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We investigate the existence of linear-in-momentum spin-orbit interactions in the valence band of
Ge/GeSi heterostructures using an atomistic tight-binding method. We show that symmetry break-
ing at the Ge/GeSi interfaces gives rise to a linear Dresselhaus-type interaction for heavy-holes.
This interaction results from the heavy-hole/light-hole mixings induced by the interfaces and can
be captured by a suitable correction to the minimal Luttinger-Kohn, four bands k · p Hamilto-
nian. It is dependent on the steepness of the Ge/GeSi interfaces, and is suppressed if interdiffusion
is strong enough. Besides the Dresselhaus interaction, the Ge/GeSi interfaces also make a con-
tribution to the in-plane gyromagnetic g-factors of the holes. The tight-binding calculations also
highlight the existence of a small linear Rashba interaction resulting from the couplings between
the heavy-hole/light-hole manifold and the conduction band enabled by the low structural symme-
try of Ge/GeSi heterostructures. These interactions can be leveraged to drive the hole spin. The
linear Dresselhaus interaction may, in particular, dominate the physics of the devices for out-of-
plane magnetic fields. When the magnetic field lies in-plane, it is, however, usually far less efficient
than the g-tensor modulation mechanisms arising from the motion of the dot in non-separable,
inhomogeneous electric fields and strains.

I. INTRODUCTION

Hole spins in semiconductor quantum dots [1, 2] can
be efficiently manipulated with electric fields thanks to
the strong spin-orbit interaction (SOI) in the valence
bands of these materials [3–5]. Fast electrically-driven
spin Rabi oscillations have thus been reported in Si/SiO2

[6–8] and Ge/GeSi [9–12] heterostructures. Silicon and
Germanium can, in particular, be purified isotopically
in order to get rid of the detrimental hyperfine interac-
tions with the nuclear spins [13–15]. Although SOI also
couples the spin to charge noise, there has been theoret-
ical and experimental demonstrations of the existence of
operational “sweet spots” where the hole is resilient to
dephasing [11, 16–19]. At these sweet spots, the Rabi
frequency can actually be maximal owing to “reciprocal
sweetness” relations with the dephasing rate [20], which
allows for fast manipulation with lifetimes comparable
to electrons in an artificial SOI (micro-magnets) [18, 21].
Holes also hold promises for strong spin-photon interac-
tions, enabling long-range coupling between spin quan-
tum bits (qubits) using circuit quantum electrodynamics
[20, 22–24].

Ge/GeSi hole spin qubits [25] have made remarkable
progress in the past few years [10, 26], with the demon-
stration of a four qubits processor [27] and the achieve-
ment of charge control in a sixteen dots array [28]. Epi-
taxial Ge/GeSi interfaces are indeed much cleaner than
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Si/SiO2 interfaces, which reduces in principle the level of
charge noise and disorder near the qubits [29]. Also, holes
are much lighter in Ge than in Si, which further mitigates
their sensitivity to disorder and relaxes the constraints on
dot size and gate pitch.

The landscape of spin-orbit interactions in Ge/GeSi
nanostructures is very rich. The bulk valence band Bloch
functions of Ge and Si are degenerate at Γ and give rise
to “heavy-hole” (HH) and “light-hole” (LH) bands with
different masses [3, 30, 31]. The admixture of HH and
LH components by confinement in low-dimensional struc-
tures leads to various kinds of couplings between the hole
spin and its momentum. In planar (2D) heterostruc-
tures grown along z = [001], the resulting Rashba-type
SOI is cubic in the in-plane wave vector components kx
and ky at lowest order in perturbation [3, 17, 32–34].
In nanowire (1D) structures, this “direct” Rashba SOI
becomes typically linear-in-momentum [4, 5]. In quan-
tum dot (0D) structures, the relevant SOI depends on
the symmetry of the device. The cubic Rashba inter-
action dominates the physics of disk-shaped (2D-like)
dots, while the linear Rashba interaction can prevail in
squeezed (1D-like) dots [35].

The interplay between the kinetic and Zeeman Hamil-
tonian of holes also shapes the gyromagnetic g-factors of
the dots. These corrections arise at the same order in the
HH-LH band gap than the Rashba SOI [36–38], and are,
therefore, independent manifestations of spin-orbit cou-
pling in the valence bands. Both the Rashba SOI and the
g-factor modulations can be leveraged to drive the spin
in an AC electric field resonant with the Zeeman split-
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ting: the motion of the dot as a whole couples to the spin
through the Rashba spin/momentum interaction on the
one hand [39–41], while the deformations of the dot give
rise to “g-tensor modulation resonance” (g-TMR) on the
other hand [42]. The Rabi oscillations generally result
from a combination of these two mechanisms [7, 43].

Ge dots in Ge/GeSi heterostructures are usually ma-
nipulated under in-plane magnetic fields as this best de-
couples the hole spin from the nuclear spins [13]. The
actual mechanisms at play in these structures are still
an open question. Indeed, the cubic Rashba SOI is little
efficient [38], while significant direct linear Rashba SOI
calls for heavily squeezed dots [35]. It has been shown in
Refs. [38] and [44] that a variety of g-TMR mechanisms
can actually give rise to Rabi oscillations for in-plane
magnetic fields [19]. They involve the non-separability of
the confinement potential (coupling between the in-plane
and vertical motions of the driven dot), the inhomogene-
ity of the AC drive field (that squeezes the dot dynami-
cally), and the inhomogeneous strain fields [45] induced
by the thermal contraction of the metal gates upon cool-
down (that modulate the g-tensor of the driven dot).

It is yet unclear whether the simplest Luttinger-Kohn
(LK) Hamiltonian [3, 30, 31] used to model the HH/LH
manifold [38, 44, 46–49] catches all linear-in-momentum
SOIs that could help to drive spin qubits under in-plane
magnetic fields. Indeed, this Hamiltonian is usually more
symmetric in nanostructures than the atomic lattice and
may, therefore, miss some of the emerging interactions.
Also, the HH/LH manifold can mix with remote bands,
which, while much farther, may bring sizable correc-
tions to the effective SOIs. In particular, Refs. [50, 51]
have highlighted with atomistic pseudo-potential calcu-
lations the existence of a linear-in-momentum SOI (pri-
marily interpreted as a Rashba-type interaction) in 2D
heterostructures. This linear SOI is not captured by the
LK model but is much stronger than the cubic Rashba
SOI in the range k ∼ π/d relevant for quantum dots with
diameters d ≳ 50 nm [52]. These calculations were, how-
ever, performed on heavily strained Ge/Si superlattices
instead of Ge/GeSi superlattices.

In this work, we perform atomistic tight-binding (TB)
calculations on the Ge/Ge0.8Si0.2 superlattices used in
the recent experiments on Ge spin qubits [10, 19, 26, 27].
We indeed evidence the existence of a significant linear-
in-momentum SOI in these 2D heterostructures. We
show, however, that it is actually dominated by a
Dresselhaus-type interaction resulting from symmetry
breaking by the Ge/GeSi interfaces (interface inversion
asymmetry or IIA [3, 53–55]). This Dresselhaus SOI
is highly dependent on the quality of these interfaces
and disappears once they get interdiffused over a few
monolayers. It results from peculiar HH-LH mixings
and can thus be captured by a suitable correction to the
LK Hamiltonian [3, 56, 57]. This correction also inter-
feres with the Zeeman Hamiltonian of the hole and thus
slightly shifts the in-plane g-factors of the quantum dots.
The Dresselhaus SOI goes along with a much smaller lin-

ear Rashba SOI that is independent on the status of the
interfaces and results from mixings between the HH/LH
manifold and the remote conduction bands allowed by
the global structural inversion asymmetry (SIA) of the
heterostructure [3].

We review spin-orbit interactions in a 2D heavy-hole
gas in section II, then discuss the TB calculations in sec-
tion III, the nature of the SOIs and their description in
the LK Hamiltonian in section IV, and finally draw con-
clusions for Ge/SiGe spin qubits in section V.

II. SPIN-ORBIT INTERACTIONS IN A 2D
HEAVY-HOLE GAS

In bulk Germanium, the Bloch functions of the six top-
most valence bands are, in the simplest TB approxima-
tion, bonding combinations of the atomic 4p orbitals with
angular momentum ℓ = 1 and spin s = 1

2 [3, 30, 31].
These Bloch functions are mixed by the atomic spin-
orbit interaction Hso ∝ L · S, where L and S are the
orbital and spin angular momenta, respectively. They
are consequently split into a quadruplet and a doublet,
which can be mapped respectively onto the J = 3

2

and J = 1
2 eigenstates of the total angular momentum

J = L + S. Choosing z = [001] as the quantization axis,
the |J = 3

2 , Jz = ± 3
2 ⟩ Bloch functions give rise to “heavy-

hole” (HH) bands along z, while the |J = 3
2 , Jz = ± 1

2 ⟩
Bloch functions give rise to “light-hole” (LH) bands.

The electronic properties of a Ge/GeSi quantum well
grown along z = [001] can be characterized by its sub-
band structure En(k), where k ≡ (kx, ky) is the wave vec-
tor in the (x = [100], y = [010]) plane. The two topmost
valence subbands at k = 0 are pure |J = 3

2 , Jz = ± 3
2 ⟩

states due to the heavier HH mass. This remains so in ho-
mogeneous, compressive biaxial strains εxx = εyy = ε∥ <
0, εzz = ε⊥ > 0 that further promote heavy holes. These
subbands are twofold degenerate at Γ owing to time re-
versal symmetry (Kramers’ degeneracy). However, they
may be non-degenerate at finite k as a result of spin-orbit
coupling.

