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Abstract—Studying circumstellar environments is crucial for
understanding exoplanets and stellar systems. Instruments like
SPHERE-IRDIS can extract information about these environ-
ments by leveraging advanced image reconstruction methods,
possibly based on deep learning. This work focuses on unfolded
proximal neural networks based on Condat-Vũ iterations and
proposes a new nonlinear formulation. To evaluate and compare
the performance of the proposed reconstruction strategies, two
datasets dedicated to circumstellar environments analysis in the
context of high-contrast imagery have been created offering
different level of complexity in the evaluation of the performance.

Index Terms—High constrast image recovery, proximal algo-
rithms, unfolded algorithms, deep learning, nonlinear algorithms.

I. INTRODUCTION

Context – Studying circumstellar environments is essential for
improving our comprehension of exoplanets and unraveling
the complex mechanisms involved in the creation of stellar
systems. Despite significant strides facilitated by advance-
ments in instruments and image processing, allowing for
greater resolution of these environments, the challenge of
directly observing them persists. This difficulty arises from
the extremely high contrast between these environments and
their host stars, with the radiance of stars being much more
intense, ranging from one to ten thousand times more intense
than that of their surroundings.

Fortunately, certain polarimetric characteristics of the light
emitted by the star and reflected in its environment enable the
use of polarimetric imaging to disentangle the intertwined light
of the two sources, providing a valuable tool for overcoming
the limitations of direct observation.

Spectro-Polarimetric High-contrast Exoplanet REsearch
(SPHERE) and its instrument InfraRed Dual Imaging and
Spectrograph (IRDIS) installed on the Very Large Telescope
(VLT) of the European Southern Observatory (ESO), offer
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the possibility of acquiring high-resolution and high-contrast
polarimetric images [1], [2]. During data acquisition, various
factors such as geometrical transforms, instrumental blurring,
or noise can lead to image degradation, requiring advanced
image processing reconstruction techniques to extract the
meaningful information.
State-of-the-art – The double difference and double ratio
approaches [3], [4] are widely favored for deriving meaningful
parameters. Nonetheless, these methods are sensitive to instru-
mental effects. To handle such a degradation, [5] has proposed
to describe accurately the forward model which establishes the
mapping between the parameters of interest and observations.
Moreover, leveraging this forward model, a variational strat-
egy, along with conventional optimization techniques, named
RHAPSODIE for Reconstruction of High-contrAst Polarized
SOurces and Deconvolution for cIrcumstellar Environments
[5], has been proposed, offering a state-of-the-art method for
reconstructing images of circumstellar environments.
From variational appraoches to deep learning – For a long
time, variational formulations and optimization techniques
held the position of state-of-the-art solutions for addressing in-
verse problems in imaging, offering state-of-the-art reconstruc-
tion strategies in several field of astronomy including high-
contrast imagery but also radio-interferometry [6]. However,
the success of deep learning in recent years fundamentally
changes the landscape of inverse problem solving. Conse-
quently, in the extensive literature dedicated to this subject,
three main classes of approaches can now be considered:
iterative methods for solving variational problems [7] (as pro-
posed in [5]), end-to-end (“black-box") neural networks [8],
and hybrid proximal neural networks (encompassing strategies
like plug-and-play and unfolded networks), capitalizing on
the advantages of both worlds and providing performance,
robustness, and interpretability [9]–[14].
Contributions – Our contribution aligns with the third cate-
gory of methods, specifically focusing on unfolded strategies
that offer a good trade-off between performance and inter-
pretability. This approach presents an opportunity to enhance



the outcomes of RHAPSODIE by merging the principles of
iterative methods with the progress due to deep learning. This
work focuses on state-of-the-art unfolded primal-dual schemes
already introduced in the literature [15], [16] and introduces
a new unfolded scheme based on a nonlinear primal-dual
strategy.

To highlight the advantages of unfolded architectures and
the significance of the nonlinear unfolded strategy, a second
contribution is the generation of a realistic dataset to simulate
data encountered in SPHERE-IRDIS. This dataset serves as
the basis for training and evaluating networks performance.

