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Numerical Simulation of Polarized Light and
Temperature in a Stratified Atmosphere with a

Slowly Varying Refractive Index

Olivier Pironneau1

Abstract

This article aims to elucidate the effect of a slowly varying refractive index on
the temperature in a stratified atmosphere, with a particular focus on green-
house gases such as CO2. It validates an iterative method called iterations
on the source but it shows also that the system proposed by Chandrasekhar
and Pomraning requires compatibility conditions when the refractive index
varies. So instead we solve the integral representation of the Vector Radia-
tive Transfer Equations (VRTE) in which the unphysical ray directions have
been removed. Some mathematical proofs are given showing monotonicity
of the iterations and some numerical tests showing the effect of a layer of
cloud with a refracting index greater than air, polarisation and Rayleigh
scattering.

Keywords: Radiative transfer, Polarization, Integral equation, Numerical
analysis, Climate modeling MSC classification 3510, 35Q35, 35Q85, 80A21,
80M10
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Introduction

The investigation of polarized light in a stratified or plane parallel atmo-
sphere not only provides crucial insights into the dynamics of light propa-
gation and polarization within complex atmospheric environments but also
holds significant implications for understanding the impact of greenhouse
gases on the Earth’s climate system in the presence of clouds [2]. Building
upon the Vector Radiative Transport Equation (VRTE), as established by
the seminal works of Chandrasekhar [3] and Pomraning [12] later, this ar-
ticle aims to elucidate the effect of the refractive index on the temperature
with a particular focus on the greenhouse gas (GHG) such as CO2.
Varying concentrations of greenhouse gases are modelled by their effects on
absorption and scattering in given ranges of frequencies. The study shows
that the numerical method is capable of reproducing small changes due to
GHG and the influence of refraction from clouds.
Clouds have a refracting index close to air and varying smoothly, unlike an
air/water interface for which the Fresnel laws need to be applied (see [5] and
[8] for a numerical implementation).
The computer graphics community has used VRTE with varying refractive
indices for realistic rendering (see L.H. Liu [9], Ament et al [1] and the
references therein). But most of their numerical implementation assume a
given temperature field.
Temperature variations are at the core of the present study; the partial dif-
ferential equations of VRTE are converted into a set of integral equations
using the method of characteristics. Iterations on the sources are used to-
gether with Newton iterations on the temperature equations. Convergence
and monotony are analyzed. However total refraction of some rays has to
be dealt with.
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This approach can be generalized in 3D (non stratified atmospheres) as in
[6], [11].
The equations analysed in [10] and their integral formulations are extended
to refracting atmospheres. New difficulties arise, which are problematic:
the characteristic curves may not cross the boundaries where light source
is given, leading to an ill-posed problem, and exponential integrals cannot
be used which makes the computer implementation more difficult and less
precise.

1. Fundamental Equations

In classical physics, light in a medium Ω is an electromagnetic radiation
satisfying Maxwell’s equations. The electric field E of a monochromatic
plane wave of frequency ν propagating in direction k, E = E0 exp(i(k ⋅ x −

νt)), is a solution to Maxwell equations which is suitable to describe the
propagation of a ray of light for which ν is very large.
Such radiations are characterized by their Stokes vector I, made of the ir-
radiance I and 3 functions Q,U,V to define the state of polarization. The
radiation source F for an unpolarized-emitting black-body is given by the
Planck function Bν(T ) = ν3(e

ν
T − 1)−1. The scalings used in this article are

defined in [7]. If E0 is written in polar coordinates,

I ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I
Q
U
V

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
1

2

√
ε0
µ0

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E0θE0
∗
θ +E0φE0

∗
φ

E0θE0
∗
θ −E0φE0

∗
φ

E0θE0
∗
φ −E0φE0

∗
θ

E0φE0
∗
θ −E0θE0

∗
φ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

F ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

κaBν(T )

