−Collusion-Secrecy). A KMPS scheme is N−collusion-
secret if for any A we have AdvN−Collλ (A) :=

∣∣Pr
[
ExpCollA,N (λ) = 1

]
− 1/2

∣∣ ≤ negl.

Note that based on the above definition, an KMPS scheme cannot achieve (k−
2)−collusion-secrecy unless it achieves provider-secrecy as the proxy is essentially
a provider with more power (it also holds a share of the data). Our first protocol
KAPRE achieves Provider-Secrecy and 0−collusion-secrecy (Section 4.1), and our
second one KAME achieves (k − 2)−Collusion-Secrecy (Section 4.2).
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ExpCollA,N (λ)

1 : b←$ {0, 1}

2 : (pki, ski)
n
i=N+1 ← KeyGen(λ)

3 : m0,m1, {pki}
N
i=0 ← A({pki}

n
i=N+1)

4 : if |m0| ̸= |m1| : return b

5 : comU, partsU

← Transform(mb, pk, {pki}
n
i=0)

6 : {hi}ni=0 ← Distrib(partsU)

7 : {si}ni=N+1 ← Dec(hi, ski)
n
i=N+1

8 : comD, stateU, {nci}
k−1
i=0

← Designate({pki}
k−1
i=0 )

9 : {s′i}
k−1
i=N+1 ← Hide(si, nci, ski)

k−1
i=N+1

10 : b
′ ← A(comU, partsU, {hi}ni=0,

comD, {nci}ni=0, {s
′
i}

k−1
i=N+1)

11 : return (b = b
′
)

ExpINTGA (λ)

1 : (pki, ski)
n
i=k−1 ← KeyGen(λ)

2 : m, {pki}
k−2
i=0 ← A({pki}

n
i=k−1)

3 : s0, . . . , sn, comU ← Upload(m)

4 : comD, stateU, {nci}
k−1
i=0

← Designate({pki}
k−1
i=0 )

5 : hk−1 ← Hide(sk−1, nck−1, skk−1)

6 : partsD ← A(comU, comD,

hk−1, {si}k−2
i=0 , {nci}k−1

i=0 )

7 : m
′ ← Recover(partsD, stateU)

8 : return (m
′ ̸= m) ∧ (m

′ ̸=⊥)

ExpCSPA (λ)

1 : b←$ {0, 1}
2 : (pk0, sk0)← KeyGen(λ)

3 : (pki, ski)
n
i=k ← KeyGen(λ)

4 : m0,m1, (pki, ski)
k−1
i=1 ← A(pk0, {pki}

n
i=k)

5 : if |m0| ̸= |m1| : return b

6 : comU, partsU

← Transform(mb, skU , {pki}
n
i=0)

7 : {hi}ni=0 ← Distrib(partsU)

8 : comD, stateU, {nci}
k−1
i=0

← Designate({pki}
k−1
i=0 )

9 : b
′ ← A({hi}k−1

i=1 , {nci}k−1
i=1 )

10 : return (b = b
′
)

ExpACCA (λ)

1 : (pkk, skk)← KeyGen(λ)

2 : m, {pki}
k−1
i=1 ← A(pkk)

3 : s0, . . . , sn, comU ← Upload(m)

4 : comD, stateU, {nci}
k−1
i=0

← Designate({pki}
k−1
i=0 )

5 : hk ← Hide(sk, nck, skk)

6 : {hi}k−1
i=1 ← A({si}k−1

i=1 , {nci}k−1
i=1 )

7 : (partsD, I)

← Merge(comU, comD, {hi}ki=1)

8 : return ∃i s.t. (i /∈ I)

9 : ∧
(
yi ̸= Hide(si, nci, ski)

)

Fig. 6. Security Games: Provider-Secrecy, N−Collusion-Secrecy, User-Integrity and
Accountability Games Games.

Integrity and Accountability. First, we define integrity as the user’s capacity
to know whether or not its data has been altered. Here, the proxy is considered
an adversary and is malicious only during the download phase.

This property is depicted in game ExpINTGA (λ) of Fig. 6. The adversary plays
the role of k − 2 malicious providers that would collude with a proxy during
download phase (and honest during the upload phase). Hence, it controls k − 1
providers in total. The challenger emulates the user and the n − k + 2 honest
providers remaining. To win, the adversary’s final answer must contain a forged
partsD that would be accepted as the user’s data during recovery, but corre-
sponding to a modified m′ ̸= m with non-negligible probability. We assume that
the honest providers consistently return the correct shares, and the proxy cannot
manipulate them to return incorrect data, such as shares from a different file. It
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can be achieved if the proxy demonstrates the legitimacy of its request to the
providers.

