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Abstract

In this article, we study a finite horizon linear-quadratic stochastic control problem for
Brownian particles, where the cost functions depend on the state and the occupation measure
of the particles. To address this problem, we develop an Itô formula for the flow of occupation
measure, which enables us to derive the associated Hamilton-Jacobi-Bellman equation. Then,
thanks to a Feynman-Kac formula and the Boué-Dupuis formula [7], we construct an optimal
strategy and an optimal trajectory. Finally, we illustrate our result when the cost-function
is the volume of the sausage associated to the particles.
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1 Introduction

In this article, we consider n random particles (Xt)t≥0 = (X1
t , · · · ,X

n
t )t≥0 living in Rd for

d, n ≥ 1, and aim at controlling them through their occupation measure µt =
∑n

k=1

∫ t
0 δXk

s
ds.

The latter belongs to the set of finite measures on Rd with compact support, which we denote
by M

d
c . The particles at stake are Brownian particles which only interacts through the control.

More precisely, let (B1
t )t≥0, · · · , (B

n
t )t≥0 be n independent d-dimensional Brownian motions on

some probability space (Ω,F ,P). We denote B = (B1, · · · , Bn) and consider the (completed)
filtration F = (Ft)t≥0 generated by (Bt)t≥0. For an adapted process α = (α1

t , · · · , α
n
t )t≥0, we

consider the particle system (Xα
t )t≥0 = (X1,α

t , · · · ,Xn,α
t )t≥0 as well as its occupation measure

(µα
t )t≥0, defined for any t ≥ 0 and k ∈ {1, · · · , n} by

Xk,α
t =

∫ t

0
αk
sds+Bk

t and µα
t =

n
∑

k=1

∫ t

0
δ
Xk,α

s
ds.

Let A denote the class of progressively measurable processes. Consider some finite horizon
T > 0 and two measurable functions f, g : Md

c × (Rd)n → R. Our aim is to solve the following
minimization problem:

J(T ) = inf
α∈A

E

[

g(µα
T ,X

α
T ) +

∫ T

0
f(µα

s ,X
α
s )ds+

1

2

n
∑

k=1

∫ T

0
|αk

s |
2ds

]

. (1)

To this end, we will add the occupation measure in the state space, and regard (µα
t ,X

α
t )t≥0 as

a couple. In order to derive the Hamilton-Jacobi-Bellman (HJB) equation associated with our
control problem, we establish an Itô calculus for the flow t 7→ (µα

t ,X
α
t ). Let us stress that this

HJB equation is a PDE on R+ × M
d
c × (Rd)n. The linear-quadratic framework in which we

place ourselves is quite convenient, for two main reasons : (i) it allows us to classically solve the
HJB equation to a Hopf-Cole transform and (ii) we can rely on the Boué-Dupuis formula [7],
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which gives an expression of (1) as a log Laplace transform of some functional on the Wiener
space. In particular, we do not have to establish a Dynamic Programming Principle and a
verification theorem. This framework also enables us to identify the optimal control α∗ and to
define a process (µ∗

t ,X
∗
t )t∈[0,T ] which is controlled in an optimal way. Although properly stated

in Theorem 20, our main result is, in essence, the following.

Result. Under some regularity assumptions on the functions f and g, there exist a continuous
function α∗ : [0, T ] ×M

d
c × (Rd)n → R and a filtered probability space (Ω,G, (Gt)t∈[0,T ],Q) sup-

porting a (Gt)t∈[0,T ]-adapted process (µ∗
t ,X

1,∗
t , · · · ,Xn,∗

t )t∈[0,T ] such that for any t ∈ [0, T ] and
k ∈ {1, · · · , n},

Xk,∗
t =

∫ t

0
αk,∗(s, µ∗

s,X
∗
s )ds+Bk

t , µ∗
t =

n
∑

k=1

∫ t

0
δ
Xk,∗

s
ds

where (B1
t )t∈[0,T ], · · · , (B

n
t )t∈[0,T ] are n independent (Gt)t∈[0,T ]-Brownian motions in Rd. More-

over, it holds that

J(T ) = EQ

[

g(µ∗
T ,X

∗
T ) +

∫ T

0
f(µ∗

s,X
∗
s )ds+

1

2

n
∑

k=1

∫ T

0
|αk,∗(s, µ∗

s,X
∗
s )|

2ds
]

.

Let us now comment on the related litterature. First, we stress that the Itô calculus for
occupation measures outlined in this article is not completely novel and closely resembles the
framework developed in Tissot-Daguette’s recent work [33]. Yet, this work mostly concerns
one-dimensional processes with an emphasis on local times for semimartingales and can not be
directly applied to our context. We also emphasize that this calculus involves functions on the
space of measures and functional calculus on M

d
c , which has seen numerous applications in the

last two decades with the study of stochastic control for McKean-Vlasov equations and Mean
Field games, see for instance [9,10]. In particular, we will see that the linear functional derivative,
also called the flat derivative, plays a crucial role in our analysis. In contrast with the McKean-
Vlasov framework where µt is deterministic and is the law of Xt, the measure µt considered here
is random and can be seen as a process with finite variations (for any function ϕ, (〈µt, ϕ〉)t≥0

has finite variations). As such, the Itô formula obtained in Proposition 9 only differs from the
usual one by an additional term featuring a first order derivative.

Since the occupation measure µt is a functional of the whole path (Xs)s∈[0,t], one could
also treat the minimisation problem (1) with the recently developed path-dependent approach.
Initiated by the seminal work of Dupire [17], where the author introduces an Itô calculus for
functionals on the space of continuous functions, this theory has since seen numerous works on
the subject, see [22,27,29] for some path-dependent control problems and [12,13,19,20] for studies
of path-dependent HJB equations. However, this approach is often quite involved whereas the
approach with occupation measures turns out to be fairly simple, with the advantage that one
can compute the optimal control explicitly in our case. We refer to Tissot-Daguette [33] for a
link between the calculus for occupation measures and the path-dependent functional calculus.

Let us say a few words on a problem which partly motivates the study of (1), namely the
modeling of the evolution of filamentous fungus. In the work of Catellier, D’Angelo and Ricci [11],
the branching filaments which form the mycelium are modeled by branching kinetic diffusions
that interact with the entire network as well as with their environment. In the work of Tomaše-
vić, Bansaye and Véber [34], these networks are modeled by multi-type growth fragmentation
processes. We would like to add the following postulate to the model: in a homogeneous en-
vironment, the fungal network optimizes the occupied space. If we see the network not through
the trace left by the processes, but through a slight thickening of this trace, we then aim at
maximizing the volume of the “sausage” of the branching structure, which is a function of the
occupation measure. We can treat here a similar problem for particles which do not branch.
This brings us to the main application of our result.

We illustrate our result with a particular example, outlined in Section 5, corresponding to
the case where the function f = 0 and the function g is the opposite of the volume of the sausage
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defined by the particles. In other terms, we control n Brownian motions in order to maximize
their volume. Let us recall that, for ρ > 0, the ρ-sausage of the particles (X1

t , · · · ,X
n
t ) at time

t ≥ 0 is the set A defined by

A =

n
⋃

k=1

⋃

s∈[0,t]

B̄(Xk
s , ρ)

where B̄(Xk
s , ρ) is the closed ball of radius ρ, centered in Xk

s . The function g is then defined by
−m(A) where m denotes the Lebesgue measure. If we reformulate this in terms of occupation
measure, we see that for any ν ∈ M

d
c , we have

g(ν) = −m({y ∈ Rd, d(y, supp(ν)) ≤ 1}).

Unfortunately, this function is not regular enough for us to apply directly our result. We exhibit
a sequence (gℓ)ℓ∈N of smooth functions which approximates the function g as ℓ → ∞. Thanks
to our main result, we get for each ℓ ∈ N, n particles (Xk,∗,ℓ

t )t≥0 controlled in an optimal way.
Then, we show that the process (X∗,ℓ

t )t≥0 = (X1,∗,ℓ
t , · · · ,Xn,∗,ℓ

t )t≥0 converges in law as ℓ → ∞,
see Theorem 23. As we shall see, the law of the limiting process (X∗,∞

t )t≥0 is given by a Gibbs
measure with respect to the Wiener measure where the energy is the function g. As such, it is
closely related to the polymer measure (in the case n = 1), also called Edward’s model, studied
by Varadhan [37] for d = 2 and by Westwater [38,39] for d = 3 (see also Bolthausen [6]). In this
model, the law of the polymer chain is given by a Gibbs measure with respect to the Wiener
measure where the energy is the self-intersection local time. Since maximizing the volume of
the sausage more or less amounts to penalize the self-intersection local time, we see that these
models should be closely related. This limiting process is yet another self-repelling process.

Let us also stress that, by construction, the dynamics of the optimal trajectory (X∗
t )t∈[0,T ] =

(X1,∗
t , · · · ,Xn,∗

t )t∈[0,T ] is driven by its own occupation measure. Beyond the control problem
that interests us here, these kind of dynamics appears in a significant amount of works, starting
with the work of Durrett and Rogers [18] on the so-called Brownian polymers, and the works of
Benaïm, Ledoux and Raimond [2] and Benaïm and Raimond [3–5] on self-interacting diffusions.
On the other hand, dynamics and control problems driven by probability measures have been
at play in many works, for McKean-Vlasov equations or Mean Field games, see [9, 10]. For
McKean-Vlasov dynamics driven by renormalized occupation measures and its applications, we
refer to the recent works of Du, Jiang and Li [15] and Du, Ren, Suciu and Wang [16].

Plan of the paper

The plan of the paper is as follows: in Section 2, we recall some important notions of calculus
in the space of finite measures with compact support. At the end of this section, we derive a
chain-rule formula for a flow of occupation-time measures (see Proposition 6) which, as stated,
is a generalization of the one obtained in Tissot-Daguette [33].

In Section 3, we first obtain an Itô formula for the process (µt,Xt,Ht)t≥0 in a general case
where (Xt)t≥0 and (Ht)t≥0 are some continuous semimartingales. We then specify this formula
when (Xt)t≥0 is a diffusion process and establish a Feynman-Kac formula for the associated PDE
on the space R+ ×M

d
c × (Rd)n.

In Section 4, we finally study the control problem (1) by solving the associated HJB equation
and relying extensively on the Boué-Dupuis formula. This leads us to state and prove our main
result, see Theorem 20.

Finally, in Section 5, we illustrate our result, controlling Brownian particles by the volume
of their sausage, see Theorem 23.