0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where ε0 and µ0 are the electric and magnetic permeability of the medium.
The parameter κa is related to absorption and scattering (see (2.3) below).
which, by the way, are quantum effects, not described by Maxwell’s equa-
tions. Using I rather than E0 one models absorption and scattering by a
system of partial differential equations (PDE), known as VRTE [12] p152;
with Ĩ ∶= I/n2,

n

c
∂tĨ +ω∇xĨ +

∇xn

n
⋅ ∇ω Ĩ + κĨ = ∫

S2

Z(x,ω′
∶ ω)Ĩdω′ +

F

n2
, (1.1)

for all x ∈ Ω,ω ∈ S2, where c is the speed of light, n the refractive index of the
medium , S2 the unit sphere, κ the absorption and Z is the phase scattering
matrix for rays ω′ scattered in direction ω and F is the volumic source term
(for example due to the black-body radiation of air). It is assumed that n
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depends (weekly) only on position x ∈ Ω; κ depends on x and strongly on
ν. Because c is very large, the term 1

c∂tI is neglected. Thermal equilibrium
is assumed:

∇x ⋅ ∫
R+
∫
S2

Ĩωdωdν = 0. (1.2)

Notation 1. On all variables, the tilde indicates a division by n2. Argu-
ments of functions are sometimes written as indices like κν and nz.

Following [9], given a cartesian frame i, j,k, the third term on the left in
(1.1) is computed in polar coordinates, with

ω ∶= i sin θ cosϕ + j sin θ sinϕ + k cos θ, s1 ∶= −i sinϕ + j cosϕ,

∇x logn ⋅ ∇ω Ĩ =
1

sin θ

∂

∂θ
{Ĩ(cos θω − k) ⋅ ∇x logn} +

1

sin θ

∂

∂ϕ
{Ĩ s1 ⋅ ∇x logn} .

When n does not depend on x, y but only on z, it simplifies to

∇x logn ⋅ ∇ω Ĩ = (∂z logn⋅)∂µ {(1 − µ2)Ĩ} where µ = cos θ.

2. The Stratified Case

The general expression of the phase matrix for Rayleigh scattering according
to S. Chandrasekhar [3] is given in Appendix 7.
For an atmosphere of thickness Z over a flat ground, the domain is Ω = R2×

×(0, Z), and all variables are independent of x, y. In [3], p40-53, expressions
for the phase matrix Z are given for Rayleigh and isotropic scattering for
the ϕ-averaged of I and Q,

Ī ∶=
1

2π
∫

2π

0
Idϕ, Q̄ ∶=

1

2π
∫

2π

0
Qdϕ,

Z̄R =
3

2
[
2(1 − µ2)(1 − µ′2) + µ2µ′2 µ2

µ′2 1
] Z̄I =

1

2
[
1 1
1 1

]

For a given β ∈ [0,1], we shall consider a combination of βZR (Rayleigh scat-
tering) plus (1−β)ZI (isotropic scatterings) [3],[12],[13]. As it is understood
that no variables are ϕ dependent, we drop the overline.
The two other components of the Stokes vectors have autonomous equations,

µ∂zŨ + ∂z logn ⋅ ∂µ{(1 − µ
2
)Ũ} + κŨ = 0, (2.1)

µ∂zṼ + ∂z logn ⋅ ∂µ{(1 − µ
2
)Ṽ } + κṼ =

µ

2
∫

1

−1
µ′Ṽ (z, µ′)dµ′. (2.2)
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Notation 2. Denote the scattering coefficient as ∈ [0,1), which, as κ, is a
function of altitude z and frequency ν. Define

κs = κas, κa = κ − κs = κ(1 − as). (2.3)

From (2.1),(2.2) we see that, if the light source at the boundary is unpolar-
ized then U = V = 0 and the light can be described either by I and Q or two
orthogonal components Il, Ir, such that I = Il + Ir and Q = Il − Ir:

µ∂z Ĩl + ∂z logn ⋅ ∂µ{(1 − µ
2
)Ĩl} + κĨl

=
3βκs

8
∫

1

−1
([2(1 − µ′2)(1 − µ2) + µ′2µ2]Ĩl + µ2Ĩr)dµ′

+
(1 − β)κs

4
∫

1

−1
[Ĩl + Ĩr]dµ

′
+
κa
2
B̃ν(T (z)),

µ∂z Ĩr + ∂z logn ⋅ ∂µ{(1 − µ
2
)Ĩr} + κĨr +

3βκs
8
∫

1

−1
µ′2(Ĩl + Ĩr)dµ′

+
(1 − β)κs

4
∫

1

−1
[Ĩl + Ĩr]dµ

′
+
κa
2
B̃ν(T (z)), (2.4)

Using an appropriate linear combination of (2.4), the system for Ĩ and Q̃ is
derived,

