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Abstract. Neural Architecture Search (NAS) consists of applying an
optimization technique to find the best performing architecture(s) in a
defined search space, with regard to an objective function. The practical
implementation of NAS currently carries certain limitations, including
prohibitive costs with the need for a large number of evaluations, an in-
flexibility in defining the search space by often having to select from a
limited set of possible design components, and a difficulty of integrat-
ing existing architecture code by requiring a specialized design language
for search space specification. We propose a simplified search tool, with
efficiency in the number of evaluations needed to achieve good results,
and flexibility by design, allowing for an easy and open definition of the
search space and objective function. Interoperability with existing code
or newly released architectures from the literature allows the user to
quickly and easily tune architectures to produce well-performing solu-
tions tailor-made for particular use cases. We practically apply this tool
to certain vision search spaces, and showcase its effectiveness.

Keywords: Neural Architecture Search · Bayesian Optimization · Cus-
tom Search Space · Multi-fidelity search

1 Introduction

1.1 Neural Architecture Search (NAS)

Neural networks have in recent years represented a tidal wave of impressive
advances in a large spectrum of applications, including but not limited to im-
ages, video, audio, 3D data, language, graphs, time series, etc.. A long list of
innovations in architectures have enabled this evolution, with a succession of
incremental improvements as well as breakthroughs resulting in widely-used ref-
erence architectures trained and tested on large benchmarks. These architectures
are then applied to use cases to solve real-world problems.
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Neural Architecture Search (NAS) aims to automate the design of neural
architectures. It requires the definition of a search space which delimits the con-
sidered architectures, and the specification of an objective function by which to
measure the quality of the architectures. A search strategy is then applied to
find the best-performing architectures in this search space. Reinforcement learn-
ing was one of the earliest search strategies used in this context [26, 10], and
powers certain leading cloud NAS platforms [1]. Local search [25], evolution-
ary algorithms [6, 14, 13] and bayesian optimization [24] have been proposed as
suitable black-box search algorithms. Differentiable NAS [12] is also a family of
approaches to efficiently perform the search.

1.2 Architecture adaptation and customisation

Neural Architecture Search (NAS) has been a driver for many of the afore-
mentioned architectural innovations, helping to find many state-of-the-art mod-
els, especially in computer vision, e.g. NASNet [27] and EfficientNet [22]. This
demonstrates that NAS has been a useful approach to the discovery and de-
sign of new reference architectures. However, the potential usefulness of NAS
goes beyond this aspect. In fact, efficient and easy NAS can pave the way to its
usage by a more general audience than exclusively researchers devising newer
architectures.

New architectural innovations are published very frequently in the literature,
often tested on large reference benchmarks. If search space definition is too
constrained, search spaces can be left behind quickly and superseded by newer,
better-performing components.

In addition, directly applying reference architectures from the literature is
often suboptimal for particular use cases. An example of this is the usual practice
of providing a set number of variants of various sizes (number of parameters).
These variants often differ not only in depth (number of blocks or layers), or
width (number of channels), but also certain architectural choices at times. For
a particular use case, we might be seeking different compromises than the ones
struck by the discrete variants, for instance accepting a slightly bigger model
than one particular variant for more performance, or vice versa. Use case cir-
cumstances sometimes impose hard limits on memory consumption or latency.

Automatically tuning architectures is a useful idea in this context. Using ar-
chitectures in the literature as reference points, general deep learning practition-
ers could automatically find the best models to suit their specific application and
constraints. As a result, specificities about data, available resources, and specific
quality metrics can be addressed in a more principled way by tuning available
architectures to these characteristics.

1.3 NAS frameworks

General-purpose black-box optimization tools, such as packages for evolution-
ary algorithms (EAs) or Bayesian Optimization (BO), often require specialized
knowledge. For instance, the user would need to define mutation and crossover
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operators suitable for how their search space is structured for EAs, or to select
a kernel and a distance function for Gaussian Process-based BO.