2 Calculus on the space of measures

As explained above, we first derive some general results concerning calculus on the space of
finite measures. In Section 2.1, we start by reminding the basics of spaces of finite measures.
Section 2.2 is devoted to the calculus rules.
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2.1 Basics on the space of finite measures

In the following, we denote by M
d
c the space of finite measures on (Rd,B(Rd)) with compact

support. This space is endowed with the weak topology, i.e. the weakest topology which makes
the maps µ 7→

∫

Rd ϕdµ =: 〈µ,ϕ〉 continuous for any ϕ ∈ Cb(R
d), where Cb(R

d) is the space of
continuous and bounded functions from Rd to R. As we shall see, this topology is metrizable.

It is a rather classical consequence of Tychonoff’s embedding theorem, see for instance [40, Th,
17.8] and [30, Chap. 1, page 9], that if ρ is an equivalent metric on Rd which makes it a totally
bounded space, then the space Uρ(R

d) of bounded and uniformly continuous functions for the
metric ρ is separable. Let us consider such a metric ρ and a dense sequence (ϕn)n∈N of Uρ(R

d)
such that the constant function 1 belongs to this sequence. We introduce the distance d on M

d
c

defined for any µ, ν ∈ M
d
c as

d(µ, ν) =

∞
∑

n=0

2−n[1 ∧ |〈µ,ϕn〉 − 〈ν, ϕn〉|].

This metric induces on M
d
c the weak topology, see for instance [30, Th. 1.1.2] with some minor

adaptations to the space M
d
c .

Compact subsets of M
d
c

The proofs in this work requires compactness arguments on the spaces M
d
c . Therefore we first

describe some compact subsets of this space. For A,B > 0, we introduce the set

KA,B = {µ ∈ M
d
c , µ(R

d) ≤ A and supp(µ) ⊂ [−B,B]d}. (2)

We also introduce for A > C > 0 and B > 0 the set KA,B,C = {µ ∈ KA,B, µ(R
d) ≥ C}. To

show that KA,B,C is compact, we mainly paraphrase Ocello [25, Sec. 4.2]. The set KA,B,C is
homeomorphic to PB × [C,A] where PB = {µ ∈ P(Rd), supp(µ) ⊂ [−B,B]d} and P(Rd) is the
set of probability measures on Rd. The corresponding homeomorphism is µ 7→ (µ/µ(Rd), µ(Rd)).
The set PB is obviously tight and therefore by Prokhorov’s theorem, it is relatively compact. It
is also closed and as a consequence, it is compact. At this point, we conclude that KA,B,C is a
compact set since it is homeomorphic to a product of compact spaces. Let us now prove that
KA,B is also compact. Consider a sequence (µn)n∈N in KA,B. Then either

(i) there exists k1 ≥ 2 such that #{n ∈ N, µn ∈ KA,B,A/k1} = ∞. In this case, we can extract
a subsequence which lies in KA,B,A/k1 and since it is a compact space, we can further
extract a converging subsequence, whose limit belongs to KA,B,A/k1 .

(ii) for any k ≥ 2, we have #{n ∈ N, µn ∈ KA,B,A/k} < ∞. In this case, we can extract a
subsequence (µnk

)k≥2 such that for any k ≥ 2, µnk
(Rd) < A/k. Then, this subsequence

converges to the null measure, which is a point of KA,B.

This proves that KA,B is indeed a compact set.

2.2 Chain-rule formula for the flow of finite measures

Let us define the derivability of functions defined on M
d
c . First for µ ∈ M

d
c , the space L1(µ)

denotes the space of Borel functions which are integrable with respect to µ.

Definition 1. A function u : Md
c → R is said to have a linear functional derivative if it is

continuous and if there exists a mapping δµu : Md
c × Rd → R satisfying the following properties

(i) δµu is continuous for the product topology.

(ii) For any µ, ν ∈ M
d
c , the function x 7→ supλ∈[0,1] |δµu(λν + (1− λ)µ, x)| is in L1(µ) ∩ L1(ν).
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(iii) For any µ, ν ∈ M
d
c , we have

u(ν)− u(µ) =

∫ 1

0

∫

Rd

δµu(λν + (1− λ)µ, x)(ν − µ)(dx)dλ. (3)

The set of such functions is denoted by C1(Md
c).

Proof. We quickly check here that the quantity
∫ 1
0

∫

Rd δµu(λν + (1 − λ)µ, x)(ν − µ)(dx)dλ is
well-defined. First for any (µ, x) ∈ M

d
c ×Rd, the map λ 7→ δµu(λν+(1−λ)µ, x) is continuous on

[0, 1] since µ 7→ δµu(µ, x) is continuous. Since supλ∈[0,1] |δµu(λν+(1−λ)µ, x)| ∈ L1(µ), it comes
that the map λ 7→

∫

Rd δµu(λν + (1− λ)µ, x)ν(dx) is continuous on [0, 1] and thus, is integrable.
The same argument applies to the other term.

Remark 2. In our setting of compact support, the requirement (ii) in Definition 1 can be de-
duced from (i). However, in the more general context of finite measures (without compactness
assumption), this condition cannot be removed. Usually, authors assume that the linear deriva-
tive is bounded. In our work, we use integration by parts arguments which somehow requires
instead linear growth conditions. Although this extension is quite straightforward, it requires
some technicalities that we develop below.

Regarding the uniqueness of the linear derivative, we have the following result, which is more
or less known, see for instance Ren and Wang [28].

Proposition 3. Let u ∈ C1(Md
c), then for any (µ, x) ∈ M

d
c × Rd, it holds that

u(µ + εδx)− u(µ)

ε
−→ δµu(µ, x) as ε → 0.

As a consequence, if u ∈ C1(Md
c), then its linear derivative is uniquely defined.

Proof. Let u ∈ C1(Md
c), then for any (µ, x) ∈ M

d
c × Rd, we have

u(µ+ εδx)− u(µ) =

∫ 1

0

∫

Rd

δµu(λ(µ+ εδx) + (1− λ)µ, y)(µ + εδx − µ)(dy)dλ

= ε

∫ 1

0
δµu(µ+ λεδx, x)dλ.

Using the continuity of µ 7→ δµu(µ, x), we have the convergence of δµu(µ+ λεδx, x) to δµu(µ, x)
for any λ ∈ [0, 1]. Let R > 0 be large enough so that supp(µ) ∪ {x} ⊂ [−R,R]d. Then for any
λ, ε ∈ (0, 1], µ + λεδx ∈ Kµ(R)+1,R where we recall that Kµ(R)+1,R defined by (2) is a compact
subset of Md

c . As a consequence, there exists a positive constant C such that for any λ, ε ∈ (0, 1],
δµu(µ + λεδx, x) ≤ C and we can apply the dominated convergence theorem, which completes
the proof.

We also have the following chain rule formula.

Proposition 4. Let n ≥ 1, u1, . . . , un be functions in C1(Md
c), h ∈ C1(Rn) and define the

function g : Md
c → R as g(µ) = h(u1(µ), · · · , un(µ)). Then g ∈ C1(Md

c) and for any (µ, x) ∈
M

d
c ×Rd, we have

δµg(µ, x) =
n
∑

k=1

∂xkh(g1(µ), · · · , gn(µ))δµuk(µ, x).

The proof of this result can be found in Martini [24, Prop. 2.20] but it is assumed therein
that the linear derivatives are bounded as well as the derivative of h. Let us quickly give the
additional arguments needed when boundedness is not required.
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Proof. We only treat the case n = 1 and let us first check that items (i) and (ii) from Definition 1
are satisfied by (µ, x) 7→ h′(u(µ))δµu(µ, x). The first item is straightforward and regarding the
second, we see that for µ, ν ∈ M

d
c and any x ∈ Rd,

sup
λ∈[0,1]

|h′(u(θλ))δµu(θλ, x)| ≤ sup
λ∈[0,1]

|h′(u(θλ))| × sup
λ∈[0,1]

|δµu(θλ, x)|

where θλ = λµ+ (1− λ)ν. Since the map λ 7→ h′(u(θλ)) is continuous on [0, 1], the first term on
the right-hand-side is finite, and since u ∈ C1(Md

c ), x 7→ supλ∈[0,1] |δµu(θλ, x)| is in L1(µ)∩L1(ν)
by definition, it comes that item (ii) is satisfied by (µ, x) 7→ h′(u(µ))δµu(µ, x). Finally, for the
third item, we paraphrase the proof given in [24, Prop. 2.20]. For any µ, ν ∈ M

d
c , we have

h(u(ν)) − h(u(µ)) =

∫ 1

0
∂λh(u(θλ))dλ =

∫ 1

0
h′(u(θλ))∂λu(θλ)dλ.

We show that ∂λu(θλ) =
∫

Rd δµu(θλ, x)(ν − µ)(dx) for any λ ∈ (0, 1) which will complete the
proof. For any ε ∈ (0, 1 − λ), we have

u(θλ+ε)− u(θλ)

ε
=

∫ 1

0

∫

Rd

δµu(θλ + sε(ν − µ), x)(ν − µ)(dx)ds

=
1

ε

∫ ε

0

∫

Rd

δµu(θλ + r(ν − µ), x)(ν − µ)(dx)dr

where we remark that sθλ+ε+(1−s)θλ = θλ+sε(ν−µ) and make the change of variable εs = r.
Since u ∈ C1(Md

c), the map r 7→ δµu(θλ + r(ν − µ), x) is continuous on [0, 1] for any x ∈ Rd.
Moreover, we see that θλ + r(ν − µ) = (λ + r)ν + (1 − (λ + r))µ so that for any λ ∈ (0, 1), we
have

x 7→ sup
r∈[0,1−λ]

|δµu(θλ + r(µ− ν), x)| ∈ L1(µ) ∩ L1(ν)

from which we deduce that for any λ ∈ (0, 1), the map r 7→
∫

Rd δµu(θλ + r(µ− ν), x)(µ− ν)(dx)
is continuous on [0, 1− λ]. Hence we can make ǫ → 0 and see that for any λ ∈ (0, 1), (u(θλ+ε)−
u(θλ))/ε converges to

∫

Rd δµu(θλ, x)(µ − ν)(dx).

Remark 5. Applying the above result with n = 2 and h(x, y) = xy, we get that δµ[g1g2](µ, x) =
g2(µ)δµg1(µ, x) + g1(µ)δµg2(µ, x). Note that, if one requires the linear derivative in Definition 1
to be bounded, then one needs to require the derivatives of h in Proposition 4 to be bounded, which
is of course not the case for h(x, y) = xy. This partly motivates the more general definition of
linear derivative given here.

In the following proposition, we specify the chain rule (Proposition 4) to a time dependent
flow of occupation measures. This result is fundamental in our work. It generalizes [33, Prop.
3].