We label |0,± 3
2 ⟩ the confined Bloch functions of the

topmost HH subbands at k = 0. These subbands can be
generally described by an effective Hamiltonian acting in
the {|0,+ 3

2 ⟩, |0,− 3
2 ⟩} subspace [3]:

Heff(k) = ε(k)I + η1(k)σ1 + η2(k)σ2 + η3(k)σ3 , (1)

where σi are the Pauli matrices. The eigenenergies E±(k)
of this Hamiltonian are:

E±(k) = ε(k) ±
√
η21(k) + η22(k) + η23(k) , (2)

so that the spin splitting is:

∆E(k) = 2
√
η21(k) + η22(k) + η23(k) . (3)

The functions ηi(k) can be computed numerically from,
e.g., a TB calculation (see section III) or analytically (to
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Mx′ My′ C2z C4z C2x C2y I
x′ −x′ x′ −x′ y′ −y′ y′ −x′

y′ y′ −y′ −y′ −x′ −x′ x′ −y′

σ1 σ1 −σ1 −σ1 −σ2 σ2 −σ2 σ1

σ2 −σ2 σ2 −σ2 σ1 σ1 −σ1 σ2

σ3 −σ3 −σ3 σ3 σ3 −σ3 −σ3 σ3

TABLE I. Effects of different symmetry operations on the real
and reciprocal space vectors x′ ∥ [110] and y′ ∥ [110], and on
the Pauli matrices σi of 3

2
spins: the mirrors Mx′ and My′

orthogonal to x′ and y′, the π (C2z) and π/2 (C4z) rotations
around the z axis, the π rotations C2x and C2y around x and
y, and the inversion I. We emphasize that this table only
holds for an appropriate choice of phase for the |0,± 3

2
⟩ Bloch

functions; other choices lead to different forms for Eq. (1) [see,
e.g., Eqs. (7) and (9)], but to the same physics anyhow, as the
resulting Hamiltonians differ by an unitary transform.

some order in k) from perturbation theory (see section
IV). Since time-reversal symmetry transforms k into −k,
and σi into −σi, ε(k) must be an even function of k while
the ηi(k)’s must be odd. They can thus be expanded in
powers of the wave vector as:

ηi(k) =
∑

u∈{x,y}

αi,uku+
∑

u,v,w∈{x,y}

βi,uvwkukvkw+... (4)

The patterns of non-zero coefficients αi,u and βi,uvw are
ruled by the spatial symmetries that leave the Hamilto-
nian invariant.

We shall forget in a first place about the disordered
nature of the GeSi alloy and treat it as a homogeneous
material. The point group of a heterostructure with an
even number of Ge monolayers (MLs) and atomically flat
interfaces is D2h, which is centrosymmetric [58, 59]. The
point group of a heterostructure with an odd number of
Ge MLs is D2d; under a homogeneous vertical electric
field Ez, the symmetry is lowered to C2v in both cases:
the system is only invariant by a π rotation C2z around
the z axis, and by the mirrors Mx′ and My′ orthogonal
to x′ = [110] and y′ = [110]. The phase of the |0,± 3

2 ⟩
basis functions can then be chosen so that the σi matrices
transform as in Table I under the different symmetry
operations (also see Appendix A). We first emphasize
that no symmetry-invariant Hamiltonian like Eq. (4) can
be built in a centrosymmetric group as k → −k but σi →
σi under inversion. Therefore, there is no spin splitting in
the D2h group (even number of Ge MLs without vertical
electric field) [3]. In the C2v group, the following linear-
in-k Hamiltonian is invariant under the C2z, Mx′ and
My′ operations:

H
(1)
eff (k) = α1,y′ky′σ′

1 + α2,x′kx′σ′
2 , (5)

as well as the following cubic-in-k Hamiltonian:

H
(3)
eff (k) = β1,y′y′y′k3y′σ′

1 + β2,x′x′x′k3x′σ′
2

+ β1,x′y′x′kx′ky′kx′σ′
1

+ β2,y′x′y′ky′kx′ky′σ′
2 . (6)

We have primed all Pauli matrices to highlight the par-
ticular choice of |0,± 3

2 ⟩ basis functions. We can alterna-
tively write the above invariants as a function of kx and
ky:

H
(1)
eff (k) = αD(kxσ1 + kyσ2) + αR(kxσ2 + kyσ1) , (7)

where:

αD =
1

2
(α1,y′ − α2,x′) (8a)

αR = −1

2
(α1,y′ + α2,x′) . (8b)

The first ∝ αD term is the Dresselhaus-type interaction
for 3

2 spins, and the second ∝ αR one is the Rashba-type

interaction [60]. We emphasize that the |0,± 3
2 ⟩ basis

functions have also been rotated by −π/4 around z when
going from Eq. (5) to Eq. (7) (which amounts to a dif-
ferent phase choice, see Appendix A). The σ1,2 and σ′

1,2

matrices act, therefore, on different basis sets of the same
subspace. We can likewise transform the cubic Hamilto-
nian:

H
(3)
eff (k) = β′

D(k3xσ1 + k3yσ2) + β′
R(k3xσ2 + k3yσ1)

+ βD(kykxkyσ1 + kxkykxσ2)

+ βR(kykxkyσ2 + kxkykxσ1) , (9)

with:

β′
D =

1

4
(β1,y′y′y′ − β2,x′x′x′ + β1,x′y′x′ − β2,y′x′y′)

(10a)

β′
R = −1

4
(β1,y′y′y′ + β2,x′x′x′ + β1,x′y′x′ + β2,y′x′y′)

(10b)

βD =
1

4
(3β1,y′y′y′ − 3β2,x′x′x′ − β1,x′y′x′ + β2,y′x′y′)

(10c)

βR = −1

4
(3β1,y′y′y′ + 3β2,x′x′x′ − β1,x′y′x′ − β2,y′x′y′) ,

(10d)

the corresponding cubic Dresselhaus and Rashba coeffi-
cients. We would like to emphasize that there are addi-
tional symmetry operations (C2x and C2y axes in the D2d

group) that impose αR = βR = β′
R = 0 when Ez = 0.

We conclude from Eqs. (5) and (6) that the effective
spin-orbit Hamiltonian of the topmost HH subbands can
be completely characterized up to third-order in k by
the subband structure along x′ = [110], y′ = [110], and
x = [100].

In the simplest, minimal k · p theory, the heavy and
light holes are described by the four bands Luttinger-
Kohn Hamiltonian (see section IV) [3, 30, 31]. The latter

gives rise to a “cubic Rashba” contribution to H
(3)
eff (k) as

a result of HH/LH mixings at k ̸= 0 [17, 32–34]. It does
not, however, bring forth a linear-in-k spin-orbit inter-

action H
(1)
eff (k) in planar heterostructures. We evidence
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FIG. 1. (a) Supercell of a (Ge)112/(Ge0.8Si0.2)56 superlattice
with 112 MLs (≈ 15.8 nm) thick Ge wells separated by 56
MLs (≈ 7.9 nm) thick Ge0.8Si0.2 barriers. Only the silicon
atoms are shown for clarity. The structure is periodic in all
directions. The in-plane side of the unit cell is L = 15L0 =
6nm. (b) Probability of presence of the hole on each atom,
at vertical electric field Ez = 3mV/nm.

below with TB calculations that this interaction exists
nonetheless and further explore its nature in section IV.
We discuss its role in Ge spin-orbit qubits in section V.

Beforehand, we would like to discuss the role of alloy
disorder in this problem. Strictly speaking, a GeSi al-
loy is a disordered material with no atomistic symmetry.
Nonetheless, the alloy has on average (and on the macro-
scopic scale relevant when |k| → 0) the same diamond-
like symmetry as pure silicon and germanium. There-
fore, the above symmetry analysis holds for the average
ηi(k)’s computed in large “supercells” with side L ≫ a
in the (xy) plane (with a = 5.658 Å the lattice parameter
of Ge). We will address below how the ηi(k)’s converge
with increasing L.

III. TIGHT-BINDING CALCULATIONS IN
GE/GESI HETEROSTRUCTURES

A. Methodology

The band structure of Ge/Ge0.8Si0.2 superlattices is
computed with a nearest-neighbor sp3d5s∗ TB model [61]
that accounts for strains and reproduces the valence and
conduction bands of Ge and Si over the whole first Bril-
louin zone [62]. The superlattices comprise NGe = 112
MLs (≈ 15.8 nm) thick Ge wells separated by 56 MLs
(≈ 7.9 nm) thick Ge0.8Si0.2 barriers. The Ge0.8Si0.2 al-
loy is either modeled as a random distribution (RD) of
Ge and Si atoms (Fig. 1) or as a virtual crystal (VC).
This VC is a diamond-like material with a single kind of
atom whose TB parameters are the appropriate averages
of those of Si and Ge [63]. As such a VC does not break
translational symmetry in the (xy) plane, the band struc-
ture can be directly computed in the minimal, primitive
unit cell with unstrained side L0 = a/

√
2 along x′ = [110]

and y′ = [110]. Conversely, RD calculations are run in
much larger unit cells with sides up to L = 41L0 and
must be averaged over a few tens of realizations of the
alloy. The VC unit cell hence contains 168 atoms, while
the largest RD unit cell contains 282 408 atoms.

In line with Ref. [38, 44, 64], we assume that the
superlattice is grown on a thick Ge0.8Si0.2 buffer with
a residual tensile in-plane strain εxx = εyy = 0.26%.
The average in-plane strain in the Ge film is therefore
εxx = εyy = ε∥ = −0.63% [44]. The atomic positions
in the whole superlattice are relaxed with Keating’s va-
lence force field [62, 65]. A sawtooth electric potential
can be applied to the superlattice, characterized by a
vertical electric field Ez in the Ge well and −2Ez in the
Ge0.8Si0.2 barrier.