Definition 20 (User-Integrity). A KMPS scheme achieves user-integrity if
for any adversary A we have AdvINTGλ (A) := Pr

[
ExpINTGA (λ) = 1

]
≤ negl.

We define accountability as the proxy’s capacity to check the shares integrity,
and blame the corresponding provider whenever there is a corrupted share. We
model this property with the game ExpACCA of Fig. 6. The adversary plays the
role of k−1 colluding CSPs during download aiming to alter the user’s data. The
challenger emulates the proxy, who wants to check which shares are corrupted. To
win, the adversary’s final answer h1, . . . , hk−1 must contain at least one corrupted
share that would be accepted as correct by the proxy, but corresponding to a
modified m′ ̸= m with non-negligible probability. We let the adversary choose
the initial message.

Definition 21 (Accountability). A KMPS scheme achieves accountability if
for any adversary A we have AdvACCλ (A) := Pr

[
ExpACCA (λ) = 1

]
≤ negl.

4 KMPS instantiations

Keyless storage schemes are secure up to a given corruption level. First, we
propose a KMPS scheme KAPRE (Section 4.1), offering protection against a cor-
rupted proxy or k − 1 colluding providers. It remains vulnerable to a proxy
colluding with a provider. Secondly, at the cost of an additional round of com-
munications between the proxy and the providers, we propose another scheme
KAME (Section 4.2) robust against a proxy colluding with k − 2 providers.

The resulting state of an upload is the same in both schemes, allowing a
common download (Section 4.3).

4.1 KAPRE – Upload using Proxy Re-Encryption

Let p be a prime of at least λ bits. Our design of KAPRE upload relies on an ad-
ditively homomorphic proxy re-encryption scheme PRE and a key homomorphic
pseudorandom function family F = {Fs}s∈Zp . As PRE is additively homomor-
phic, it commutes with Shamir’s secret sharing (Definition 7). We describe
the protocol below while the algorithms (KeyGen,Transform,Distrib,Open) are
detailed in Fig. 8.

Consider a user willing to store some data m among n providers with a thresh-
old recovery level of k shares. First, in Transform the user samples a random key
recK to encrypt its data m as ct with the symmetric encryption E. Then, it pre-
pares a Shamir’s secret sharing by encrypting a0 ← recK and k−1 random coeffi-
cients ai with the additively homomorphic proxy re-encryption scheme as ãi. The
user computes one share y0 for the proxy in plaintext. Next, the user commits
the coefficients used in comU by evaluating the key homomorphic pseudorandom
functions Fai

at a same random point x. The user also computes re-encryption
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keys rki towards each provider, although this only needs to be done whenever a
party changes its keys. Finally, the user sends partsU ← ({ãi}k−1i=0 , ct, {rki}ni=1, y0)
and comU ← (x, {cai}k−1i=0 ) to the proxy.

The proxy stores comU, which will be used in download to check the shares
integrity. Now the proxy can split the data into shares with Distrib. Confiden-
tiality is ensured by the absence of any re-encryption key toward the proxy. It
splits the encrypted data ct with an IDA in shares {ri}ni=0. Then, from the ho-
momorphically encrypted coefficients ãi, the proxy evaluates encrypted Shamir
shares (i+ 1, ỹi) as described in Section 2. Essentially, the proxy plays the role
of the dealer in Shamir’s secret sharing, that computes the shares blindly as the
values are hidden by the encryption PRE that it cannot decrypt. Due to the
homomorphic property of PRE, the resulting shares are exactly the ones that
would be computed by the dealer in classical Shamir’s secret sharing, hence still
benefitting from its perfect secrecy. The proxy sends to each provider a share of
the form hi ← (i + 1,PRE.ReEnc(ỹi, rki), ri) while it stores its share (1, y0, r0).
Finally, each provider decrypts ỹi and stores its share si ← (i+ 1, yi, ri).

Under the assumption that no more than k providers may leak their share,
recK is protected by Shamir’s secret sharing perfect secrecy, and m is protected
by E’s security. On the other hand, the key is disposable as long as at least k
parties are accessible. Ultimately, as Shamir shares are of the size of their secret
and IDA like Rabin’s [28] produces shares of size 1/k of the secret, each provider
holds a share of size λ+ |ct|/k, which is almost optimal5.

