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Abstract—While Resistive RRAM (RRAM) offers attractive 

features for artificial neural networks (NN) such as low power 

operation and high-density, its conductance variation can pose 

significant challenges when the storage of synaptic weights is 

concerned. This paper reports an experimental evaluation of the 

conductance variations of manufactured RRAMs at the memory 

array level. Working at the memory array level allows to catch 

cycle-to-cycle (C2C) as well as device-to-device (D2D) variability 

and, hence, to propose a realistic evaluation of the conductance 

variation. Variability is evaluated with respect to the RRAM low 

resistance state (LRS) and high resistance state (HRS) 

conductance ratio. This ratio is selected as the parameter of 

interest as it guarantees the proper operation of the RRAM: the 

larger the ratio, the more reliable and robust the RRAM cell is 

in storing and retrieving data. The measurement results show 

that the conductance ratio is heavily affected by variability. 

Large spatial and temporal variations are reported, making 

challenging RRAM-based analog weight storage. 

Keywords— RRAM, Variability, Neuromorphic, Computing, 

Synaptic weights, Reliability. 

I. INTRODUCTION 

 

Resistive RAM (RRAM) is a promising technology not 

only for large data storage but also to enable energy efficient 

computing solutions which could facilitate the deployment of 

artificial intelligence at the edge (edge-AI). However, not 

solving the issues related to no-idealities such as the 

variability in the electrical parameters of RRAMs (e.g., 

conductance variability) may block further development of 

the technology. In RRAM-based neural networks (NN), 

conductance variability results in weight variability [1,2]. 

Weight variability can affect the network during training and 

inference, affecting the network ability to make precise 

predictions. The training process is particularly sensitive to 

the fluctuations of the synaptic weights [3]. Even slight 

variations can move the optimal work of the network, leading 

to uncontrolled accuracy loss during inference [4]. Therefore, 

there is an urgent need to analyze and quantify the 

conductance variability in RRAMs. 

A solution to improve the network resilience against 

conductance fluctuation issues is to intentionally inject some 

noise into the synaptic weights during the training, exploiting 

a technique called variability-aware training (VAT) [5]. To 

obtain realistic results after the training process, such noise 

should be linked to the actual variability of the RRAM 

device, including device to device (D2D) and cycle to cycle 

(C2C) variabilities. However, this last point is neglected in 

many publications [6]. An alternative way to mitigate 

conductance fluctuations issues at the NN level is the 

mapping-aware biased training methodology [7] which 

consists in identifying RRAM conductance states inherently 

more immune to variation (favorable states). Then, a 

mapping-aware training technique is adopted where 

important weights are directly get mapped to such favorable 

states [8]. The mapping-aware training considers the inherent 

non-idealities of RRAM devices, such as variations in the 

conductance levels in the first place [8]. Therefore, detecting 

devices suffering from variability issues is a crucial step 

before considering a mapping-aware training methodology 

practical implementation. However, in this case as well, this 

aspect is not taken into account in many publications [9]. 

In this context, this paper advances the state-of the art by 

providing a silicon-based analysis of the conductance 

variability in RRAMs. Conductance variability is assessed 

quantitatively for each cell of a memory array test chip. 

Afterwards, a ranking of the cells more immune to variability 

is established. Finally, cells more favorable to weight 

mapping are derived from this ranking.  

The main contributions of this study are summarized below: 

• RRAM conductance variation silicon data are collected 

at the test chip level. 

• A deep analysis of the conductance variation over 

multiple cycles is provided to understand the conductance 

stability and repeatability. 

• Outcomes of this work are supported by silicon results 

related to an Oxide-based RAM (OxRAM) technology 

provided by ST-Microelectronics [19]. 