We compute the superlattice band structure on a path
from ky′ = 0.01 Å−1 to Γ then to kx′ = 0.01 Å−1, and on

a path from Γ to kx = 0.01 Å−1, and monitor the split-
ting ∆E(k) = E+(k) − E−(k) between the two topmost
valence bands. This splitting is not, however, sufficient
to de-embed the different ηi’s in Eq. (2). Therefore, we
reconstruct the effective Hamiltonian, Eq. (1), from the
projections of the TB wave functions Ψ+(k) and Ψ−(k)
on the |0,+ 3

2 ⟩ and |0,− 3
2 ⟩ Bloch functions at Γ. For that

purpose, we couple a small magnetic field Bz to the phys-
ical spin in order to split (and identify) the |0,+ 3

2 ⟩ and

|0,− 3
2 ⟩ states at k = 0 [66]. We next choose the phase

of the calculated |0,+ 3
2 ⟩ and |0,− 3

2 ⟩ Bloch functions so
that the Pauli matrices transform as close as possible to
Table I under the symmetry operations of the C2v group
(given that a perfect match is not possible in a RD al-
loy as the latter has an average macroscopic, but not
an atomistic C2v symmetry). We finally introduce the
projection matrix

P (k) =

(〈
0,+ 3

2

∣∣Ψ+(k)
〉 〈

0,+ 3
2

∣∣Ψ−(k)
〉〈

0,− 3
2

∣∣Ψ+(k)
〉 〈

0,− 3
2

∣∣Ψ−(k)
〉) . (11)

The effective Hamiltonian in the {|0,+ 3
2 ⟩, |0,− 3

2 ⟩} basis
set is then

Heff(k) = P (k)

(
E+(k) 0

0 E−(k)

)
P (k)† , (12)

which can be uniquely decomposed as Eq. (1). We em-
phasize that the P (k) matrix is not strictly unitary as
{Ψ+(k),Ψ−(k)} admix remote band contributions when
k = |k| increases; however, |P †(k)P (k)−I| remains typi-
cally smaller than 0.025 in the investigated k vector range
(and so is the relative error on the extracted ηi’s).

B. Results

As an example, we plot in Fig. 2 the ηi’s computed
along the path ky′ = 0.01 Å−1 → Γ → kx′ = 0.01 Å−1.
The unit cell size is L = 32L0 and the vertical electric
field is Ez = 3 mV/nm. The ηi’s are averaged over 70
realizations of the RD alloy. As expected from section
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FIG. 2. The functions η1,2(k) [Eq. (1)] computed with the
TB model in the (Ge)112/(Ge0.8Si0.2)56 superlattice, along a
path from ky′ = 0.1 Å−1 to Γ then to kx′ = 0.1 Å−1. The
unit cell size is L = 32L0 and the vertical electric field is
Ez = 3mV/nm. The ηi(k)’s are averaged over 70 realizations
of the RD alloy.

II, only η1 is sizable along [110], and only η2 is sizable
along [110] (η3, not displayed on Fig. 2, is negligible in
both directions). The effective spin Hamiltonian reads
therefore:

Heff(k) = η1(ky′)σ′
1 + η2(kx′)σ′

2 . (13)

We next fit η1 and η2 with a fifth-order polynomial ac-
counting for linear, cubic, and residual higher-order in k
spin-orbit interactions:

η1(ky′) = α1,y′ky′ + β1,y′y′y′k3y′ + γ1k
5
y′ (14a)

η2(kx′) = α2,x′kx′ + β2,x′x′x′k3x′ + γ2k
5
x′ . (14b)

The γ’s make sizable contributions only at large k and
are therefore little relevant in large quantum dots. The
values of the linear coefficients α1,y′ and α2,x′ are plotted
as a function of the unit cell side L in Fig. 3a. The fits
on the average ηi’s (dots) are reported along with the
standard deviation on each single realization of the RD
alloy (error bars). The horizontal dashed lines are the
α’s obtained in the VC approximation (that are inde-
pendent on L). Although the different realizations of the
RD alloy are still scattered at L = 41L0 = 16.4 nm, the
average α’s are reasonably well converged and match the
VC data. Similar convergence is reached for the cubic co-
efficients β (Fig. 3b), but the VC approximation performs
slightly worse (possibly because cubic interactions probe
larger k/shorter wavelengths and are thus more sensi-
tive to alloy disorder in the barriers). We conclude from
these plots that alloy disorder may significantly scatter
the spin-orbit parameters of small quantum dots with di-
ameters d ≲ 20 nm; yet for practical quantum dots with
diameters d ≳ 50 nm, the VC approximation provides a
reliable description of spin-orbit splittings, especially at
first-order in k.

The linear Rashba and Dresselhaus coefficients αR and
αD calculated in the VC approximation are plotted as a

−4

−2

0

2

4

α
i,
u

(m
eV

Å
)

(a)

α1,y′ α2,x′

0 10 20 30 40
L/L0

−20

−10

0
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20

β
i,
u
v
w

(e
V

Å
3
)

(b)

β1,y′y′y′

β1,x′y′x′

β2,x′x′x′

β2,y′x′y′

FIG. 3. (a) The linear coefficients α1,y′ and α2,x′ [Eq. (5)]
computed in the (Ge)112/(Ge0.8Si0.2)56 superlattices as a
function of the supercell side L (Ez = 3mV/nm). The dots
are the α’s fitted to the band structure averaged over 70 re-
alizations of the RD alloy. The error bars are the standard
deviation of the α’s fitted to each single realization. The hor-
izontal dashed lines are the α’s computed in the VC approxi-
mation. (b) Same for the cubic coefficients β1,y′y′y′ , β2,x′x′x′ ,
β1,x′y′x′ , and β2,y′x′y′ . The latter two are extracted on the
path from Γ to kx = 0.01 Å−1.

function the vertical electric field Ez in Fig. 4a, and the
β’s are plotted in Fig. 4b. The α’s first increase lin-
early with Ez, then αD bends. Indeed, they must both
tend to zero when Ez → 0 as the inversion symmetry
is restored (on average in the alloy). The inflection of
αD at large Ez results from an increase of the HH/LH
band gap discussed in more detail in section IV. The β’s
also tend to zero when Ez → 0 but show a more com-
plex behavior. They highlight the prevalence of cubic
Rashba interactions (the Dresselhaus components being
non-zero but negligible on the scale of Fig. 4b). This
is qualitatively consistent with the known existence of
a cubic Rashba SOI due to HH/LH mixings by vertical
confinement in [001] heterostructures [17, 33, 34]. These
interactions will be discussed more quantitatively in sec-
tion IV. We also plot on Fig. 5 the α’s computed in a
superlattice with NGe = 111 instead of NGe = 112 Ge
MLs. For such an odd number of MLs, the system lacks
inversion symmetry down to Ez = 0 so that αD does not
vanish. It matches however the 112 MLs data at large Ez

where electrical confinement prevails over structural con-
finement (the hole getting squeezed at the top interface,
see Fig. 1). The linear Rashba coefficient αR is, on the
other hand, almost insensitive to the parity of NGe (and
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FIG. 4. (a) Linear [Eq. (7)] and (b) cubic [Eq. (9)] Rashba
and Dresselhaus coefficients as a function of the vertical
electric field Ez, computed in the VC approximation in a
(Ge)112/(Ge0.8Si0.2)56 superlattice.
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FIG. 5. Linear Rashba and Dresselhaus coefficients [Eq. (7)]
as a function of the vertical electric field Ez, computed
in the VC approximation in (Ge)112/(Ge0.8Si0.2)56 and
(Ge)111/(Ge0.8Si0.2)56 superlattices.

is still zero when Ez = 0, as expected from section II).
The cubic Rashba coefficients (not shown) are, likewise,
little dependent on the parity of NGe, while for odd NGe

the cubic Dresselhaus coefficients remain non-zero (but
negligible) when Ez → 0.

The TB calculations therefore highlight the existence
of a linear-in-k spin-orbit interaction in the Ge films, as
already evidenced in Refs. [50, 51]. There are, nonethe-
less, two major differences with these works. First, we ac-
count for realistic GeSi alloys (either as RDs or as VCs),

whereas Refs. [50, 51] considered pure Ge/Si superlat-
tices where the spin-orbit interactions are expected to
be different (since the confinement is sharper). Second,
we find that the spin-orbit coefficients α1,y′ (along [110])
and α2,x′ (along [110]) differ in both magnitude and sign,
as allowed by the symmetry analysis of section II. Ac-
cording to Eqs. (7), such a SOI can be interpreted in
the cubic axes as a dominant Dresselhaus-type interac-
tion with coefficient αD = (α1,y′ − α2,x′)/2, along with
a much smaller Rashba-type interaction with coefficient
αR = −(α1,y′ + α2,x′)/2. The spin splittings calculated
in Ref. [50] were, on the opposite, primarily interpreted
as the fingerprints of a Rashba interaction. However, as
discussed in section III, the spin splittings are not neces-
sarily sufficient to determine the nature of the SOI and
shall be seconded with an analysis of the wave functions
along the lines of Eqs. (11)–(12). For comparison, we
model the (Ge)40/(Si)20 superlattice of Ref. [50] in Ap-
pendix B and recover the same qualitative results (but
a stronger linear-in-k SOI) that we can unambiguously
assign to a Dresselhaus-type interaction. We have also
benchmarked TB against ab initio calculations, achiev-
ing reasonable agreement on the linear Dresselhaus coef-
ficient (see Appendix C).

C. Role of interfaces and interdiffusion

The strong asymmetry between the [110] and [110]
axes underlying the Dresselhaus interaction can be re-
lated to symmetry breaking by the Ge/GeSi interfaces
(IIA) [3, 54, 57]. Indeed, at such an interface, the in-
plane projection of all bonds from the Ge well to the GeSi
barrier are oriented either along [110] or along [110]. The
orientation changes each time a ML of Ge is added at the
interface. The coefficients α1,y′ and α2,x′ actually swap
(and thus αD changes sign) when the whole Ge well is
shifted up or down by one ML. In Ge wells with an even
(odd) number of MLs, the orientation of the bonds is the
same (is different) at the two interfaces, whose effects
thus add up (cancel each other).

