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ABSTRACT
In this work, we adress the issue of sealing performance

of metal gaskets using a deterministic approach that allows the

analysis of creeping viscous flow and diffusion through a tight

contact between rough surfaces taking into account surface de-

formation. Our analysis is focused on rough surfaces exhibiting

fractal properties, and our purpose is to study the validity of the

use of synthetic fractal surfaces as a representation of real ones.

Two kinds of real surfaces, obtained from two machining

processes - lapping and sand-blasting - are considered. After

checking the fractal nature of these surfaces, equivalent fractal

ones are synthesized. Distributions of contact areas on the one

hand, and transport properties K (for viscous flow) and D (for

diffusion) on the other, obtained from real and synthetic surfaces

are compared for a wide range of tightening. This comparison

leads to the conclusion that the fractal representation is adequate

to predict mechanical and transport properties of a contact be-

tween lapped or sand-blasted surfaces. Finally, using synthetic

surfaces, it is shown that sealing performance of a rough con-

tact decreases when the arithmetic roughness Ra and the fractal

dimension D f increase.

1 Introduction

In many industrial applications, as in the water primary cir-

cuit of nuclear power plants or in cryotechnologic rocket en-

∗Address all correspondence to this author.

gines, for which thermodynamic conditions are severe, seal is

performed by a direct contact between metallic surfaces [1]. Un-

fortunately, since no machining process can produce an ideally

smooth surface, contact between two real surfaces is not perfect,

and thus sealing is not complete. In this configuration, sealing

efficiency, which is obtained by roughness flattening, mainly de-

pends on surface textures. The determination of viscous flow and

diffusion through a connected aperture field, i.e. all spaces left

opened between surfaces, is also of major interest, since it allows

the estimation of sealing performance of metal gaskets.

In this paper, we present a deterministic approach to esti-

mate the transport properties of a rough contact, i.e. parameters

relating the fluid flux to the driving force, from initial rough-

nesses while taking into account surface deflections. Here, this

procedure is restricted to small scale defaults, which means that

only microroughness is considered, eliminating form errors and

waviness appearing at larger scales. Consequently, computations

are performed on small surfaces, large enough, however, to be

representative of microroughness. Thus, these surface elements

are considered as the periodic unit cell of an infinite surface.

Our analysis is focused on rough surfaces, whose texture ex-

hibits fractal properties. As reported by Majumdar and Bhushan

[2], processes producing deterministic texture do not yield frac-

tal surfaces, whereas those producing random texture do. Our

purpose is to validate the use of synthetic fractal surfaces to pre-

dict the behavior of such a contact. This would avoid using real

surfaces that require machining and detailed roughness measure-

1

https://crossmark.crossref.org/dialog/?doi=10.1115/PVP2008-61213&domain=pdf&date_stamp=2009-07-24


ment. The final goal is also to propose a predicting tool for leak-

age between such surfaces based on the fractal dimension and a

roughness amplitude parameter only. To achieve this validation,

a thorough comparison of contact areas as well as viscous and

diffusive transport properties is performed between two real sur-

faces and their analogue synthesized ones. The two real surfaces

under consideration are obtained by lapping and sand-blasting

respectively.

In section 2, we determine fractal properties of real surfaces

under consideration. Then, equivalent fractal surfaces are syn-

thesized. In section 3, we first present an elasto-plastic defor-

mation model which allows the determination of surface deflec-

tions caused by tightening. In a second step, we describe fluid

flow models through a rough contact due to viscous and diffu-

sive effects. The macroscopic viscous flow model introduces a

transmissivity tensor K which linearly relates the viscous flow

rate per unit width of the contact to the macroscopic pressure

gradient in the fluid. Similarly, the macroscopic diffusive model

introduces a diffusivity tensor D which linearly relates the dif-

fusive flow rate per unit width of the contact to the macroscopic

species gradient. We show that the two tensors K and D are in-

trinsic, i.e. they only depend on the aperture field h. Section 4 is

dedicated to the comparison between real surfaces and their syn-

thetic equivalent. This comparison is performed on the distribu-

tions of contact spots and on the transport properties of the rough

contact. To illustrate the advantage of using synthetic surfaces,

we investigate in section 5 the influence of roughness parameters

(Ra and D f ) on the sealing performance of a rough contact, and

more especially their influence on the transmissivity tensor K.