4.2 KAME – Upload Using Multikey Encryption

Our protocol KAME’s achieves improved security properties. This section high-
lights the differences between KAPRE and KAME’s upload. KAME’s algorithms
are formally described in Fig. 8. We consider an additively homomorphic multi-
key encryption scheme MKE. Due to its homomorphic property, MKE also com-
mutes with Shamir’s secret sharing. The KAME scheme resembles KAPRE, where
multikey encryption replaces proxy re-encryption. Each provider and the proxy
possess a key pair for MKE. The polynomial coefficients ai of Shamir’s secret
sharing are encrypted under all the public keys. This mechanism requires the
cooperation of all parties to decrypt each share. Hence, the decryption process
becomes a two-round protocol involving the providers and the proxy. This ap-
proach provides higher security guarantees, as even one honest party can prevent
a dishonest decryption.

4.3 Common Download

Due to the common structure of the resulting shares from an upload (a pair of a
share from Shamir’s secret sharing of recK and an IDA share of ct), we propose
5 As a ciphertext from a symmetric encryption usually is about the size of the plain-

text, our protocol stores shares close to the optimal size of |m|/k, with an additional
overhead of the size of the security parameter.
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Upload of KAPRE Protocol
KeyGen(λ) :

1 : (pkPK, skPK)← PKE.KeyGen(λ)

2 : (pkPR, skPR)← PRE.KeyGen(λ)

3 : return (pkPK, pkPR), (skPK, skPR)

Transform(m,⊥, pkPR1 , . . . , pkPRn ) :

1 : recK← E.KeyGen(λ)

2 : ct← E.Enc(m, recK)

3 : (pkPR, skPR)← PRE.KeyGen(λ)

4 : for i ∈ J1, nK :

5 : rki ← PRE.ReKey(sk, pkPRi )

6 : ã0 ← PRE.Enc(recK, pkPR)

7 : x←$ D, ca0 ← FrecK(x)

8 : for i ∈ J1, k − 1K :

9 : ai ←$ Zp, cai
← Fai

(x)

10 : ãi ← PRE.Enc(ai, pk
PR

),

11 : y0 ← recK +

k−1∑
i=1

ai

12 : return comU = ({ãi}k−1
i=0 , ct,

{rki}ni=1, y0),

partsU = (x, {cai
}k−1
i=0 )

Distrib
(
y0, {ãi}k−1

i=0 , ct, {rki}
n
i=1

)
:

1 : {ri}ni=0 ← IDA.Split(ct, n + 1, k)

2 : P̃ (x) =

k−1∑
i=0

ãix
i

3 : for i ∈ J1, nK : ỹi ← P̃ (i + 1)

4 : ỹi ← PRE.ReEnc(ỹi, rki)

5 : return (1, y0, r0),

{(i + 1, ỹi, ri)}ni=1

Open(ỹi, sk
PR
i ) :

1 : return yi := PRE.Dec(ỹi, sk
PR
i )

Upload of KAME Protocol
KeyGen(λ) :

1 : (pkPK, skPK)← PKE.KeyGen(λ)

2 : (pkMK
, skMK

)← MKE.KeyGen(λ)

3 : return (pkPK, pkMK
), (skPK, skMK

)

Transform(m, pkMK
0 , . . . , pkMK

n ) :

1 : recK← E.KeyGen(λ)

2 : ct← E.Enc(m, recK)

3 : ã0 ← MKE.Enc(recK, {pkMK
i }

n
i=0)

4 : x←$ D, ca0 ← FrecK(x)

5 : for i ∈ J1, k − 1K : ai ←$ Zp

6 : ãi ← MKE.Enc(ai, {pkMK
i }

n
i=0)

7 : cai
← Fai

(x)

8 : return ({ãi}k−1
i=0 , ct), (x, {cai

}k−1
i=0 )

Distrib({ãi}k−1
i=0 , ct) :

1 : {ri}ni=0 ← IDA.Split(ct, n + 1, k)

2 : P̃ (x) =

k−1∑
i=0

ãix
i

3 : for i ∈ J0, nK : ỹi ← P̃ (i + 1)

4 : return {(i + 1, ỹi, ri)}ni=0

Open⟨CSPi(ỹi, sk
MK
i )ni=1,Proxy(ỹ0, sk

MK
0 )⟩ :

1 : CSPi :

y
(i)
j ← MKE.PartDec(ỹj , sk

MK
i )

2 : CSPi → Proxy : {y(i)
j }j ̸=i

3 : Proxy→ CSPi : {y(j)
i }j ̸=i

4 : CSPi :

yi ← MKE.FinDec({y(j)
i }

n
j=0)