The difference between α1,y′ and α2,x′ shall thus aver-
age out if the interfaces between Ge and GeSi are strongly
enough interdiffused. Actually, the symmetry of the het-
erostructure is then promoted to C4v, which contains a
fourfold rotation axis around z. This additional sym-
metry operation imposes α1,y′ = α2,x′ according to Ta-
ble I. The resulting SOI shall therefore appear as a pure
Rashba-type interaction in the cubic axis set.

To highlight this trend, we have computed the TB
band structures of interdiffused RD alloys. For that pur-
pose, we start from the previous structures with sharp
Ge/GeSi interfaces, then randomly swap M pairs of
nearest-neighbor atoms in the supercell. The strength
of the interdiffusion is hence controlled by the ratio
f = M/N between M and the total number of atoms
N in the supercell. The resulting Si concentration pro-
files near the top interface, averaged over 70 realizations
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FIG. 7. Linear Rashba and Dresselhaus coefficients [Eq. (7)]
computed in (Ge)112/(Ge0.8Si0.2)56 superlattices as a function
of the interdiffusion strength f , at vertical electric field Ez =
3 mV/nm. The data are computed in supercells with side
L = 32L0 and are averaged over 70 realizations of the RD
alloy.

of the alloy, are plotted in Fig. 6 for various f ’s. The
sharp step for f = 0 is smoothed over ≈ 6 MLs for
f = 1. The coefficients αD and αR computed with the
TB model are plotted as a function of f in Fig. 7 (at
vertical electric field Ez = 3 mV/nm). As expected,
α1,y′ → α2,x′ ≈ 0.31 meV Å as soon as f ≳ 1 so that
αD → 0. Moreover, the linear Rashba coefficient αR is
almost independent on f . This is further emphasized in
Fig. 8, which compares αR(f = 2) with αR(f = 0) as a
function of the vertical electric field Ez. Therefore, the
interdiffusion only suppresses the linear Dresselhaus SOI,
while the linear Rashba SOI appears unrelated to the in-
terfaces. We will further discuss its nature in the next
section. The same conclusions hold for the cubic Dres-
selhaus and Rashba components, which are respectively
suppressed and (almost) independent on the interdiffu-
sion strength.
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FIG. 8. The Rashba coefficient αR(f) in
(Ge)112/(Ge0.8Si0.2)56 superlattices as a function of the
vertical electric field Ez at f = 0 and f = 2. The data at
f = 2 are averaged over 20 realizations of the RD alloy, while
the data at f = 0 are computed in the VC.

IV. NATURE OF THE SPIN-ORBIT
INTERACTIONS AND k · p MODELS

In this section, we further discuss the nature of the
different spin-orbit interactions evidenced in the previ-
ous section and their description in the k · p approxima-
tion. We first introduce the four bands Luttinger-Kohn
Hamiltonian, then discuss the linear Dresselhaus interac-
tion, and finally the Rashba interactions.

A. The Luttinger-Kohn Hamiltonian

The Luttinger-Kohn k · p Hamiltonian provides the
simplest, minimal description of the HH/LH manifold of
diamond-like materials [3, 30, 31]. It reads in the basis
set of Jz = {+ 3

2 ,+
1
2 ,− 1

2 ,− 3
2} bulk Bloch functions at Γ:

HLK = −


P +Q −S R 0
−S† P −Q 0 R
R† 0 P −Q S
0 R† S† P +Q

 , (15)

where:

P =
ℏ2

2m0
γ1(k2x + k2y + k2z) (16a)

Q =
ℏ2

2m0
γ2(k2x + k2y − 2k2z) (16b)

R =
ℏ2

2m0

√
3
[
−γ2(k2x − k2y) + 2iγ3kxky

]
(16c)

S =
ℏ2

2m0
2
√

3γ3(kx − iky)kz , (16d)

with γ1, γ2 and γ3 the Luttinger parameters that char-
acterize the mass of the holes (γ1 = 13.38, γ2 = 4.24
and γ3 = 5.69 in Ge). In biaxial strains εxx = εyy = ε∥,
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εzz = ε⊥, the HH are further split from the LH Bloch
functions by the transformation:

Q→ Q− bv(ε∥ − ε⊥) , (17)

where bv is the uniaxial deformation potential of the va-
lence bands (bv = −2.16 eV in Ge). In the present cal-
culations, ε∥ = −0.63% and ε⊥ = 0.47% in the Ge well
[67].

In Ge/GeSi planar heterostructures, the confined hole
wave functions are described by a set of four HH/LH
envelopes that fulfill the set of differential equations ob-
tained by substituting kz → −i ∂

∂z in Eq. (15) [31, 68].
There are, therefore, no explicit relations to the atomic
lattice in this envelope functions approximation, so that
the LK Hamiltonian is usually more symmetric than ex-
pected. As shown below, the main features evidenced
in section III can nonetheless be captured with simple
corrections to the LK Hamiltonian.

In a finite magnetic field B, the Jz =
{+ 3

2 ,+
1
2 ,− 1

2 ,− 3
2} Bloch functions are also split

and mixed by the Zeeman Hamiltonian:

HZ = −2µB(κB · J + qB · J3) , (18)

with J the spin 3
2 operator, J3 ≡ (J3

x , J
3
y , J

3
z ), µB the

Bohr magneton, and κ, q the isotropic and cubic Zeeman
parameters (κ = 3.41 and q = 0.06 in Ge). The action
of B on the envelopes of the hole is accounted for by the
substitution k → −i∇+eA/ℏ in HLK, with A = 1

2B×r
the magnetic vector potential.

B. The linear Dresselhaus interaction

As discussed in section III C, the linear Dresselhaus
interaction is strongly dependent on the steepness of the
Ge/GeSi interfaces. It arises primarily from HH/LH mix-
ings induced by the change of Bloch functions at these
interfaces.

The effects of an abrupt interface at z = z0 on the J =
3
2 manifold can actually be described by the following
correction to the LK Hamiltonian [3, 56, 57]:

Hint = sint
icint

2
√

3
δ(z − z0)

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , (19)

where cint is the coupling strength (in eV Å) and sint =
±1 changes sign every time the interface is shifted by one
ML. This interface Hamiltonian lowers the symmetry of
the original LK Hamiltonian.

The effect of Hint on the band structure of the film
can be qualitatively captured by a Schrieffer-Wolff (SW)
transformation. Let us introduce the pure HH subband
states |n,± 3

2 ⟩ at k = 0, with energies EHH
n , and the pure

LH subband states |n,± 1
2 ⟩, with energies ELH

n . The R
and S terms of the LK Hamiltonian as well as Hint mix
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FIG. 9. Comparison between the TB and LK Dresselhaus
coefficients αD computed as a function of the vertical electric
field Ez in ≈ 15.9 nm thick Ge films with even/odd number
of MLs embedded in Ge0.8Si0.2 barriers.

these pure HH and LH states at finite k; the effective
Hamiltonian in the {|0,+ 3

2 ⟩, |0,− 3
2 ⟩} subspace reads to

second order in these perturbations:

Hhh′ =
∑

l=± 1
2 ,n

⟨0, h|Hc|n, l⟩⟨n, l|H ′
c|0, h′⟩

EHH
0 − ELH

n

, (20)

where h, h′ = ± 3
2 and Hc, H

′
c ∈ {R, S, Hint}. For the

sake of demonstration, we shall assume for now that the
Luttinger parameters are the same on both sides of the
interface, and that EHH

0 − ELH
n ≈ EHH

0 − ELH
0 = ∆LH

whatever n ≥ 0. Setting Hc = Hint and H ′
c = S (or

vice-versa) then yields, thanks to the closure relation∑
n⟨z|n, l⟩⟨n, l|z′⟩ = δ(z − z′):

H(k) = sint
γ3cint
∆LH

ℏ2

2m0

d

dz
|ψ0(z)|2

∣∣∣∣
z=z0

× (kxσ1 + kyσ2) , (21)

where ψ0(z) = ⟨z|0,± 3
2 ⟩ is the ground-state HH enve-

lope. Hint thus gives rise to a linear Dresselhaus inter-
action whose strength is proportional to cint and γ3, and
to the gradient of the probability of presence of the hole
at the interface. It is also inversely proportional to the
fundamental HH-LH band gap ∆LH. In a Ge well with
thickness LW at zero vertical electric field [37],

∆LH ≈ 2π2ℏ2γ2
m0L2

W

+ 2bv(ε∥ − ε⊥) , (22)

where the first term accounts for structural confinement
and the second one for strains. The interactions at the
two interfaces of the well add up if their sint are differ-
ent (odd number of Ge MLs), and cancel each other if
their sint are the same (even number of Ge MLs), as the
gradient of |ψ0(z)|2 is opposite at the top and bottom
interfaces when Ez = 0.

The value of cint can be fitted to the TB linear Dressel-
haus coefficient αD. For that purpose, we have modeled
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FIG. 10. Comparison between the TB and LK Dresselhaus
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of Ge films with odd number of MLs embedded in Ge0.8Si0.2
barriers. The vertical electric field is zero.

the same superlattice structures as in TB with a numer-
ical implementation of the four bands LK Hamiltonian
including Eq. (19) [69]. We use finite differences with
symmetric ordering for the derivatives at the Ge/GeSi
interface (e.g., γ2k

2
z → − ∂

∂zγ2
∂
∂z ) and discuss the alter-

native Burt-Foreman ordering [70–73] in Appendix D.
The resulting k · p band structures and spin splittings
are non perturbative and include, therefore, all orders
beyond Eq. (20). We reach good agreement at small elec-
tric fields Ez using cint = 55.9 meV Å (see Fig. 9). The
parameter sint is actually +1 (resp. −1) when the bonds
from Ge to GeSi project onto [110] (resp [110]). Note,
again, that αD thus changes sign each time the whole Ge
well is shifted up or down by one ML. The linear Dressel-
haus coefficient αD bends upwards at large Ez because
the increase of the gradient of |ψ0(z0)|2 is partly com-
pensated by the increase of the HH-LH band gap ∆LH

(the effective, electric width [37] of the well ℓE ∝ E
−1/3
z

becoming much smaller that its structural thickness LW

[74]). There is a small discrepancy between the k ·p and
TB αD’s at large Ez, which results from slightly different
responses to the electric field.