µ∂z Ĩ + ∂z logn ⋅ ∂µ{(1 − µ
2
)Ĩ} + κĨ

= κaB̃ν +
κs
2
∫

1

−1
Ĩdµ′ +

βκs
4
P2(µ)∫

1

−1
[P2Ĩ − (1 − P2)Q̃]dµ′,

µ∂zQ̃ + ∂z logn ⋅ ∂µ{(1 − µ
2
)Q̃} + κQ̃

= −
βκs
4

(1 − P2(µ))∫
1

−1
[P2Ĩ − (1 − P2)Q̃]dµ′, (2.5)

where P2(µ) = 1
2(3µ

2 − 1). The temperature T (z) is linked to I by (1.2)
which, in the case of (2.5) is as follows.

Proposition 1. Thermal equilibrium for (2.4) or (2.5) is

∫
R+
κa[B̃ν(T ) − 1

2 ∫

1

−1
Ĩdµ]dν = 0. (2.6)

Proof Averaging in µ the first equation of (2.5) leads to

∇x ⋅ ∫
S2

ωĨ = ∂z(
1

2
∫

1

−1
µĨdµ) = −

1

2
∂z logn ⋅ ∫

1

−1
∂µ{(1 − µ

2
)Ĩ}dµ −

1

2
κ∫

1

−1
Ĩdµ

+
1

2
∫

1

−1
κaB̃νdµ +

κs
2
∫

1

−1
Ĩdµ′,

because ∫
1
−1 P2(µ)dµ = 0. Now the first term on the right integrates to zero

and κ − κs = κa. ◻
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2.1. Iterative Solution
Consider the following iterations,

µ∂z Ĩ
n+1
l + ∂z logn ⋅ ∂µ{(1 − µ

2
)Ĩn+1i } + κĨn+1l

=
3βκs

8
∫

1

−1
([2(1 − µ′2)(1 − µ2) + µ′2µ2]Ĩnl + µ

2Ĩnr )dµ
′

+
(1 − β)κs

4
∫

1

−1
[Ĩnl + Ĩ

n
r ]dµ

′
+
κa
2
B̃n
ν

µ∂z Ĩ
n+1
r + ∂z logn ⋅ ∂µ{(1 − µ

2
)Ĩn+1r } + κĨn+1r

=
3βκs

8
∫

1

−1
(µ′2Ĩnl + Ĩ

n
r )dµ

′
+

(1 − β)κs
4

∫

1

−1
[Ĩnl + Ĩ

n
r ]dµ

′
+
κa
2
B̃n
ν

∫
R+
κaB̃ν(T

n+1
)dν = ∫

R+
κa (

1
2 ∫

1

−1
(Ĩnl + Ĩ

n
r )dµ)dν ∀z. (2.7)

2.2. The Method of Characteristics
By analogy with the non-refracting case we write the transport equations
above as a 2-system for Ĩ ∶= [Ĩn+1l , Ĩn+1r ]T ,

∂z Ĩ +
1 − µ2

µ
∂z logn ⋅ ∂µĨ +

κ

µ
Ĩ =

1

µ
S̃(µ, z), (2.8)

where S̃ = S0 + µ
2S̃2 and the Sk are linear combinations of ∫

1
−1 Indµ′ and

∫
1
−1 µ

′2Indµ′. The characteristic curves are given by

ż = 1, µ̇µ = (1 − µ2)∂z logn⇒ z(s) = s + z0, µ2(s) = 1 − (1 − µ20)
n20

n2(z(s))
(2.9)

Then (2.8) is

dĨ

ds
+
κ(z(s))

µ(s)
Ĩ =

1

µ(s)
S̃(µ(s), z(s))

Compatible boundary conditions are : Ĩ(z0, µ0) given for µ0 > 0 (resp. < 0)
at all z0 ∈ ∂Ω where the outer normal of ∂Ω points downward (resp. upward).
For clarity assume that z0 = 0 and Ĩ is given at z = 0 for all µ > 0. Denote
κ(s) = κ(z(s)). Then the solution is

Ĩ(z(s), µ(s)) = 1µ0>0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e
−∫ s0 κ(s′)

µ(s′)ds
′
Ĩ(0, µ0) + ∫

s

0

e
−∫ ss′ κ(s

′′)
µ(s′′)ds

′′

µ(s′)
S̃(s′)ds′

⎤
⎥
⎥
⎥
⎥
⎥
⎦

− 1µ0<0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∫

S

s

e∫
s′
s

κ(s′′)
µ(s′′)ds

′′

µ(s′)
S̃(s′, µ(s′))ds′

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

(2.10)
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where S is such that (z(S), µ(S)) is the exit point of the characteristic.

