N

N

2.5D Hexahedral Meshing for Reservoir Simulations
David Lopez, Yoann Coudert-Osmont, David Desobry, Alexandre Benedicto,
Wan-Chiu Li, Cédric Borgese, Nicolas Ray, Dmitry Sokolov, Jeanne Pellerin

» To cite this version:

David Lopez, Yoann Coudert-Osmont, David Desobry, Alexandre Benedicto, Wan-Chiu Li, et al.. 2.5D
Hexahedral Meshing for Reservoir Simulations. Mathematical Geosciences, 2024, 10.1007/s11004-023-
10106-5 . hal-04540667

HAL Id: hal-04540667
https://hal.science/hal-04540667v1

Submitted on 10 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04540667v1
https://hal.archives-ouvertes.fr

2.5D Hexahedral Meshes for Reservoir Simualtions

David Lopez!, Yoann Coudert-Osmont!, David Desobry!, Alexandre Benedicto?, Wan-Chiu
Li2, Ceédric Borgese?, Nicolas Ray!, Dmitry Sokolov!, and Jeanne Pellerin®

'Pixel, Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
2Tessael, 54600 Villers-Lés-Nancy, France
3TotalEnergies, 91120 Palaiseau, France

Abstract

We present a new method for generating pure hexahedral meshes for reservoir simulations.
The grid is obtained by extruding a quadrangular mesh, using ideas from the latest advances in
computational geometry, specifically the generation of semi-structured quadrangular meshes based
on global parameterization.

Hexahedral elements are automatically constructed to smoothly honor the geometry of input
features (domain boundaries, faults, and horizons), thus making it possible to be used for multiple
types of physical simulations on the same mesh.

The main contributions are as follows : the introduction of a new semi-structured hexahedral
meshing workflow producing high-quality meshes for a wide range of fault systems, and the study
and definition of weak verticality on triangulated surface meshes. This allows us to design better
and more robust algorithms during the extrusion phase along non-vertical faults.

We demonstrate (i) the simplicity of using such hexahedral meshes generated using the pro-
posed method for coupled flow-geomechanics simulations with state-of-the-art simulators for reser-
voir studies, and) the possibility of using such semi-structured hexahedral meshes in commercial
structured flow simulators, offering an alternative gridding approach to handle a wider family of
fault networks without recourse to the stair-step fault approximation.

N
\“‘“
S teest e
SRR
“““‘“\\

OO

Figure 1: Given a geological model (left), our method automatically generates a full hexahedral mesh
aligned with faults and horizons (right) at the cost of singular edges (close-ups).

Geological model Classification of features Corner Point Grid

// N
//
//
/ \
| axis J axis K axis

Figure 2: Classic structured hexahedral grid with corner point geometry.

1 Introduction

In order to run reservoir simulations, one needs a volume grid on which mathematical equations
describing the physics can be discretized. Grids comprising hexahedral elements are often preferred
for aligning cells with the stratigraphic column. In addition, their good orthogonality and low
distortion provide an accurate calculation of the transmissibility between cells using the two-point
flux approximation (TPFA). And finally, most of the commercial fluid simulation software only
support hexahedral grids.

One of the most commonly used types of hexahedral grids for reservoir studies is the three-
dimensional structured grids with corner point geometry built using pillar-based approaches by
extrusion [Mal02, Fre02]. One way to produce such grids (see Fig. 2) is to first classify domain
boundaries and features such as faults and horizons according to their alignment with the three
axis I,J and K. Then, for each direction, we compute a smooth scalar field that is constant on
each corresponding element and continuous everywhere except along faults in the K direction.
Solving such optimization problems typically involves solving a system of linear equations for each
direction [WC18]. The final cuts are defined as the iso-values of the scalar fields IJK for the values
that constrain the features, along with some intermediate values between consecutive features if
higher resolution is desired (Fig. 2-right).

In practice, it is generally easy to match horizons with K, but it is very rare to observe a
fault network that can be assigned to either I or J (Fig. 3-left). Existing pillar-based technologies
typically require simplification of the fault network structure or approximation of its geometry
using a stair-step representation (Fig. 3—middle). This second solution excludes the use of the grid
for geomechanical simulations.

We therefore propose a new method that does not require such a classification and which allows
the modeling of complex fault networks without simplification by inserting singular edges (with a
valence other than 4, Fig. 3-right). As a result, fault geometry is smoothly honored, enabling this
grid to be used for fully coupled flow-geomechanical simulations.

Section 2 covers related work and details our contributions. In Section 3, we present our method,
assuming that all the faults are vertical. Then, in Section 4, we introduce a generalization that
enables the handling of non-vertical faults through a process called verticalization.

Section 5 presents our meshing results, including two extensions of the proposed method: local
grid refinements around wells and along faults. Finally, in Section 5.4, we discuss the applicability
of these results to numerical simulations.

2 Context

Various methods have been proposed to address the problem of constructing a hexahedral grid on
nontrivial sweepable fault networks. While these methods present interesting ideas, none of them
provide a fully hexahedral grid that conforms to the geometry of all the faults.

Stair-step approximation

Horizon lorJ?

Faylt

\
\

Figure 3: Left — A non-trivial 2.5D fault network that cannot be meshed using a classic corner point
grid. The dotted lines represent the I scalar field, while the thick lines represent the J scalar field.
However, the last fault cannot be assigned to either I or J without sharing its value with an existing
feature. As a result, a portion of the final mesh would collapse.

Middle — A classic approximation. Right — Our solution introduces singular vertices (red dots).

e Full hexahedral:

The approaches proposed by Mallet and Fremming and discussed in [Mal02, Fre02] involve
the horizontal stair-step fault approximation for modeling nontrivial fault networks. This idea
has been further extended in methods like [HNKO03, GHANO9] to approximate non-vertical
faults using vertical stair-steps.