Considering that the limited precision of RRAM devices 

intended to map synaptic weights is addressed [10], outcomes 

derived from this study can be applied to any mapping 

techniques currently used to implement RRAM-based NN 

accelerators, namely, (a) multilevel [11], [12], (b) binary 

[13], (c) unary [14], (d) multilevel with redundancy [15] and 

(e) slicing [4]. Moreover, this study contributes to the 

understanding of the conductance variation in RRAMs [16] 

from an electrical standpoint, which is the first step before 

enabling accurate analogue computing with imprecise 

memory devices. Also, although functional silicon-based 

RRAM NN accelerators have been published in the literature 

[17,18], we cannot but notice that a demonstrator combining 

high recognition accuracy combined with analog weight 

storage and low-power operation is still missing. 

The remainder of this paper is organized as follows. Section 

II introduces the specifications of the RRAM manufactured 

cells. Section III presents the experimental setup. Section IV 

is dedicated to the RRAM conductance variation analysis. 

Section V discusses the conductance variability in a NN 

context. Finally, Section V concludes the paper.  



II. SPECIFICATIONS OF THE MANUFACTURED RRAMS 

RRAM devices typically operate based on the reversible 

change in resistance caused by the formation and rupture of 

conductive filaments (CFs) [11]. From a physical standpoint, 

when a voltage is applied across the cell (i.e., between the TE 

and BE electrodes), depending upon the voltage polarity, one 

or more CFs made out of oxygen vacancies are either formed 

or ruptured. Once the CFs are formed inside the metal oxide, 

bridging the top and bottom electrodes and leading to a low-

resistance state (LRS), current can flow through the CFs. 

Subsequent resistance changes are achieved by rupturing the 

filament. Applying a voltage with reversed polarity causes 

the filament to break, leading to a high-resistance state 

(HRS).  

Fig. 1a presents the considered 1T1R RRAM device where 

one transistor (W = 0.8 µm and L = 0.5 µm) is connected in 

series with one resistive element (RRAM). The resistive 

element, shown in Fig. 1b, is incorporated in the Back End 

Of Line (BEOL) of a 130 nm technology, between metal 

layers [19]. The stack is deposited using Physical Vapor 

Deposition (PVD) where a 10 nm Hafnium dioxide (HfO2) 

layer is placed on the top of a TiN Bottom electrode (BE). A 

Ti/TiN bilayer stack is then deposited as a top electrode (TE) 

to form a capacitor-like structure. Fig. 1c presents a classical 

1T1R I-V hysteresis. Based on this characteristic, the 1T1R 

cell operation can be understood as follows: after an initial 

electro-Forming (FMG) step, the memory element can be 

switched reversibly between LRS and HRS. Resistive 

switching corresponds to an abrupt change between the HRS 

and the LRS. The resistance change is triggered by applying 

specific biases across the 1T1R cell, i.e., VSET to switch to 

LRS after a SET operation and VRST to switch to HRS after a 

RESET (RST) operation.  

 
              (a)              (b)                   (c) 

Fig. 1. (a) Symbol view of a 1T1R cell. (b) SEM cross section of the 

RRAM stack [19]. (c) RRAM I-V hysteresis.  

TABLE I.  STANDARD CELL OPERATING VOLTAGES  

 FMG RST SET READ 

WL 2 V 2.5 V 2 V 2.5 V 

BL 3.3 V 0 V 1.2 V 0.1 V 

SL 0 V 1.2 V 0 V 0 V 
Resistance 10 k   240 k   15 k   - 

Conductance 100 µS 4 µS 66,6 µS - 

 
The voltage levels used during the different operating steps 
are presented in Table I, along with the nominal resistance and 
conductance values. Note that a nominal conductance ratio 
around 16 is obtained for the targeted technology (66,6 µS / 4 
µS). During the read operation, typically, a small read voltage 
(0.1 V) is chosen to not disturb the current state of the cell. In 
practice, at the circuit level, the read operation is performed 
by sensing the current associated with the cell resistance to 

determine whether the cell is in logic ‘0’ (HRS) or in logic ‘1’ 
(LRS). It is worth noting that in the 1T1R configuration, the 
transistor controls the amount of current flowing through the 
cell according to its gate voltage bias. This clamping current 
is referred to as the compliance current (ICC).  