We also plot in Fig. 10 the αD’s computed at zero
electric field in Ge films with various odd numbers of
MLs. The TB trends are again very well reproduced by
the k · p calculations, which supports the relevance and
versatility of Eq. (19). We also emphasize that our model
is different from Ref. [50]. Indeed, Ref. [50] assumes some
interface-induced HH/LH mixing coefficients ai and bi
(that shall in principle depend on LW and Ez), whereas
we start from the Hamiltonian, Eq. (19), that gives rise
to these mixings (with an unique parameter cint that is
independent on LW and Ez).

We finally plot in Fig. 11 the value of cint computed
for different concentrations x of silicon in the Ge1−xSix
alloy. We assume that the heterostructures are grown on
a GeSi buffer with the same concentration and no resid-
ual in-plane strain (at variance with the former calcula-
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0.00
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n
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FIG. 11. The coupling strength cint [Eq. (19)] extracted from
TB VC calculations as a function of the concentration x of
silicon in the Ge1−xSix alloy. We assume that the heterostruc-
tures are grown on a GeSi buffer with the same concentration
and no residual in-plane strain.

tions). Therefore, only the Ge well is now strained. The
extracted cint(x = 0.2) = 55.5 meV Å remains nonethe-
less very close to the value cint = 55.9 meV Å obtained
previously with a residual in-plane strain ε∥ = 0.26%
in the buffer. The interface Hamiltonian Hint is, there-
fore, weakly dependent on strains, contrary to the HH-
LH band gap ∆LH. As expected, the coupling strength
cint increases almost linearly with the silicon fraction ex-
cept for small x for reasons likely similar to interdiffusion
(blurred interfaces).

When the interface gets interdiffused, Eq. (19) can still
be used with a rescaled cint. According to the TB cal-
culations, cint ≈ 0 once the interface is interdiffused over
more than 5 MLs.

C. The linear Rashba interaction

The linear Rashba interaction is independent on the
status of the Ge/GeSi interfaces and shows no satura-
tion with increasing Ez. Therefore, it arises most likely
from mixings between the valence and conduction bands
enabled by the structural inversion asymmetry (SIA) at
finite electric field. As a matter of fact, αR is little depen-
dent on strains, which rules out a direct HH/LH mixing
mechanism (whose strength would be ∝ 1/∆LH, hence be
primarily controlled by strains). In extended k·p models,
there are actually linear-in-k terms coupling the Γ8v/Γ7v

valence bands and the lowest Γ6c conduction bands; they
do not, however, give rise to a linear Rashba interaction
in the HH manifold of a planar heterostructure [3]. On
the other hand, couplings between the Γ8v/Γ7v valence
bands and the higher-lying Γ8c/Γ7c conduction bands
with the same symmetry do so at third-order in pertur-
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FIG. 12. Cubic [Eq. (9)] Rashba and Dresselhaus coefficients
as a function of the vertical electric field Ez, computed with
the LK Hamiltonian in a (Ge)112/(Ge0.8Si0.2)56 superlattice.

bation; the resulting linear Rashba coefficient reads [3]:

αR ≈ −eQ
2

3

(
1

E′2
0

− 1

(E′
0 + ∆′

0)2

)
Ez

≈ (−0.5 Å
2
)eEz , (23)

where E′
0 is the gap between the Γ8v valence bands and

the Γ7c conduction bands, ∆′
0 is the splitting between

the Γ8c and Γ7c conduction bands, and Q is an inter-
band momentum matrix element between the Γ8v/Γ7v

and Γ8c/Γ7c manifolds [3, 47, 75, 76]. This simple esti-
mate is half the slope of Fig. 4, but the correct order of
magnitude. Due to this remote nature, the linear Rashba
SOI can only be introduced in LK Hamiltonian as an ad-
hoc correction in the Jz = {+ 3

2 ,− 3
2} subspace:

H
(1)
R = αR(kxσ2 + kyσ1) , (24)

where αR must be tabulated as a function of the well
thickness and electric field with the TB calculations (see,
e.g., Fig. 8).

D. The cubic Rashba interaction

The admixture of HH and LH components by vertical
confinement is known to give rise to a cubic Rashba in-
teraction whose strength is, in a first approximation, pro-
portional to 1/∆LH [3, 17, 33, 34]. This contribution to
the cubic Rashba SOI is, therefore, captured by the LK
model. The cubic Rashba and Dresselhaus coefficients
of the LK model (Hint included) are plotted as a func-
tion of the vertical electric field Ez in Fig. 12. They are
computed non-perturbatively by fitting the ηi(k)’s ob-
tained from the diagonalization of the LK Hamiltonian
of the superlattice (same procedure as for the TB coeffi-
cients). They are in qualitative agreement with the TB
data (Fig. 4): the cubic Dresselhaus interactions (which
result from higher order contributions of Hint to the ef-
fective Hamiltonian) are negligible with respect to the

cubic Rashba interactions. Yet the TB βR is ≈ 2× larger
than the LK coefficient at high vertical electric field. The
LK βR also shows a “sweet spot” (zero) at small field
that does not exist in the TB data. This is particularly
relevant because the ∝ βR term of Eq. (9) is the only
cubic interaction contributing to the Rabi oscillations of
disk-shaped dots in the linear response regime [17, 34].
We also assign these discrepancies to the couplings be-
tween the HH/LH subspace and remote conduction and
valence bands [3, 47, 75, 76]. The inclusion of the split-
off, J = 1

2 valence bands only (6 bands, Dresselhaus-
Kipp-Kittel k · p model [77]) however lowers the cubic
Rashba coefficients at high field and further degrades the
comparison with TB data.

V. APPLICATION TO GE HOLE SPIN QUBITS

We now address the effects of the linear Rashba and
Dresselhaus interactions on the physics of Germanium
devices. The linear Dresselhaus interaction is likely dif-
ficult to detect in magneto-transport experiments that
probe the devices over long length scales [78–80], as it
will be averaged out by interface steps (or superseded
by the cubic Rashba at large Fermi wave vector [81]). It
may, however, survive at the scale of a quantum dot if in-
terdiffusion is locally limited. The interdiffusion lengths
reported in the literature are in fact pretty long [64, 82],
but it remains unclear how homogeneous and symmetric
(top/bottom interfaces) they are. We analyze, therefore,
the impact of the linear Rashba and Dresselhaus interac-
tions on the manipulation of Ge hole spin qubits in the
“best case” scenario (no interdiffusion) in order to assess
their maximal impact. We first remind the analytical ex-
pressions for the Rabi frequency in a simple model with
harmonic in-plane confinement potential. We compare,
in particular, the contributions of these interactions with
those of the g-TMR mechanisms discussed in Refs. [38]
and [44]. We then highlight that the effective interface
Hamiltonian, Eq. (19), also gives rise to g-factor correc-
tions. We finally support this analysis with numerical
simulations on a realistic structure.

A. Analytical estimates of the Rabi frequencies

We first consider a simple analytical model for a quan-
tum dot confined in a Ge/GeSi heterostructure by the
electric field from accumulation or depletion gates. We
assume a Ge well with thickness LW, a homogeneous ver-
tical electric field Ez, and a harmonic in-plane confine-
ment potential

V (x, y) = − ℏ2

2m∥r
4
∥

(x2 + y2) (25)

with m∥ the in-plane mass of the heavy holes. If the ver-
tical confinement is much stronger than the in-plane con-
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finement (r∥ ≫ LW), the ground-state is a HH pseudo-
spin doublet

{|⇑⟩ ≈ |φ0⟩|0,+ 3
2 ⟩, |⇓⟩ ≈ |φ0⟩|0,− 3

2 ⟩} , (26)

where φ0 is the eigenfunction of the 2D harmonic oscil-
lator:

φ0(x, y) =
1√
πr∥

exp

(
−x

2 + y2

2r2∥

)
. (27)

This doublet is split by a homogeneous magnetic field B
whose action in the {|⇑⟩, |⇓⟩} subspace can be described
by the effective Zeeman Hamiltonian

H̃Z = −1

2
µB(gxBxσ1 + gyByσ2 + gzBzσ3) (28)

with µB the Bohr magneton and gu the gyromagnetic
factors. For a pure HH in bulk Ge, gz = g⊥ = 6κ +
27q/2 = 21.3 and gx = −gy = g∥ = 3q = 0.18 from
Eq. (18). Vertical, lateral and magnetic confinements
however admix a small LH component into Eq. (26) and
decrease g⊥ down to ≈ 13.5 and g∥ down to ≈ 0.15 (LW =
16 nm, r∥ = 30 nm) [37, 44, 48]. The Larmor frequency of

the doublet is thus fL = ωL/(2π) = µB

√
g∥B

2
∥ + g⊥B2

z/h

with B∥ =
√
B2

x +B2
y .

A hole in the {|0,+ 3
2 ⟩, |0,− 3

2 ⟩} subbands is moreover
subject to Rashba and Dresselhaus SOIs. Leaving out
cubic interactions for now, the spin-orbit Hamiltonian

Hso =
αD

ℏ
(pxσ1 + pyσ2) +

αR

ℏ
(pxσ2 + pyσ1) (29)

couples the spin of the hole to its velocity; shaking the
dot as a whole with a homogeneous AC electric field
Ex = Eac cos(ωLt) resonant with the Larmor frequency
can thus give rise to Rabi oscillations.