Drawbacks: When coupling flow simulations with mechanical simulations, the stair-step ap-
proximation is not suitable due to the need for a smooth representation of the geometry to
satisfy mechanical boundary conditions. Consequently, it is often necessary to use two sepa-
rate grids: a stair-step grid for flow simulation and a tetrahedral mesh or other unstructured
grids with a smooth approximation of the faults’ geometry for the mechanical simulation. This
coupling process involves transferring flow and mechanical properties between the two differ-
ent representations, which can introduce errors and consume significant time and memory
resources.

e Partially hexahedral:

Another approach is to mix a majority of structured hexahedral elements in the non-faulted
zones with arbitrary polyhedral elements for the faulted zones [MSV*13, SHK™18|. In some
cases, specific types of non-hexahedral elements like tetrahedra, pyramids, and prisms are also
considered [GLV'17, KBL17] to optimize the simulation using known element types from
the catalog.

Drawbacks: Meshes constructed in this manner are not compatible with standard flow simu-
lators that only accept structured hexahedral grids, which are still commonly used. Addition-
ally, the presence of elements such as tetrahedra or pyramids can degrade cell orthogonality,
leading to larger approximations when employing TPFA schemes for flow simulation.

e Polyhedral:
Another option is to utilize unstructured grids, such as tetrahedral meshes or polyhedral
topologies like Voronoi or perpendicular bisector (PEBI) grids [PA94, BLC16, MLC11, KBL*17],
for simulators that can handle them.
Drawbacks: In addition to the drawbacks of partially hexahedral grids, it is worth noting
that polyhedral meshes are even more memory-consuming. This is because the topology and
geometry of the cells can vary significantly and are not predefined.

Contributions

In pillar-based approaches, the domain is divided into a series of layers consisting of hexahedra.
Each layer represents a deformation of a thick two-dimensional regular grid (Fig. 3-middle).

In our proposed solution, we also employ a stack of layers, but with a different approach. Each
layer is an expansion of a quadrangular mesh (Fig. 3-right). The key difference is the introduction
of singular vertices, which are vertices with a valence not equal to 4. This allows the mesh to
conform to all features present in the domain (Fig. 1).

A B C V\

Figure 4: Cross-section views of geological structures that are out of the scope of the study: Y faults
(A), salt diapir (B) overturned fold (C) and sub-horizontal faults (D).

Our contribution can be summarized in two main aspects:

e We propose a method for hexahedral grid building through extrusion (Sect. 3). This method
includes an algorithm for constructing stratigraphic layers of hexahedral cells using state-
of-the-art quad-meshing algorithms driven by global parameterization. It assumes that the
faults present in the geological model are vertical.

e Additionally, we conducted a comprehensive study and formulated the concept of weak ver-
ticality for triangulated meshes. Building upon this understanding, we developed a new
algorithm that allows for the deformation of the input geological model, resulting in the ver-
tical alignment of faults. This advancement enables the generalization of the hexahedral grid
building method to accommodate non-vertical faults (see Sect. 4).

Limitations

Our method allows us to tackle a wide variety of problems as long as they remain extrudable, that
is, expressible according to the 2.5D decomposition. However, models with Y faults or salt diapirs
are excluded from our study. Moreover, our solution is based on two orthogonal deformations,
which make it unsuitable for models with overturned folds or sub-horizontal faults (Fig. 4). In
other words, we assume that it is possible to achieve vertical faults through deformation of the
model. If this is not the case, we recommend that the user remove a subset of fault alignment
constraints.

Input data

A 3D tetrahedral mesh is generated from the input B-Rep (Boundary Representation) structural
model using Constrained Delaunay Tessellation [Si15]. The faults, horizons, and domain boundaries
of the model serve as constraints during the mesh generation process. These constraints correspond
to triangle faces in the resulting mesh, which are labeled according to their surface type (refer to
Fig. 5-top-left).

3 Main pipeline

Before delving into working with realistic data sets, this section focuses on cases where all faults
are vertical. The objective is to generate a hexahedral mesh with a combinatorial structure that is
more complex than a simple two-dimensional regular grid, while still conforming to the horizons.

The process begins by computing a 2D mesh in the xy plane (Sect. 3.1) and subsequently slicing
the model into layers (Sect. 3.2). Each layer is then filled with hexahedra (Sect. 3.3) through the
propagation of the 2D mesh.

3.1 Compute a quad mesh in zy plane

Our objective is to generate a 2D quad mesh that aligns with the projection of the faults onto
the xzy plane. To achieve this, we utilize existing 2D quad meshing tools that rely on global
parameterization techniques.

XYZ space UVZ space UVW space UV space

Y _ Section 2.2 : slicing Section 2.1 : quad meshing /

e

Section 3 : verticalization Section 2 : remeshing pipeline

Figure 5: Method overview: (A) deform the model to have vertical faults, (B) deform the model to have
horizontal horizons, (C) formulate a 2D quad remeshing problem from top-view, (D) generate a quad
mesh, (E) extrude the quad mesh in the w direction to generate a hexahedral mesh, (F) inverse-map
wvw — uvz, and (G) inverse-map uvz — xyz.

Firstly, we convert and simplify our problem to provide a suitable input for the quad meshing
algorithm (see Fig. 5-top-right, Section 3.1.1). Then, we generate a quad mesh (see Fig. 5-bottom-
right, Section 3.1.2) that satisfies the specified input constraints.

3.1.1 Generate the 2D problem

Faults are represented by a collection of triangles, which correspond to the facets of tetrahedra. In
this section, we assume that the faults are vertical, and their projections onto the xy plane are line
segments. Therefore, the projected faults in the xy plane can be represented as a set of connected
line segments.

Based on this observation, we compute an appropriate input for the quad remeshing algorithm
using the following steps:

e Project all the vertices of the tetrahedral mesh onto the xy plane.

e Connect pairs of vertices that correspond to an edge of a fault boundary located beneath the
fault (refer to Fig. 6-left).

e Clean up the resulting graph by collapsing edges that are shorter than the expected edge
length of the final hexahedral mesh. This step removes insignificant polylines and eliminates
noisy details in long polylines. To ensure the preservation of long polyline extremities, col-
lapsed edges are replaced with a vertex positioned at the extremity with the lowest valence.
Additionally, intersecting edges are removed as they are invalid inputs for the quad meshing
algorithm.

e Generate a Delaunay triangular mesh that is constrained by the edges and refined to achieve
a consistent mesh density (refer to Fig. 6-middle).