III. EXPERIMENTAL SETUP 

Fig. 2.a presents the test chip considered for measurements 

which is a classical 1T1R array. Memory cells are grouped to 

form eight 8-bit memory words. Word Lines (WLX) are used 

to select the active row, Bit Lines (BLX) are used to select 

active columns during a SET operation and Source Lines 

(SLX) are used to RST a whole memory word or an addressed 

cell. To allow a full flexibility during characterization, BL, 

WL and SL nodes are externally available. During the RRAM 

cell characterization, the extraction of RLRS and RHRS is 

achieved using 1 ms DC voltage sweeps with a 1 mV voltage 

step; the applied voltage increases step by step and the current 

flowing through the cell is measured, allowing an extraction 

of the I-V characteristics of each cell. Fig. 2.b presents a view 

of the fabricated memory array. Due to the limited pin out of 

the probe card, only a 7x7 memory array is available for our 

experiments (i.e., a subset of the 8x8 array). 

 

Fig. 2. (a) 8x8 RRAM memory array and (b) physical view of the 

fabricated memory array. 

Before any operation, the memory array is first formed 

(FMG). Then, memory cells are RST one by one to extract 

the RHRS value at 0.1 V. After RST, cells are SET to extract 

the RLRS value, also at 0.1 V. The RST/SET process is 

repeated 230 times for the whole array in order to catch C2C 

as well as D2D variability. The measurement protocol seen 

by each cell of the array is presented in Fig 3. 

 

Fig. 3. Measurement protocol: after FMG, a RST/SET operation is repeated 

230 times for each addressed cell. RST and SET operations are followed by 

a read operation to extract the cell resistances. 

IV. EXPERIMENTAL RESULTS  

A. Preliminary results 

Although RRAMs have showed interesting properties, one of 
the most important challenges of the technology is the control 

Memory array test chip

FMG @ VBL = 3.3 V

RST @ VSL = 1.8 V

Read @ 0.1V
230 times 

Read @ 0.1V

SET @ VBL= 1.2 V 



of the device variability (temporal and spatial) in both LRS 
and HRS states [20, 21]. In fact, variations of RHRS/RLRS are 
so unpredictable that they have been employed as an entropy 
source in True Random Number Generators (TRNG) [22, 23]. 
Fig. 4 shows the impact of D2D and C2C variability at the I-
V characteristic level after RST/SET operations applied to 
each of the 49 cells of the memory array (D2D variability, 
Fig.4a) and after a RST/SET operation applied 49 times to an 
isolated cell of the memory array (C2C variability, Fig.4b). 
The nominal characteristic is highlighted in red (RST) and 
blue (SET) colors. Based on these preliminary measurement 
results, it appears clearly that HRS and LRS 
resistance/conductance is affected by spatial and temporal 
variations. Hence, this type non-ideality has to be considered 
when designing RRAM-based NN. In this context, the next 
section proposes a quantitative analysis of conductance 
variations. A cell tracking analysis will be conducted in order 
to monitor the evolution of the conductance ratio of each cell 
of the memory array presented in Fig. 2a over 230 
programming cycles. The state of individual memory cells 
will be tracked to detect cells that deviate from their nominal 
behavior (i.e., deviation from the nominal conductance ratio 
of 16). 

              
                (a)                                      (b) 
Fig. 4. Experimental evidence of (a) cell level D2D variability and (b) cell 

level C2C variability. The nominal characteristic is highlighted in color. 