Proposition 6. Let u ∈ C1(Md
c), ν ∈ M

d
c , n ≥ 1 and consider n continuous paths (xkt )t≥0,

1 ≤ k ≤ n, valued in Rd. If we set µt = ν +
∑n

k=1

∫ t
0 δxk

s
ds for any t ≥ 0, then we have

u(µt) = u(ν) +

n
∑

k=1

∫ t

0
δµu(µs, x

k
s)ds.

Proof. Consider some t > 0 and q ≥ 1 and the uniform subdivision 0, t/q, · · · , ℓt/q, · · · , t of [0, t].
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We classically start by writing

u(µt)− u(ν) =

q−1
∑

ℓ=0

[

u(µ(ℓ+1)t/q)− u(µℓt/q)
]

=

q−1
∑

ℓ=0

∫ 1

0

∫

Rd

δµu(λµ(ℓ+1)t/q + (1− λ)µℓt/q, y)(µ(ℓ+1)t/q − µℓt/q)(dy)dλ

=

q−1
∑

ℓ=0

n
∑

k=1

∫ 1

0

∫ (ℓ+1)t/q

ℓt/q
δµu(λµ(ℓ+1)t/q + (1− λ)µℓt/q, x

k
s)dsdλ (4)

=
n
∑

k=1

∫ t

0
yk,qs ds

where for any s ∈ [0, t] and any k ∈ {1, · · · , n}, yk,qs is defined as

yk,qs =

∫ 1

0

q−1
∑

ℓ=0

1{s∈[ℓt/q,(ℓ+1)t/q)}δµu(λµ(ℓ+1)t/q + (1− λ)µℓt/q, x
k
s)dλ.

For the second equality in (4), we used the definition of the linear derivative while in the third,

we used that µ(ℓ+1)t/q − µℓt/q =
∑n

k=1

∫ (ℓ+1)t/q
ℓt/q δxk

s
ds. By the continuity of (µ, y) 7→ δµu(µ, y), it

is clear that for any s ∈ [0, t], any k ∈ {1, · · · , n}, and any λ ∈ [0, 1], we have

q−1
∑

ℓ=0

1{s∈[ℓt/q,(ℓ+1)t/q)}δµu(λµ(ℓ+1)t/q + (1− λ)µℓt/q, x
k
s) −→ δµu(µs, x

k
s) as q → ∞.

Let A = nt+ν(Rd), B = maxk∈{1,··· ,n} sups∈[0,t] |x
k
s |, and recall the definition (2) of the compact

set KA,B. Since (µ, y) 7→ δµu(µ, y) is continuous and since KA,B × [−B,B]d is a compact
subset of Md

c × Rd, there exists a constant C > 0 such that for any (µ, y) ∈ KA,B × [−B,B]d,
δµu(µ, y) ≤ C. Since for any s ∈ [0, t], k ∈ {1, · · · , n}, λ ∈ [0, 1] and ℓ ∈ {0, · · · , q − 1},
(λµ(ℓ+1)t/q + (1− λ)µℓt/q, x

k
s) ∈ KA,B × [−B,B]d,

δµu(λµ(ℓ+1)t/q + (1− λ)µℓt/q, x
k
s) ≤ C and yk,qs ≤ C.

Hence, we can apply the dominated convergence theorem twice to deduce that for any k ∈
{1, · · · , n},

∫ t
0 y

k,q
s ds →

∫ t
0 δµu(µs, x

k
s)ds, which completes the proof.

Remark 7. The previous proof applies to the more general setting of weighted occupation mea-
sures, that is of the form µt = ν +

∑

k ak
∫ t
0 δxk

s
ds.

3 Stochastic calculus and occupation measures

In this Section, we aim at deriving an Itô type formula for occupation measures of diffusion
processes. In Subsection 3.1 we prove a general Itô formula, that we specify in Subsection 3.2
for diffusion processes. This allows us to obtain a Feynman-Kac formula (Proposition 15) for a
class of PDEs on R+ ×M

d
c × (Rd)n.

3.1 A general Itô formula

In this subsection, we consider a filtered probability space (Ω,F ,F,P) supporting two F-adapted
semimartingales (Xt)t≥0 and (Ht)t≥0 respectively valued in (Rd)n and Rp for some d, n, p ≥ 1
and such that X0 = x and H0 = h for some (x, h) ∈ (Rd)n ×Rp. The process (Xt)t≥0 represents
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a system of n particles (Xk
t )t≥0, k ∈ {1, · · · , n}, living in Rd, where we have Xt = (X1

t , · · · ,X
n
t ).

Next, we introduce the occupation process (µt)t≥0 of the particles, valued in M
d
c , and defined as

µt = ν +

n
∑

k=1

∫ t

0
δXk

s
ds

where ν ∈ M
d
c . Note that for any A ∈ B(Rd), we have µt(A) = ν(A) +

∑n
k=1

∫ t
0 1A(X

k
s )ds. We

see that (µt)t≥0 is F-adapted. Let us now give some definitions.

Definition 8. A function u : Md
c × Rp → R is said to be in C1,2(Md

c × Rp) if the following
assertions hold.

(i) u is jointly continuous for the product topology.

(ii) For any ν ∈ M
d
c , the function h 7→ u(ν, h) is twice differentiable and the functions (ν, h) 7→

∇hu(ν, h) and (ν, h) 7→ ∇2
hu(ν, h) are jointly continuous.

(iii) For any h ∈ Rp, the function µ 7→ u(µ, h) possesses a linear derivative which we denote
δµu(µ, h)(y). Moreover, the map (µ, h, y) 7→ δµu(µ, h)(y) is jointly continuous.

We have the following Itô formula.

Proposition 9 (Itô formula). Let u ∈ C1,2(Md
c × Rp). Then almost surely for any t ≥ 0,

u(µt,Ht) = u(ν, h)+

∫ t

0
∇hu(µs,Hs)dHs+

1

2

∫ t

0
∇2

hu(µs,Hs)d〈H〉s+
n
∑

k=1

∫ t

0
δµu(µs,Hs)(X

k
s )ds.

The proof is quite similar to the classical proof for Itô formula with an extra care for the
measure term.

Proof. Let t ≥ 0 be fixed, and q ≥ 1. We again consider the uniform subdivision of [0, t] with
mesh t/q. We write

u(µt,Ht)− u(ν, h) =

q−1
∑

ℓ=1

[

u(µ(ℓ+1) t
q
,H(ℓ+1) t

q
)− u(µℓ t

q
,H(ℓ+1) t

q
)
]

+

q−1
∑

ℓ=1

[

u(µℓ t
q
,H(ℓ+1) t

q
)− u(µℓ t

q
,Hℓ t

q
)
]

=:Iq + IIq.

The second term IIq converges to
∫ t
0 ∇hu(µs,Hs)dHs +

1
2

∫ t
0 ∇

2
h(µs,Hs)d〈H〉s as q → ∞. We

omit the proof as it is the same proof as the one of the classical Itô formula: perform a Taylor
expansion of u in the variable h, as the first variable is frozen and then let q → ∞. Regarding
Ip, we have thanks to Proposition 6 that

Iq =

n
∑

k=1

∫ t

0
Y k,q
s ds where Y k,q

s =

q−1
∑

ℓ=0

δµu(µs,H(ℓ+1) t
q
)(Xk

s )1(ℓ t
q
,(ℓ+1) t

q
](s).

Clearly, almost surely for any s ∈ [0, t], Y k,q
s → δµu(µs,Hs)(X

k
s ) as q → ∞. Moreover, if we let

X∗
t = sups∈[0,t] |Xs| and H∗

t = sups∈[0,t] |Hs|, then for any s1, s2 ∈ [0, t] and any k ∈ {1, · · · , n},
we have

(µs1 ,Hs2 ,X
k
s1) ∈ Knt+ν(Rd),X∗

t
× [−H∗

t ,H
∗
t ]

p × [−X∗
t ,X

∗
t ]

d

where we recall that KA,B = {µ ∈ M
d
c , µ(R

d) ≤ A and supp(µ) ⊂ [−B,B]d}. Since the set
Knt+ν(Rd),X∗

t
×[−H∗

t ,H
∗
t ]

p×[−X∗
t ,X

∗
t ]

d is a compact subset of Md
c×Rp×Rd and since (µ, h, x) 7→

δµu(µ, h)(x) is jointly continuous, there exists a random constant C such that almost surely, for
any s ∈ [0, t] and any k ∈ {1, · · · , n}, |Y k,q

s | ≤ C. By the dominated convergence theorem, we
get that almost surely Iq converges to

∑n
k=1

∫ t
0 δµu(µs,Hs)(X

k
s )ds as q → ∞, which establishes

the result.
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Remark 10. As usual, if some coordinates of (Ht)t≥0 have finite variations, we do not need to
assume that u is C2 in these coordinates, we can assume that it is only C1 without restriction.

3.2 Related formulas for diffusion processes

In this subsection, we finally consider the process (µt,Xt)t≥0 valued in E := M
d
c × (Rd)n and

defined by the following equation: for k ∈ {1, · · · , n},

Xk
t = xk +

∫ t

0
bk(Xk

s )ds+

∫ t

0
σk(Xk

s )dB
k
s and µt = ν +

n
∑

k=1

∫ t

0
δXk

s
ds (5)

where (Bt)t≥0 = (B1
t , · · · , B

n
t )t≥0 is an d×n-dimensional Brownian motion and (ν, x) ∈ E. Again,

Xt = (X1
t , · · · ,X

n
t ) represents the system of n particles living in Rd and x = (x1, · · · , xn) ∈

(Rd)n. We assume that bk : Rd → Rd and σk : Rd → Rd×d are smooth enough to ensure
pathwise uniqueness for the SDE satisfied by (Xt)t≥0. We denote by L the generator of the full
vector X defined for functions f ∈ C2((Rd)n) as

Lf = b · ∇f +
1

2
tr(∇2fσσT ), (6)

where b = (b1, · · · , bn) and σ is the block diagonal matrix formed with the matrices σk, k ∈
{1, · · · , n}. For a function u : R+ × E → R, we say that u ∈ C1,1,2(R+ × E) if it is differentiable
in the variables t, ν, twice differentiable in the variable x and all the derivatives are jointly
continuous. We have the following formula which is a direct corollary of Proposition 9 and
Remark 10.

Corollary 11. Let u ∈ C1,1,2(R+ × E). Then almost surely, for any t ≥ 0,

u(t, µt,Xt) =u(0, ν, x) +

∫ t

0

[

∂tu+ Lu
]

(s, µs,Xs)ds

+

n
∑

k=1

∫ t

0
δµu(s, µs,Xs)(X

k
s )ds+

n
∑

k=1

∫ t

0
∇xku(s, µs,Xs) · σ

k(Xk
s )dB

k
s .