2.3. Compatible Characteristics

Obviously (2.10) hols only if there is an exit point z(S) = Z. In other
words for every altitude z∗ and direction µ∗ there must exist a characteristic
{z(s), µ(s)}S0 and a µ0 > 0 such that for some s∗ {z(s∗) = z∗, µ(s∗) = µ∗}
and z(0) = 0, µ(0) = µ0. Otherwise the problem is ill-posed! By (2.9), with

z0 = 0, the direction µ2 < 1 −
n2

0

n2
z

is forbidden at z. Note that

µ2(z) > 1 −
n20
n2z
, µ2(z′) = 1 − (1 − µ2(z))

n2z
n2z′

Ô⇒

µ2(z′) > 1 −
n2z
n2z′

+ (1 −
n20
n2z

)
n2z
n2z′

> 1 −
n20
n2z′

.

Consequently, if µ(s) is admissible in (2.10), µ(s′) and µ(s′′) are com-
putable. Note that if z ↦ n(z) is decreasing, µ ∈ (−1,1) is always admissible
and (2.8), with Ĩ given at z = 0 for µ > 0, is well posed.

Proposition 2. Assume that the light source is given at altitude zero:

Ĩ(0, µ0) = P̃µ0, with P = [cEBν(TE),0,0,0]
T , for some given cE , TE.

Then the solution of (2.8) exists and is unique for all z > 0, µ ≥ ((1 −
n2

0

n2
z
)+)

1
2

.

Consequently the end points of the characteristics are such that z(0) =

0, z(S) = Z and z can be used in place of s. Hence,

J̃0(z) ∶=
1

2
∫

1

−1
Ĩ(z, µ)dµ =

1

2
P̃∫

1

0
e
−∫ z0 κ(z′)

µ(z′)dz
′
µ0dµ

+ ∫

Z

0
(∫

1

0
e
−∫ zz′ κ(z

′′)
µ(z′′)dz

′′
µ−1(z′)dµ) S̃0(z

′
)dz′

+ ∫

Z

0
(∫

1

0
e
−∫ zz′ κ(z

′′)
µ(z′′)dz

′′
µ(z′)dµ) S̃2(z

′
)dz′

By (2.9) with

µ̄(µ, z, z′) ∶= (1 − (1 − µ2)
n2z′

n2z
)

1
2

∀z′, z′′ ∈ [0, Z], (2.11)

µ0 = µ̄(µ, z,0), µ(z′) = µ̄(µ, z, z′), µ(z′′) = µ̄(µ, z, z′′) (2.12)
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It can be applied with z′ = 0 and z′′ = z to compute µ0 = µ̄(µ(z), z,0) and
to compute the first integral in µ above together with µ(z′) = µ̄(µ(z), z, z′).
For the last integral µ(z′′) and µ(z′) must be similarly expressed in terms
of µ(z).

Remark 1. Note that µ̄ could be imaginary, which violates the hypothesis
on the end points of the characteristics. These values are not be included in
the computations that follow. As explained in [5]-eq.(31), it happens when
the critical refraction angle is reached. The above handles refracted rays but
makes no room for reflected rays.

Proposition 3. By analogy with exponential integrals, let us define {Ek}k≥1
and write, for z′ < z, u > 0

Ek(u, z, z′) ∶= ∫
1

µ∗
e
−∫ zz′ u(z

′′)
µ(z′′)dz

′′
µk−2(z′)dµ, µ∗ = ((1 −

n20
n2z

)
+
)

1
2

= ∫

1

µ∗
e
−∫ zz′ u(z′′)

µ̄(µ,z,z′′)dz
′′
µ̄k−2(µ, z, z′)dµ, µ̄ given by (2.11) (2.13)

J̃0(z) =
cE
2
B̃ν(TE)E3(κ, z,0) + ∑

k=1,3
∫

Z

0
Ek(κ, z, z′)S̃k−1(z′)dz′ (2.14)

Note that if z → n(z) is decreasing, µ∗ = 0.