A. Conductance ratio variability evaluation 

In Fig. 5, the evolution of the LRS/HRS conductance ratio of 

three different cells (i.e., located at three different addresses) 

is presented in the logarithmic scale. Cell (5;0), where ‘5’ and 

‘0’ represent the WL and BL line numbers respectively is the 

most affected by variability. Large conductance fluctuations 

are reported with a conductance ratio standard derivation σ = 

97.6 with respect to its mean value µ = 86.7. In contrast, Cell 

(1;0) and cell (3;0) are less impacted with standard derivation 

values equal to 6.3 and 13 respectively.  

 

 Fig. 5. Conductance ratio versus the number of RST/SET cycles for 3 

different cells of the memory array presented in Fig. 2a. 

Note that for cell (5;0), the conductance ratio falls below one 

in two cycles, resulting in an overlap between LRS and HRS 

conductance levels. Hence, this cell needs to be avoided for 

synaptic weight storage. The evolution of the conductance 

ratio standard derivation of the 49 cells of the memory array 

is provided in Fig.6a. The standard deviation ranges from 2.8 

(min. value) to 97.6 (max. value). A 2D representation of the 

standard deviation values over the memory array is presented 

in Fig.6b. The color of each cell is associated with a variable 

degree of grey. The brightness of a cell reflects lower 

standard deviations. The white color being associated with 

the minimal standard deviation and the black color with the 

maximal standard deviation. For instance, cell at location 

(5;0), associated with a black color, is the most affected by 

variability with a standard deviation of 97.6, while cell at 

location (4;5), associated with a white color, is the least 

affected by variability regarding its standard deviation of 2.8. 

 
Fig. 6. (a) Evolution of the conductance ratio standard deviation of each cell 

of the memory array. (b) Topological representation of the standard deviation 
of each cell of the memory array. The values of the most impacted cell (97.6) 

and least impacted cell (2.8) are reported in (a) and (b). 

 
Fig. 7. (a) Evolution of the conductance ratio mean value of each cell of the 

memory array. (b) Topological representation of the mean value of each cell 

of the memory array. Largest and smallest values are reported in (a) and (b). 
 

 
 Fig. 8. (a) Evolution of the coefficient of variation CV of each cell of the 

memory array. (b) Topological representation of CV for each cell of the 

memory array. 

 

Fig. 7 presents the evolution of the mean value of the 

conductance ratio for each cell of the memory array. 

Interestingly, this parameter is also affected by variability, 

demonstrating that the conduction window differs across the 

cell in the array. The fluctuation of the mean value of the 

conductance ratio is a relevant information when NN weight 

mapping is concerned as narrowing the conductance window 
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results in a significant reduction in the conductance 

modulation capability of the cell (i.e., reduction of the 

number of analog conductance levels). 

Fig. 8 presents the evolution of the ratio of standard deviation 

to the mean value (σ/µ) for each cell of the memory array. 

This parameter is a dimensionless quantity that is used to 

measure the relative variability of the conductance ratio 

dataset, even if the datasets have different scales (i.e., 

different mean values). It is referred to as the coefficient of 

variation CV. The formula for calculating CV is given in (1). 

 

𝐶𝑉 =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑀𝑒𝑎𝑛
. 100% =  

𝜎

𝜇
 . 100%                     (1) 

 

Dividing the standard deviation by the mean value essentially 

standardize the measure of the variability. In Fig. 8a, the 

minimum CV value of 21.6% indicates that the standard 

deviation is relatively small compared to the mean, while the 

maximum CV value of 159% suggests a larger relative 

variability. As this parameter combine the influence of the 

standard deviation and the mean value, the latter will be 

considered in the upcoming discussion section. 

V. VARIABILITY AWARE NEUROMORPHIC COMPUTING  

The proposed analysis revealed that conductance variability is 
a major concern in RRAM technology for computing. Hence, 
outcomes of this study are crucial for anticipating the 
functionality and reliability of NN relying on individual 
RRAM cells to store the synaptic weights. 
The conductance ratio has been chosen as the main criterion 

to assess the robustness of RRAMs used in neuromorphic 

computing applications for two reasons: (i) a stable 

conductance ratio is essential for consistent learning 

processes, enabling the network to adapt to new information 

while updating the previously stored information (ii) a high 

conductance ratio provides a larger dynamic range for multi-

level cell storage (MLC [24]) which enables better 

differentiation between different synaptic states, turning the 

NN more robust.  