We can find the Rabi frequency with a simplified
semi-classical treatment of the momentum operators in
Eq. (29). When driven, the dot moves by δx(t) =
δxac cos(ωLt), where δxac = eEacm∥r

4
∥/ℏ

2, and acquires

a classical momentum:

px(t) = m∥vx(t) = −m∥δxacωL sin(ωLt) . (30)

The effective time-dependent Hamiltonian for the {|⇑⟩, |⇓
⟩} doublet reads therefore:

H̃s = − 1

2
µB(g∥Bxσ1 − g∥Byσ2 + g⊥Bzσ3)

− 1

ℏ
m∥ωL(αDσ1 + αRσ2)δxac sin(ωLt) . (31)

We next introduce

Ω′ =
2

ℏ2
m∥ωLδxac

αD

αR

0

 (32)

as well as the unit vectors ω′ = Ω′/|Ω′| and ω =
µB(g∥Bx,−g∥By, g⊥Bz)/(ℏωL), so that

H̃s = −1

2
ℏωLσω − 1

2
ℏ|Ω′| sin(ωLt)σω′ (33)

with σu = uxσ1 + uyσ2 + uzσ3. We finally split Ω′ =
Ω′

∥ω + Ω′
⊥ into components parallel and perpendicular

to ω, and get:

H̃s = − 1

2
ℏ
[
ωL + Ω′

∥ sin(ωLt)
]
σω

− 1

2
ℏ|Ω′

⊥| sin(ωLt)σω′
⊥
, (34)

where ω′
⊥ is the unit vector along Ω′

⊥. In the rotating
wave approximation, the Rabi frequency at resonance is
then simply

fR =
1

4π
|Ω′

⊥| =
1

4π
|ω ×Ω′|

=
1

2πℏ3
m∥δxacµB

[
g2∥(αRBx + αDBy)2

+ g2⊥B
2
z (α2

R + α2
D)
]1/2

. (35)

This is the same result as the full quantum mechanical
treatment of Refs. [35, 40, 41]. Since g⊥ ≫ g∥, the Rabi
frequency at constant magnetic field strength B = |B|
has, in a first approximation, a ∝ Bz envelope (this ar-
gument also holds for cubic Rashba SOI, whose contri-
bution to the Rabi frequency also shows an approximate
∝ Bz envelope [44]). At constant Larmor frequency fL
on the other hand, the Rabi frequency for an in-plane
magnetic field oriented along the unit vector b = (bx, by)
is:

fR(bx, by) = fL
m∥

ℏ2
|αRbx + αDby|δxac , (36)

while for a magnetic field along z:

fR(B ∥ z) = fL
m∥

ℏ2
√
α2
R + α2

Dδxac . (37)

The Dresselhaus interaction does not contribute when
B ∥ x, while the Rashba interaction does not contribute

when B ∥ y (since H̃Z and Hso then share the same
pseudo-spin eigenvectors).

We can give estimates of fR for the devices mod-
eled in Refs. [38, 44] and reproduced in Fig. 13. We
focus on in-plane magnetic fields (Bz = 0), which
best decouple the heavy holes from hyperfine dephas-
ing noise. The quantum dot is shaped by the poten-
tial VC applied to the central C gate with all side gates
grounded. The hole is driven by opposite modulations
δVL = −δVR = (Vac/2) cosωLt on the L and R gates. For
a small bias VC = −40 mV, the vertical electric field is
Ez ≈ 0.25 mV/nm, the radius of the dot is r∥ ≈ 27 nm,
and δxac/Vac ≈ 0.85 nm/mV. From Figs. 8 and 9, we
estimate αD = −1.20 meV Å and αR = −0.029 meV Å
(assuming, as a best case scenario, an odd number of Ge
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FIG. 13. The hole spin qubit device. The Ge well (red) is
LW = 16nm thick, the upper Ge0.8Si0.2 barrier (light blue) is
LB = 50nm thick, the diameter of the C gate is d = 100 nm
and the gap with the side gates is s = 20 nm. All gates are
embedded in Al2O3, and are insulated from the heterostruc-
ture by 5 nm of this material. The substrate below the 150 nm
thick lower barrier acts as an effective back gate, which can
be used to tune independently the depth of the quantum dot
and the vertical electric field, but is grounded in the present
work. We assume, as in Ref. [64], that the Ge0.8Si0.2 bar-
riers are not fully relaxed, and experience residual in-plane
strain εxx = εyy = ε∥ = 0.26% and out-of-plane strain
εzz = ε⊥ = −0.19%. Consequently, the strains in the Ge
well are ε∥ = −0.63% and ε⊥ = 0.47%. The yellow contour is
the isodensity surface that encloses 90% of the ground-state
hole charge at VC = −40mV.

MLs with no interdiffusion). The mass of the holes, in-
ferred from the band structure, is m∥ = 0.077m0 (with
m0 the bare electron mass). At fL = 5 GHz, the Rabi
frequencies computed from Eq. (36) are thus

fR(B ∥ x) = 0.012 MHz/mV (38a)

fR(B ∥ y) = 0.52 MHz/mV . (38b)

They are normalized for a drive amplitude Vac = 1 mV.
These frequencies are rather small. In particular, the
Rashba interaction competes with the non-separability
(NS) mechanism discussed in Ref. [44] [fR(B ∥ x) ≈
4.5 MHz/mV], and more so with the strain-induced g-
TMR introduced in Ref. [38] [fR(B ∥ x) ≈ 60 MHz/mV].
It is, therefore negligible with respect to these two mech-
anisms. The Dresselhaus interaction, if not washed out
by interdiffusion, enables Rabi oscillations for B ∥ y,
where both the NS and strain-induced g-TMR are for-
bidden (at least in the LK model). As δxac ∝ 1/ω2

∥ ∝ r4∥,

the Rashba and Dresselhaus contributions to the Rabi
frequency scale as r4∥, while the NS contribution shows

a weak dependence on r∥ and may thus be overcome in
large dots. The strain-induced g-TMR does, however,
also scale close to r4∥, and can therefore hardly be out-

weighed by the linear Rashba and Dresselhaus interac-
tions.

At larger vertical electric field, αD and αR can in-
crease significantly. At the maximum electric field Ez =
3 mV/nm, above which the hole is pulled out from the
well to the surface of the heterostructure [83], αD =
−1.77 meV Å and αR = −0.34 meV Å, so that fR(B ∥
x) = 0.14 MHz/mV and fR(B ∥ y) = 0.76 MHz/mV
(fL = 5 GHz). They remain nonetheless negligible with
respect to strain-induced g-TMR.

To conclude this discussion, we would like to remind
that there exists other linear Rashba interactions not cap-
tured by the present atomistic calculations in planar sys-
tems. The first one is the direct linear Rashba interac-
tion specific to 1D systems such as nanowires [4, 5]. It
arises from HH/LH mixings by the R and S terms of the
LK Hamiltonian, and is therefore the 1D counterpart of
the cubic Rashba interaction in 2D heterostructures. It
is irrelevant in symmetric (disk-shaped) quantum dots,
but can be significant in elongated (“squeezed”) ones
that look more one-dimensional [35]. This direct Rashba
interaction is, however, sizable only when the small in-
plane axis of the dot is comparable to its thickness ℓE.
This condition is very stringent and difficult to achieve
in buried heterostructures. The dot can, in principle, be
squeezed by applying positive gate voltages on the L and
R (or B and T) gates of Fig. 13, but the hole gets pulled
out from the well and trapped at the GeSi/Al2O3 inter-
face [83] long before direct Rashba prevails over the NS
mechanism in all cases we have investigated up to now.
Inhomogeneous strains (due to process and cool down
stress for example) also give rise to a linear-in-momentum
SOI that can be much stronger than the present inter-
actions [38]. This strain-induced SOI is, nonetheless, it-
self superseded by strain-induced g-TMR under in-plane
magnetic fields. The g-TMR mechanisms thus generally
prevail over the linear Rashba and Dresselhaus interac-
tions when the magnetic field lies in the plane of the
heterostructure.

B. g-factor corrections

Besides the Dresselhaus interaction, the interface
Hamiltonian, Eq. (19), also gives rise to g-factor correc-
tions. This can be evidenced with the same Schrieffer-
Wolff transformation as in Eq. (20), now usingHc = Hint,
H ′

c = HZ or vice-versa. The resulting effective Hamilto-
nian is:

H =
sintcint
∆LH

|ψ0(z0)|2κµB (Byσ1 −Bxσ2) . (39)

Equation (28) can then be generalized as:

H̃Z = −1

2
µBσ · ĝB , (40)
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where σ = (σ1, σ2, σ3) and ĝ is the g-matrix or tensor:

ĝ =

g∥ −g⊗ 0
g⊗ −g∥ 0
0 0 g⊥

 (41)

with

g⊗ = 2κ
sintcint
∆LH

|ψ0(z0)|2 . (42)

The g-matrix is actually diagonal in the primed Pauli
matrices and coordinates introduced in section II:

H̃Z = −1

2
µB(gx′Bx′σ′

1 + gy′By′σ′
2 + g⊥Bzσ

′
3) , (43)

where:

gx′ = g⊗ − g∥ (44a)

gy′ = g⊗ + g∥ . (44b)

The principal magnetic axes of the dot are, therefore, x′,
y′, and z, and the principal g-factors gx′ and gy′ differ
in magnitude [43]. The g-factor correction g⊗ is propor-
tional to the probability of presence of the hole at the
interface. In a Ge well, the corrections at both inter-
faces add up if sint is the same (even number of MLs),
and cancel if sint is different (odd number of MLs). This
is, remarkably, the opposite trend as for the Dresselhaus
coefficient αD originating from the same Hint.

The sign and magnitude of the g-factor correction
hence depends critically on the number (even/odd) of Ge
MLs in the well, on the position of the well (the sign of
g⊗ changes each time the whole Ge well is shifted by one
ML), and on the degree of interdiffusion. We will further
estimate the strength of g⊗ with numerical simulations
in the next paragraph.