3. Convergence of the Iterations on the Source

3.1. Monotony

First notice that T → Bν(T ) is monotone in the sense that Tn ≥ T ′n implies
B̃ν(T

n) ≥ B̃ν(T
′n). Then observe that, all coefficients being positive, Ĩnl,r ≥

Ĩ ′nl,r implies that Ĩn+1l,r ≥ Ĩ ′n+1l,r . More precisely, subtract (2.7) for Ĩ ′n+1l,r from

(2.7) for Ĩn+1l,r and check that it is an equation for the difference Dn+1
l,r ∶=

Ĩn+1l,r − Ĩ ′n+1l,r with positive source,

µ∂zD
n+1
l + ∂z logn ⋅ ∂µ{(1 − µ

2
)Dn+1

l ]} + κDn+1
l

=
3βκs

8
∫

1

−1
([2(1 − µ′2)(1 − µ2) + µ′2µ2]Dn

l + µ
2Dn

r )dµ
′

+
(1 − β)κs

4
∫

1

−1
[Dn

l +D
n
r ]dµ

′
+
κa
2

[B̃ν(T
′n
) − B̃ν(T

n
)]

µ∂zD
n+1
r + ∂z logn ⋅ ∂µ{(1 − µ

2
)Dn+1

r } + κDn+1
r

=
3βκs

8
∫

1

−1
(µ′2Dn

l +D
n
r )dµ

′
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+
(1 − β)κs

4
∫

1

−1
[Dn

l +D
n
r ]dµ

′
+
κa
2

[B̃ν(T
′n
) − B̃ν(T

n
)]

Finally the last equation of (2.7) implies

∫R+ κaB̃ν(T
′n+1)dν = ∫

R+
κa (

1
2 ∫

1

−1
(Ĩ ′

n
l + Ĩ

′n
r )dµ)

≥ ∫
R+
κa (

1
2 ∫

1

−1
(Ĩnl + Ĩ

n
r )dµ) = ∫R+

κaB̃ν(T
′n+1

)dν

which implies that Tn+1 ≥ T ′n+1. Let us apply this argument to {Tn−1, Ĩn−1i,r }

instead of {T ′n, Ĩ ′ni,r}. It shows that

Tn ≥ Tn−1, Ĩnl,r ≥ Ĩ
n−1
i,r ⇒ Tn+1 ≥ Tn, Ĩn+1l,r ≥ Ĩni,r.

To start the iterations appropriately, simply set T 0 = 0, Ĩ0l,r = 0, then by the

positivity of the coefficients Ĩ1l,r ≥ 0 and T 1 ≥ 0.

The same argument works with Tn ≤ T ′n, Ĩnl,r ≤ Ĩ
′n
l,r implying that Ĩn+1l,r ≤

Ĩ ′n+1l,r and then Tn+1 ≤ T ′n+1. Hence starting with T 1 < T 0, Ĩ1l,r ≤ Ĩ
0
l,r leads

to a decreasing sequence toward the solution. For the scalar model, it is
shown that it suffices to take T 0(z) > TM ,∀z where TM is the solution of
Bν(TM) = PEBν(TE). For the present vector model it is not clear that it is
sufficient.
The above results are summarized in the following theorem.

Proposition 4. If the solution T ∗, I∗l,r of (2.4)(2.6) exists (or equivalently
(2.5)(2.6)), it can be reached numerically from above or below by iterations
(2.7) and these are monotone increasing and decreasing respectively.

The convergence is probably superlinear. Uniqueness may also be proved as
in [7].

3.2. Boundedness

The following is an informal argument to show that boundedness for all
z ∈ (ε,Z), ε << 1 is likely true but probably false on (0, ε).
Denote Ĩn+1 = Ĩn+1l + Ĩn+1r and let

J̃m0 (z) ∶= 1
2 ∫

1

−1
Ĩmdµ, m = n + 1, n.