TABLE II.  FAVORABLE CELLS RANKING  

# CV σ µ (S) (WL; BL) 

1 21.6 2.79 12.04 (4;5) 

2 22.4 6.58 29.33 (6;6) 

3 25.8 4.07 15.72 (0;3) 

4 28.0 4.25   15.15 (1;3) 

5 
6 

7 

8 

9 

10 
Worst cell 

28.2 
30.2 

31.0 

31.1 

32.2 

32.7 
159 

6.35 
6.33 

7.95 

4.24 

3.97 

11.80 
97.6 

22.53 
20.97 

25.64 

23.62 

12.35 

36.25 
61.5 

(1;0) 
(0;0) 

(6;0) 

(3;4) 

(2;2) 

(2;5) 
(5;0) 

 

The conductance ratio is monitored against 230 RST/SET 

programming cycles. A number of 230 cycles allows to assess 

the stability of the conductance ratio, without wearing out the 

memory cells. In other words, a time-zero robustness 

evaluation is conducted before the implementation of 

RRAMs as synaptic weights where reliability parameters 

such as endurance and retention come into place. A dataset of 

230 conductance ratios is extracted for each cell of a memory 

array. The standard deviation, the mean value and the CV 

parameters have been computed to analyze the behavior of 

each cell.  Based on the CV parameter, a ranking of the most 

favorable cells (i.e., cells with lower µ/σ ratio) is proposed in 

Table II. The CV parameter (column 2) accounts for both the 

stability (σ contribution, column 3) and the mean value (µ 

contribution, column 4) of the conductance ratio. The 

addresses of each cell are reported in column 5. 

According to Table II and based on the NN application 

requirements, favorable conductance states presenting low 

CV values can be chosen to map significant weights [9]. 

Conversely, conductance states presenting high CV values 

(such as the worst cell in Table II last column) can be skipped 

during the weight mapping process due less immunity to 

variations. 

While the conductance ratio variability is an important 

criterion at time zero [25], it is worth noting that time-

dependent reliability metrics [2] such as endurance, retention 

and read/write stress also play a critical role in determining 

the robustness of RRAM-based NNs. Particularly, cycling 

and endurance can lead to hard errors (memory cell stuck at 

one conductance state forever, with a conductance ratio stuck 

at one [26]). Also, similarly to other emerging memory 

technologies, RRAMs is subject to defects that directly 

impact the conductance ratio [27]. Therefore, appropriate test 

mechanisms are required to detect RRAM-related failures 

due to these defects [28-29]. Beyond RRAMs, the NN CMOS 

subsystem variability [30] (including the neurons [31], the 

RRAM reading [32] and programming circuitry [33]) can 

also impact the conductance ratio. Hence, a complete analysis 

strategy [34] has to be defined to mitigate the impact of all 

these non-idealities on the conductance fluctuations in 

RRAM-based NN accelerators. 

VI. CONCLUSION 

The existing of important fluctuations in RRAM conductance 

has been established experimentally after applying a limited 

number of programming cycles to individual cells of a 

memory array. The electrical behavior of each cell of the 

array has been analyzed at the electrical level. We have 

reported a large range of variation of the conductance ratio 

standard deviation (from 2.79 to 97.6) as well as its mean 

value (from 12.04 to 61.5). After having computed the 

coefficient of variation CV of each cell of the array, a large 

variation of this parameter was also reported (from 21.6 to 

159). In the light of these findings, and as future perspectives, 

this study has motivated the design of hardware and software 

solutions intended to mitigate the impact of the conductance 

variability to ensure the correct operation of RRAM-based 

neuromorphic systems. 
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