5 : Proxy :

y0 ← MKE.FinDec({y(j)
0 }

n
j=0)

Fig. 7. Description of KAPRE and KAME uploads’ algorithms.
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Common Download
Designate(pkPK1 , . . . , pkPKk ) :

1 : n1, . . . , nk ←$ Zp

2 : nci ← PKE.Enc(ni, pk
PK
i )

3 : ci ← Fni
(x)

4 : return {ci}ki=1, {ni}ki=1, {nci}
k
i=1

Hide((xi, yi, ri), nci, sk
PK
i ) :

1 : ni ← PKE.Dec(nci, sk
PK
i )

2 : return (xi, yi + ni, ri)

Recover((shiftK, ct, {ℓi}ki=1), {ni}ki=1) :

1 : recK← shiftK−
k∑

i=1

niℓi

2 : return E.Dec(ct, recK)

Merge((x, {cai}
k−1
i=0 ), {ci}

k
i=1, (xi, y

′
i, ri)

k
i=1) :

1 : shiftK←
k∑

i=1

y
′
iℓi

2 : for i ∈ J1, kK : ℓi ←
∏
j ̸=i

−xj

xi − xj

3 : if ca0
+

k∑
i=1

ciℓi = FshiftK(x) :

4 : ct← IDA.Rec(k, {ri}ki=1)

5 : return (shiftK, ct, {ℓi}ki=1)

6 : else return I the set of
indexes i such that

ci ̸= Fy′
i
(x)−

k−1∑
j=0

caj
x
j
i

Fig. 8. Description of the download algorithms.

a common download. Let PKE = (KeyGen,Enc,Dec) be an IND-CPA asymmetric
encryption scheme.

Only k shares are needed for data recovery. The proxy and the providers
use their public key pkPKi from PKE. The process start with the client chosing k
providers to participate in the download, and executing Designate. It samples k
nonces, commits them in comD and encrypts one with each pkPKi . These cipher-
texts and comD are sent to the proxy, which redirects each encrypted nonce to
the designated provider. In Hide, each provider decrypts its nonce and adds it
to its share (i+ 1, y′i := yi + ni) of recK (this is essentially a one-time pad).

After gathering the shifted shares from the providers, the proxy computes a
secret sharing reconstruction shiftK←

∑k
i=1 y

′
iℓi. First, the proxy does a batched

verification on the shares by checking whether recK +
∑k

i=1 niℓi =
∑k

i=1 y
′
iℓi

with FrecK(x) ∈ comU stored in upload and Fni
(x) ∈ comD, using the key-

homomorphic property of F . If the equality holds, the shares are correct and
shiftK is sent back to the user along with the values ℓi and the reconstructed
ct from the IDA. The user recover its data by shifting back recK ← shiftK −∑

niℓi and decrypting ct with recK. By using an authenticated encryption [8],
the decryption will fail if ct was altered. Otherwise, to detect which shares are
corrupted, the proxy checks for each share if y′i − ni =

∑k−1
j=0 ajx

j
i from cai

∈
comU and comD, again using the key-homomorphic property of F . Whenever
the equality does not hold, the proxy blames the corresponding provider. The
detailed process of the download algorithms is presented in Fig. 8.

The user can store the value x to compute the commitments to the nonces.
Otherwise, as the proxy stores x in comU during upload, the user can ask the
proxy for x in the beginning of the download. Additionally, the user might not
need to select which CSPs participate in the download, albeit at the cost of



18 P. Lafourcade et al.

slightly more computations. Instead, it can send nonces for all the providers,
allowing the proxy to determine which shares to utilize for reconstruction.

5 Security Analysis

In KAPRE, all shares are re-encrypted under pki using rki. It’s important to
highlight that the proxy does not possess any re-encryption key and must obtain
its share in plaintext. Otherwise, this situation opens up a direct attack: if the
client sends the proxy a re-encryption key rk0, allowing it to decrypt its share, the
proxy could re-encrypt all parts of recK using its own public key and subsequently
decrypt it, thereby revealing the content of ct. This implies that only 0-collusion-
secrecy can be achieved for KAPRE in addition to provider-secrecy. We give
sketch proofs that KAPRE indeed achieves these two properties in addition to
user-integrity and accountability, and that KAME has (k − 2)-collusion-secrecy,
user-integrity and accountability. The full proofs are given in the long version [2].
Both schemes are correct, our implementation [2] demonstrate this.

5.1 Confidentiality

We assume that the designated parties participating in download are always the
k − 1 first CSPs and the proxy, up to a permutation (the proxy is essentially a
CSP with additional knowledge).