Many NAS frameworks have been proposed in the literature, with significant
differences in their objectives as well as the methods used to perform the search.
Some are designed to advance NAS research by streamlining the comparison of
different approaches and facilitating innovations in NAS methods, such as [19,
17]. Certain frameworks focus on specific search spaces, e.g. Convolutional Cap-
sule Networks [15], focus on certain optimization objectives [16]. Many of the
frameworks in the literature describe specific search spaces and are difficult to
re-apply to new search spaces, complicating the incorporation of the latest ar-
chitecture innovations. More general-purpose NAS frameworks, such as Vertex
AI [1] or NNI [18], use a specialized design language or API for search space
specification, and AutoKeras [11] uses similar syntax to the Keras functional
API. It is not a straightforward process to build search spaces from publicly
available architecture code, often written in one particular deep learning frame-
work, without having to convert it to the specialized design language, the API,
or the different deep learning framework.

1.4 Proposed contribution

We instead propose a NAS framework built with the following design objectives
in mind:

– Fast search: the BO-based method, especially when coupled with certain pre-
built improvements like pretraining and multi-fidelity search, is very fast on
NAS benchmarks and custom-built search spaces and finds better architec-
tures in the search space in fewer than 100 total evaluations.

– Few assumptions: the search space and objective function can be defined in a
non-constrained way. The user can define any search space and any objective
function.

– Simple incorporation of existing code: it is easy to include newer architectural
advancements in the literature, custom-made architectural elements, specific
and custom training and testing routines, etc...

– Sharing search spaces which can be directly applied to new objective func-
tions (e.g. on a different dataset, using a different training recipe, or mea-
suring a different quality metric).

This is achieved by only requiring the user to provide the list of encodings their
search space is made of, and a function to measure the quality of a solution
represented by an encoding. Two optional additions can be made to significantly
speed up the search:

– Providing an additional, lower-fidelity but faster objective function. For in-
stance, if the full objective function is the test score after the model was
trained for 300 epochs, the low-fidelity objective function could be the test
score after only 15 epochs of training.
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– Pretraining data: zero-cost metrics like number of parameters, FLOPs, la-
tency or memory footprint, for a subset of the search space networks. If the
user is optimising the architecture of PyTorch models, they can instead pro-
vide a function which takes an encoding and returns a PyTorch nn.Module
object, and a sample input for it (e.g. a random image-shaped tensor for a
vision model). The framework automatically calculates the pretraining data.

This flexibility is intended to facilitate usage when an architecture for a
problem has already been implemented and some architectural parameters (e.g.
width, depth, type of block or layer, or other more specific aspects) are to be
tuned. As a result, this tool can be useful to further improve an existing archi-
tecture, or to adapt a reference architecture from the literature and tailor it to
a custom use case (e.g. adjusting width and depth or replacing certain blocks).
This also doesn’t limit the search space definition to a set of existing components.

2 Search method

A detailed description of the search strategy is outside the scope of the paper,
but we provide a general overview of its most important aspects in the following
as well as its performance on a NAS benchmark.

In Neural Architecture Search, evaluating solutions can be expensive. In order
to reduce the total number of evaluations performed, we opted for a Bayesian
Optimization (BO)-based search method, as it offers good sample efficiency.

Bayesian optimization (BO) uses a probabilistic model to approximate the
expensive evaluation function. More specifically, an acquisition function uses
this model to decide which points are to be evaluated next. In turn, the new
evaluations are used to improve the model in preparation for the next iterations.

Gaussian Processes (GPs) are usually the model of choice for BO [8], offering
mathematical convenience and good predictive performance, but limited scala-
bility because of its cubic complexity, as well as requiring certain design decisions
to be specified (e.g. kernel, distance function), complicating its applicability on
complex structures such as neural network architecture search spaces.