By adding the first two equations of (2.7), the system leads to

µ(s)
dĨn+1

ds
+ κ(s)Ĩn+1 ≤ κaB̃n

ν + (
1

4
β +

1

2
)κsJ̃

n
0 , ∀µ, z, ν,

9



∫
R+
κaB̃ν(T

n+1
)dν = ∫

R+
κaJ̃

n+1
0 dν ∀z.

because 2(1−µ2)(1−µ′2) +µ2µ′2 +µ′2 ≤ 2. By Hypothesis 2 (2.10) becomes

Ĩ(z(s), µ(s)) = e
−∫ s0 κ(s′)

µ(s′)ds
′
cEµ0B̃ν(TE) + ∫

Z
0

e
−∫ ss′

κ(s′′)
µ(s′′) ds

′′

µ(s′) S̃(s′)ds′

and

S̃ ≤ κaB̃
n
+ (

5β

4
+ 1)κsJ̃

n
0 .

Therefore, an integration in µ leads to

J̃n+10 (z) ≤
cE
2
E3(κ,0, z)B̃ν(TE) +∫

Z

0

1
2E1(κ, z, y)(κaB̃

n
+ (

5β

4
+ 1)κsJ̃

n
0 )dy.

where E3 and E1 are defined (2.13). Multiply the above by κa and integrate
in z and ν,

∫

Z

0
∫
R+
κaJ̃

n+1
0 dνdz ≤ ∫

Z

0
∫
R+
κa(z)

cE
2
E3(κ,0, z)B̃ν(TE)dνdz

+∫
R+
∫

Z

0
∫

Z

0

1
2κa(z)E1(κ, z, y)dz(κa(y)B̃

n
(y)

+(
5β(y)

4
+ 1)κs(y)J̃

n
0 (y))dydν.

When n is constant it was shown in [7] that

1
2 sup
0≤y≤Z

∫

Z

0
E1(κ, z, y)κdz ≤ C1(κ) < 1, E3 ≤

1

2
E1.

For simplicity, assume that z → n(z) is increasing and very close to n(0).
Then we can try to extend this inequality by continuity by computing
dE
dN

∣N=1 where N =
n2
z

n2
z′

and use a Taylor expansion; for some N∗, from

(2.13)

E1(κ, z, z
′
)∣N = E1(κ, z, z

′
)∣N=1 +

dE1

dN
∣N∗(N − 1) = E1(∣ ∫

z

z′
κ∣) +

dE1

dN
∣N∗(N − 1).

dE1

dN
∣N=1 =

1

2
(E0(∣ ∫

z

z′
u∣) −E−2(∣ ∫

z

z′
u∣)) ∣ ∫

z

z′
u∣

−
1

2
E−1(∣ ∫

z

z′
u∣) +

1

2
E1(∣ ∫

z

z′
u∣).

with Ek being the exponential integrals,

Ek(v) ∶= ∫
1

0
µk−2e−

v
µdµ, k ≥ 1. Ek−1(v) =

e−v

v
−
k

v
Ek(v), k ≤ 1, v ≠ 0.

10



Unfortunately E−1(v) and vE−2(v) are unbounded near v = 0 (the 2 other
terms are bounded). Hence the boundedness argument of [10] can be ex-

tended only for ∣ ∫
z
z′ u∣ ≥ c∗ > 0 and ∣

n2
z′
n2
z
− 1∣ << 1. Then for some Cε =

2 maxz>ε dE
dN

, assume that the data are such that η < 1,

η ∶= C1(κM)
1 − am
1 − aM

(1 +
1

2
βMaM) +C2 max

z,z′
∣n(z) − n(z′)∣ < 1,

Hn+1
∶= ∫

Z

ε
∫
R+
κaJ̃

n+1
0 dνdz ≤ C1(κM)(1 − am)∫

R+

cE
2
B(TE)dν + ηH

n,

It implies that Hn is bounded. In turn, all variables being positive, it implies
that Jn,Bn, Tn are bounded too provided their definition are altered by
replacing the integrals on (0, Z) by integrals on (ε,Z).

4. Implementation with Integrals

Consider (2.5), the system for the irradiance I and the polarization Q. De-
note

J̃k(z) =
1
2 ∫

1

−1
µkĨdµ K̃k(z) =

1
2 ∫

1

−1
µkQ̃dµ. k = 0,2.