In the following, we will denote by P(ν,x) the law of the process (µt,Xt)t≥0 solution of (5) started
at (ν, x) ∈ E. We also need the following definitions.

Definition 12. We say that a function h : E → R is CF (E) if the following assertions hold.

(i) The function h is twice differentiable in the variable x and ∇xh possesses a linear derivative
δµ∇xh such that for all (ν, x) ∈ E, y 7→ δµ∇xh(ν, x)(y) is differentiable.

(ii) The function h possesses a linear derivative such that (x, y) 7→ δµh(ν, x)(y) is twice differen-
tiable, and ν 7→ δµh(ν, x)(y) possesses a linear derivative such that (y, y′) 7→ δ2µµh(ν, x)(y, y

′)
is also twice differentiable.

(iii) All the derivatives are bounded and jointly continuous.

Definition 13. We say that a function h : E → R is L(B) if for any A,B,M, T > 0, it holds
that

E
[

sup
(t,ν,x)∈K

|h(ν + θxt , x+Bt)|
]

< ∞

where K = [0, T ]×KA,B×[−M,M ]nd, (Bt)t≥0 = (B1
t , · · · , B

n
t )t≥0 is an nd dimensional Brownian

motion, x = (x1, · · · , xn) and θxt =
∑n

k=1

∫ t
0 δxk+Bk

s
ds.

We also introduce the following notation.

Notation 14. For a function u ∈ C1,1,2(R+ × E), we denote by Dµu the function from R+ × E
to R defined for any (t, ν, x) as Dµu(t, ν, x) =

∑n
k=1 δµu(t, ν, x)(x

k).
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We have the following Feynman-Kac formula.

Proposition 15 (Feynman-Kac formula). Assume that the coefficient σ is bounded. Let f ∈
C0(E) bounded from below, h ∈ C0(E) and let u ∈ C1,1,2(R+ × E) such that ∇xu is bounded. If
u is a solution to the PDE

{

∂tu(t, ν, x) + f(ν, x)u(t, ν, x) = [Lu+Dµu](t, ν, x) t > 0, (ν, x) ∈ E

u(0, ν, x) = h(ν, x) (ν, x) ∈ E
(7)

where L is given by (6), then, for any T ≥ 0 and any (ν, x) ∈ E, we have

u(T, ν, x) = E(ν,x)

[

exp
(

−

∫ T

0
f(µs,Xs)ds

)

h(µT ,XT )
]

(8)

where (µt,Xt)t≥0 is solution of (5). Moreover whenever f ∈ CF (E), h ∈ CF (E) ∩ L(B), bk = 0
and σk = Id, the function defined by (8) is C1,1,2(R+ × E) and is the unique classical solution
to (7).

Proof. Let us prove the first statement. Consider some T > 0 fixed and, applying Corollary 11
with the function (t, ν, x) 7→ u(T − t, ν, x), we get for any t ∈ [0, T ]

u(T − t, µt,Xt) = u(T, ν, x) +

∫ t

0

[

− ∂tu+ Lu+Dµu
]

(T − s, µs,Xs)ds+Mt

where (Mt)t≥0 is a local martingale (given in Corollary 11). Then, applying again Itô’s formula
to the process exp(−

∫ t
0 f(µs,Xs)ds)u(T − t, µt,Xt), we get

e−
∫ t

0
f(µs,Xs)dsu(T − t, µt,Xt) =u(T, ν, x) +

∫ t

0
e−

∫ s

0
f(µr ,Xr)drdMs

+

∫ t

0
e−

∫ s

0
f(µr ,Xr)dr[−∂tu− fu+ Lu+Dµu](T − s, µs,Xs)ds

=u(T, ν, x) +

∫ t

0
e−

∫ s

0
f(µr ,Xr)drdMs

where we used that u is a solution to (7). Since f is bounded from below and σ and ∇xu are
bounded the local martingale

∫ t
0 e

−
∫ s

0 f(µr ,Xr)drdMs is a true martingale and we can pass to the
expectation and deduce that

E(ν,x)

[

exp
(

−

∫ t

0
f(µs,Xs)ds

)

u(T − t, µt,Xt)
]

= u(T, ν, x).

Letting t = T shows the result.
We now move to the second part of the statement and will therefore assume that f, h ∈ CF (E)

and that the coefficients are given by b = 0 and σ = 1. In this case, the function u is such that
for any t ≥ 0 and any (µ, x) ∈ E,

u(t, ν, x) = E

[

exp
(

−

∫ t

0
f(ν + θxs , x+Bs)ds

)

h
(

ν + θxt , x+Bt

)

]

where (Bt)t≥0 = ((B1
t , · · · , B

n
t ))t≥0 is an nd dimensional Brownian motion starting at 0 and

θxt =
∑n

k=1

∫ t
0 δxk+Bk

s
ds. The function u is well-defined since f is bounded from below and

h ∈ L(B). Let us show that it is also jointly continuous. First it is clear that a.s., the function

(t, ν, x) 7→ e−
∫ t

0 f(ν+θxs ,x+Bs)dsh(ν + θxt , x + Bt) is jointly continuous. Next, we consider some
fixed (t, ν, x) ∈ R+ × E, we let R > 0 such that supp(ν) ⊂ [−R,R]d and we introduce the set

K = [0, t+ 1]×Kν(Rd),R × [−2|x|, 2|x|]nd.
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Since h ∈ L(B), the quantity E[sup(t,ν,x)∈K |h(ν + θxt , x+ Bt)|] is finite and we deduce that u is
continuous at (t, ν, x). Since this holds for any (t, ν, x) ∈ R+ × E, u is jointly continuous. This
argument will be applied many times below to show that the various derivatives of u are jointly
continuous.

Step 1: we show that for any (t, x) ∈ R+ × (Rd)n, ν 7→ u(t, ν, x) possesses a linear derivative
δµu(t, ν, x)(y) which is continuous in all the variables. First, we fix (t, x) ∈ R+ × (Rd)n and we
show that a.s., ν 7→

∫ t
0 f(ν+ θxs , x+Bs)ds possesses a linear derivative. For any ν1, ν2 ∈ M

d
c , we

have
∫ t

0
f(ν1 + θxs , x+Bs)ds−

∫ t

0
f(ν2 + θxs , x+Bs)ds

=

∫ t

0

∫ 1

0

∫

Rd

δµf(θ
x
s + λν1 + (1− λ)ν2, x+Bs)(y)(ν1 − ν2)(dy)dλds.

Since f ∈ CF (E), its linear derivative is bounded and since ν1 and ν2 have a finite mass, we can
exchange the above integrals and check that a.s., the linear derivative of ν 7→

∫ t
0 f(ν+θxs , x+Bs)ds

is
∫ t
0 δµf(ν + θxs , x+Bs)(y)ds. We now define the random function Φ : R+ × E → R by

Φ(t, ν, x) = exp

(

−

∫ t

0
f(ν + θxs , x+Bs)ds

)

h(ν + θxt , x+Bt). (9)

We apply Proposition 4 and deduce that Φ possesses a linear derivative and for any (ν, y) ∈ E

δµΦ(t, ν, x)(y) = δµh(ν+θxt , x+Bt)(y)e
−

∫ t

0 f(ν+θxs ,x+Bs)ds−Φ(t, ν, x)

∫ t

0
δµf(ν+θxt , x+Bs)(y)ds.

Reminding that h ∈ L(B), δµf and δµh are bounded and f is bounded from below, we obtain
E[|δµΦ(t, ν, x)(y)|] is finite. Finally, for any ν1, ν2 ∈ M

d
c , we have

u(t, ν1, x)− u(t, ν2, x) = E

[
∫ 1

0

∫

Rd

δµΦ(t, λν1 + (1− λ)ν2, x)(y)(ν1 − ν2)(dy)dλ

]

.

Since ν1 and ν2 have finite mass, we can exchange the above integrals which shows that ν 7→
u(t, ν, x) possesses a linear derivative: δµu(t, ν, x)(y) = E[δµΦ(t, ν, x)(y)]. Since the linear deriva-
tives of f and h are bounded, since f is bounded from below and since h ∈ L(B), this derivative
is jointly continuous.

Step 2: we show that for (t, ν) ∈ R+ × M
d
c , the function x 7→ u(t, ν, x) is twice differentiable.

Without loss of generality, we write the proof in the case d = 1 and n ≥ 1. We consider some
ε > 0 and for k ∈ {1, · · · , n}, we denote by εk the vector εek where ek is the usual kth unit
vector. We start by writing for any (t, ν, x) ∈ R+ × E that

Φ(t, ν, x+ εk)− Φ(t, ν, x) =Φ(t, ν, x+ εk)− e−
∫ t

0 f(ν+θ
x+εk
s ,x+Bs)dsh(ν + θx+εk

t , x+Bt)

+ e−
∫ t

0
f(ν+θ

x+εk
s ,x+Bs)dsh(ν + θx+εk

t , x+Bt)− Φ(t, ν, x)

=Iε,k(t, ν, x) + IIε,k(t, ν, x).

We start with Iε,k. In order to simplify the notations, we decouple in the function Φ the initial
conditions with respect to the occupation measure and to the Brownian motion. We therefore
introduce for any (t, ν, x, z) ∈ R+ × E× (Rd)n the random function

Λ(t, ν, x, z) := exp(−

∫ t

0
f(ν + θzs , x+Bs)ds)h(ν + θzt , x+Bt)

It should be clear that Λ is differentiable in the variable x and that for any k ∈ {1, · · · , n},

∂xkΛ(t, ν, x, z) = ∂xkh(ν+ θzt , x+Bt)e
−

∫ t

0 f(ν+θzs ,x+Bs)ds−Λ(t, ν, x, z)

∫ t

0
∂xkf(ν+ θzs , x+Bs)ds.
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Since z 7→ θzs is continuous, we see that ∂xΛ is jointly continuous. Moreover, we have

Iε,k(t, ν, x) =

∫ ε

0
∂xkΛ(t, ν, x+ u, x+ ε)du.

It is clear that limε→0 Iε,k(t, ν, x)/ε = ∂xkΛ(t, ν, x, x).
We proceed in a similar manner for IIε,k. First, we consider for any (t, ν, x, z) the random

function ℓ(t, ν, x, z) := h(ν + θzt , x+Bt). Then for any ε > 0, we have

ℓ(t, ν, x, z+ εk)− ℓ(t, ν, x, z) =

∫ 1

0

∫

Rd

δµh(ν+λθz+εk
t +(1−λ)θzt , x+Bt)(y)(θ

z+εk
t − θzt )(dy)dλ.