2 Analyses and simulation of isotropic fractal sur-
faces

A profile of a fractal surface is statistically self-affine, which

means that a magnified part of this profile appears to be similar to

the entire original one (Fig. 1). The power spectrum P(ωx,ωy) of

an isotropic fractal surface z(x,y) follows a power law behavior

given by [3]:

P(ωx,ωy) ∝ |z̃(ωx,ωy)|
2 ∝

1

ω
8−2D f
eq

(1)

where z̃(ωx,ωy) are the Fourier coefficients of z(x,y), ωeq =√
ω2

x +ω2
y and D f is the fractal dimension. For a surface,

2 ≤ D f ≤ 3. It shall be noted that D f , which can be estimated

from the slope of logP = f (logωeq), is related to the relative

power of the frequency content and is an indicator of the degree

of irregularity of the surface such that the larger D f is, the more

irregular the surface. For a whole characterization of rough sur-

faces, we need a second roughness parameter, which is related to

Figure 1. SELF-AFFINE PROFILE -

the amplitude of all frequencies. In this work, we choose to con-

sider the arithmetic roughness Ra, which is directly accessible

from measurement and is widely used in engineering applica-

tions.

In this section, the fractal nature of a lapped surface and of

a sand-blasted surface is investigated. The lapped surface was

finished with abrasive particles of about 1 µm size while the

sand-blasted surface was machined by streams of microbeads

of 70− 110 µm size. The roughnesses of these surfaces were

measured by white light interferometry on machined parts. Mea-

surement parameters are given in Tab. 1. Surface dimensions

Lx, Ly are assumed to be large enough and sampling intervals

∆x = Lx/nx, ∆y = Ly/ny small enough to be representative of the

microroughness. First, fractal properties of these textures are an-

alyzed and then equivalent fractal surfaces are synthesized.

In Fig. 2(a), we have represented the power spectrum P of

the real lapped surface versus the equivalent angular frequency

ωeq. Whereas some dispersion is observed, it appears that this

surface exhibits fractal properties for ωeq larger than a cut-off

frequency ωmin, i.e. for wavelengths lower than 2π
ωmin

= 20 µm.

For ωeq < ωmin, it will be assumed that P is constant (see [4]).

The theoretical profile of P is fitted in the least squares sense,

allowing the identification of D f and ωmin. Similarly, the graph

in Fig. 3(a) indicates that the real sand-blasted surface has a

fractal trend for all frequencies investigated. These two surfaces

have almost the same fractal dimension D f (see Tab. 1), but since

they have been machined with particles of different sizes, they

are not fractal at the same scales. They also exhibit significant

different roughness amplitudes as indicated by Ra values.

The approach to synthesize a fractal surface is based on the

”Fourier filtering method” [3]. A random pattern amn (1≤m≤ nx

and 1 ≤ n ≤ ny) is first generated in the physical space. A cor-

Table 1. SURFACE PARAMETERS -

Surface
Lx x Ly

(µm)

nx x ny

(points)

Ra

(µm)
D f

lapped

sand-blasted
462 x 607 480 x 736

0.4

1.0

2.50

2.51

2



(a) (b)(a) (b)

Figure 2. POWER SPECTRUM (PS) OF (a) A REAL LAPPED SUR-

FACE AND (b) ITS EQUIVALENT SYNTHESIZED SURFACE -

(a) (b)(a) (b)

Figure 3. POWER SPECTRUM (PS) OF (a) A REAL SAND-BLASTED

SURFACE AND (b) ITS EQUIVALENT SYNTHESIZED SURFACE -

relation among the Fourier coefficients ãkl of amn is introduced

such that moduli of z̃kl follow a power law as given by Eqn. (1):

z̃kl =
ãkl

(ωkl)
4−D f

(2)

where ωkl = 2π

√(
k

Lx

)2

+
(

l
Ly

)2

.