Then (2.5) is rewritten as

µ∂z Ĩ + ∂z logn ⋅ ∂µ{(1 − µ
2
)Ĩ} + κĨ = κaB̃ν + κsJ̃0

+
βκs
4
P2(µ)(3J̃2 − J̃0 − 3K̃0 + 3K̃2)

µ∂zQ̃ + ∂z logn ⋅ ∂µ{(1 − µ
2
)Q̃} + κQ̃ =

−
βκs
4

(1 − P2(µ))(3J̃2 − J̃0 − 3K̃0 + 3K̃2)

Let these be multiplied by µk and integrated in µ. By (2.14)

J̃k(z) = 1
2 ∫

1

−1
µkĨ(z, µ)dµ =

cE
2
B̃ν(TE)Ek+3(κ, z,0)

+
1

2
∫

Z

0
(Ek+1(κ, z, y)S0(y) +Ek+3(κ, z, y)S2(y))dy.

with

S0 = κaB̃ +κsJ̃0−
3βκs

8
(J̃2−

1
3 J̃0− K̃0+ K̃2) S2 =

9βκs
8

(J̃2−
1
3 J̃0− K̃0+ K̃2).

11



Similarly (recall that Q̃ is zero at z = 0),

K̃k(z) =
1
2 ∫

Z

0
(Ek+1(κ, z, y)S′0(y) +Ek+3(κ, z, y)S′2(y))dy,

with

S′0 =
9βκs

8
(J̃2 −

1
3 J̃0 − K̃0 + K̃2) S′2 = −

9βκs
8

(J̃2 −
1
3 J̃0 − K̃0 + K̃2).

So at each iteration we only need to compute, for k = 0,2,

H̃k(ν, z) ∶=
9
16 ∫

Z

0
Ek+1(κ, z, z′)βκs[J̃2(z′) − 1

3 J̃0(z
′
) − K̃0(z

′
) + K̃2(z

′
)]dz′,

and then set

J̃k(z) = 1
2B̃ν(TE)Ek+3(κ, z,0) +

1
2 ∫

Z

0
Ek+1(κ, z, z′)(κaB̃ + κsJ̃0)dz

′

−
1

3
H̃k + H̃k+2, K̃p(z) = H̃k − H̃k+2,

and update T by solving

∫
R
κa(Bν(T (z)) − J0(z, ν))dν = 0, ∀z ∈ (0, Z)

5. An approximation to use Exponential Integrals

Assume that n2z′ = n
2
z(1+ε), ε << 1. Then µ2(z′) = µ̄(µ(z)) = (1+ε)µ2(z)−ε.

The computer implementation is easier and fast if the last ε dropped, i.e.

µ′(z′) = µ(z)
nz′

nz
≈ µ(z)(1 +

ε

2
), (5.1)

because then exponential integrals can be used to approximate Ek deffined
in (2.13). Figure 1 shows the error between µ(z′) and µ′(z′).
Indeed, if Ek is the kth exponential integral,

Ek(u, z, z′) ≈ (
nz′

nz
)
k−2

Ek(∫
z

z′
u(z′′)

nz
nz′′

dz′′). (5.2)

However Figure 2 shows that this approximation is much too course for E1

but feasible for E3 and E5.
To optimize the computing time, E is tabulated in an array for 100 values
of z, z′ and 50 values of κν . Computing this array takes 5” and the rest of
the prograam runs faster than with E1.
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Figure 2: Relative error due to (5.2)
for Ek, k = 1,3,5 when nz is as in §5.1.

5.1. Numerical Results

According to [2] the variation of the refractive index in the atmosphere is
quite small ∼ 0.003. To enhance the efffect we use 3 times this value.
For all the test the following is used:

• n(z) = 1 + ε
(z−Z

3
)(Z

2
−z)

max[(z−Z
3
)(Z

2
−z)]1z∈(Z3 ,Z2 ),

• as = a11z∈(z1,z2) + a21z>z21ν∈(ν1,ν2) (
ν
ν2

)
4
,

• ε = 0.01, a1 = 0.7, a2 = 0.3, z1 = 0.4, z2 = 0.8, ν1 = 0.6, ν2 = 1.5.

The monotony of the iterative process is displayed in Figure 4. It is clear that
by starting below (resp. above) the solution the values of the temperature
at z = 300m are increasing (resp. decreasing). Note that 15 iterations are
sufficient to obtain a 3 digit precision.
To study the effect of n on a simple case with ran the program with κ = 0.5,
n as in 5.1 and n = 1 and the data of Case 1. The results are shown in
Figures 5 and 6. In all other test cases κ is the function of ν extracted
from the Gemini experiments 2. In Figure 7 Temperature versus altitude is
displayed for Case 1 & 2 for 2 different ν → κ, the Gemini values and the
Gemini ν → κ1 modified due to an increase of CO2 as shown in Figure 3.
The main points are

2www.gemini.edu/observing/telescopes-and-sites/sites#Transmission
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• For Case 1 (IR light coming from Earth) the CO2 increases the tem-
perature from 23.8 to 24.2 at the surface and from -52.8 to -51.5 at
z = 10km.