Recalling that θz+εk
t (dy) =

∫ t
0 δzk+ε+Bk

s
(dy)ds +

∑

j 6=k

∫ t
0 δzj+Bj

s
(dy)ds, the above quantity is

equal to

∫ 1

0

∫ t

0
δµh(ν+λθz+εk

t + (1− λ)θzt , x+Bt)(z
k + ε+Bk

s )dsdλ

−

∫ 1

0

∫ t

0
δµh(ν + λθz+ε

t + (1− λ)θzt , x+Bt)(z
k +Bk

s )dsdλ.

Using the joint continuity and the boundedness of δµh, it should be clear that the above quantity,
divided by ε, converges to

∫ t

0
∂yδµh(ν + θzt , x+Bt)(z

k +Bk
s )ds.

This shows that the function ℓ is differentiable in the variable z and that its derivative is jointly
continuous. Now we introduce m(t, ν, x, z) :=

∫ t
0 f(ν + θzs , x+Bs)ds. For any ε > 0, we have

m(t, ν, x, z+εk)−m(t, ν, x, z) =

∫ t

0

∫ 1

0

∫

Rd

δµf(ν+λθz+εk
s +(1−λ)θzt , x+Bs)(y)(θ

z+εk
s −θzs)(dy)dλ

which is in turn equal to

∫ t

0

∫ 1

0

∫ s

0
δµf(ν+λθz+εk

s + (1− λ)θzs , x+Bs)(z
k + ε+Bk

u)dudλds

−

∫ t

0

∫ 1

0

∫ s

0
δµf(ν + λθz+εk

s + (1− λ)θzs , x+Bs)(z
k +Bk

u)dudλds.

Again, using the joint continuity and boundedness of δµf , we see that the above quantity dividing
by ε converges to

∫ t

0

∫ s

0
∂yδµf(ν + θzs , x+Bs)(z

k +Bk
u)duds

as ε → 0. This shows that m is differentiable in the variable z and that its derivative is jointly
continuous. All in all, this shows that the random function Λ(t, ν, x, z) is differentiable in the
variable z and that its derivative is jointly continuous in the variable z. Moreover, we have

∂zkΛ(t, ν, x, z) =e−
∫ t

0
f(ν+θzs ,x+Bs)ds

∫ t

0
∂yδµh(ν + θzt , x+Bt)(z

k +Bk
s )ds

− Λ(t, ν, x, z)

∫ t

0

∫ s

0
∂yδµf(ν + θzs , x+Bs)(z

k +Bk
u)duds.

Finally, we see that

IIε,k(t, ν, x) =

∫ ε

0
∂zkΛ(t, ν, x, x + u)du
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from which we deduce that IIε,k(t, ν, x)/ε converges to ∂zkΛ(t, ν, x, x) as ε → 0. This shows that
the function Φ(t, ν, x) is differentiable in the variable x and that for any k ∈ {1, · · · , n}

∂xkΦ(t, ν, x) =∂xkh(ν + θxt , x+Bt)e
−

∫ t

0 f(ν+θxs ,x+Bs)ds − Φ(t, ν, x)

∫ t

0
∂xkf(ν + θxs , x+Bs)ds

+ e−
∫ t

0 f(ν+θxs ,x+Bs)ds

∫ t

0
∂yδµh(ν + θxt , x+Bt)(x

k +Bk
s )ds (10)

− Φ(t, ν, x)

∫ t

0

∫ s

0
∂yδµf(ν + θxs , x+Bs)(x

k +Bk
u)duds.

Since all the derivatives of h and f are bounded, f is bounded from below and h ∈ L(B), we see
that E[|∂xΦ(t, ν, x)|] is finite and therefore ∂xu(t, ν, x) = E[∂xΦ(t, ν, x)], which is by the usual
arguments continuous. Regarding the second derivative, we can repeat the above arguments to
show that u is indeed twice differentiable in the variable x. We see that in all generality, the
second derivative would involve 21 terms and as the proof is already involved, we only treat the
case where f = 0. Let us fix some k ∈ {1, · · · , n} and set jk(t, ν, x) = ∂xkh(ν + θxt , x + Bt), we
see that we can repeat the arguments of this step to deduce that for any i ∈ {1, · · · , n}

∂xijk(t, ν, x) = ∂xixkh(ν + θxt , x+Bt) +

∫ t

0
∂yδµ∂xkh(ν + θxt , x+Bt)(x

i +Bi
s)ds.

Regarding the function pk(t, ν, x) =
∫ t
0 ∂yδµh(ν + θxt , x+Bt)(x

k +Bk
s )ds, we can also apply the

above arguments and see that for any i ∈ {1, · · · , n}

∂xipk(t, ν, x) =1{i=k}

∫ t

0
∂yyδµh(ν + θxt , x+Bt)(x

k +Bk
s )ds

+

∫ t

0
∂xi∂yδµh(ν + θxt , x+Bt)(x

k +Bk
s )ds

+

∫ t

0

∫ s

0
∂y′δµ∂yδµh(ν + θxt , x+Bt)(x

k +Bk
s , x

i +Bi
u)duds.

Repeating the usual arguments involving the boundedness of the derivatives of f and h as well
as the fact that f is bounded from below and h ∈ L(B), we see that u is twice differentiable and
that ∂xxu(t, ν, x) = E[∂xj(t, ν, x) + ∂xp(t, ν, x)] = E[∂xxΦ(t, ν, x)].

Step 3: Finally, for any (ν, x) ∈ E, we show that t 7→ u(t, ν, x) is differentiable and that is
satisfies (7). For any ε > 0, we have

u(t+ ε, ν, x)− u(t, ν, x) =E(ν,x)

[

e−
∫ t+ε

ε
f(µs,Xs)dsh(µt+ε,Xt+ε)(e

−
∫ ε

0 f(µs,Xs)ds − 1)
]

+ E(ν,x)

[

e−
∫ t+ε

ε
f(µs,Xs)dsh(µt+ε,Xt+ε)

]

− u(t, ν, x)

= : Iε(t, ν, x) + IIε(t, ν, x)

Regarding the first term, it is clear that ε−1
Iε(t, ν, x) converges to

−E(ν,x)

[

e−
∫ t

0 f(µs,Xs)dsh(µt,Xt)f(µ0,X0)
]

= −f(ν, x)u(t, ν, x).

Regarding the second, we have by the strong Markov property that

IIε(t, ν, x) = E(ν,x)

[

u(t, µε,Xε)
]

− u(t, ν, x).

Remember here that t is fixed. By the first steps, the function (γ, z) 7→ u(t, γ, z) ∈ C1,2(E) and
therefore we can apply Itô’s formula. For p ≥ 1 and τp = inf{t ≥ 0, sups∈[0,t] |Xs| ≥ p}, we have

u(t, µε∧τp ,Xε∧τp) = u(t, ν, x) +

∫ ε∧τp

0
[Lu+Dµu](t, µs,Xs)ds+

∫ ε∧τp

0
∇xu(t, µs,Xs)dBs.
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Let M > 0 such that supp(ν) ⊂ [−M,M ]d, a = ν(Rd) and recall that for A,B > 0, the set
KA,B = {µ ∈ M

d
c , µ(R

d) ≤ A and supp(µ) ⊂ [−B,B]d} is a compact subset of M
d
c . Since

(γ, z) 7→ ∇xu(t, γ, z) is jointly continuous, there exists a positive constant C such that for any
(γ, z) ∈ Knε+a,p+M × [−p, p]nd, |∇xu(t, ν, x)| ≤ C. Since for any s ∈ [0, ε ∧ τp], (µs,Xs) ∈
Knε+a,p+M × [−p, p]nd, we conclude that (

∫ r∧ε∧τp
0 ∇xu(t, µs,Xs)dBs)r≥0 is a martingale, so that

E(ν,x)

[

u(t, µε∧τp ,Xε∧τp)
]

= u(t, ν, x) + E(ν,x)

[

∫ ε∧τp

0
[Lu+Dµu](t, µs,Xs)ds

]

.

Since f is bounded from above and h ∈ L(B), it holds that

E(ν,x)

[

sup
p∈N

|u(t, µε∧τp ,Xε∧τp)|
]

≤ E(ν,x)

[

sup
s∈[0,ε]

u(t, µs,Xs)
]

< ∞

Therefore, we can let p → ∞ and deduce that

IIε(t, ν, x) = E(ν,x)

[

∫ ε

0
[Lu+Dµu](t, µs,Xs)ds

]

.

Finally, we see that ε−1
IIε(t, ν, x) converges to Lu(t, ν, x) + Dµu(t, ν, x) which completes the

proof.

Remark 16. We emphasize that the previous results, in particular Proposition 15, does not
depend on the diagonal structure of the generator L and could be extended to much more general
coefficients b and σ, possibly depending on the time, the occupation measure and the full space.

4 The control problem

Let (Ω,F ,P) be a probability space supporting some n×d-dimensional Brownian motion (Wt)t≥0,
where n, d ≥ 1. Let also F = (Ft)t≥0 be the filtration generated by (Wt)t≥0 after the usual
completions. Let α = (αt)t≥0 be some progressively measurable process w.r.t. F. For (ν, x) ∈ E,
we introduce the process (µα

t ,X
α
t )t≥0 valued in E, starting at (ν, x) defined for any t ≥ 0 by

Xk,α
t = xk +

∫ t

0
αk
sds+W k

t , µα
t = ν +

n
∑

k=1

∫ t

0
δ
Xk,α

s
ds (11)

and (Xα
t )t≥0 = (X1,α

t , · · · ,Xn,α
t )t≥0. Consider now a finite horizon T > 0 and let A denotes the

class of progressively measurable processes. Consider also two measurable functions f, g : E → R.
Our aim is to solve, for any (ν, x) ∈ E, the following minimization problem:

inf
α∈A

E(ν,x)

[

g(µα
T ,X

α
T ) +

∫ T

0
f(µα

s ,X
α
s )ds+

1

2

n
∑

k=0

∫ T

0
|αk

s |
2ds

]

. (12)

Remark 17. In this work, we do not consider the general stochastic optimal control problem with
occupation measures, in particular the associated theory of viscosity solutions and the verification
theorems. Our specific choice of the control structure (linear / quadratic) allows us to consider
HJB equations in a simple setting. We rely on the Boué-Dupuis formula and a Hopf-Cole trans-
form to solve the HJB equation, to identify the value function and the optimal strategy. This
gives us an explicit expression for the law of an optimal trajectory.