Theorem 1. Assume that PRE is PRE-IND, E is IND-CPA, F is pseudorandom
and PKE is IND-CPA. Then KAPRE achieves 0-collusion-secrecy.

Proof. We prove this theorem by a sequence of reductions.
Game G0: the original game ExpCollA,0(λ) (Fig. 6) instantiated with KAPRE’s

algorithms.
Game G1: the same game as G0 except that the functions {Fai}k−1i=0 in comU

and {Fni
}k−1i=0 in comD are replaced by random functions.

Game G2: the same game as G1 except that {ãi}k−1i=0 are uniformly drawn in
[PRE.Enc].

Game G3: the same as G2 but the values {nci}k−1i=0 are uniformly drawn from
[PKE.Enc].

Game G4: the same as G3 but the values {y′i}
k−1
i=0 in the shares hi = (xi, y

′
i, ri)

sent by the providers in download are drawn uniformly.
Game G5: the same as G4 but y0 is replaced by a random value.

Claim. We claim that G0 and G1 are indistinguishable, given that F is pseudo-
random.

We create a sequence of 2k reductions R0
1, . . . ,R2k−1

1 . The first reduction
R0

1 takes as input the tuple (x, F0(x)) instead of (x, FrecK(x)) in comU and all
other values are as G0. Each reductions Ri

1 for i ∈ J1, 2k − 1K takes as input
Fi(x) instead of Fai

(x) for i ∈ J1, k − 1K in comU and Fni−k
(x) in comD for

i ∈ Jk, 2k−1K and all other values are as in Ri−1
1 . If all Fi are random functions,
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R2k−1
1 simulates G1 perfectly, and if Fi ← Fai

, Fi+k ← Fni
for i ∈ J0, k − 1K

it simulates G0 perfectly. We have |Adv(Ri
1(A))− Adv(Ri+1

1 (A))| ≤ AdvPRFλ (A),
hence

|Adv0(A)− Adv1(A)| ≤ 2k · AdvPRFλ (A)

and the claim follows.

Claim. We claim that G1 and G2 are indistinguishable, given that PRE is PRE-IND.
By a similar argument, we make a sequence of k reductions Ri

2 where R0
2

takes as input the tuple rk1, . . . , rkn, ã0 and all other values are set as in G1. Then,
the reduction Ri

2 takes as input ãi and all other values are set as in Ri−1
2 . If all ãi

are random, Rk−1
2 simulates G2 perfectly, otherwise if ãi ← PRE.Enc(ai, pk

PR) it
simulates G1 perfectly. We have |Adv(Ri

2(A))−Adv(Ri+1
2 (A))| ≤ AdvPRE-IND

λ (A),
hence

|Adv1(A)− Adv2(A)| ≤ k · AdvPRE-IND
λ (A)

which is negligible given that PRE is PRE-IND.

Claim. We claim that G2 and G3 are indistinguishable, given that PKE is IND-CPA.
We make the same argument as in the previous claim by creating a sequence

of k reductions Ri
3, except that we replace the ciphertexts nci. It follows that

|Adv2(A)− Adv3(A)| ≤ k · AdvINDλ -CPA(A)

which is negligible given that PKE is IND-CPA.

Claim. We claim A’s advantage is the same in G3 and G4.
Let R4 be the reduction such that Adv(R4) = |Adv4(A) − Adv3(A)|. The

reduction R5 takes as input y′i from the shares hi ← (xi, y
′
i, ri), and all other

values are setup as in G3. If y′i ← yi + ni, R4 simulates perfectly G3. However,
as ni is drawn uniformly by the challenger and independent of all of A’s others
inputs, y′i also follows a uniform distribution and R4 also simulates perfectly G4.
Thus we have Adv(R4) = 0 and the claim follows.

Claim. We claim A’s advantage is the same in G4 and G5.
Let R5 be the reduction such that Adv(R5) = |Adv5(A) − Adv4(A)|. The

reduction R5 takes as input y0, and all other values are setup as in G4. If y0 is a
share from Shamir’s secret sharing, R5 simulates G4, otherwise if y0 is sampled
uniformly R5 simulates G5. From Shamir’s secret sharing perfect secrecy, we
have Adv(R5) = 0 and the claim follows.

Claim. We claim that A’s advantage in G5 is negligible given that E is IND-CPA.
Let R be the reduction such that Adv5(A) = AdvINDλ -CPA(R(A)). It uses

the challenger’s response ct to answer m0,m1 the adversary’s request. All of
the others inputs are as in G5, random and independent of recK. Finally, the
reduction outputs the adversary’s answer. The claim follows.