C. Numerical calculations

In order to make a more detailed assessment of the
effects of the different SOIs on Ge spin qubits, we have
performed comprehensive numerical simulations on the
device of Fig. 13. For that purpose, we solve Poisson’s
equation for the potential with a finite volumes method,
then compute the hole wave functions with a finite differ-
ences implementation of the LK model, and finally calcu-
late the Rabi frequencies with a numerical g-matrix for-
malism [43]. We only account for the linear Dresselhaus
SOI (with the interface Hamiltonian Hint) and leave out
the smaller linear Rashba interaction. We also assume for
the sake of simplicity that the strains are homogeneous
in the device (no additional SOIs due to inhomogeneous
cool-down strains [38]).

The Rabi frequencies calculated at VC = −40 mV are
displayed in Fig. 14 in two relevant limiting cases: an
ideal Ge well with abrupt interfaces and an even (first
row) or odd number of MLs (second row). They are

plotted as a function of the orientation of the magnetic
field characterized by the polar and azimuthal angles θ
and φ defined in Fig. 13. The hole is driven by opposite
modulations δVL = −δVR = (Vac/2) cosωLt on the L and
R gates as in section V A. In the linear response regime,
δxac ∝ Vac so that fR is proportional to both B and Vac
[see Eq. (35)]. The Rabi frequency is thus normalized
at constant magnetic field B = 1 T and drive amplitude
Vac = 1 mV in panels (a, d). Practically, many exper-
iments are however performed at constant Larmor fre-
quency fL rather than constant B. The Rabi frequency
at fL = 5 GHz is, therefore, also plotted in panels (b, e),
along with a line cut at θ = 90◦ (in-plane magnetic field)
in panels (c, f). The Rabi frequency computed without
interface correction (cint = 0) is also reported as a dotted
gray line in these two panels. The complete map of Rabi
frequency in that reference case can be found in Ref. [44].

In Fig. 14a, the sharp feature at θ = 90◦ is domi-
nated by the g-TMR NS mechanism arising from the
coupling between the in-plane and vertical motions of
the hole in the non-separable confinement potential and
drive field [44]. The out-of plane, ∝ Bz background
results from the linear Dresselhaus and cubic Rashba
SOIs. Their contributions are cut off in-plane by the
small g-factors gx and gy [see Eq. (35)]. The balance
between these two interactions can be assessed by com-
paring the Rabi frequencies along z at finite cint (linear
Dresselhaus plus cubic Rashba SOIs) and at cint = 0
(cubic Rashba SOI only). In the present case (even num-
ber of Ge MLs), αD is small because symmetry is bro-
ken only by the weak vertical electric field of the gates.
Yet the linear Dresselhaus interaction already outweighs
cubic Rashba SOI [fR(B ∥ z) = 1.96 MHz/mV/T at
cint = 55.9 meV Å vs fR(B ∥ z) = 0.61 MHz/mV/T at
cint = 0]. Using Eq. (35) along z and y we estimate
αD ≈ −0.19 meV Å, which would correspond to an av-
erage vertical electric field Ez = 0.29 mV/nm accord-
ing to Fig. 9, in line with the estimates of section V A.
The prevalence of linear Dresselhaus SOI is even more
striking for an odd number of Ge MLs (Fig. 14d), where
fR(B ∥ z) = 18.34 MHz/mV/T is ≈ 30 times larger than
for cubic Rashba SOI only (αD ≈ −1.20 meV Å as es-
timated in section V A). The in-plane g-TMR feature is
almost unchanged but becomes hardly visible on the scale
of Fig. 14d. If the interfaces are not too much interdif-
fused, the linear Dresselhaus interaction shall therefore
dominate over cubic Rashba SOI (although the LK model
may underestimate the latter).

Nonetheless, the linear Dresselhaus and cubic Rashba
SOIs remain far less efficient than the in-plane g-TMR
mechanisms at given Larmor frequency. Indeed, |B| must
be rapidly decreased once the magnetic field goes out
of plane since g⊥ ≫ g∥ (Fig. 14b,e). The line cuts of
panels (c, f) highlight the role of Hint on the in-plane
physics. For an odd number of Ge MLs, the whole plot
is shifted (with respect to cint = 0) by a small angle δφ
as a result of the interference between the NS mechanism
(with a ∝ cosφ dependence) and the linear Dresselhaus
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FIG. 14. (a) Rabi frequency fR as a function of the angles θ and φ of the magnetic field defined in Fig. 13, at constant magnetic
field strength B = 1 T and drive amplitude Vac = 1mV (VC = −40meV). (b) Same at constant Larmor frequency fL = 5GHz.
(c) Line cut of panel (b) at θ = 90◦ (solid blue line). The dotted gray line is the Rabi frequency computed at cint = 0, and the
vertical dashed lines highlight the maximum Rabi frequency. We have assumed perfect interfaces and an even number of Ge
MLs. (d, e, f) Same as (a, b, c) for an odd number of Ge MLs.

SOI (with a ∝ sinφ dependence). As a consequence, the
Rabi “sweet spot” (fR = 0) and the Rabi “hot spot”
(fR maximum) are moved away, respectively, from B ∥ y
and B ∥ x [fR(B ∥ y) = 0.44 MHz/mV, close to the
estimate of Eqs. (38)]. The shift δφ is negligible for an
even number of Ge MLs (αD being much smaller), yet
the whole plot is significantly skewed and the Rabi “hot
spot” displaced by en even larger δφmax. This now results
from the imbalance between the in-plane g-factors |gx′ |
and |gy′ | discussed in section V B. As a matter of fact,
|gx′ | = 0.131 ≈ |gy′ | = 0.128 for an odd number of Ge
MLs, but gx′ = −0.147 and gy′ = 0.113 for an even
number of Ge MLs. The magnetic field needed to reach
fL = 5 GHz is therefore larger at φ = +45◦ than at
φ = −45◦, and so is the Rabi frequency. The difference
|gx′ | − |gy′ |, although small, can be a significant fraction
of the in-plane g-factors and thus shift the Rabi hot spot
by |δφmax| > 10◦. The L/R/T/B gates may be rotated
by 45◦ in order to drive the dot along x′ = [110] and
best benefit from the smaller |gx′ |. Yet αD changes sign
each time the whole Ge well is shifted up or down by
one ML, which would give rise to significant device-to-
device variations of fR(B ∥ x′) (of the order of (|gx′ | −
|gy′ |)/(|gx′ | + |gy′ |) = ±13%. In the present set up (with
the side gates laid down along the {100} axes), the Rabi
frequency along x is independent on the status of the
Ge/GeSi interfaces since the Dresselhaus interaction SOI
does not give rise to Rabi oscillations for that orientation.

It is, however, non optimal (the hot spot being either on
the right or left of φ = 0 depending on the number of Ge
MLs and position of the interfaces).

In the presence of interdiffusion and/or interface steps,
the effective value of cint will be renormalized down. This
can give rise to a significant variability of the out-of-
plane Rabi frequencies [29], fR(B ∥ z) being expected
to range from about 0.6 MHz/mV/T at cint = 0 up to
18.34 MHz/mV/T at cint = 55.9 meV Å (Fig. 14d). The
in-plane Rabi frequencies will be far less affected, as evi-
denced by the solid blue and dotted gray lines of Figs. 14c
and 14f.

VI. CONCLUSIONS

To conclude, we have investigated the spin-orbit inter-
actions arising in the valence band of planar Ge/GeSi het-
erostructures with atomistic tight-binding calculations,
and we have discussed their impact on the operation of
Ge/GeSi spin qubits. We have shown, in particular, that
symmetry breaking by the Ge/GeSi interfaces gives rise
to a linear-in-momentum Dresselhaus-type SOI for heavy
holes. The strength αD of this interaction is strongly de-
pendent on the parity of the number of Ge monolayers
in the well, on its position (αD changes sign each time
the Ge well is shifted up or down by one monolayer),
and on the degree of interdiffusion of the Ge/GeSi inter-
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face(s). It is, indeed, almost completely suppressed when
the interfaces are interdiffused over more than 5 mono-
layers. Furthermore, the tight-binding calculations also
highlight the existence of a small linear Rashba-type SOI
on top of the usual cubic Rashba interaction. This linear
Rashba SOI is not related to the Ge/GeSi interfaces but
arises from the mixing between the HH/LH manifold and
the remote conduction bands allowed by the structural
inversion asymmetry of the heterostructure.

These linear-in-momentum spin-orbit interactions may
be leveraged to drive hole spin qubits. The Dresselhaus
component can actually be stronger than cubic Rashba
SOI and may dominate the physics of quasi-circular dots
under out-of-plane magnetic fields (provided the strains
are homogeneous [38]). It is possibly a significant source
of device-to-device variability given its sensitivity to the
status of the interfaces. When the magnetic field lies
in-plane (as is the case in most experiments), it how-
ever competes with g-tensor modulation resonance mech-
anisms that are usually more efficient (motion in non-
separable and inhomogeneous confinement potentials and
drive fields [44], motion in inhomogeneous strains [38]).
Nonetheless, the same interface-induced HH/LH mixings
that give rise to the linear Dresselhaus SOI also shift the
g-factors of the holes, possibly leaving visible fingerprints
in the in-plane properties. Interdiffused interfaces shall,
therefore, actually show less variability than sharp inter-
faces.

The Luttinger-Kohn, four bands k ·p Hamiltonian can
be corrected with interface terms that provide a reliable
description of the linear Dresselhaus interaction and of
the g-factor shifts. It still misses, nonetheless, the linear
Rashba SOI and underestimates the cubic Rashba SOI
(with respect to tight-binding). The Rashba interactions
do not, however, appear to dominate the physics of spin
qubit devices in most practical cases where the magnetic
field lies in-plane.