The fractal surface zmn is then obtained by a discrete inverse

Fourier transform of z̃kl :

zmn =
1

nxny

nx−1

∑
k=0

ny−1

∑
l=0

z̃kle

(
ik 2mπ

nx
+il 2nπ

ny

)

(3)

Finally, a rescaling is performed on zmn to obtain the desired

- Real lapped surface - - Synthesized lapped surface -

Figure 4. TEXTURES OF LAPPED SURFACES -

- Real sand-blasted surface - - Synthesized sand-blasted surface -

Figure 5. TEXTURES OF SAND-BLASTED SURFACES -

arithmetic roughness Ra:

z̄mn =
Ra

1
nxny

nx

∑
m=1

ny

∑
n=1

|zmn|

zmn (4)

Equivalent fractal surfaces were synthesized with the rough-

ness parameters of real surfaces (see Tab. 1). Power spectra of

these synthesized surfaces are reported in Figs. 2(b) and 3(b).

To synthesize the equivalent lapped surface, the cut-off angular

frequency ωmin was also considered in addition to the two pa-

rameters D f and Ra. Textures of the real and synthesized lapped

surfaces are represented in Fig. 4, while those of the sand-blasted

surfaces are reported in Fig. 5. It appears that the textures of the

lapped surfaces are more regular than those of the sand-blasted

surfaces. This can be explained simply by the existence of the

cut-off frequency ωmin in the power spectrum of the lapped sur-

face (see Fig. 2). This cut-off fades away long wavelength

roughnesses leading to a texture smoother than those of the sand-

blasted surfaces.

3 Deformation and transport models

3.1 Elasto-plastic deformation model
When two rough surfaces are brought in contact, effective

contact only occurs on the top of asperities, which deform under

the action of the applied load. During the past decades, the prob-

lem of the contact of rough surfaces has concentrated significant

research efforts and a review of the main theories developed can
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be found in [5]. The major difficulty in modeling this problem

comes from the description of the roughness, which can leads

to a large number of data. The most widely used model is that

proposed by Greenwood and Williamson [6], and then modified

by many authors [7–9]. However, the adequacy of these models

is questionable since assumptions made on asperities are most

of the time unrealistic and since statistical roughness parame-

ters used are not unique but strongly dependent on the resolution

of the measuring instrument. With the expansion of computer

capabilities, deterministic models have been developed. In that

case, computations are directly performed on digitized surfaces,

with no assumption on height distribution. In the present work,

we adopted a simplified elasto-plastic deformation model. The

problem is treated while supposing normal effects only, and to

simplify, we consider the contact between a rough surface and

a perfectly rigid and smooth plane. If the contact area is small

compared to body dimensions and if slopes of asperities are small

everywhere, solids in contact can be considered as semi-infinite.

In that case, deflections of the rough surface are linked to the

contact pressures by the relation [10, 11]:

u(x) =

∫

S

U (x,ξ) pc (ξ)dS (5)

Here, u(x) is the surface deflection at point x(x,y) of the surface,

U (x,ξ) is the deflection at x due to a unit load at ξ(ξx,ξy) while

pc (ξ) designates the contact pressure at ξ and S the apparent

contact surface.

When solids are elastic and homogeneous, the influence co-

efficient U (x,ξ) can be expressed by the method of potentials

proposed by Boussinesq [12]:

U (x,ξ) =
1−ν2

πE

1√
(x−ξx)

2 +(y−ξy)
2

(6)

where E is the Young modulus and ν the Poisson ratio of the

surface under consideration.

Contact pressures must also verify:

1

S

∫

S

pc (x)dS = Pca (7)

where Pca is the average applied contact pressure.

From Eqn. (5), we can notice that only the rough surface

has to be discretized. Computational time is therefore drastically

reduced in comparison with classical methods like finite element

methods, which require the discretization of the entire volume.

If the rough surface is discretized by (nx,ny) identical cells

of dimensions (∆x,∆y), the solution of the elastic deformation

problem consist in solving the following system:

ui j =
nx−1

∑
k=0

ny−1

∑
l=0

Ui−k, j−l pc
kl , (0 ≤ i ≤ nx,0 ≤ j ≤ ny) (8a)

1

nxny

nx−1

∑
k=0

ny−1

∑
l=0

pc
i j = Pca (8b)

ui j = δ0 −hi j, (i, j) ∈ Ωc (8c)

pc
i j > 0, (i, j) ∈ Ωc (8d)

ui j ≥ δ0 −hi j, (i, j) /∈ Ωc (8e)

pc
i j = 0, (i, j) /∈ Ωc (8f)

where ui j is the surface deflection at node (i, j), pc
i j is the uniform

contact pressure acting on the cell centered at node (i, j), Ui−k, j−l

are the influence coefficients, Ωc is the set of grid nodes that are

in contact, δ0 is the rigid body displacement of the two solids and

hi j is the aperture at node (i, j) between undeformed surfaces.