Theorem 2. Assume that E is IND-CPA. Then KAPRE has provider-secrecy.
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Proof. We prove this theorem by a sequence of reductions.
Game G0: the original game ExpCSPA (λ) (Fig. 6) instantiated with KAPRE al-

gorithms. In this game,A is input shares (xi, ỹi, ri) and nonces {nci}k−1i=1 (line 10),
where ỹi = PKE.Enc(yi, pk

PK
i ). The couples (xi, yi) are shares from a Shamir’s

secret sharing of recK, and ri are shares of ct := E.Enc(mb, recK) from Rabin’s
IDA, both with threshold k.

Game G1: the same as G0, but the values yi are sampled uniformly.
Game G2: the same as G1, but ct is uniformly sampled of the same length as

the messages chosen by the adversary in its first interaction.

Claim. We claim that A’s advantage in G0 and G1 are the same.
Let R1 be the reduction such that Adv(R1) = |Adv1(A) − Adv0(A)|. The

reduction R1 takes as input the instance (xi, yi)
k−1
i=1 , and all other values are

setup as in G0. If (xi, yi)
k−1
i=1 are shares from Shamir’s secret sharing,R1 simulates

G0, otherwise if yi are sampled uniformly R1 simulates G1. From Shamir’s secret
sharing perfect secrecy, we have Adv(R1) = 0.

Claim. We claim G1 and G2 are indistinguishable, given that E is IND-CPA.
Let R2 be the reduction such that Adv(R2) = |Adv2(A) − Adv1(A)|. The

reduction R2 takes as input the shares r1, . . . , rk−1, and all other values are
setup as in G1. If r1, . . . , rk−1 are shares of E.Enc(m, recK) then R2 simulates
G2, otherwise if they are shares of a uniformly sampled value R2 simulates G1.
Under the assumption that E is IND-CPA, we have Adv(R2) ≤ AdvINDλ -CPA(A).

Claim. The adversary’s advantage in G2 is Adv2(A) = 0.
As all of A’s inputs are random values independent of mb, the only thing A

can do is guess randomly.

Theorem 3. Assume that E is IND-CPA, MKE has internal security, F is pseu-
dorandom and the encryption PKE is IND-CPA. Then KAME has (k−2)-collusion-
secrecy for a Shamir threshold k.

Proof. We use a strategy very similar to the one used in Theorem 1.
Game G0: the original game ExpCollA,k−2(λ) (Fig. 6) instantiated with KAME’s

algorithms.
Game G1: the same game as G0 except that the functions {Fai}k−1i=0 in comU

and Fnk−1
in comD are replaced by random functions.

Game G2: the same game as G1 except that {ãi}k−1i=0 are uniformly drawn in
[MKE.Enc].

Game G3: the same as G2 but nck−1 is uniformly drawn from [PKE.Enc].
Game G4: the same as G3 but the value y′k−1 in the share hk−1 ← (xk−1, y

′
k−1,

rk−1) sent by the challenger is drawn uniformly.
Game G5: the same as G4 but the challenger computes ỹi ← MKE.Enc(yi,

{pkMK
i }ni=0) by drawing uniformly yi for i ∈ J0, k − 2K.

Claim. We claim that G0 and G1 are indistinguishable, given that F is pseudo-
random.
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We create a sequence of k+1 reductions R0
1, . . . ,Rk

1 . The first reduction R0
1

takes as input the tuple (x, F0(x)) instead of (x, FrecK(x)) in comU and all other
values are as G0. Each reductions Ri

1 for i ∈ J1, kK takes as input Fi(x) instead
of Fai(x) for i ∈ J1, k− 1K in comU and Fnk−1

(x) in comD for i = k and all other
values are as in Ri−1

1 . If all Fi are random functions, Rk
1 simulates G1 perfectly,

and if Fi ← Fai
for i ∈ J0, k−1K, Fk ← Fnk−1

it simulates G0 perfectly. We have
|Adv(Ri

1(A))− Adv(Ri+1
1 (A))| ≤ AdvPRFλ (A), hence

|Adv0(A)− Adv1(A)| ≤ (k + 1) · AdvPRFλ (A)

and the claim follows.

Claim. We claim that G1 and G2 are indistinguishable, given that MKE has
internal security.