This process produces the standard input required for quad remeshing algorithms based on
global parameterization, which is a triangular mesh with certain edges flagged as features.
3.1.2 Quad mesh generation

In our project, we adopt the global parameterization-based approach for quad mesh generation.
The idea is to combine two numerical optimization methods: the first one provides a heuristic giving

Figure 6: Left: Bottom edges (red) of the fault (yellow) are projected on xy plane (grey) to produce the
2D constraints (orange). Middle: a triangulation of zy domain with the constraints (orange) located
on edges. Right: a quad mesh that conforms with the constraints.

an orientation to the quads, and the second one adjusts the number, size, shape, and position of
the quads to produce a mesh.

e The heuristic part produces a frame field [RVLLO8| that must be aligned with the feature
edges. Many algorithms [VCD'17] address this problem, but our feature edges may touch
each other with thin angles, which leads to choosing an algorithm that handles these complex
cases well [DPRT22].

e For the second part, classic algorithms [BZK09, KNP07] could be used, but we have opted
for [CBK15] due to its robustness: it never collapses blocks, even when very thin quads are
required. In this step, the desired size of the quads must be prescribed, and we set it to the
average edge length of the input tetrahedral mesh to preserve the mesh density.

The output of this step is a map of the triangulated mesh with discontinuities along some edges.
However, the map is designed in such a way that a regular grid within the map corresponds to
a quad mesh of the original geometry. The quad mesh can be extracted from the map using the
algorithm proposed by [EBCK13] (Fig. 6-right).

3.2 Slice the model in the z direction

The hexahedral mesh we aim to generate consists of stacked layers of hexahedra. Each layer follows
the structure of the quad mesh obtained in the previous section, expanded by a thickness of one
hexahedron.

Now, we need to determine how to slice the model into these layers of hexahedra. The challenge
lies in ensuring that the horizons are positioned precisely at the interface between two adjacent
layers.

To represent the layers, we utilize a piecewise linear scalar function W defined over the model.
This function is characterized by its values w; assigned to each vertex i. Each layer is then defined
as the portion of the model where the values of W fall within a specific range.

To compute W, the horizons are arranged in a stratigraphic order and assigned real numbers
based on their stratigraphic depth. Each vertex belonging to the same horizon h is constrained
to have the same value Wj. The function W is then defined as a harmonic field that satisfies
these constraints by interpolating between the assigned values W};. The model is subsequently
decomposed by cutting it along the level sets of the iso-surfaces defined by Wj,.

In practice, W is obtained as the solution to the following optimization problem:

min ;. cjl|wi — w;||? if ij is an edge
w; = Wy, if 4 is on horizon h
In our case of isotropic meshes, we simplify the problem by using c¢;; = 1. However, for

anisotropic meshes, it is recommended to use cotangent weights [Cral9] (while ensuring that ¢;; > 0
to avoid local extrema in W).

H
===

Semesh / N

Figure 7: Erosion and sedimentation phenomena lead to horizons intersections (a). Additional tetra-
hedra of zero volume are inserted to make the discontinuity disappear (b). The resulting hexahedral
mesh is conformal, therefore, it also contains zero volume cells (c).

Pre-treatment Discontinuities in W;: To account for horizon discontinuities across faults, a
pre-processing step is performed to disconnect the tetrahedral mesh along fault boundaries. This
step involves splitting each fault vertex into two new vertices, one on each side of the fault. As a
result, the function W is represented by its corresponding value w; on each vertex ¢ of the modified
tetrahedral mesh, allowing for the representation of horizon discontinuities across fault boundaries.
Stratigraphic unconformities: Pre-meshing is also necessary when dealing with stratigraphic uncon-
formities, such as erosions or baselaps, as it involves modeling the missing parts of the sedimentary
layers. To achieve this, the input mesh is augmented with zero-volume tetrahedra until each layer
effectively separates the volume of interest into distinct compartments (Fig. 7).

Post-treatment If more than one layer is required between two successive horizons, it is sub-
divided by splitting its interval of values W.

3.3 Hexahedral mesh generation

The final mesh is obtained by lifting the quad mesh computed in the xy plane to each iso-surface
W), and generating hexahedra between each pair of successive iso-surfaces.

However, a challenge arises when dealing with points located on faults, as they may have multiple
Z values. This is due to the fact that the tetrahedral mesh and the hexahedral mesh represent the
UVW space discretizations and are not able to precisely capture faults with the same geometry.
As a result, points near faults are not guaranteed to be on the same side of the fault in both
representations.

To address this issue, when lifting the quad mesh, it is crucial to ensure that the Z value is
read from the same side of the fault in the tetrahedral mesh. Simply reading the Z value from the
tetrahedron containing the point is not sufficient. Instead, we need to find a tetrahedron that is on
the correct side of the fault and close enough to the point.

To achieve this, we employ the following algorithm, depicted in 2D in Figure 8:

For each hexahedron H and each vertex i of H:

1. Compute all tetrahedra 7; that intersect a small sphere centered on 7 in the xyw space.
2. Compute the tetrahedron t, that contains the barycenter of H.

3. Select the tetrahedron ¢ € 7; that is closest to ¢ty and use its linear map to evaluate the z
coordinate. In this context, the distance between tetrahedra ¢t and ¢, is defined as the minimal
number of tetrahedra in a path between ¢ and ¢, that does not cross any faults.

The key concept behind this algorithm is to assume that the center of the hexahedra is located on
the correct side of the fault in the tetrahedral mesh. Consequently, the Z value should be evaluated

Figure 8: Mesh generation illustrated in a 2D space xzz. The input model (third column) consists of a
mesh with a vertical fault (yellow) and a horizon (blue). By replacing the z coordinate with the field
W (second column), the horizon becomes horizontal, allowing for an axis-aligned grid in the zw space
(left) to conform with faults and horizons. Projecting each corner of the grid cells in the zz space
results in the quad remeshing of the model (right). Corners A, B, and D are located on triangles to,
t1, and ty respectively (middle left), and their projection is determined by the linear maps of their
respective triangles (top middle columns). On the other hand, corner C is located on both triangles ¢3
and t4, leading to two possible projections. To determine which projection should be used, we find the
triangle (t2) that contains the center of the cell (G) and compute the number of triangles that need to
be crossed to reach each of the other triangles (bottom middle columns). The closest triangle (in this
case, t4 with a distance of 2) is chosen to define the projection of corner C.

from a tetrahedron on this side of the fault. We select this tetrahedron by choosing the one that
can reach the barycenter of H without crossing the fault and with the shortest path. As a default
value, we set the radius of the small sphere to 10% of the expected edge size of the hexahedra,
which is significantly larger than the maximum geometric error caused by the discretization.