The study aims to present a spectrum of models ranging
from standard techniques to advanced ones, illustrating varying
levels of complexity.
Outline – This paper is structured as follows. In Section II,
we delve into the explanation of the forward model en-
countered on SPHERE-IRDIS. Section III outlines generic
primal-dual iterations, facilitating the transition from standard
variational procedures to more powerfull unfolded approaches.
This section also introduces a novel unfolded architecture
based on a non-linear primal-dual scheme. The third section
provides numerical experiments on a realistic database created
specifically for this study, whose details are thoroughly de-
scribed. It demonstrates the performance of a spectrum of un-
folded primal-dual architectures, encompassing both standard
techniques and advanced ones, showcasing varying levels of
complexity. Finally the fifth section is devoted to conclusions
and perspectives.

II. ACQUISITION MODEL AND PRE-PROCESS DATA

Direct observation of the circumstellar environment is chal-
lenging because the light of the environment that we observe
is a mixture of light from the star itself Iustar and light that
has been scattered by the star’s accretion disk Iudisk + Ip. This
scattered light is polarized, unlike the light coming directly
from the star. The objective of polarimetric imaging (as in
SPHERE-IRDIS), when considering Jones formalism, is to
reach the parameters (Iu, Ip, θ) formed by:

• Iu = Iustar + Iudisk: Intensity of the unpolarised light,
which is the light that directly comes to us from the star
combined with unpolarized disk light.

• Ip: Intensity of the polarized light, which is the light
from the star scattered on the disk of dust. This is a
useful parameter for studying the formation processes of
a stellar environment. This parameter will be at the core
of this study.

• θ: Linear polarisation angle associated with Ip, depending
on the scattering angle of the star’s light on the dust in
the disk.

As described in [5], the observations are composed of K
acquisitions with different modulations of the polarisation,
induced by a half-wave plate’s (HWP) angle which takes
values αℓ ∈ {0◦, 22.5◦, 45◦, 77.5◦} and a filtering through
two analyzers, whose angles are ψj = {0◦, 90◦}. The number
of acquisitions for one stellar environment can vary between

L = 32 and L = 512. The forward model proposed in [5]
reads, for every (j, ℓ),

zj,ℓ = Tj,ℓAI
det
j,ℓ + εj,ℓ, (1)

which establishes the relation between the observation zj,ℓ and

Idet
j,ℓ =

1

2
Iu + Ip cos2(θ − 2αℓ − ψj) (2)

and A denotes a convolution operator associated with instru-
mental PSF, Tj,ℓ models geometrical transforms which map
the space of parameters to the space of data, and εj,ℓ denotes
a heteroscedastic Gaussian noise.

This model is not linear with respect to the Jones parameter
θ. To overcome this difficulty, it is quite standard in astronomy,
to use Stokes parameters (I,Q, U) , which can be expressed
in terms of Jones parameters and vice versa.

Ip =
√
Q2 + U2

θ = (1/2) arctan (U/Q) mod π

Iu = I −
√
Q2 + U2.

The forward model becomes

zj,ℓ =

3∑
m=1

νj,ℓ,m Tj,ℓASm + εj,ℓ, (3)

with S1 = I , S2 = Q and S3 = U and
νj,ℓ,1 = 1

2

νj,ℓ,2 = 1
2 cos

(
4αℓ + 2ψj

)
νj,ℓ,3 = 1

2 sin
(
4αℓ + 2ψj

)
or equivalently. Among all these parameters
(Iu, Ip, θ, I,Q, U) the principal parameter of interest is
Ip. However, (Q,U) that corresponds to projection of Ip in
two distinct planes are also of interest. So in the rest of the
present work we will focus on the estimation of either Ip, Q,
or U .

Double-difference and double-ratio are state-of-the-art
methods allowing to prereconstruct the data and thus only
focus on removing blur and residual noise leading to the
degradation model of the form:

y = Ax+ ϵ with x = {Ip, Q, U} (4)

where ϵ denotes some additive noise whose covariance matrix
is modified from (1) due to the prereconstruction.