By a similar argument, we make a sequence of k reductionsRi
2 whereR0

2 takes
as input the tuple rk1, . . . , rkn, ã0 and all other values are set as in G1. Then, the
reduction Ri

2 takes as input ãi and all other values are set as in Ri−1
2 . If all ãi are

random,Rk−1
2 simulates G2 perfectly, otherwise if ãi ← MKE.Enc

(
ai, {pkMK

i }ni=0

)
it simulates G1 perfectly. We have |Adv(Ri

2(A))− Adv(Ri+1
2 (A))| ≤ AdvINTλ (A),

hence
|Adv1(A)− Adv2(A)| ≤ k · AdvINTλ (A)

which is negligible given that MKE has internal security.

Claim. We claim that G2 and G3 are indistinguishable, given that PKE is IND-CPA.
Let R3 be the reduction such that Adv(R3) = |Adv3(A) − Adv2(A)|. The

reduction R3 takes as input nck−1, and all other values are setup as in G3. If
nck−1 ← PKE.Enc(nk−1, pk

PK
k−1), R3 simulates perfectly G3, and if it as a random

value it simulates perfectly G2. Thus we have Adv(R3) ≤ AdvINDλ -CPA(A) and
the claim follows.

Claim. We claim A’s advantage is the same in G3 and G4.
Let R4 be the reduction such that Adv(R4) = |Adv4(A) − Adv3(A)|. The

reduction R5 takes as input y′k−1 from the shares hk−1 = (xk−1, y
′
k−1, rk−1), and

all other values are setup as in G3. If y′k−1 ← yk−1+nk−1, R4 simulates perfectly
G3. However, as nk−1 is drawn uniformly by the challenger and independent of
all of A’s others inputs, y′k−1 also follows a uniform distribution and R4 also
simulates perfectly G4. Thus we have Adv(R4) = 0 and the claim follows.

Claim. We claim A’s advantage is the same in G4 and G5.
Let R5 be the reduction such that Adv(R5) = |Adv5(A) − Adv4(A)|. The

reduction R5 takes as input {yi}k−2i=0 (i.e., the result after the adversary decrypts
its shares ỹi), and all other values are setup as in G4. If yi are shares from
a Shamir’s secret sharing of threshold k, R5 simulates G4, otherwise if they
are sampled uniformly R5 simulates G5. From Shamir’s secret sharing perfect
secrecy, we have Adv(R5) = 0 and the claim follows.
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Claim. We claim that A’s advantage in G5 is negligible given that E is IND-CPA.
Let R be the reduction such that Adv5(A) = AdvINDλ -CPA(R(A)). It uses

the challenger’s response ct to answer m0,m1 the adversary’s request. All of
the others inputs are as in G5, random and independent of recK. Finally, the
reduction outputs the adversary’s answer. The claim follows.

5.2 Integrity

As only the result of an upload is involved in the integrity and accountability
games, we prove simultaneously that both schemes achieve these properties.

Theorem 4. The schemes KAPRE and KAME achieve user-integrity under the
assumption that F is pseudorandom, PKE is IND-CPA and E has authenticity.

Proof. We prove this theorem by a sequence of game reductions.
Game G0: the original game ExpINTGA (λ) (Fig. 6) instantiated with the down-

load algorithms, with comU, s0, . . . , sn the result from an upload.
Game G1: the same as G0 but the functions Fn0 , . . . , Fnk−1

are replaced by
random functions in Designate.

Game G2: the same as G1 but nck−1 is drawn uniformly from [PKE.Enc].

Claim. We claim that G0 and G1 are indistinguishable given that F is pseudo-
random.

By a similar argument as in Theorem 1, this follows from a sequence of k
reductions on the pseudorandomness of F .

Claim. We claim that G1 and G2 are indistinguishable given that PKE is IND-CPA.
We use the same argument as in Theorem 3.

Claim. We claim that Adv2(A) is negligible, given that E has authenticity.
Let R2 be the reduction that takes as input ct and all other values as in G2,

and outputs partsD whatever the adversary outputs. If it succeeds, the adversary
managed to break the authenticity of E

Theorem 5. Both schemes have accountability given that F is pseudorandom.

Proof. We prove this theorem by a sequence of game reductions.
Game G0: the original game ExpACCA (λ) (Fig. 6) instantiated with the down-

load algorithms, where comU, s0, . . . , sn is the result from an upload.
Game G1: the same as G0 but the values {yi}k−1i=1 are replaced by random

values in the shares si = (xi, yi, ri).

Claim. We claim that A’s advantage is the same in G0 and G1.
Let R1 be the reduction such that Adv(R1) = |Adv1(A) − Adv0(A)|. The

reduction R1 takes as input (xi, yi)
k−1
i=1 , and all other values are setup as in G1.