4 Generalization to non-vertical faults

The pipeline described above assumes that faults are vertical, which is not typically the case in
practical scenarios. To address faults with more general geometries, we propose a mapping of the
tetrahedral mesh of the geological model to a UVZ space, where faults are vertical. We then apply
our pipeline in the UVZ space and subsequently apply the inverse transformation to bring the
hexahedral mesh back to the real-world XYZ space. The challenge lies in defining the mapping
function U : zyz — uvz.

Since the geological input model is a tetrahedral mesh and our pipeline operates on tetrahedral
meshes, the function U/ is naturally linear within each tetrahedron. It can be represented by the
image U; of each vertex 7.

Note: the deformation does not involve displacements in the z direction; rather, moving points in
the x and y dimensions is sufficient to achieve the verticalization of faults.

4.1 Formulation with weakly vertical fault

In our specific settings, a fault is defined as a subset of triangles within a tetrahedral mesh. It
would be natural to consider a fault as vertical if the vector (0,0, 1) belongs to its tangent plane at
all points. However, using this definition, the projection of the fault onto the UV plane becomes a
polyline, with each triangle being projected onto a single segment of the polyline. As depicted in
Figure 9, this constraint results in the majority of vertices being vertically aligned.

Figure 9: Weak versus exact verticality. To make a fault (left) vertical without moving its bottom edges
(red), the final surface must be located inside the grey surface (middle). Weak verticality (top-right)
only forces vertices to be located on the vertical geometry. Exact verticality (bottom-right) forces
triangles to be located on the vertical geometry. Even in this toy example, exact verticality generates
a lot of distortion in the mesh.

It’s important to note that we aim to compute a deformation U of the input mesh without alter-
ing its combinatorial structure. Consequently, when making faults vertical, we need to manipulate
only the positions of the vertices. As a consequence, enforcing strict verticality of faults would
likely lead to significant distortion in the mesh.

To address this concern, we propose a weaker definition of verticality. Under this definition,
a fault is represented by a polyline in the UV plane that satisfies the following conditions: each
vertex of the fault is projected onto the polyline, and the polyline itself corresponds to the projection
of the bottom edges in UVZ space. Here, the term bottom edges refers to the edges of the fault’s
boundary that are situated beneath the fault.

By employing this weaker definition of fault verticality, we can formulate our problem as finding
U with minimal distortion, subject to the following condition for each vertex ¢ belonging to a fault:

U, =)\iUorg(i) + (1 -)‘i)Udest(i)

Here, \; takes values in the range [0, 1], and vertex ¢ is projected onto the line segment defined by
org(i) and dest(i) at barycentric coordinates A;, (1 — ;) (Fig. 10-right).

To ensure the tractability of this problem, we first determine org(i), dest(i), and A; (Sect. 4.2)
using a heuristic approach that approximates “the curves that will be transformed into vertical lines
(in UVZ)” by employing streamlines of a smooth vector field. Subsequently (in Section 4.3), we
compute the map U with minimal distortion, while considering the constraints imposed by weakly
vertical faults defined by the values of org(i), dest(i), and A;. The resulting map U is continuous,
linear within each tetrahedron, and ideally one-to-one. Hence, it can be used to deform the input
tetrahedral mesh (via U) and the resulting hexahedral mesh (via U~1). It is essential to ensure
that the sphere used in Section 3.3 is sufficiently large to accommodate the differences in sampling
arising from these transformations.

4.2 Determine org(i),dest(i), \;

Ideally, org(i), dest(i), and A; should be chosen to minimize the distortion of U. Unfortunately,
org(i) and dest (i) are qualitative variables that are very hard to optimize using numerical methods.
For this reason, we prefer to determine them using a heuristic approach.

To this end, we define a “gravity” vector field G in the XYZ space (more on that below). G is
tangent to the faults, so for every fault vertex i, we trace a streamline starting from that vertex.

streamlines

Vector field Weakly vertical

e
7K

=t

;1:7‘?§>

e

ﬁ'ﬁ
V7
vggln

ko

S
V!
)

Figure 10: Verticalization pipeline: we compute a 3D vector field that is tangent to the faults (a
restriction to the fault is given on the left), we trace streamlines from each fault vertex ¢ (middle) to
determine where it is leaving the fault (org(i), dest(i), A;), and we find a minimal deformation of the
model such that the extremities of the streamline becomes aligned in z coordinate.

Figure 11: If the vector field is optimized only on faults/boundaries (left), the mesh will be strongly
distorted between them. That’s why we prefer optimizing it everywhere (right).

This streamline escapes the fault at some point H; = A\; Xorg(i) + (1 — A\i) Xgest(s), thus defining the
bottom edge org(i), dest(i) as well as its barycentric coordinate \;.

The vector field G is constant on each tetrahedron and is obtained as the solution of the following
optimization problem:

Zadjacent tets t,t/ ||Gt - C"Yt’H2 Is minimal
G;-(0,0,1) = -1, for all tet ¢ (1)
Gy -n(f) =0, if tet ¢ has a fault facet f

where G; and Gy are the field values on neighboring tetrahedra ¢t and ¢/, and n(f) is the normal
of the fault triangle f.
This formalization is based on the following observations:

e We use the streamlines of G to approximate the pre-image of vertical lines (in UVZ). Therefore,
we expect that minimizing the variation of G at this step will help minimize the distortion
of U at the end. As illustrated in Figure 11, it is important to define G everywhere in the
volume, despite using it only to trace streamlines located on faults.

e Setting the z coordinate of G to —1 is a simple way to force streamlines to cross the model
from top to bottom. As the norm of G does not affect streamlines, this constraint only forces
the field to point downward.

e The field being orthogonal to the fault normal vector simply ensures that the streamlines will
follow the fault and escape it through a fault boundary (i.e., a bottom edge).