The Boué-Dupuis formula. To solve this minimization problem, we will first solve the
Hamilton-Jacobi-Bellman equation associated with (12) and then define a process which is con-
trolled in an optimal way. To show that the corresponding control is indeed optimal, we will
rely on the Boué-Dupuis formula introduced by Boué and Dupuis [7], see also Budhiraja [8] for
a recent review of the extensions of this formula. Let us denote by CT the space of continuous
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functions from [0, T ] to (Rd)n endowed with the uniform distance. The formula says that for any
F : CT → R which is bounded from above, we have

− logE
[

e−F((Wt)t∈[0,T ])
]

= inf
α∈A

E

[

F
(

(

Wt +

∫ t

0
αsds

)

t∈[0,T ]

)

+
1

2

n
∑

k=0

∫ T

0
|αk

s |
2ds

]

(13)

This equality was later extended to functionals F which are not necessarily bounded from above,
see for instance [35]. For our purposes, we will assume the following on the functions f and g.

Assumption 18. The function g : E → R is bounded from above and the function f : E → R is
bounded.

We can now apply (13) to our context. In the following, we always identify (et)t∈[0,T ] ∈ CT as
(e1t , · · · , e

n
t )t∈[0,T ]. For a fixed z = (ν, x) ∈ E, we define the function Ψz : CT → E by

Ψz((et)t∈[0,T ]) = g

(

ν +

n
∑

k=1

∫ T

0
δ(x+eks )

ds, x+ eT

)

+

∫ T

0
f

(

ν +

n
∑

k=1

∫ s

0
δ(x+eu)du, x+ es

)

ds

which is measurable (it is even continuous). By Assumption 18, it is bounded from below and
we can therefore apply (13) with the function Ψz, which tells us that

− logE
[

e−Ψz((Wt)t∈[0,T ])
]

= inf
α∈A

E

[

Ψz

(

(Wt +

∫ t

0
αsds)t∈[0,T ]

)

+
1

2

n
∑

k=0

∫ T

0
|αk

s |
2ds

]

,

or in a more explicit way in our context,

− logE
[

e−Ψz((Wt)t∈[0,T ])
]

= inf
α∈A

E(ν,x)

[

g(µα
T ,X

α
T ) +

∫ T

0
f(µα

s ,X
α
s )ds+

1

2

n
∑

k=0

∫ T

0
|αk

s |
2ds

]

. (14)

However, this formula does not give any information on a minimizing control α∗, which will be
our main objective in the rest of this note.

The HJB equation. Let us now solve the HJB equation associated with (12) by deriving
a semi-explicit solution. As explain above, this is only possible because we place ourselves in
the linear / quadratic framework. This solution is a Hopf-Cole transform of the solution to the
associated Heat equation. Let us define for any (t, ν, x) ∈ [0, T ]× E the function

u(t, ν, x) = E

[

exp
(

− g(ν + θxT−t, x+BT−t)−

∫ T−t

0
f(ν + θxs , x+Bs)ds

)

]

(15)

where (Bt)t≥0 is an n × d-dimensional Brownian motion and θxt =
∑n

k=1

∫ t
0 δxk+Bk

s
ds. We also

define the function
c(t, ν, x) = − log(u(t, ν, x)). (16)

We have the following result.

Proposition 19. Let f ∈ CF (E) and g ∈ CF (E) such that exp(−g) ∈ L(B). The function c
defined by (16) is a C1,1,2(R+ × E) function which is a solution to the following HJB equation






∂tc(t, ν, x) +
[1

2
∆xc+Dµc

]

(t, ν, x) + f(ν, x) =
1

2
|∇xc|

2(t, ν, x) t ∈ [0, T ), (ν, x) ∈ E

c(T, ν, x) = g(ν, x, v) (ν, x) ∈ E
. (17)

Proof. Since g is a CF (E) function and the exponential is smooth, the function h(ν, x) =
exp(−g(ν, x)) is also a CF (E) function, see for instance Proposition 4. Since h ∈ L(B), we
can apply Proposition 15, which tells us that the function

v(t, ν, x) = E

[

exp
(

−

∫ t

0
f(ν + θxs , x+Bs)ds− g(ν + θxt , x+Bt)

)

]

15



is a C1,1,2(R+ × E) function which is a solution






∂tv(t, ν, x) + f(ν, x)v(t, ν, x) =
[1

2
∆xv +Dµv

]

(t, ν, x) t > 0, (ν, x) ∈ E

v(0, ν, x) = exp(−g(ν, x)) (ν, x) ∈ E.

Of course, for any t ∈ [0, T ], we have u(t, x, ν) = v(T − t, x, ν) and we see that v is a solution to






∂tu(t, ν, x) +
[1

2
∆xu+Dµu

]

(t, ν, x) = f(ν, x)u(t, ν, x) t ∈ [0, T ), (ν, x) ∈ E

u(T, ν, x) = exp(−g(ν, x)) (ν, x) ∈ E.

Since u is a C1,1,2(R+ ×E) function which is positive, c is also a C1,1,2(R+ ×E) function and we
have u = exp(−c) so that

∂tu = −u∂tc, Dµu = −uDµc and ∆xu = u(|∇x|
2c−∆xc).

Inserting these relations into the above PDE completes the proof.

Let us emphasize that our application of the Boué-Dupuis formula given in (14) gives us
directly that for c defined by (16) we have

c(0, ν, x) = inf
α∈A

E(ν,x)

[

g(µα
T ,X

α
T ) +

∫ T

0
f(µα

s ,X
α
s )ds+

1

2

n
∑

k=0

∫ T

0
|αk

s |
2ds

]

.

We can now define the optimal control, and we set for any (t, ν, x) ∈ R+ × E and any k ∈
{1, · · · , n},

αk,∗(t, ν, x) = −∇xkc(t, ν, x). (18)

We have the following theorem.

Theorem 20. Let f, g : E → R satisfying Assumption 18 such that f ∈ CF (E), g ∈ CF (E)
and exp(−g) ∈ L(B). Let also (ν, x) ∈ E be fixed. There exists a filtered probability space
(Ω,G, (Gt)t∈[0,T ],Q) supporting a (Gt)t∈[0,T ]-adapted process (µ∗

t ,X
∗
t )t∈[0,T ] such that for any t ∈

[0, T ] and any k ∈ {1, · · · , n},

Xk,∗
t = x+

∫ t

0
αk,∗(s, µ∗

s,X
∗
s )ds+W k

t , µ∗
t = ν +

n
∑

k=1

∫ t

0
δ
Xk,∗

s
ds (19)

where (W 1
t )t∈[0,T ], · · · , (W

n
t )t∈[0,T ] are n independent (Gt)t∈[0,T ]-Brownian motions in Rd and αk,∗

is defined in Equation (18). Moreover, for any bounded and measurable functional F : CT → R,

EQ[F((X
∗
t )t∈[0,T ])]

= Z−1E

[

F((x+Bt)t∈[0,T ]) exp

(

−

∫ T

0
f(ν + θxs , x+Bs)ds− g(ν + θxT , x+BT )

)]

(20)

where Z = E[e−
∫ T

0 f(ν+θxs ,x+Bs)ds−g(ν+θxT ,x+BT )]. Finally, it holds that

c(0, ν, x) = EQ

[

g(µ∗
T ,X

∗
T ) +

∫ T

0
f(µ∗

s,X
∗
s )ds+

1

2

n
∑

k=1

∫ T

0
|αk,∗(s, µ∗

s,X
∗
s )|

2ds
]

.

Remark 21. Remark that Equation 20 gives us directly uniqueness of the law for optimal tra-
jectories. Using a Girsanov transform one could show uniqueness in law for the associated SDE
given in Equation (19).
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Proof. Step 1: Let us show that the coefficient α∗ is bounded. First, we see that αk,∗ = ∇xku/u
where we recall that

u(T − t, ν, x) = E

[

exp
(

−

∫ t

0
f(ν + θxs , x+Bs)ds

)

h
(

ν + θxt , x+Bt

)

]

,

h = exp(−g), (Bt)t≥0 is a Brownian motion and θxt =
∑n

k=1

∫ t
0 δxk+Bk

s
ds. Let us also recall from

(10) that for any k ∈ {1, · · · , n}, we have

∇xku(T − t, ν, x) =E

[

∇xkh(ν + θxt , x+Bt)e
−

∫ t

0 f(ν+θxs ,x+Bs)ds
]

− E

[

∫ t

0
∇xkf(ν + θxs , x+Bs)ds× e−

∫ t

0
f(ν+θxs ,x+Bs)dsh(ν + θxt , x+Bt)

]

+ E

[

∫ t

0
∇yδµh(ν + θxt , x+Bt)(x

k +Bk
s )ds× e−

∫ t

0
f(ν+θxs ,x+Bs)ds

]

− E

[

∫ t

0

∫ s

0
∇yδµf(ν + θxs , x+Bs)(x

k +Bk
u)duds

× e−
∫ t

0
f(ν+θxs ,x+Bs)dsh(ν + θxt , x+Bt)

]

.

Since h = exp(−g), we have ∇xkh = −h∇xkg and ∇yδµh = −h∇yδµg and as a consequence, we
have for any k ∈ {1, · · · , n}

∇xku(T − t, ν, x) = −E

[

G(t, ν, x)e−
∫ t

0 f(ν+θxs ,x+Bs)dsh(ν + θxt , x+Bt)
]

where

G(t, ν, x) =∇xkg(ν + θxt , x+Bt) +

∫ t

0
∇yδµg(ν + θxt , x+Bt)(x

k +Bk
s )ds

+

∫ t

0
∇xkf(ν + θxs , x+Bs) +

∫ t

0

∫ s

0
∇yδµf(ν + θxs , x+Bs)(x

k +Bk
u)duds.

By assumption, all the derivatives of g and f are bounded and therefore, we see that there is a
positive constant CT such that |∇xku| ≤ CTu on [0, T ]×E which shows that αk,∗ is bounded on
[0, T ]× E.
Step 2: Consider a filtered probability space (Ω,G, (Gt)t≥0,P) supporting some independent
Brownian motions (B1

t )t≥0, · · · , (B
n
t )t≥0 and let (ν, x) ∈ E be fixed. We define for any t ∈ [0, T ],

the process µ∗
t = ν +

∑n
k=1

∫ t
0 δxk+Bk

s
ds. Let us define the local martingales

Lt =

n
∑

k=1

∫ t

0
αk,∗(s, µ∗

s, x+Bs)dB
k
s and E(L)t = exp

(

Lt −
1

2
〈L〉t

)

Since the αk,∗ are bounded, the quadratic variation of (Lt)t∈[0,T ] is bounded and we can apply
Girsanov Theorem, which tells us that the measure Q = E(L)T · P is a probability measure on
(Ω,GT ) and that the processes

W k
t = Bk

t −

∫ t

0
αk,∗(s, µ∗

s, x+Bs)ds = Bk
t − 〈Bk, L〉t

are n independent (Gt)t∈[0,T ]-Brownian motions under Q. Hence, if we define Xk,∗
t = xk + Bk

t ,
we have

Xk,∗
t = xk +

∫ t

0
αk,∗(s, µ∗

s,X
∗
s )ds+W k

t and µ∗
t = ν +

n
∑

k=1

∫ t

0
δ
Xk,∗

s
ds.
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Girsanov Theorem also tells us that for any bounded functional F, we have

EQ[F((X
∗
t )t∈[0,T ])] = E[F((x+Bt)t∈[0,T ])e

LT− 1
2
〈L〉T ] (21)

We now apply the Itô formula to the C1,1,2(R+×E) function c. Remembering that αk,∗ = −∇xkc,
we see that

c(T, ν + θxT , x+BT ) =c(0, ν, x) −
n
∑

k=1

∫ T

0
αk,∗(s, ν + θxs , x+Bs)dB

k
s

+

∫ T

0
[∂tc+

1

2
∆xc+Dµc](s, ν + θxs , x+Bs)ds.