III. FROM VARIATIONAL APPRAOCHES TO UNFOLDED

The variational formulation for the resolution of (4) gener-
ally relies on a minimization problem of the form:

x̂ ∈ Argmin
x

f(Ax, y) + λg(x) (5)

where the first term corresponds to a “distance" between the
observations y and the acquisition model while the second
term g enables to incorporate prior on the solution. The
regularization parameter λ > 0 controls the trade-off between
adequacy to the data fidelity term and the prior.



Over the past three decades, there has been a progression
in the complexity of priors and their corresponding inversion
performance. This evolution began with the use of nonsmooth
priors and has advanced to the adoption of implicit priors
involving neural networks in more recent times [13]. These
evolution are deeply intricated with advances in optimization
and essentially whose iterations efficiency relies on having an
explicit form of the proximal operator [17], [18].

In this work, we focus on primal-dual strategies allowing
to handle more complex priors of the form g = r(D·) where
D model some sparsifying transform and r inforcing sparsity
prior (i.e. ℓ1-norm).

The general Condat-Vũ iterations [15], [16] handled in this
work adapted to quadratic data fidelity term (i.e. f(A·, z) =
1
2∥A · −z∥2) take the form:

for k = 0, 1, . . .⌊
x[k+1] = x[k] − γA⊤(Ax[k] − y)− γD∗

ku
[k])

u[k+1] = proxτr∗
(
u[k] + τDk

(
2x[k+1] − x[k]

))
,

where r∗ denotes the Fenchel conjugate of r.
Several variations have been considered in the literature:
• Standard Condat-Vũ (CV) iterations are obtained when
Dk = D at each iteration. The convergence of the
sequence (x[k])k∈N to x̂ is guaranteed when 1

γ−τ∥D∥2 ≥
∥A∥2

2 . It generally requires a large number of iterations
[15], [16].

• Truncated CV – Truncated CV iterations with fixed
Dk = D mimicking a deep learning architecture com-
bining linear steps and non-linear ones over the primal-
dual variables [19]. This configuration is very close to
the Standard CV except that the number of iterations is
chosen to be small (∼ 20), as with an early stopping
strategy.

• Unfolded CV corresponds to truncated CV iterations
with Dk varying from an iteration to another one [19].

If the Standard CV framework aligns with the conventional
variational approach, wherein the dictionary is fixed, leading
to a TV penalization when D models horizontal/vertical differ-
ences, the other two configurations are suited for the unfolded
framework. These configurations relies on truncated iterations,
but either the dictionary D or (Dk)1≤k≤K is learned.

IV. UNFOLDED NON-LINEAR CONDAT-VŨ

In this work we go beyond the work in [19] in order to
unfold a formulation of the CV algorithm involving a nonlinear
mapping D. The pioneer work on non-linear formulation of
primal-dual algorithm traced back to Valkonen’s work [20]
dedicated to the resolution of

min
x

max
u

1

2
∥Ax− z∥22 + ⟨D(x), u⟩ − r∗(u)

When D is linear, the problem fits (5) with g = r(D·). The
non-linear formulation of CV algorithm reads:

for k = 0, 1, . . . ,K⌊
x[k+1] = x[k] − γA⊤(Ax[k] − y)− γ[∇Dk(x

[k])]∗u[k])

u[k+1] = proxτr∗
(
u[k] + τDk

(
2x[k+1] − x[k]

))
.

In the specific case where Dk(·) ≡ D(·), we obtain non-
linear CV iterations which is the conterpart of Valkonen
work in the context of Condat-Vũ iterations [15], [16] rather
than Chambolle-Pock ones [21]. In our experiments, we will
consider the case where the non-linear operator vary through
the iterations considering Dk(·) =WkRelu(Vk·).