To take into account plastic deformation, a plastic criterion

is directly applied on contact pressures. Materials are assumed

to follow an elastic-perfectly plastic behavior, i.e. contact pres-

sures are bounded by the hardness H of the softer material. This

simplified model does not take into account work-hardening that

might significantly modify the deformation of asperities. How-

ever, this discussion on the choice of an adequate mechanical be-

havior is beyond the scope of this paper and the elastic-perfectly

plastic model was selected to keep the approach simple and il-

lustrative.

3.2 Fluid transport models
3.2.1 Micro-scale viscous flow and diffusion In

this section, we consider incompressible, isothermal and station-

ary mass transfer due to creeping viscous flow on the one hand

and to diffusion on the other. Whereas diffusion through metal

gaskets is negligible compared to viscous flow, we will see latter

4



that the analysis of diffusive effects represents an additional in-

dependent test on the relevance of the fractal representation for

the class of surfaces under consideration. At the micro-scale,

viscous creeping flow (at negligible Reynolds number) through a

rough fracture can be described by the Stokes model:

−∇p+µ∇2v = 0 (9a)

∇.v = 0 (9b)

v.n = 0, at the solid wall (9c)

v being the fluid velocity, p the fluid pressure and µ its dynamic

viscosity. In the same way, diffusion is described by Fick’s law:

∇.(D∇c) = 0 (10a)

∇c.n = 0 at the solid wall (10b)

where D∇c is the diffusive flux, c the species concentration

which diffuses through the contact and D the molecular diffu-

sion coefficient.

If we assume that the aperture field h(x,y) is slowly varying,

i.e. that slopes of asperities are small, the two previous models

can be reduced from 3D to 2D. This can be performed using an

order of magnitude analysis and an integration of the balance

equations in the direction normal to the mean plane of the con-

tact (z-direction). Under these circonstances, viscous flow is de-

scribed by the Reynolds model:

qv = −
h3

12µ
∇p in β (11a)

∇.qv = 0 in β (11b)

qv.n = 0 on Cβσ (11c)

where β designates the fluid phase and σ the effective contact

areas of contours Cβσ in the x-y plane (see fig. 6); qv =
h∫

0

vdz is

the volume flow rate of the β-phase per unit width.

S

s

b

C b s

n

Figure 6. LOCAL CONTACT CONFIGURATION: CONTACT AREAS σ
AND FLUID PHASE β -

In the same way, the diffusion problem becomes:

qd = −Dh∇c in β (12a)

∇.qd = 0 in β (12b)

qd .n = 0 on Cβσ (12c)

qd =
h∫

0

jdz is the molecular flow rate of the β-phase per unit

width.

3.2.2 Transport properties of the rough contact
Equations (11) and (12) are formally identical. They can be

rewritten in a generic form:

q = −k∇ω in β (13a)

∇.q = 0 in β (13b)

q.n = 0 on Cβσ (13c)

with k = h3

12µ
and ω = p for viscous flow and k = Dh and ω = c

for diffusion.

By averaging these equations over a small portion S of the

contact, the previous model can be up-scaled from micro to

macro-scale. This operation allows to derive macroscopic mod-

els of transport relating the macroscopic flow rate at the scale of

5



S, to the macroscopic driving force (i.e. the macroscopic pres-

sure gradient or species gradient). Moreover, it provides an ex-

plicit way to determine the transport coefficients appearing in

these macroscopic models. The averaging process is similar to

volume averaging [13] and is based on the definitions of the two

operators applied on any quantity ϕ defined in the β -phase:

〈ϕ〉 =
1

S

∫

Sβ

ϕdS =
1

Sβ +Sc

∫

Sβ

ϕdS (14a)

and

〈ϕ〉β =
1

Sβ

∫

Sβ

ϕdS (14b)

along with the averaging theorem:

〈∇ϕ〉 = ∇〈ϕ〉+
1

S

∫

Cβσ

nϕdS (14c)

Using a procedure employed for similar problems [14]- [15],

it can be shown that the generic macroscopic model takes the

form:

〈q〉 = −H.∇〈ω〉β
(15a)

∇.〈q〉 = 0 (15b)

In equation (15a), the tensor H can be explicitely determined

from the aperture field according to:

H = 〈k (I+∇b)〉 (16)

where b is solution of the closure problem that is written as:

∇.(k∇b) = −∇k̃ in β (17a)

−nβσ.∇b = nβσ on Cβσ (17b)

b(x+ ri) = b(x) (17c)

〈b〉 = 0 (17d)

In the above equations, k̃ = k−〈k〉 and ri is the surface element

dimension in the ith direction. This surface element is supposed

to be representative of a periodic infinite structure. Note that K

and D are intrinsic, i.e. only depends on h.

For viscous flow, the flow rate per unit width of the contact,

at the scale of the surface element, is hence:

〈qv〉 = −
K

µ
.∇〈p〉β

(18a)

∇.〈qv〉 = 0 (18b)

where K = H is the intrinsic transmissivity tensor with k = h3

12

(16) and (17). It must be noted that K has the dimension of cubic

length.

In the same way, the flow rate per contact unit width result-

ing from diffusion at the scale of the surface element is given

by:

〈qd〉 = −DD.∇〈c〉β
(19a)

∇.〈qd〉 = 0 (19b)

where D = H is the effective diffusivity tensor with k = h in (16)

and (17). Note that D has the dimension of length.

From Eqns. 18a and 19a, viscous and diffusive flow rates

through the contact can be fully characterized from K and D

only, that is why, in the following, we consider transport proper-

ties and not flow rates. Moreover, it can be noted that D involves

an average over h while K involves an average over h3. Hence,

although diffusion through metal gaskets is negligible compared

to viscous effects, the combined study of K and D provides two

discriminating tests to validate the use of synthetic surfaces in-

stead of real surfaces.

Equations (17) were derived while considering a continuous

aperture field. However, if roughness is measured on a set of nx x

ny points so that the surface is represented by nx x ny cells, each

of them having a constant aperture hi, the discrete form of the

closure problem (17) is:

ith cell: ∇.∇bi = 0 (20a)

i j interface: n.ki (∇bi + I) = n.k j (∇b j + I) (20b)

6
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Figure 7. COMPUTATIONAL ALGORITHM FLOWCHART -

i j interface: bi = b j (20c)

jth cell: ∇.∇b j = 0 (20d)

∑
i

bi = 0 (20e)

Equations (20b) and (20c) allow the continuity of n.q and

ω respectively, between each cell. Moreover, at the scale of the

surface element, b is assumed to be periodic.

3.3 Algorithm

The computational algorithm used to determine transport

properties of a rough contact is schematized in Fig. 7. It is initi-

ated with a set of nx x ny points z(x,y) describing a representative

surface element either of the real or synthesized surface. The

aperture field h(x,y) resulting from deformation of the initial

surface z(x,y) is computed with the elasto-plastic deformation

model as described above. Intrinsic transmissivity and diffusiv-

ity tensors, K and D respectively, are computed using the same

numerical procedure. Distinction between viscous and diffusive

effects is performed by the surface preparation module. The per-

colation module allows to remove all non percolating clusters,

i.e. non contact areas not connected to surface edges.

4 Real versus synthetic surface

In this section, we consider the contact between one of the

rough surfaces presented in section 2 and a perfectly rigid and

smooth plane. Results obtained from real and synthesized sur-

faces are compared in order to validate the use of synthetic frac-

tal surfaces for lapping and sand-blasting processes. Two aspects

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

Pca (MPa)

S
c/

S
 (

%
)

Real surface

Synthesized surfaces

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

Pca (MPa)

S
c/

S
 (

%
)

Real surface

Synthesized surfaces
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Figure 8. RELATIVE CONTACT AREA Sc/S VERSUS AVERAGE CON-

TACT PRESSURE Pca -

are investigated: the distribution of contact spots on the one hand

and viscous and diffusive transport properties of the contact on

the other. Computations were performed for several average con-

tact pressures Pca ranging from 7 to 600 MPa and considering

the mechanical properties of stainless steel, i.e. E = 210 GPa,

ν = 0.3 and H = 1800 MPa. Although machining might modify

mechanical properties (namely hardness) on the surface, we kept

the bulk-material value for H in absence of thorough validated

results on this mechanism.