This optimization problem is easy to solve because it is a quadratic energy function subject to
linear constraints. As proposed in [BZK12]|, we can transform the problem into an unconstrained

10

one by eliminating certain variables. This transformation leads to a standard least squares problem,
which is equivalent to solving a linear system of equations.

Once the vector field G is computed, we can proceed to move each fault vertex ¢ along the
fault by following G until it reaches the bottom edge [org(i), dest(i)] with barycentric coordinates
Aiy (1= Xp).

Implementation details

When the edges of the fault boundary are nearly aligned with the vector field, classifying them
as bottom edges may not provide meaningful results. However, our process can still handle such
situations by employing a clean-up step, as described in Section 3.1.1.

Nevertheless, it is preferable to avoid these situations altogether as it allows for better preser-
vation of topological information. For instance, when two faults intersect, we can directly enforce
the intersecting edges to be vertical. This constraint ensures that the quad meshing algorithm
will place a vertex precisely at the intersection, thereby preserving crucial features such as fault
intersections.

Similarly, we can apply the same type of constraint to force wells to be vertical. This constraint
will adjust the resulting mesh to accurately match the position and trajectory of the wells.

4.3 Optimize deformation U

The deformation U is represented by vertex coordinates U; and is linear on each tetrahedron.
Similar to the vector field G, we obtain U by solving an optimization problem:

minimize Y, ||VU; — Ids]?
(AiUorg(i) + (1 - Ai)(J(Jiest(i) - U’L) ' (la Oa 0) =0 (2)
(AiUorg(iy + (1 = Ai)Ugestiy — Ui) - (0,1,0) = 0

In this formulation, VU; represents the Jacobian matrix of & on tetrahedron ¢, Ids is the 3 x 3
identity matrix, and i, org(i), and dest(i) are vertices.

The objective of the optimization problem is to minimize map distortion while allowing for
translation. The verticality constraint ensures that fault vertices are projected onto their bottom
edge, but the geometry of the bottom edges is not predetermined. Instead, it is determined during
the optimization process.

Similar to the previous section, this optimization has a quadratic objective function and linear
constraints, which can be solved by reducing it to a linear system of equations.

5 Results

In this section, we evaluate the performance of our algorithm using a set of synthetic models that
capture the challenges encountered in real field data.

Figure 12 presents the results of our method on benchmark scenarios from [PCJ*15]. Following
the remeshing process, faults and horizons are represented as subsets of the faces of the hexahedra,
forming continuous quadrangular meshes. Consequently, fault boundaries are now approximated
by stair steps (Fig. 12-bottom). As anticipated, the quad layers accurately conform to the trian-
gulated horizons on both sides of vertical discontinuities (Fig. 12—top-right).

For stratigraphic unconformities, our conformal approach creates zero-volume hexahedra that rep-
resent the “missing” portion of each sedimentary layer (Fig. 13). This representation of “dead-cell”
satisfies the input constraints of standard flow simulators and can be easily removed if necessary.

To demonstrate the effectiveness of our method, we conducted further tests on fault networks
with complex intersections between faults and domain boundaries (Fig. 14). Thanks to the robust-
ness of our quad meshing algorithm, we can handle intricate fault configurations at the expense of
a small number of singular vertices.

We provide examples that explore the capabilities of our quad meshing method with additional
constraints to locally improve the mesh (Fig. 15) and refine it further (Sect. 5.2).

11

N\

A3 \\L////*’/’"
.

Figure 12: Benchmark models used in [PCJT15]. Features are well preserved whether with small or
large fault throws in W; (close-up on the right).

Dying faults are solved by tracing a ray passing through the centroid of each candidate quad and
having its normal as direction (bottom).

Output A3

r '\ , : \" z y <,;§ v"‘ \1 ' Vd “"'»,‘ 3 "\ — Y";f y"w "\'" o . 5 v ".l""‘y \LVV VA‘/
g vtnr: g 4Lt R il v
y

)
) ,‘"& AﬁiirvAA\\‘)

(y
‘ LA K &
&) A‘\ 4 | : 2o A 4 \/
BT .Y S & di g § (A
\ ny. ffe

W

W
; J’gv%aﬁ a3

Figure 13: Stratigraphic unconformities given in 11nput (erosion, top left) are compensated by adding
cells: they allow to compute W (close-up on the right). Once the deformation is reversed (bottom
left), the volume of the corresponding hexahedra tends to zero.

)

PN
b

LN
XX

555 "'f'/"z,‘o‘o
g
sl

D
o

X
%
¢

';#’Q
T
(f

)
Rk X3
%

s

%

Figure 14: Test cases of artificially generated fault-networks and corresponding quadrangular meshes.
Singular points are highlighted in color according to their valence.

Faults onl

Figure 15: To test the quad mesher and improve the geometric approximation, we attempt to align
cells with horizon intersections (so far approximated by stair-step, left). In order to achieve this, we
introduce a second set of features to the input of the quad meshing algorithm (right). The resulting
quad mesh becomes more complex (20 singular points instead of 2), but it enables the creation of
hexahedral elements that precisely conform to the curves of the horizon intersections (close-ups).

13

»‘0‘

e
™ X
ST

il
~4 fi

Ny
=
"//;;;;l,%lnmml
f A

il

7
il Il
W
i
U

Figure 16: Large deformation stress test: despite undergoing significant deformation (top), the resulting
mesh remains valid, free of any flipped elements. Although there is a noticeable variation in element
sizes (close-up), this variation appears relatively smooth. Note that the presented result is without the
final optimization step. The values of m and n indicate the number of hexahedral elements along the
x-axis on either side of the fault.

Furthermore, we demonstrate the robustness of the deformation computation during the ver-
ticalization step using our weak-verticality definition, specifically on a model with a listric fault
(Sect. 5.1).

5.1 Robustness and efficiency

The deformation U is obtained by minimizing distortion under weak verticality constraints imposed
by the faults. While this approach generally yields a valid deformation without flipped tetrahedra in
most cases, there is no guarantee. However, in the Listric stress test (Fig. 16), extreme deformation
is required to achieve weak verticality, resulting in flipped tetrahedra. To address this issue, a more
robust deformation algorithm proposed by Garanzha et al. [GKK™21| can be employed.

When dealing with sub-horizontal faults using our pillar-based approach, the hexahedral de-
composition tends to be of poor quality.