Using that c is a solution to (17), the above equality gives

LT −
1

2
〈L〉T = c(0, ν, x) − g(ν + θxT , x+BT )−

∫ T

0
f(ν + θxs , x+Bs)ds.

Inserting this equality in (21) completes this step.

Step 3: applying again the Itô formula with the C1,1,2(R+ × E) function c, remembering that c
is a solution to (17), we see that

c(T, µ∗
T ,X

∗
T ) =c(0, ν, x) +

∫ T

0
[∂tc+

1

2
∆xc+Dµc](s, µ

∗
s,X

∗
s )ds−

n
∑

k=1

∫ T

0
|αk,∗(s, µ∗

s,X
∗
s )|

2ds+MT

=c(0, ν, x) −
1

2

n
∑

k=1

∫ T

0
|αk,∗(s, µ∗

s,X
∗
s )|

2ds−

∫ T

0
f(µ∗

s,X
∗
s )ds+MT .

where Mt =
∑n

k=1

∫ t
0 α

k,∗(s, µ∗
s,X

∗
s )dW

k
s . Since the αk,∗ are bounded, (Mt)t∈[0,T ] is a (Gt)t∈[0,T ]-

martingale under Q. Since c(T, µ∗
T ,X

∗
T ) = g(µ∗

T ,X
∗
T ), we see that, passing to the expectation

(under Q), we have

c(0, ν, x) = EQ

[

g(µ∗
T ,X

∗
T ) +

∫ T

0
f(µ∗

s,X
∗
s )ds+

1

2

n
∑

k=1

∫ T

0
|αk,∗(s, µ∗

s,X
∗
s )|

2ds
]

,

which completes the proof.

5 Application: controlling the volume of Brownian particles

In this section, we apply our result to control Brownian particles by the volume of their sausage.
For n continuous paths (xkt )t≥0 valued in Rd, k ∈ {1, · · · , n}, and a radius ρ > 0, the ρ-sausage
of these paths at time t ≥ 0 is the set

n
⋃

k=1

⋃

s∈[0,t]

B̄(xks , ρ)

where B̄(xks , ρ) is the closed ball of radius ρ, centered in xks . When n = 1 and (xt)t≥0 is a
Brownian path, this set is the Wiener sausage and has been widely studied, see for instance
the early works of Donsker and Varadhan [14] or Le Gall [23]. It is a simple example of a
non-Markovian functional of the Brownian motion and plays a key role in various stochastic
phenomena, see for instance Snitzman [32]. For recent advances on the study of Wiener sausages,
one can consult [1] and the references therein. For the sausage of many particles, and in particular
branching Brownian particles, we refer to the work of Engländer [21] and Öz [26].
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In the following, we assume without loss of generality that ρ = 1. If we denote by (µt)t≥0 =
(
∑n

k=1

∫ t
0 δxk

s
ds)t≥0 the occupation measure of the paths, volume of the sausage can be written

as
m
(

{

y ∈ Rd, d(y, supp(µt)) ≤ 1
}

)

where m denotes the Lebesgue measure and we recall that for a measure ν ∈ M
d
c the support is

defined as
supp(ν) =

{

x ∈ Rd, for any ǫ > 0, ν(B(x, ǫ)) > 0
}

.

For a measure ν ∈ M
d
c , we also use the following notation for its associated sausage:

Sν = {y ∈ Rd, d(y, supp(ν)) ≤ 1}

Unfortunately, the function ν 7→ m(Sν) from M
d
c to R+ is not regular enough for us to apply our

results. We instead use smooth approximations of this function and solve the approximated con-
trol problems. Before stating the main result of this subsection, let us introduce some notations.
Let (fℓ)ℓ∈N be a sequence of functions from R+ to R+ that satisfies the following assumptions:

Assumption 22. The sequence (fℓ)ℓ∈N is a sequence of decreasing functions from R+ to R+

which are twice continuously differentiable, having the following properties:

(i) For any x ∈ [0, 1), fℓ(x) → ∞ as ℓ → ∞ and for any x ∈ (1,∞), fℓ(x) → 0 as ℓ → ∞.
Moreover, for any ℓ ∈ N, fℓ(1) = 1.

(ii) There exists R > 0 such that for any ℓ ∈ N and any x ≥ R, fℓ(x) = 0.

For such a sequence, we define for any ℓ ∈ N, the family (fu
ℓ )u∈Rd of functions from Rd to

R+ defined for any u, v ∈ Rd as fu
ℓ (v) = fℓ(|u − v|2). Finally, let us define for any ℓ ∈ N, the

function gℓ : M
d
c → R+ such that for any ν ∈ M

d
c ,

gℓ(ν) = −

∫

Rd

(

1− exp(−〈ν, fu
ℓ 〉)

)

du. (22)

This function is well-defined since (i) u 7→ 1−exp(−〈ν, fu
ℓ 〉) is measurable and (ii) fℓ has compact

support so that for any ν ∈ M
d
c , there exists some M > 0 such that for any u ∈ B(0,M)c,

supp(ν) ∩ supp(fu
ℓ ) = ∅, implying that for any u ∈ B(0,M)c, 1− exp(−〈ν, fu

ℓ 〉) = 0. Our main
result is the following:

Theorem 23. Let (fℓ)ℓ∈N be a sequence of functions satisfying Assumption 22. Then for any
ℓ ∈ N, the function gℓ defined by (22), seen as a function from E to R, is such that gℓ ∈ CF (E)

and exp(−gℓ) ∈ L(B). Moreover, for any ℓ ∈ N and any k ∈ {1, · · · , n}, let (Xk,∗,ℓ
t )t∈[0,T ] be the

process from Theorem 20 defined by (19) with the functions f = 0 and gℓ and initial conditions
x = 0 and ν = 0.

The sequence of processes (X∗,ℓ
t )t∈[0,T ] = (X1,∗,ℓ

t , · · · ,Xn,∗,ℓ
t )t∈[0,T ] converges in law in the

space of continuous functions endowed with the uniform topology as ℓ → ∞ to a limiting process
(X∗,∞

t )t∈[0,T ] which is such that for any bounded and measurable functional F, we have

E[F((X∗,∞
t )t∈[0,T ])] = Z−1E[F((Bt)t∈[0,T ])e

m(SθT )]

where (Bt)t∈[0,T ] is an n × d-dimensional Brownian motion, θt =
∑n

k=1

∫ t
0 δBk

s
ds and the nor-

malizing constant Z = E[exp(m(SθT ))].

We divide the proof of this result into several intermediate results. We first prove the following
result:

Proposition 24. Let (fℓ)ℓ∈N be a sequence of functions satisfying Assumption 22. For any
ℓ ∈ N, the function gℓ defined by (22), seen as a function from E to R, is such that gℓ ∈ CF (E)
and exp(−gℓ) ∈ L(B).
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Proof. Throughout the proof, we fix some ℓ ∈ N. Let us first show that gℓ possesses a lin-
ear derivative. We first note that for any u ∈ Rd, the function ν 7→ 1 − exp(−〈ν, fu

ℓ 〉) is a
cylindrical function and therefore it possesses a linear derivative which is given by (ν, y) 7→
exp(−〈ν, fu

ℓ 〉)f
u
ℓ (y), see for instance Martini [24, Example 2.11]. Hence for any µ, ν ∈ Md

c , we
have

gℓ(ν)− gℓ(µ) = −

∫

Rd

∫ 1

0

∫

Rd

exp(−λ〈ν, fu
ℓ 〉 − (1− λ)〈µ, fu

ℓ 〉)f
u
ℓ (y)(ν − µ)(dy)dλdu.

Since µ, ν and fℓ have compact support, we can exchange the above integrals which implies that
g has a linear derivative and that

δµgℓ(ν)(y) = −

∫

Rd

exp(−〈ν, fu
ℓ 〉)f

u
ℓ (y)du.

Moreover, we see that for any ν, y ∈ E, |δµg(ν)(y)| ≤
∫

Rd fℓ(|u − y|2)du =
∫

Rd fℓ(|z|
2)dz and

therefore, it is bounded. Since f ′
ℓ and f ′′

ℓ have compact supports, the map y 7→ δµgℓ(ν)(y) is
twice differentiable and we have

∇yδµgℓ(ν)(y) = −2

∫

Rd

(y − u) exp(−〈ν, fu
ℓ 〉)f

′
ℓ(|y − u|2)du

and

∇2
yδµgℓ(ν)(y) =− 2

[

∫

Rd

exp(−〈ν, fu
ℓ 〉)f

′
ℓ(|y − u|2)du

]

Id

− 4

∫

Rd

(y − u)(y − u)T exp(−〈ν, fu
ℓ 〉)f

′′
ℓ (|y − u|2)du,

where Id is the d-dimensional identity matrix. Again, for any ν, y ∈ E, we see that we have

|∇yδµgℓ(ν)(y)| ≤ 2

∫

Rd

|y − x||f ′
ℓ(|y − x|2)|dx ≤ 2

∫

Rd

|z||f ′
ℓ(|z|

2)|dx

and

|∇2
yδµgℓ(ν)(y)| ≤ 2

∫

Rd

|f ′
ℓ(|y − u|2)|du+ 4

∫

Rd

|y − u|2|f ′′
ℓ (|y − u|2)|du

≤

∫

Rd

|f ′
ℓ(|z|

2)|dz + 4

∫

Rd

|z|2|f ′′
ℓ (|z|

2)|dz,

so that both derivatives are bounded. Let us now show that for any y ∈ Rd, ν 7→ δµgℓ(ν)(y)
possesses a linear derivative. For any y ∈ Rd and any µ,∈ M

d
c , we have

δµgℓ(ν)(y)−δµgℓ(µ)(y) =

∫

Rd

fu
ℓ (y)

∫ 1

0

∫

Rd

exp(−λ〈ν, fu
ℓ 〉−(1−λ)〈µ, fu

ℓ 〉)f
u
ℓ (y

′)(ν−µ)(dy′)dλdu.