Several fractal surfaces were synthesized using the same

roughness parameters but changing the initial random sequence

amn. Thus, for each kind of texture (lapped and sand-blasted),

four different surfaces were synthesized from the power spectra

of the real surfaces considered in section 2.

4.1 Effective contact areas

In Fig. 8, we have represented the ratio of the true con-

tact area Sc to the nominal surface area S = LxLy versus the av-

erage contact pressure Pca. The linear dependence of Sc/S on

Pca is confirmed and an excellent agreement is observed between

real and synthesized surfaces. However, it must be noticed that

the successful comparison between the effective contact areas is

not sufficiently discriminating since lapped and sand-blasted sur-

faces exhibit identical variations of Sc/S versus Pca, although

these surfaces have roughness parameters that are significantly

different. As a consequence, a more detailed study on the distri-

bution of contact areas is necessary.

In Figs. 9 and 10, we have reported the mean, m, and the

standard deviation, σ, of the distribution of contact spot areas

versus the contact pressure Pca for lapped and sand-blasted sur-

faces respectively. For lapped surfaces, we can observe that all

the synthesized surfaces have a similar behavior, while for sand-

blasted surfaces, a more significant dispersion between the four

realizations is observed. As noticed in section 2, lapped surfaces

differ from sand-blasted ones in the relative power of low fre-

quencies. Contrary to lapped surfaces, the dominant pattern of

sand-blasted surfaces is determined by the longer wavelengths

close to the scale of the surface element under consideration.
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Thus, while changing the initial random sequence amn, the tex-

ture of sand-blasted surfaces is more affected than that of lapped

surfaces, that is why a significant scatter is observed among syn-

thesized sand-blasted surfaces and not among synthesized lapped

surfaces.

As can be seen in Fig. 9, a good agreement between real and

synthesized lapped surfaces is observed on the mean, m, of the

contact spot areas since relative deviations between real and syn-

thesized surfaces are smaller than 10%. The comparison of the

standard deviations σ shows that this parameter is more sensitive

since relative deviations are about 30%.

Deviations between the mean of the real sand-blasted surface and

the average value of the corresponding synthesized surfaces (Fig.

10) can reach 20%, which remains fully consistent in comparison

to the relative dispersion on the four realizations of synthesized

surfaces (about 15%). Results concerning the standard devia-

tion σ show a good agreement between real and synthesized sur-

faces since results obtained on the real surface fall well within

the range of those obtained on synthesized surfaces.

4.2 Effective transport properties

Because of machining process, surfaces under investigation

here are expected to be isotropic in the x-y plane, featuring spher-

ical K and D tensors, i.e. K =KI and D =DI. Our numerical

results confirm this property (at least for lapped surface; see dis-

cussions below). In fact, off-diagonal terms for the two types

of surfaces were, at least, two orders of magnitude smaller than

diagonal terms. As a consequence, our discussion is focused on

the diagonal terms of K and D. Figure 11 shows the log-log

plots of these diagonal terms for the real and synthesized lapped

surfaces versus Pca. This figure clearly indicates that the real

surface is perfectly isotropic at the scale of investigation. All

synthesized surfaces have the same transport properties, except

at high contact pressure Pca where some dispersion can be ob-

served. At low Pca, the number of branches of the percolating

cluster, i.e. paths where the fluid can flow, is large, explaining

why all surfaces are statistically identical. When increasing Pca,

the number of branches decreases, leading to scattered values of

K and D. Moreover, transport properties rapidly decrease with

the increasing of the contact pressure which confirms that tight-

ening makes the contact less percolating. Whereas experimental

results obtained on turned surfaces indicate that both K and D

depend on Pca according to a power law [16], effective transport

properties of fractal surfaces exhibit a more complex behavior. It

must be noticed that the range of variation of K is much wider

than that of D, and this is due to the fact that this later quantity

is related to the aperture field h while the former is related to h3.

For both K and D, an excellent agreement is obtained between

real and synthesized surfaces. Whatever Pca, relative deviations

remain smaller than 7% on the estimation of D. It can reach 20%

on the estimation of K, which is small compared to the range

of variation of K over roughly three orders of magnitude for the

range of Pca under consideration.