The computational performance of our approach is reasonable, with the results presented here
obtained in less than two minutes for input and output meshes on the order of 100K elements using
a laptop computer equipped with an i5-11500H CPU running at 2.90GHz. For larger meshes with
1M elements, the computation time ranges from 10 to 15 minutes.

One advantage of our approach is that the number of features has minimal influence on the
execution time. However, the most critical phase of the process is the computation of the corre-
spondence between zyz and uwvw, and the execution time primarily depends on the magnitude of
the distortions. Strong distortions often require the use of an optimization algorithm, as described
in [GKK™21|. For example, the stress test in Figure 16 took nearly 10 minutes to compute for an

14

Figure 17: From left to right: fault footprints are duplicated, resulting in a quadrilateral approximation
of the fault bottom edges. After extrusion and applying /!, it results in a volumetric representation

of the fault.
i
\\\\‘\
!
i,
P
95

o5

Figure 18: From left to right: well in tetrahedral mesh, classic hexahedral mesh and locally refined
mesh around the well (a detailed view on the right.)

input mesh with 160k tetrahedra (40k output hexahedra).

5.2 Local grid refinement

Sometimes, additional grid resolution might be needed near geological features such as faults or
artificial objects such as well bores for better studies. Using our method, it is possible to achieve
this without the need for refining the mesh globally.

5.2.1 Volumetric faults

Geological faults often have a certain thickness, but in reservoir grids, they are commonly repre-
sented as surfaces. However, in cases where faults serve as flow corridors, it is crucial to represent
them as volumetric entities, allowing for the assignment of more realistic physical attributes. Our
algorithm addresses this by automatically creating volumetric faults in the mesh.

In practice, we achieve this by introducing additional constraints. We duplicate the fault footprint
and slightly shift it on both sides of its initial position (by an amount less than or equal to one-third
of the expected edge length) in the normal direction (Fig. 17-b). By incorporating these constraints
into the input, the quad meshing algorithm typically generates a quad mesh with a single layer

15

Cut line

Non-
=1 neighbor

jcnnections

- Fault

ICEE

TTIT

Y J 1
HH\HH[HJHHIHH‘\ }
X [

Figure 19: Converting a singular hexahedral grid into a structured grid.

of quads between each pair of features (Fig. 17-c). After layering and applying the inverse defor-
mation !, each fault corresponds to a smooth, one-cell-thick vertical layer of hexahedra (Fig.
17-d).

5.2.2 Wells

Furthermore, it is important to consider the geometry around wells and make appropriate adjust-
ments. As mentioned earlier (Sect. 4.2 — Implementation details), we already incorporate wells
during the verticalization process to ensure mesh alignment. However, instead of using a single
point as the footprint, we propose using a circular shape (Fig. 17-c). By employing a circular
footprint, the resulting mesh will exhibit a thinner configuration around the well (Fig. 18).

5.3 Backward-compatibility to standard structured flow simulators

It is important to note that our hexahedral meshes are semi-structured and contain singular edges.
While these meshes are compatible with state-of-the-art unstructured grid simulators, they cannot
be easily indexed using a simple tuple [I, J, K] in a single index space.

To ensure compatibility with structured flow simulators, we propose partitioning our grid into
blocked structured sub-grids, as shown in Figure 19-left. Each sub-grid has its own local index
space, which can potentially overlap with other sub-grids. In order to map these local index spaces
into a global index space and maintain compatibility with standard flow simulators, it is necessary
to minimize the number of unoccupied indices in the global index space (Fig. 19-right). This
mapping process is known to be NP-complete. To address this, we have adopted a heuristic similar
to the one proposed in [LPRMO02] for texture mapping.

After the packing process of the sub-grids, pairs of hexahedra that are geometrically connected
or in contact are assigned [I, J, K] indices in such a way that they may not be immediate neighbors
in the global index space. For certain standard flow simulators, these geometric contacts need to
be explicitly defined as Non-Neighborhood connections (Fig. 19-right).

5.4 Example of application: simulation of fluid injection

The hexahedral grid generated using the proposed method is an excellent choice for conducting fully
coupled flow-geomechanics studies as it satisfies the meshing criteria for both types of simulations.

The grid illustrated in Figure 5 is used for running coupled simulations of CO4 injection using
an open-source simulator [GM21]. The synthetic reservoir consists of 8 layers of cells and is located
between two layers of overburden and underburden, respectively. Initially, the entire domain is
filled with water and set at an initial pressure of 40E05 Pa. During the simulation, we inject a
fluid with a COq-water volume fraction of 0.995-0.005 at a pressure of 100E05 Pa. Regarding
the mechanical constraints, we enforce a condition where the boundaries of the grid have zero
displacement along the axis parallel to the surface normal throughout the entire simulation. For

16

Phase volume
fraction of gas

spf uolopiJewniopasoyd

8 8
3 3
0] Q
=} @ © < o -]
- o o o o o
_— D —

TotalDisplacement

along X axis

Figure 20: Coupled flow and mechanical simulation results with and without well local refinement.

Note that the view is clipped to the middle in the vertical direction.

N\ %loe

Ry
RS

AW 4

200 UopoPIIAWEDIPqOIB

ora

$ 58893313835

Figure 21: Flow simulation results on COy injection inside fault corridors.

17

Regions Burdens | Reservoir
Rock Type Shale Sand
Porosity 0.05 0.25
PERMX (m?) 1.00E-19 | 1.00E-14
PERMY (m?) 1.00E-19 | 1.00E-14
PERMZ (m?) 1.00E-19 | 1.00E-15
Bulk Modulus (Pa) 1.00E+10 | 7.00E+08
Shear Modulus (Pa) 1.60E+09 | 4.00E+08
Initial Pressure (Pa) 4.00E+06
Fault Transmissibility 0.001
Simulation Time 20 years

Well Bore Hole Pressure (Pa) 1.0E07
Total CO2 Injected (Ton) 4.5E05
Injection Rate (Ton/year) 2.25E04

Table 1: Flow and mechanical property settings and simulation results for reservoir CO» injection.

instance, the boundaries at x = xMin and x = xMax, represented by a surface in the YZ plane, have
a zero displacement condition along the X axis. Detailed property settings can be found in Table 5.4.
The simulation results, presented in Figure 20—top, demonstrate the flow and mechanical properties.
The CO; saturation and pressure exhibit a homogeneous increase around the injection well. The
stress also increases, with higher values observed in the two burdens due to their higher bulk and
shear modulus. Consequently, higher displacement values are observed in the more deformable
reservoir layer, particularly near the well area.