Again, since µ, ν and fℓ have compact supports, we can exchange the above integrals which
implies that δµgℓ has a linear derivative and that

δ2µµgℓ(ν)(y, y
′) =

∫

Rd

exp(−〈ν, fu
ℓ 〉)f

u
ℓ (y)f

u
ℓ (y

′)du.

Moreover, by Cauchy-Schwarz inequality, we have

|δ2µµgℓ(ν)(y, y
′)|2 ≤

∫

Rd

fu
ℓ (y)

2du

∫

Rd

fu
ℓ (y

′)2du =
(

∫

Rd

fℓ(|z|
2)2dz

)2
,

so that it is bounded. With similar arguments, one can easily show that (y, y′) 7→ δ2µµgℓ(ν)(y, y
′)

is twice differentiable and that the corresponding derivatives are bounded. This shows that
gℓ ∈ CF (E).
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Let us now show that exp(−gℓ) ∈ L(B). We consider some a, b,M, T > 0 and we set
K = [0, T ] ×Ka,b × [−M,M ]nd. Let us show that for any ℓ ∈ N,

E

[

sup
(t,ν,x)∈K

exp(−gℓ(ν + θxt ))
]

< ∞ (23)

where as usual θxt =
∑n

k=1

∫ t
0 δxk+Bk

r
dr, x = (x1, · · · , xn) and (Bt)t≥0 = (B1

t , · · · , B
n
t )t≥0 is a

n × d-dimensional Brownian motion. In the following, we first fix some (t, ν, x) ∈ K. Since for
any u ∈ Rd, the map t 7→ 〈θxt , f

u
ℓ 〉 is non-decreasing, it comes that

exp(−gℓ(ν + θxt )) ≤ exp(−gℓ(ν + θxT )).

Let us now introduce some notation: for any ν ∈ M
d
c and any R > 0, we set

Sν,R = {y ∈ Rd, d(y, supp(ν)) ≤ R}.

Consider now some R > 0 such that for any M ≥ R, f(M) = 0. We first remark that for any
u ∈ Rd, we have

1− exp(−〈ν, fu
ℓ 〉 − 〈θxt , f

u
ℓ 〉) ≤ 1Sν,R∪Sθx

t
,R
(u).

Indeed, if u /∈ Sν,R ∪ Sθxt ,R
, then 〈ν, fu

ℓ 〉 = 〈θxt , f
u
ℓ 〉 = 0 so that 1− exp(−〈ν, fu

ℓ 〉 − 〈θxt , f
u
ℓ 〉) = 0.

Otherwise, it is smaller than 1. As a consequence, we see that

−gℓ(ν + θxt ) ≤ m(Sν,R) +m(Sθxt ,R)

where m denotes the Lebesgue measure. Moreover, it is straightforward to see that

m(Sθxt ,R) ≤
n
∑

k=1

m(S
θx,kt ,R

)

where for any k ∈ {1, · · · , n}, θx,kt =
∫ t
0 δxk+Bk

s
ds. By translation invariance of the Lebesgue

measure, it is also clear that for any k ∈ {1, · · · , n}, m(S
θx,kt ,R

) = m(S
θ0,kt ,R

). Finally, since

ν ∈ Ka,b, we have m(Sν,R) ≤ (b+R)d. All in all, we showed that

E

[

sup
(t,ν,x)∈K

e−gℓ(ν+θxt )
]

≤ e(b+R)dE

[

exp(m(S
θ0,1
T

,R
))
]n

, (24)

where we used the independence between the n Brownian motions. Finally, E[exp(m(Sθ0,1
T

,R))]

is the exponential moment of the volume of the Wiener sausage of radius R and it is finite, see
for instance [31, Theorem 4.2] or [36].

Proposition 25. Let (fℓ)ℓ∈N be a sequence of functions satisfying Assumption 22 and let ν ∈ M
d
c .

If m({y ∈ Rd, d(y, supp(ν)) = 1}) = 0, then gℓ(ν) → −m(Sν) as ℓ → ∞, where the functions
(gℓ)ℓ∈N are defined by (22).

Proof. Let u ∈ {y ∈ Rd, d(y, supp(ν)) < 1} be fixed. Therefore, there exists y ∈ supp(ν)
such that r := |u − y| < 1. Let r′ = (1 − r)/2 < 1, then for any z ∈ B(y, r′), we have
|u− z| ≤ (1 + r)/2 =: r̄ < 1. As a consequence, we have for any ℓ ∈ N,

〈ν, fu
ℓ 〉 =

∫

Rd

fℓ(|u− z|2)ν(dz) ≥

∫

B(y,r′)
fℓ(|u− z|2)ν(dz) ≥ fℓ(r̄

2)ν(B(y, r′)),

where we used in the last inequality that fℓ is decreasing. Since y ∈ supp(ν), we have ν(B(y, r′)) >
0 and we see that 〈ν, fu

ℓ 〉 → ∞ as ℓ → ∞. We showed that, if u ∈ {y ∈ Rd, d(y, supp(ν)) < 1},
then 1− exp(−〈ν, fu

ℓ 〉) → 1 as ℓ → ∞.

Consider now some u ∈ {y ∈ Rd, d(y, supp(ν)) > 1}. We have

〈ν, fu
ℓ 〉 =

∫

supp(ν)
fℓ(|u− z|2)ν(dz).
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For any z ∈ supp(ν), we have |u−z| > 1 and therefore fℓ(|u−z|2) → 0 as ℓ → ∞ by assumption.
Also, since fℓ is decreasing, we have fℓ(|u− z|2) ≤ fℓ(1) = 1 for any z ∈ supp(ν) and since ν has
finite mass, we can apply the dominated convergence theorem, which tells us that 〈ν, fu

ℓ 〉 → 0
as ℓ → ∞.

Since m({y ∈ Rd, d(y, supp(ν)) = 1}) = 0, we conclude that for a.e. u ∈ Rd, we have

1− exp(−〈ν, fu
ℓ 〉) −→ 1{y∈Rd, d(y,supp(ν))<1}(u) as ℓ → ∞.

It remains to dominate 1− exp(−〈ν, fu
ℓ 〉) in order to apply the dominated convergence theorem.

Since there exists R > 0, such that for any ℓ ∈ N and any M ≥ R, fℓ(M) = 0, we see that for
any u ∈ {y ∈ Rd, d(y, supp(ν)) > R}, 〈ν, fu

ℓ 〉 = 0. Hence, for any u ∈ Rd and any ℓ ∈ N, we
have

1− exp(−〈ν, fu
ℓ 〉) ≤ 1{y∈Rd, d(y,supp(ν))≤R}(u),

and the right-hand-side is integrable since ν has compact support. All in all, we get the conver-
gence gℓ(ν) → −m({y ∈ Rd, d(y, supp(ν)) < 1}) = −m(Sν) as ℓ → ∞.

In order to apply the previous result, one needs to prove that the boundary of the Wiener
sausage has zero Lebesgue measure. This result is of common knowledge, nevertheless, in order
to be as self-contained as possible, we give an extended proof of it.

Proposition 26. For any x ∈ Rd and any t > 0, it holds that a.s.

m({y ∈ Rd, d(y, supp(θxt )) = 1}) = 0

where θxt =
∑n

k=1

∫ t
0 δxk+Bk

s
ds and (B1

t )t≥0, · · · , (B
n
t )t≥0 are n independent d-dimensional Brow-

nian motions.

Proof. It is enough to consider the case n = 1 and by translation invariance, we only need to
consider the case x = 0. For any R > 0, we denote by St,R the set {y ∈ Rd, d(y, supp(θxt ) ≤ R}.
Using the scale invariance of the Brownian motion, it is easy to see that

E[m(St,R)] = RdE[m(St/R,1)].

For any ℓ ≥ 2, let aℓ = 1− 1/ℓ. By the monotone convergence theorem, we see that

E[m(St,aℓ)] −→ E[m({y ∈ Rd, d(y, supp(θxt ) < 1)})] as ℓ → ∞.

On the other hand, we also see by the monotone convergence theorem that

E[m(St/aℓ,1)] −→ E

[

m
(

⋂

ℓ≥2

St/aℓ,1

)]

= E[m(St,1)] as ℓ → ∞,

where we used in the last equality that ∩ℓ≥2St/aℓ ,1 = St,1. Indeed, if y ∈ ∩ℓ≥2St/aℓ,1, then
for any ℓ ≥ 2, there exists sℓ ≤ t/aℓ such that |y − Bsℓ | ≤ 1. Since the sequence (sℓ)ℓ≥2 is
bounded, we can extract a subsequence which converges to some s. Plainly, we have s ≤ t and
by continuity of the Brownian motion, |y − Bs| ≤ 1, which shows that y ∈ St,1. The other
inclusion is straightforward. All in all, we conclude that

E[m({y ∈ Rd, d(y, supp(θxt ) = 1)})] = 0

which completes the proof.

We can finally give the proof of the main result of this section.
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Proof of Theorem 23. Let us fix some T > 0 and some ℓ ∈ N. By Proposition 24, we can apply
Theorem 20 with the functions f = 0 and gℓ, and consider the process (X∗,ℓ

t )t∈[0,T ] defined by (19)
on some filtered probability space (Ωℓ,Gℓ, (Gt,ℓ)t∈[0,T ],Qℓ). For any continuous and bounded
functional F : CT → R, it holds that

EQℓ
[F((X∗,ℓ

t )t∈[0,T ])] = Z−1
ℓ E[F((Bt)t∈[0,T ])e

−gℓ(θT )]

where Bt = (B1
t , · · · , B

n
t ) is a Brownian motion on (Rd)n, θt =

∑n
k=1

∫ t
0 δBk

s
ds is the occupation

measure and the normalization constant is defined as Zℓ = E[e−gℓ(θT )]. By Propositions 25 and
26, it holds that a.s., exp(−gℓ(θT )) → exp(m(SθT )) as ℓ → ∞. Moreover, we get from (24) that

E

[

e−gℓ(θT )
]

≤ E

[

exp(m(Sθ1
T
,R))

]n
,

where R is the constant from Assumption 22, θ1t =
∫ t
0 δB1

s
ds and

Sθ1
T
,R = {y ∈ Rd, d(y, supp(θ1T )) ≤ R}.

Again, the quantity E[exp(m(Sθ1
T
,R))] is finite and we can apply the dominated convergence

theorem, which completes the proof.
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