V. NUMERICAL RESULTS

In order to train, and then evaluate and compare the per-
formance of these CV architectures for studying circumstellar
environment observed from SPERE-IRDIS we have created
two realistic datasets and then trained the unfolded schemes
with Pytorch. All the strategies have been implemented using
the DeepInverse open-source library [22].
A. Datasets

The considered datasets are generated from Debris DIsks
Tools (DDIT) library [23] that produces synthetic images of
(Iudisk, I

p, θ). Iustar has been obtained from real observational
high-contrast coronagraphic data from the SPHERE instru-
ment at the VLT/ESO [1]. (I,Q, U) are deduced from the
resulting (Iu, Ip, θ).

In order to make the dataset as realistic as possible, the
generated images are generated using several values for the
semi-major axis of the disk, inclination, eccentricity, and ratio
between the star and disk intensity, leading to a large panel
of images (examples are displayed in Figure 1). The synthetic
images are of size 244× 254 pixels.

Fig. 1. Examples of the polarized disk intensities Ip of the DDiT dataset
used in this work.

Synthetic dataset – The first dataset consists in considering
(Ip, Q, U) and to degrade it with a point spread function (PSF)
extracted from real observational data taken with the SPHERE
instrument at the VLT/ESO using its apodized aperture [1]. We
add a Gaussian noise with a standard deviation of 0.1. This
dataset has been created in order to provide an ideal dataset
allowing to particularly fit the data-term chosen as f(A·, z) =
1
2∥A ·−z∥2, which fits white Gaussian noise assumption when
considering a maximum a posterior interpretation.
More realistic dataset – The second dataset has been cre-
ated combining Ip, Q, U to generate the dataset, A as
described previously, and combined with the RHAPSODIE
forward model to create observation z obtained from (1).



We then remove geometrical transforms to only focus on
debluring/denoising part. Pre-reconstructed data are derived
from observations z with a pipeline based on the double
difference algorithm leading to (4) where the distribution of
the noise is now far from being white Gaussian noise.

B. Architecture and training

The datasets were partitioned into a training set, encompass-
ing 85% of the data (573 images), and a test set, comprising
the remaining 102 images. The Standard CV has been run with
anisotropic TV penalisation for 500 iterations and the results
are displayed for several values of λ. The unfolded neural
networks have been trained using the ADAM optimizer until
the training loss reached stabilization. The unfolded schemes
were trained with (P,K) = (16, 80), (32, 40), (64, 20), ma-
nipulating either the number of filters P or the depth of
the unfolded neural network. The unfolded version where
Dk =WkVk has been created in order to increase significantly
the number of parameters and better mimic deep architectures.
Vk is thus mimicking Dk as previously described while Wk

is linear operator whose input/output space is the same and
has a number of channel P = {16, 32, 64}. For the nonlinear
unfolded CV, [∇Dk(x

[k])]∗ ≈ V ∗
k relu(W ∗

k ).

C. Results

Figure 2 summarizes the performance obtained with the
different strategies. We illustrate the performance w.r.t the
number of parameters involved in each recovery strategy. On
the synthetic dataset where the distribution of the noise is
simply a white Gaussian noise, we can observe that unfolded
CV with learned Dk at each layer provides a good compro-
mise between performance and number of parameters while
for more complex and realistic dataset, considering a larger
number of parameters and handle with nonlinear CV provides
much better performance.

In Figure 3 (resp. 4), we display an example of original
(Ip, Q, U) as well as the degraded counterpart and the re-
construction with the different CV strategies. We can clearly
observe that unfolded strategies outperform the standard varia-
tional procedure and that integrating nonlinearity leads to very
realistic results both on the synthetic dataset and the more
realistic one.

VI. CONCLUSION

This work is the first study devoted to unfolded deep
learning architectures and, more generally, to deep learning
strategies in the context of high-contrast spectro-polarimetric
image retrieval. In order to evaluate performance, two datasets
were created and several unfolded schemes were developed.
We highlight the need to use more complex unfolded architec-
tures, such as the nonlinear ones, on more realistic datasets.
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