Furthermore, we show similar simulations on a grid with local grid refinement around the
injection well, as described in Section 5.2.2. The flow pattern and mechanical response are similar
to the case without refinement. The local refinement provides the additional resolution needed to
study precise near-well behavior, such as in well testing studies, without the need to excessively
refine the entire grid (Fig. 20-bottom).

A second geological model with a more complex fault model (Fig. 14), is used to investigate
the injection of COy along fault corridors. In this case, only the results of the flow simulation are
presented. The initial pressure and fluid composition are identical throughout the domain. Initially,
the model is filled with water in a reservoir at a pressure of 140E05 Pa. The detailed properties of
the simulator are specified in Table 5.4. The simulation results, displayed in Figure 21, show the
pressure and COy saturation. As expected, the fault corridor, with its greater permeability, serves
as a favorable pathway for the injected fluid to flow.

6 Limitations

There are two types of limitations in this work: the first one concerns the formulation of our
objective, and the second one relates to the algorithmic aspects involved in optimizing this objective

6.1 Formulation of the objective

Our hexahedral meshes are used to discretize the physical characteristics of geological models in
numerical simulations. While we consider the classical mesh quality criteria such as cell defor-
mation, we also need to account for application-specific constraints that play a crucial role in the
applicability of our results.

In our current implementation, the mesh must conform across horizons, meaning that it should
align with these geological boundaries. Additionally, the mesh should conform in uv coordinates
across faults. We relax the conformity constraint on the w component along faults to model the

18

Regions Host rock | Fault corridor
Rock Type Shale Sand
Porosity 0.05 0.2
Compressibility 4.00E-10 4.00E-07
PERMX (m?) 1.00E-15 5.00E-14
PERMY (m?) 1.00E-15 | 5.00E-14
PERMZ (m?) 1.00E-15 | 5.00E-14
Initial Pressure (Pa) 9.50E06
Fault Transmissibility 1.0
Simulation Time 10 years
Well Bore Hole Pressure (Pa) 1.4E07
Total CO2 Injected (Ton) 6.12E06 3.7TE07
Injection Rate (Ton/year) 5.36E05 3.3E06

Table 2: Flow property settings and simulation results for fault corridor COs injection.

discontinuities in the vertical throw of horizons. However, we do not capture lateral throw as
explicit discontinuities in our meshes due to the uv conformity constraint. If necessary in the
future, we can easily remove this constraint by considering the fault projection as a boundary of
the domain to be remeshed with quadrilaterals.

To achieve large block structured meshes, we accept some degenerated cells on feature bound-
aries. This includes dead cells and pinch-outs on horizon boundaries, as well as stair-step approx-
imations of dying fault boundaries. We have chosen proportional layering over parallel layering
to facilitate the coupling of geomechanics and flow simulations. However, it should be feasible to
adapt our method for producing parallel layering, potentially through a simple post-processing step
in the UVZ space.

6.2 Algorithm limitations

Obviously, the major limitation is that the final mesh is constrained to have a combinatorial struc-
ture of a 2D quad mesh extruded in the last dimension. In practice, the verticalization of sub-
horizontal faults may produce highly distorted UVZ space, resulting in poor quality meshes, as
shown in Fig. 16.

Our method is also limited by the robustness of the XYZ to UVZ mapping algorithm and the
quad meshing algorithm. Fortunately, the recent works [GKK™21, DPR™22| we use for these tasks
are quite robust. Another possible limitation is that our simple cleanup strategy (section 2.1.1)
for generating constraints for the 2D quad meshing problem may be sub-optimal. For example, a
dying fault with a zigzag path boundary would produce many short polylines.

Remaining limitations are due to the different samplings of faults in UVW space: a subset of
tetrahedra’s faces and a subset of hexahedra’s faces. For straight faults that are not dying, the
geometry perfectly matches in both representations. For curved faults, the geometric deviation is
approximately equal to the distance between the projected curve and the edges that sample it in
each representation. As faults typically have low horizontal curvature, this geometric difference is
likely to be very small. Despite being small, our algorithm has to account for it in three steps:

e In Section 3.1.1, the geometry of faults is approximated by 2D polylines. Considering that
faults have low curvature in UV space, the geometric error is never greater than a few percent
of the goal hexahedral edge length. If a higher error is observed, a simple refinement of the
input mesh would mechanically lower this geometric error.

e The quad meshing algorithm has to conform to the polylines that represent the faults. Exact
geometric matching would over-constrain the mesh, so this property is ensured only at quad
vertices. Therefore, another geometric approximation is made at this step. Again, the error
remains very small with respect to the quad mesh edge lengths.

19

e In Section 3.3, we take this error into account for the mapping of the hexahedral mesh from
UVW space to UVZ space.

In practice, the only algorithmic limitation we observe is that our method is limited to producing
a 2.5D mesh combinatorial structure. The reason why other limitations are not observed is that
tetrahedral meshes are much easier to generate than hexahedral meshes in commercially available
software suites for the subsurface. Therefore, we expect our input to be high-quality geological
models in the form of watertight BRep (built using implicit modeling or volume-based modeling
approaches [WC18]) and their associated tetrahedral meshes intended for finite-element simulations.

Such meshes have fair dihedral angles and size distributions (not too close to 0 and 7) to avoid
foldovers in the maps that we compute. As illustrated in Fig. 13, we support enough tetrahedra’s
scale and shape variations to manage horizons that are very close to each other. Moreover, we
cannot expect our algorithm to succeed when there are no 2.5D meshes with acceptable distortion,
which is the case for the most challenging scenarios like our Listric stress test.

7 Conclusion

This paper presents a novel approach for building hexahedral grids for reservoirs using an extrusion-
based method. The 2D topology of the grid is a quadrangular mesh generated through global
parameterization, allowing the mesh to conform to all boundary features by introducing singular
vertices. This method significantly expands the range of fault networks that can be handled using
structured hexahedral grids without resorting to stair-step fault approximations.