• For Case 2 (Visible light coming from the sun and reflected by the
Earth) the effect of the CO2 is a drastic reduction of temperature.

• In both cases the influence of the cloud is seen as an inflection in the
temperature.

In Figure 8, with κ-Gemini, the integrals of intensities over all ray directions
are shown, namely ν → J0 and the polarization ν →K0 at ground and 10km
levels. J0 increases with altitude while K0 decreases. As 107K0(Z) has large
negative values at some points we have displayed K̃0 = max(K0,−2 10−6).
In Figure 8 and 10 the effect of adding an added opacity in the range 14 −
18µm is seen very strongly on K0(0).
Notice that the polarization is particularly strong at ground level near ν = 3

18
and since Q(0, µ) = 0 when µ > 0 it is entirely due to rays pointing downward.
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Figure 3: Absorption κ from the
Gemini experiment, versus wavenumber
(3/ν). In dotted lines, the modification
to construct κ1 to account for the opac-
ity of CO2.
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Figure 4: Convergence of the temper-
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ations. In solid line when it is started
with T 0

= 0, in dashed line when it intial
temperature is 180°C. Notice the mono-
tonicity of both curves.
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6. Conclusion

In this article the methodology developed in (Golse-Pironneau (2022)[7]) for
the numerical solution of the RTE has been extended to include Rayleigh
scattering with polarization and continuous refraction. The equations have
been shown to be well posed when total refraction is ruled out and the
numerical method based on “iterations on the source” has been shown to be
monotone.
The method is not hard to program and the execution time is a few seconds.
The opacity of GHG has a striking effect on the polarization, increased
by refraction. Effects on atmospheric temperatures are small but within
the precision of the numerical method and it shows that the variations of
the refractive index cannot be neglected. Whether this modeling of the
atmosphere is sufficient to explain the greenhouse effect of CO2 is debatable
and left to the climatologist (see for example Dufresne et al.(2020)[4]).
Generalization to 3D as in (Hecht et al. (2022)[6]) and (Pironneau-Tournier
(2023)[11]) for a non-stratified atmosphere looks possible.
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7. Appendix: General Rayleigh scattering Matrix

According to equation (219) in [3]p42 we may express the phase-matrix in
the form

P (µ,ϕ;µ′, ϕ′) =Q[P 0
+ (1 − µ2)

1

2
(1 − µ′)

1
2P (1)

+P (2) (µ,ϕ;µ′, ϕ′)]

Q =

⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

⎞
⎟
⎟
⎟
⎠

P 0 = 3
4

⎛
⎜
⎜
⎜
⎝

2 (1 − µ2) (1 − µ′2) + µ2µ′2 µ2 0 0

µ′2 1 0 0
0 0 0 0
0 0 0 µµ′

⎞
⎟
⎟
⎟
⎠

,

P (1) = 3
4

⎛
⎜
⎜
⎜
⎝

4µµ′ cos (ϕ′ − ϕ) 0 2µ sin (ϕ′ − ϕ) 0
0 0 0 0

−2µ′ sin (ϕ′ − ϕ) 0 cos (ϕ′ − ϕ) 0
0 0 0 cos (ϕ′ − ϕ)

⎞
⎟
⎟
⎟
⎠

P (2) = 3
4

⎛
⎜
⎜
⎜
⎝

µ2µ′2 cos 2 (ϕ′ − ϕ) −µ2 cos 2 (ϕ′ − ϕ) µ2µ′ sin 2 (ϕ′ − ϕ) 0
−µ′2 cos 2 (ϕ′ − ϕ) cos 2 (ϕ′ − ϕ) −µ′ sin 2 (ϕ′ − ϕ) 0
−µµ′2 sin 2 (ϕ′ − ϕ) µ sin 2 (ϕ′ − ϕ) µµ′ cos 2 (ϕ′ − ϕ) 0

0 0 0 0

⎞
⎟
⎟
⎟
⎠

,
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