If (xi, yi) are shares from a Shamir’s secret sharing of threshold k, R1 simulates
G1, otherwise if they are sampled uniformly it simulates G1. From Shamir’s secret
sharing perfect secrecy (all of the other inputs are independent of recK and the
coefficients used in the sharing), we have Adv(R1) = 0 and the claim follows.
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Claim. We claim that Adv1(A) = 0.
Now all of A’s inputs are independent of recK randomly sampled, and the

challenger’s final answer depends on whether the adversary’s outputs verifies a
linear relation with FrecK(x). Hence, the only thing A can do is guess randomly.

6 Instantiation and Experimental Results

We provide a proof-of-concept of both KAPRE and KAME in C++ available in [2].
We used this implementation to design benchmarks and evaluate the perfor-
mance of our schemes.

2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

1

Threshold k out of 16

Seconds
Time comparison in KAPRE and KAME

Distrib KAPRE Distrib KAME Merge

Transform (both) Designate

Fig. 9. Average execution time comparison for KAPRE and KAME algorithms (over
500 trials) in function of the threshold k for a number of providers n = 15. Open, Hide
and Recover are not included as their times were negligible (< 0.05s).

Implementation details. We use the OpenFHE [3] and Crypto++ [1] libraries
to implement both schemes. We use the OpenFHE implementation of a proxy re-
encryption scheme built from BGV [27]. We use the multiparty BGV encryption
provided by OpenFHE for multikey encryption. We chose for symmetric en-
cryption E the AES-128 implementation of Crypto++, and we use the Crypto++
implementation of Rabin’s IDA. The asymmetric encryption scheme in download
is done with the BGV encryption of OpenFHE. As for the PRF family, we im-
plemented the key-homomorphic PRF family described in [4], which is highly
parallelizable (we did not do it).

Benchmark results. Our tests were carried out on an Ubuntu 22.04.2 laptop
equipped with an Intel i7-12800H processor of 4.8 GHz and 32 GB of RAM.
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We upload and download messages of 1MB (to reflect the processing time of
our algorithms instead of the encryption time of the data), for a threshold from
k = 2 to 14 and a fixed number of providers n = 15 (only the complexity of
Distrib depends on n, all the other algorithms have a constant time in n). We
use the BGV parameters of OpenFHE that provide 128 bits of security.

Upload. We give in Fig. 9 the average times for the user to execute Transform
and the proxy to execute Distrib, over 500 trials. We suppose the re-encryption
keys rki are already known of the user in KAPRE, as the user does not have to
change its PRE key everytime. The time taken by the user in Transform is linear
in k as it encrypts k Shamir coefficients, and is constant in n. The complexity
is the same in both KAPRE and KAME, as it only changes the kind of key
used to encrypt the Shamir coefficients. In Distrib, the complexity of Shamir’s
secret sharing is linear both in k and n as computing one share costs k scalar
multiplications (plus a re-encryption in KAPRE). The parabolic shape comes
from the IDA which complexity is in O(nk − k2) [29], hence the worst trade-off
is for k close to n/2. In Open, the time for each provider is constant in KAPRE,
and linear in n in KAME as each party computes n+ 1 partial decryptions. We
did not include these times in Fig. 9 as they are constant to 45ms per party in
KAME and 1ms in KAPRE. However, even if Distrib takes more time in KAPRE
as the proxy also computes n re-encryptions, we stress that KAME is less efficient
in the sense that it has an additional round of communications for decryption,
which communication time is not taken into account in our experiments.

Download. We give in Fig. 9 the average times to execute Designate and Merge
over 500 trials. The time for Designate is linear in k, as the user encrypts a nonce
of each provider involved in recovery. The time for each provider to compute
Hide its share is constant (about 1ms). The time for the proxy to check the
shares is linear in k as it computes a linear relation in the k commitments to
check integrity. Finally, the time for Recover is negligible (about 1ms) as it is
essentially one AES decryption.

7 Conclusion

We propose an efficient and scalable KMPS scheme addressing collusion amongst
providers, and collusion with a curious proxy. Our scheme also achieves data in-
tegrity on the user (integrity) and proxy (accountability) sides, while allowing
forgetful users. We design two implementations: our first solution KAPRE involv-
ing proxy re-encryption and our second one KAME using multi-key encryption
schemes. The first one is round optimal in the upload phase, but only provides
security against a proxy not colluding with any providers. The second one offers
confidentiality against a proxy colluding with up to k − 2 malicious providers,
but requires an additional round of communication.
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