In Fig. 12, we have reported the diagonal terms of K and

D estimated on the real and synthesized sand-blasted surfaces.

In contrast to lapped surfaces, diagonal terms are significantly

different as evidenced by results on the real surface. The same

behavior is observed on each of the four realizations. For each

surface, at a given value of Pca, relative deviations of diagonal

terms with respect to their average value increase with contact

pressure Pca. As for lapped surfaces, this is due to the num-

ber of branches of the percolating cluster which decreases when

Pca increases. These deviations can reach 20% for diffusivity and

45% for transmissivity. Anisotropy of the transport properties is

a result of a size effect, as already discussed above for the dis-

tribution of contact spot areas. Since the fractal character of this

surface remains at a scale equal to the size Lx, Ly of the surface

element under investigation, dispersion is expected on its behav-

ior that must be analyzed on average over several realizations.

However, as for lapped surfaces, a very good agreement between

computed transport properties is obtained between real and syn-

thesized sand-blasted surfaces. Along with results on effective

8
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Figure 12. TRANSPORT PROPERTIES OF REAL AND SYNTHESIZED SAND-BLASTED SURFACES -

contact areas, this validates the use of synthesized surfaces for

the estimation of both the effective contact and transport proper-

ties of a rough contact between fractal surfaces. This provides a

useful tool to analyze the influence of roughness parameters on

transport properties as shortly proposed bellow.

5 Influence of Ra and D f on K

In this section, the influence of Ra and D f on the trans-

missivity K is illustrated. The effect of Ra is studied by syn-

thesizing five surfaces with D f = 2.5 and Ra varying from

0.1 µm to 2 µm. The effect of D f is studied by synthesizing

four surfaces with Ra = 1 µm and D f varying from 2.1 to 2.7,

which is in accordance with measurements performed on real

surfaces [17, 18]. For all surfaces, Lx,y = 1 mm, nx,y = 256

and ωc = 0. Moreover, computations were performed for Pca

∈ {40; 100; 200; 300; 400; 500} MPa.

Figure 13 shows variations of K versus Ra on the one hand and

versus D f on the other for each Pca under consideration. What-

ever Pca, Ra has the same effect. As expected, K increases with

Ra, which means that sealing performance of the rough contact

decreases when contacting surfaces have large Ra. Although al-

ways increasing with D f , K is shown to be more sensitive to this
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parameter at large values of Pca. At small values of Pca, the de-

pendency of K on D f obeys roughly a power law. As explained

in section 2, fractal surfaces become more irregular when D f in-

creases, leading to a smaller contact area and hence decreasing

sealing performance. However, in the range of Ra and D f in-

vestigated, the effect of D f is much less significant than that of

Ra.
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6 Conclusions

A global and deterministic approach for determining sealing

performance of metal gasket from surface textures, taking into

account roughness deformation, has been presented. The study

was carried out on a class of rough surfaces exhibiting fractal

properties. The fractal nature of lapped and sand-blasted surfaces

was confirmed from direct measurements.

Equivalent fractal surfaces were synthesized with the same

fractal properties as the real ones and a thorough comparison

of contact areas on the one hand and of transport properties on

the other, was performed between real and synthesized surfaces.

Due to the existence of the cut-off frequency, the study on lapped

surfaces shows that when synthesizing several surfaces with the

same roughness parameters, results are almost identical. This

is not true for sand-blasted surfaces and significant dispersions

are observed between results obtained from four realizations of

synthesized surfaces. For the same reasons, at the scale of the

surfaces investigated in this work, transport properties of lapped

surfaces are isotropic whereas due to a size effect, transport prop-

erties of sand-blasted surfaces are anisotropic.

The main result of this work is twofold. First, distributions

of contact areas of the synthesized surfaces were shown to be

in good agreement with those of the real surfaces. Secondly, a

very good agreement was obtained between real and synthesized

surfaces during the estimation of viscous and diffusive transport

properties, for both lapped and sand-blasted surfaces. This repre-

sents a set of very discriminating comparisons leading to the con-

clusion that synthesized surfaces can be used to describe contact

mechanics and contact transport properties through a contact be-

tween rough surfaces produced by a random machining process.

Finally, using synthetic surfaces, it was shown that sealing

performance of a rough contact decreases when Ra and D f in-

creases, and that the effect of Ra is more significant than that of

D f .
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