Instead, we use a deep ensemble: a set of neural networks with different
random initialisations, which end up occupying different low-loss regions and
providing a robust combined prediction. This allows a greater flexibility and ease-
of-use, and produces a generic NAS method which has been tested successfully on
very different search spaces, like cell-based vision search spaces, and graph-based
search spaces such as NAS benchmarks.

One main motivation for this choice come from the desire to exploit different
data sources to accelerate the search. Using shared weights for multiple pre-
diction targets, we can improve the internal representation used for the predic-
tions. More precisely, we use a number of zero-cost metrics, as well as combining
low and high quality evaluations of the objective function. This additional data
improves the shared internal representation, improving the model’s predictive
performance in a cost-effective manner and by extension accelerate the search.
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Simultaneous pretraining

We use a set of zero-cost pretraining metrics (e.g. number of trainable parame-
ters, FLOPs, average latency, memory footprint) to jump-start the model with
good internal representations of the search space.

To preserve a generic representation, we pretrain on all metrics simultane-
ously. This is achieved by using a single representation for all the metrics, which
is used by different prediction heads for each metric. As a result, this internal
representation is affected by all the predictions at once at the backpropagation
step.

We performed tests on the NAS-Bench-201 [5] benchmark, with the following
observations:

– The pretraining significantly accelerates the search time.
– Simultaneous pretraining outperforms a simpler pretraining scheme where

the ensemble is pretrained sequentially, ie. one metric at a time.

Multi-fidelity training

6 full evals x 200 epochs

5 p. evals:
5 x 12ep

5 p. evals:
5 x 12ep

5 p. evals:
5 x 12ep

5 p. evals:
5 x 12ep

5 p. evals:
5 x 12ep

5 p. evals:
5 x 12ep

5 p. evals:
5 x 12ep

5 p. evals:
5 x 12ep

5 p. evals:
5 x 12ep

5 p. evals:
5 x 12ep

10 updates x 5 partial evals per update x 12 epochs

Mono-fidelity

3 full evals x 200 epochs

Multi-fidelity

Fig. 1: Mono-fidelity and multi-fidelity training at equivalent costs

The idea for this multi-fidelity search implementation is to trade a few full-
quality evaluations for many more low-quality evaluations (Fig 1). Compared to
what could be possible with a GP, we can use one shared deep ensemble with
only a few specialized weights for each specific fidelity level. As a result, the
shared representation is affected both by the low-quality and the high-quality
evaluations, the latter being given more importance (i.e. the ensemble is trained
for more epochs on the high-quality data).

Search method overview

The combination of these elements in the search method contributes to an ac-
celerated search, which reaches the optimum on NAS-Bench-201 in fewer evalu-
ations than competing methods: under 80 evaluations for CIFAR10, and under
60 evaluations for CIFAR100.
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Fig. 2: Overview of the search procedure

3 NAS framework usage

Search space definition

A SearchSpace object is created for a new search space. To define it, the user
only needs to provide the encodings, and optionally a function to convert from
an encoding to a PyTorch nn.Module.

1 ss = create_search_space(name=’search -space’,
2 save_filename=’ss.dill’,
3 encodings=encodings ,
4 encoding_to_net=encoding_to_net)

The preprocess function automatically generates the pretraining data, us-
ing the PyTorch Profiler tools, then creates and pretrains the deep ensemble
associated with this search space. It requires a sample input suitable for the net-
works in the search space, e.g. here we generate a random image-shaped tensor
for a vision search space, for the profiling step. The user can instead provide
custom pretraining data if for instance a different deep learning framework is in
use.

1 ss.preprocess(sample_input=torch.rand(16, 3, 224, 224),
2 threads =16)

Reusability The SearchSpace object is saved to a file which can be shared,
providing a pretrained deep ensemble ready to be used for the search step imme-
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diately. It enables the launch of a new search on a user-defined objective function,
e.g. on a new dataset, or using new data augmentation or training techniques.