The spin-orbit interactions discussed in this work are
not specific to Ge/GeSi interfaces and may, in partic-
ular, be relevant for (sharp enough) Si/SiO2 interfaces.
While the contributions of the Si/SiO2 interfaces to the
spin-orbit interactions of electrons have been extensively
investigated [58, 59, 84–88], the case of holes remains un-
explored.

ACKNOWLEDGEMENTS

This work is supported by the French National Re-
search Agency under the programme “France 2030”
(PEPR PRESQUILE - ANR-22-PETQ-0002). JCAU is
supported by a fellowship from the Fundación General
CSIC’s ComFuturo programme which has received fund-
ing from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-
Curie grant agreement No. 101034263.

Appendix A: Spin 3
2
transformations

The |0,± 3
2 ⟩ states transform under the symmetry op-

erations as the bulk |J = 3
2 , Jz = ± 3

2 ⟩ Bloch functions
[3]:

|J = 3
2 , Jz = + 3

2 ⟩ = − 1√
2

(|X⟩ + i|Y ⟩) ⊗ |↑⟩ (A1a)

|J = 3
2 , Jz = − 3

2 ⟩ = +
1√
2

(|X⟩ − i|Y ⟩) ⊗ |↓⟩ , (A1b)

where |X⟩ and |Y ⟩ transform as the px and py orbitals
(or as the x and y coordinates). The physical spin S is
quantized along z, and the phase chosen so that Sx =
1
2ℏσ1, Sy = 1

2ℏσ2 and Sz = 1
2ℏσ3 in the {|↑⟩, |↓⟩} basis

set. The symmetry operations must be applied to both
the orbital and spin parts [3, 89], so that the 3

2 spins do

not necessarily transform like 1
2 spins although they are

routinely mapped onto an effective pseudospin.
We can alternatively work with the following |J =

3
2 , Jz = ± 3

2 ⟩′ Bloch functions:

|J = 3
2 , Jz = + 3

2 ⟩′ = −e
−i

π
8√

2
(|X ′⟩ + i|Y ′⟩) ⊗ |↑⟩

= e−i
3π
8 |J = 3

2 , Jz = + 3
2 ⟩ (A2a)

|J = 3
2 , Jz = − 3

2 ⟩′ = +
ei

π
8√
2

(|X ′⟩ − i|Y ′⟩) ⊗ |↓⟩

= ei
3π
8 |J = 3

2 , Jz = − 3
2 ⟩ , (A2b)

where |X ′⟩ and |Y ′⟩ now transform as px′ and py′ or-
bitals. In the |J = 3

2 , Jz = ± 3
2 ⟩′ basis set, the Pauli

matrices transform as in Table I, which leaves Eqs. (5)
and (6) as possible invariants. In the |J = 3

2 , Jz = ± 3
2 ⟩

basis set, the possible invariants are equivalently Eqs. (7)
and (9).

Appendix B: Case of a Ge/Si superlattice

We have benchmarked TB against the pseudo-
potential calculations of Ref. [50]. For that purpose,
we have simulated the same (Ge)40/(Si)20 superlattice
with pure Si barriers. The TB spin splitting computed
at Ez = 10 meV/nm is plotted along x = [100] in Fig. 15.
We find as Ref. [50] a significant linear-in-k splitting with
no sizable cubic correction. The slope α = 6.03 meV Å is,
however, twice larger than in Fig. 2b of Ref. [50]. More-
over, we can unambiguously deembed (with the method-
ology of section III) a dominant Dresselhaus SOI with
strength αD = −5.93 meV Å along with a smaller Rashba
SOI with strength αR = −1.12 meV Å.

Appendix C: Ab initio calculations

In order to consolidate the results, we have also bench-
marked TB against ab initio density functional theory
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FIG. 15. TB spin splitting computed along x = [100] in
a (Ge)40/(Si)20 superlattice at vertical electric field Ez =
10meV/nm.

FIG. 16. (a) DFT and TB spin splittings in a
(Si)19/(Ge)41/(Si)19 slab, along a path from ky′ = 0.1 Å−1

to Γ then to kx′ = 0.1 Å−1, at zero vertical electric field Ez.
(b) Spin splitting along the same path at Ez = 6 mV/nm.

(DFT) on test Ge/Si structures. The DFT calculations
are performed with the Vienna ab initio simulation pack-
age (VASP) [90–93], the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [94], an energy cut-off of
350 eV and a 8 × 8 × 1 k-points mesh.

We consider a (Si)19/(Ge)41/(Si)19 slab instead of a
superlattice as this eases the introduction of an electric
field in the DFT calculations. The dangling bonds at
the top and bottom surfaces of the slab are saturated
with hydrogen atoms in both DFT and TB calculations.
Also, the whole structure is hydrostatically strained to
the lattice parameter a = 5.579 Å in order to ensure a
finite band gap (bulk, unstrained Ge being a semi-metal

with PBE).
The DFT and TB spin splittings (computed with

the same assumptions) are compared along the ky′ =

0.01 Å−1 → Γ → kx′ = 0.01 Å−1 path in Fig. 16a. The
vertical electric field is zero. Therefore, these splittings
are expected to result from the linear and cubic Dressel-
haus SOI, and shall be safe against the underestimation
of the band gap by DFT. Fitting the spin splittings with

∆E(k) = 2α|k| + 2β|k|3 , (C1)

we find αDFT = 8.17 meV Å and βDFT = −10.25 eV Å3,
close to αTB = 9.38 meV Å and βTB = −8.33 eV Å3.
We conclude, therefore, that the TB model provides a
reliable description of the Dresselhaus SOI.

We also plot in Fig. 16b the same splittings at finite
electric field Ez = 6 mV/nm. The agreement remains
very good, although the DFT shows even stronger cubic
corrections than TB. This may, however, result from the
underestimation of the band gap by DFT, which shall
enhance the mixing with the remote conduction bands.

Appendix D: Boundary conditions at the Ge/GeSi
interfaces.

The Luttinger parameters γi are discontinuous at the
Ge/GeSi interface. The treatment of this discontinuity
in finite-difference codes depends on the choices made
to enforce hermiticity at the interfaces. The products
γikαkβ may be replaced by − 1

2 ( ∂
∂αγi

∂
∂β + ∂

∂β γi
∂
∂α ) (sym-

metric operator ordering), or by the Burt-Foreman (BF)
operator ordering scheme [70–73].

We have computed the spin splittings with both the
symmetric and the BF Luttinger-Kohn Hamiltonians.
We have also compared them with a “homogeneous” so-
lution where the Luttinger parameters in GeSi are the
same as in Ge (in which case BF and symmetric order-
ing are equivalent). First of all, the topmost valence
bands are almost indistinguishable on a few meV scale
in the symmetric and BF cases. The spin splittings of
the ground HH subband (on the few tens of µeV scale)
are however different. On the one hand, the linear Dres-
selhaus coefficient is barely dependent on the ordering.
On the other hand, the cubic Rashba coefficients almost
double with BF ordering. The BF coefficients are thus
more consistent with the TB data, but this agreement
looks fortuitous. Indeed, the enhancement of the BF co-
efficients is an interface effect as i) the symmetric and
BF Hamiltonians only differ at the interfaces, and ii) the
symmetric coefficients are almost the same as the homo-
geneous ones (which highlights that they primarily arise
from the bulk of the Ge well that hosts the hole). This is,
however, not backed up by the TB calculations. The TB
cubic Rashba coefficients are indeed little sensitive to in-
terdiffusion (which suggests again that they mostly arise
from the bulk of the materials). Moreover, this apparent
agreement is spoiled once the split-off bands are added to
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the model. A comprehensive assessment of cubic Rashba
interactions and boundary conditions at the interfaces

calls, therefore, for an extended k · p model including at
least the split-off and lowest conduction bands.
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F. Schäffler, J.-J. Zhang, and G. Katsaros, A germanium
hole spin qubit, Nature Communications 9, 3902 (2018).

[10] N. W. Hendrickx, W. I. L. Lawrie, L. Petit, A. Sammak,
G. Scappucci, and M. Veldhorst, A single-hole spin qubit,
Nature Communications 11, 3478 (2020).

[11] F. N. M. Froning, L. C. Camenzind, O. A. H. van der
Molen, A. Li, E. P. A. M. Bakkers, D. M. Zumbühl,
and F. R. Braakman, Ultrafast hole spin qubit with
gate-tunable spin–orbit switch functionality, Nature Nan-
otechnology 16, 308 (2021).

[12] K. Wang, G. Xu, F. Gao, H. Liu, R.-L. Ma, X. Zhang,
Z. Wang, G. Cao, T. Wang, J.-J. Zhang, D. Culcer,
X. Hu, H.-W. Jiang, H.-O. Li, G.-C. Guo, and G.-P. Guo,
Ultrafast coherent control of a hole spin qubit in a ger-
manium quantum dot, Nature Communications 13, 206
(2022).

[13] J. Fischer, W. A. Coish, D. V. Bulaev, and D. Loss, Spin
decoherence of a heavy hole coupled to nuclear spins in
a quantum dot, Physical Review B 78, 155329 (2008).

[14] V. Mazzocchi, P. Sennikov, A. Bulanov, M. Churbanov,
B. Bertrand, L. Hutin, J. Barnes, M. Drozdov, J. Hart-
mann, and M. Sanquer, 99.992% 28Si CVD-grown epi-
layer on 300 mm substrates for large scale integration
of silicon spin qubits, Journal of Crystal Growth 509, 1
(2019).

[15] O. Moutanabbir, S. Assali, A. Attiaoui, G. Daligou,
P. Daoust, P. D. Vecchio, S. Koelling, L. Luo, and

N. Rotaru, Nuclear spin-depleted, isotopically enriched
70Ge/28Si70Ge quantum wells, arXiv:2306.04052 (2023).
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