The paper demonstrates promising results from fully-coupled flow and geomechanics simula-
tions using an open-source solver designed for unstructured grids. Additionally, expected results
are shown, highlighting that the hexahedral grid with singularities can be used in standard flow
simulators after applying the “Packing” treatment.

In the future, the authors plan to further explore various local refinement strategies and consider
coarsening the resolution in regions far from features, where reducing the number of cells can
improve performance.

Acknowledgements

We thank TotalEnergies and IFP Energies Nouvelles for kindly providing the geological model
shown in Figure 13 and 15 as testing case with stratigraphic unconformities.

References

[BLC16] Arnaud Botella, Bruno Lévy, and Guillaume Caumon. Indirect unstructured hex-
dominant mesh generation using tetrahedra recombination. volume 20, pages 437-451,
06 2016.

[BZK09] David Bommes, Henrik Zimmer, and Leif Kobbelt. Mixed-integer quadrangulation.
ACM Trans. Graph., 28(3):77, 2009.

[BZK12] David Bommes, Henrik Zimmer, and Leif Kobbelt. Practical mixed-integer optimization
for geometry processing. In Proceedings of the 7th international conference on Curves
and Surfaces, pages 193206, Berlin, Heidelberg, 2012. Springer-Verlag.

[CBK15] Marcel Campen, David Bommes, and Leif Kobbelt. Quantized global parametrization.
ACM Trans. Graph., 34(6), oct 2015.

[Cral9] Keenan Crane. The n-dimensional cotangent formula. 2019.

[DPR*22] David Desobry, Frangois Protais, Nicolas Ray, Etienne Corman, and Dmitry Sokolov.
Frame Fields for CAD models. Lecture Notes in Computer Science, 13018:421-434,
January 2022.

[EBCK13] Hans-Christian Ebke, David Bommes, Marcel Campen, and Leif Kobbelt. QEx: Robust
Quad Mesh Extraction. ACM Transactions on Graphics, (4):168:1-168:10, 2013.

20

[Fre02]
[GHANOY]

[GKK*21]

|GLV+17]

|GM21]

[HNKO3]

[KBL*17|

[KNPO7]

[LPRM02]

[Mal02]

[MLC11]

[MSV+13]
[PA94]

[PCI+15]

[RVLLOS|

[SHK*18]

[Si15]

[VCD*17]

[WC18]

N. Fremming. 3d geological model construction using a 3d grid. 09 2002.

Emmanuel Gringarten, Aymen Haouesse, Burc Arpat, and Long Nghiem. Advantages
of Using Vertical Stair Step Faults in Reservoir Grids for Flow Simulation. In Proc.
SPE Reservoir Simulation Conference, 2009.

Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, Francois Protais, Nicolas
Ray, and Dmitry Sokolov. Foldover-free maps in 50 lines of code. ACM Trans. Graph.,
40(4), jul 2021.

Emmanuel Gringarten, Jean Daniel Lecuyer, Elsa Villarubias, Camille Cosson, and
Wan-Chiu Li. Optimized Grids for Accurately Representing Geology in Geomechanical
Simulations. In Proc. SPE Annual Technical Conference and Exhibition, 2017.

Herve Gross and Antoine Mazuyer. GEOSX: A Multiphysics, Multilevel Simulator
Designed for Exascale Computing. In SPE Reservoir Simulation Conference, page
DO011S010R007, On-Demand, October 2021. SPE.

K. Hoffman, J. Neave, and R. Klein. Streamlining the workflow from structure model
to reservoir grid. 10 2003.

@. S. Klemetsdal, R. L. Berge, K. A. Lie, H. M. Nilsen, and O.. Mgyner. Unstructured
Gridding and Consistent Discretizations for Reservoirs with Faults and Complex Wells.
In Proc. SPE Reservoir Simulation Conference, 2017.

Felix Kalberer, Matthias Nieser, and Konrad Polthier. Quadcover - surface parameter-
ization using branched coverings. Comput. Graph. Forum, 26(3):375-384, 2007.

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. Least squares confor-
mal maps for automatic texture atlas generation. In ACM, editor, ACM SIGGRAPH
conference proceedings, Jul 2002.

Jean-Laurent Mallet. Geomodeling / Jean-Laurent Mallet. Applied geostatistics series.
Oxford University Press, Oxford ;, 2002.

Romain Merland, Bruno Lévy, and Guillaume Caumon. Building PEBI Grids Con-
forming To 3D Geological Features Using Centroidal Voronoi Tessellations. In Proc.
IAMG, 2011.

Bradley Mallison, Charles Sword, Thomas Viard, William Milliken, and Amy Cheng.
Unstructured Cut-Cell Grids for Modeling Complex Reservoirs. SPE Journal, 19, 2013.

C. L. Palagi and K. Aziz. Use of voronoi grid in reservoir simulation. SPE Advanced
Technology Series, 2:69-77, 1994.

Jeanne Pellerin, Guillaume Caumon, Charline Julio, Pablo Mejia-Herrera, and Arnaud
Botella. Elements for measuring the complexity of 3d structural models: Connectivity
and geometry. Computers € Geosciences, 76:130-140, 2015.

Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno Lévy. N-symmetry direction field
design. ACM Trans. Graph., 27(2), may 2008.

Samita Santoshini, S. Harris, Sheleem Kashem, Arnaud Levannier, Azeddine Benabbou,
Thomas Viard, and Laetitia Macé. Depogrid: Next generation unstructured grids for
accurate reservoir modeling and simulation. 10 2018.

Hang Si. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Trans-
actions on Mathematical Software, 41:1-36, 2015.

Amir Vaxman, Marcel Campen, Olga Diamanti, David Bommes, Klaus Hildebrandt,
Mirela Ben-Chen Technion, and Daniele Panozzo. Directional field synthesis, design,
and processing. In ACM SIGGRAPH 2017 Courses, SIGGRAPH ’17, New York, NY,
USA, 2017. Association for Computing Machinery.

Florian Wellmann and Guillaume Caumon. Chapter one - 3d structural geological
models: Concepts, methods, and uncertainties. volume 59 of Advances in Geophysics,
pages 1-121. Elsevier, 2018.

21