Launching the search To initiate a new search, the user defines the objective
function (the high-fidelity evaluation), as well as an optional but recommended
low-fidelity function. This is defined in a SearchInstance object, which encap-
sulates the current search progress, logs, and data. It is saved in a file, which
can be loaded using the dill package to resume a previous search.

1 s = SearchInstance(name=’search -inst’,
2 save_filename=’search.dill’,
3 search_space_filename=’ss.dill’,
4 hi_fi_eval = hi_fi_eval ,
5 hi_fi_cost = 240,
6 lo_fi_eval= lo_fi_eval ,
7 lo_fi_cost = 12)

To run the search for an evaluation budget n:

1 s.run_search(eval_budget=n)

For image classification, a helper function provides code to train in dis-
tributed mode (using torchrun) for a user-specified number of epochs and then
test the networks. Any dataset from the datasets package can be specified.

1 evaluator = create_img_class_evaluator(dataset=dataset ,
2 n_classes=num_classes ,
3 n_gpus=n_gpus ,
4 config_to_model_file=filename ,
5 dataset_config=dataset_config ,
6 eval_split=eval_split ,
7 reparam=True)

4 Practical application examples on image classification

4.1 MobileOne-based CNN search space

MobileOne architecture

MobileOne [23] is a family of efficient vision backbones targeted towards mobile
devices. They are purely CNN-based, with numerous improvements to traditional
efficient CNN designs aimed at minimizing the latency on a mobile device.

One key aspect of the MobileOne architecture is re-parameterization, build-
ing on advances in [2–4]. Different architectures are used during training and
inference. At train time, parallel branches incorporate convolution and batch nor-
malization operations with diverse kernel sizes. At inference time, these branches
are fused into an equivalent block with a much simpler architecture. This design
leads to performance improvements across many vision tasks (image classifica-
tion, object detection, semantic segmentation) without sacrificing low latency.
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Table 1: MobileOne-based CNN search space
Stage 1 Stage 2 Stage 3 Stage 4 Use

SE

N. conv.

branches
Base
width 64 128 256 512

Depth Width
multiplier Depth Width

multiplier Depth Width
multiplier Depth Width

multiplier
MobileOne-s0 2 0.75 8 1.0 10 1.0 1 2.0 No 4

Value ranges {0,1,2,
5,8,10}

[0.25..4]
in steps of 0.25

{0,1,2,
5,8,10}

[0.25..4]
in steps of 0.25

(≥ Stage 1)

{0,1,2,
5,8,10}

[0.25..4]
in steps of 0.25

(≥ Stage 2)

{0,1,2,
5,8,10}

[0.25..4]
in steps of 0.25

(≥ Stage 3)

{Yes,
No} {1, 4}

Search space description

We use the MobileOne architecture as a base to construct a simple search space
around it. We specifically start with the MobileOne-s0 variant, and vary the
depth and width in each of its 4 stages (Table 1)

We aim to search for a better configuration of the MobileOne-s0 architecture
on a different dataset, with a similar number of total parameters. M1-s0 has 21
as the total depth of the 4 stages, and 1.06M parameters at inference time.

Therefore, we filter the resulting search space as follows:

19 ≤ Total depth ≤ 22
0.86M ≤ n. params ≤ 1.26M

This yields a total of 55870 architectures. We perform the search using as
objective function the validation accuracy on the Imagenette [9] image classifi-
cation dataset, a 10-class subset of ImageNet [20]. The high quality evaluation
has 240 epochs during training, while the low quality evaluation has 12 epochs.

Search results

We run the search for the equivalent of 60 evaluations. We compare the result-
ing architecture and the baseline M1-s0 architecture’s results in table 2, where
we report the value of the high quality evaluation (equivalent to the objective
function during the search) i.e. 240 epochs, as well as the evaluation at 300
epochs.

Table 2: Search results for the M1-based search space on Imagenette
N. params
(train-time)

N.params
(test-time) 240 epochs 300 epochs

MobileOne-s0 4.28M 1.06M 89.34 90.09
Search result 0.95M 0.93M 90.37 90.77

The search process successfully found a smaller and better-performing depth
and width configuration for the M1-s0 model, as it applies to this dataset.
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4.2 Hybrid CNN-ViT search space

SwiftFormer architecture

SwiftFormer [21] introduces a novel attention mechanism designed with low la-
tency in mind: efficient additive attention. Instead of an expensive operation with
quadratic complexity w.r.t the input resolution, self-attention is implemented as
a fast linear operation.

In the SwiftFormer family of models, the architecture is a succession of stages
separated by downsampling steps, each stage being a succession of convolution-
based blocks followed by one attention-based block. This is an original setup only
possible because of the efficiency of the self-attention mechanism: where efficient
ViT-CNN models generally reserve attention modules to the latter stages where
the resolution is lowest, SwiftFormer can apply self-attention anywhere in the
network, with minimal impact to efficiency and latency.

Search space description

Starting from the SwiftFormer-XS variant, we built a search space incorporating
and generalising both MobileOne-s0 and SwiftFormer-XS architectures. For each
stage, 2 variables have to be decided: the type of convolution block to use, and
the number of attention blocks at the end of the stage. In the attention block(s),
the attention mechanism is preceded by a mini-convolution block. This is of the
same type as the other convolution blocks in the stage.

Table 3: MobileOne-SwiftFormer hybrid search space
Stage 1 Stage 2 Stage 3 Stage 4

Conv.
type

Attn.
blocks

Conv.
type

Attn.
blocks

Conv.
type

Attn.
blocks

Conv.
type

Attn.
blocks

SwiftFormer conv-enc last-1 conv-enc last-1 conv-enc last-1 conv-enc last-1
MobileOne

(s0-s3) mo none mo none mo none mo none

Value ranges {conv-enc,
mo, mo-se}

{none, last-1,
last-2, all}

{conv-enc,
mo, mo-se}

{none, last-1,
last-2, all}

{conv-enc,
mo, mo-se}

{none, last-1,
last-2, all}

{conv-enc,
mo, mo-se}

{none, last-1,
last-2, all}

– conv-enc: SwiftFormer’s convolution-based block design
– mo: MobileOne block
– mo-se: MobileOne block with SE (Squeeze-and-Excitation)

For each stage, 12 possible combinations exist, and with 4 stages the search
space spans 124 = 20736 architectures, including SwiftFormer-XS and MobileOne-
s0.
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Search results

We perform the search using two different datasets. Along with Imagenette, we
also use the Alzheimer MRI disease classification dataset [7], a 4-class dataset
which seems to be slightly more challenging for the tested networks. For Ima-
genette, two search instances were tested, one with the number of branches in
the MobileOne blocks set to 4, and a second one with this value set to 1. Tables
4 and 5 contain the search results, and figures 3 and 4 illustrate the evolution of
the best found scores as the search progressed.

Table 4: Search results on the Ima-
genette dataset

Architecture Accuracy
(240 epochs)

MobileOne-s0 89.94
SwiftFormer-XS 91.08
Search result (4 branches) 91.18
Search result (1 branch) 92.05

Table 5: Search results on the
Alzheimer-MRI dataset

Architecture Accuracy
(200 epochs)

MobileOne-s0 74.53
SwiftFormer-XS 64.60
Search result 76.95

Fig. 3: Best value evolution during
search - Imagenette (4 branches)

Fig. 4: Best value evolution during
search - Alzheimer-MRI dataset

5 Conclusion

In this work, we described a framework to perform NAS quickly and with max-
imum flexibility for incorporating custom and new architectural components.
It mainly relies on Bayesian Optimization with deep ensembles, a pretraining
scheme and multiple fidelities to accelerate the search. We argue that this method
can be used effectively to improve existing architectures or find new ones, with
the simple tuning and adaptation of reference architectures from the literature
a target use case. Starting from baseline architectures from the literature, we
construct search spaces, and launch search instances to find the top-performing
architectures on different datasets.
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