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Abstract. A novel sparse encoding algorithm is developed to detect and study
plasma instabilities automatically. This algorithm, called Elastic Random Mode
Decomposition, is applied to the Mirnov coil signals of a dataset of 1291
discharges of the TJ-II stellarator, enabling the identification of the Alfvénic
activity. In the presented approach, each signal is encoded as a collection of
basic waveforms called atoms, drawn from a signal’s dictionary. Then the modes
are identified using clustering and correlations with other plasma signals. The
performance of the proposed algorithm is dramatically increased by using elastic
net regularization and taking advantage of GPU architectures, hence the signal
size and the number of dictionary elements are no longer limiting factors for
encoding complex signals. Once the modes are retrieved from the shots, they
can be easily analyzed with standard clustering techniques, thereby describing
the physical mode characteristics of this subset of TJ-II shots. The clustering
features consider the relationship with the plasma current Ip, the diamagnetic
energy W , and inverse squared root electronic density 1/

√
n, profiling different

subtypes of Alfvénic activity. The proposed algorithm can potentially create large
databases of labeled modes with unprecedented detail.
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1. Introduction

Achieving self-sustained and controlled nuclear fusion
reactions for future energy production is one of the most
important and challenging problems to be solved in the
years to come. Both physics and engineering constraints
set the operational limits of future fusion reactors. From
the physical point of view, fulfilling the ignition condition
while maintaining the plasma equilibrium is not the only
requisite. The extreme conditions inside fusion plasmas
create very strong gradients of temperature, density,
and particle distribution functions. When resonance
conditions are satisfied, these gradients act as sources
of free energy that can drive instabilities leading to a
subsequent reduction of the plasma confinement. In this
way, instabilities can limit the performance of current and
future fusion devices. For this reason, understanding the
physics of plasma instabilities is a matter of key importance
in fusion, which requires improving the diagnostic analyses,
detection and plasma control. Therefore, machine
learning (ML) and artificial intelligence (AI) algorithms
are potential candidates to open up new possibilities for
improved instability detection and control, as they are
revolutionizing how data is used across many fields.

The plasma instability’s effect on the magnetic field
can be understood as a perturbation δB added to the
equilibrium configuration, whose amplitude increases over
time. This perturbation can be fully characterized
if we define it as a superposition of Fourier modes
δB(ρ, θ, φ, t) =

∑
m,n δBmn(ρ)e

γt cos(mϑ+ nφ− 2πft),
where m and n are the poloidal and toroidal mode
numbers, associated to plasma coordinate angles ϑ and
φ respectively. The perturbation depends on the radial
position ρ. Furthermore, the mode can evolve in time with
a growth rate γ and a frequency f . Therefore, among
all possibilities, instabilities admit wavelike behavior.
Hannes Alfvén proposed the existence of field-fluid coupled
magnetohydrodynamics waves in 1942 [1]. There are the
underlying waves of many instabilities in plasmas and it is
well known, from their dispersion relation ω = k||vA, that
their frequency is proportional to the magnetic field, and
inversely proportional to the squared root of the plasma
density f ∝ B/

√
n.

The Alfvén wave-instabilities are extensively studied
because energetic particles (EPs) can transfer energy
to plasma waves. Gradients in EP distribution come
either from external heating, like Ion Cyclotron Resonance
Heating (ICRH) or Neutral Beam Injection (NBI), or from
the nuclear fusion reactions, like alpha particles. With
the energy coming from EP, the instabilities can increase
their amplitude (positive γ), causing thereby particle and
energy losses or eventually wall damages or disruptions. It
is well known that multiple physical mechanisms can cause

Alfvén instabilities, so the family of observed Alfvén waves
in tokamaks and stellarators is quite numerous. Some of
them, that can be observed in TJ-II are TAEs (toroidicity-
induced Alfvén eigenmodes), HAE (helicity-induced Alfvén
eigenmodes), and BAE (beta-induced Alfvén eigenmodes).

Any plasma oscillation translates into a magnetic
signal that can measured using magnetic diagnostics, like
the Mirnov coils, and they can be further studied using
spectral analysis algorithms. However, identifying and
labeling the Alfvénic modes in the spectrograms remains
in practice a manual task that must be supervised by
experts in the field. Therefore, fast and robust instability
detection algorithms can be quite useful for both plasma
control and data mining of massive datasets. In the case
that labels are available in the dataset then an algorithm
can be trained to predict these class labels automatically.
Once the algorithm has good accuracy in classifying data
observations according to these labels, it can be employed
in the detection of one of the classes. In consequence, this
type of training is known as supervised learning, because it
requires solved examples.

To this date and to the best of our knowledge,
several works have approached the detection of EP modes
using supervised machine learning with data from different
tokamaks: COMPASS [2], NSTX [3], and DIIID [4–7].
All of these works mainly use models that are trained on
labeled spectrogram images, with various neural network
architectures. The previous work from Bustos et al. [8]
on TJ-II stellarator, used supervised deep learning to
extract modes automatically from Mirnov coils signals
spectrograms. They carefully annotated modes manually
on ∼500 spectrograms to create a training dataset. The
trained model was capable of segmenting the spectrogram
images, recovering 989 modes on the full dataset. These
works motivated us to research an unsupervised labeling
technique of mode signals. Because deep learning networks
can potentially boost their performance by employing more
training data [9], the capability to create a bigger labeled
database of modes with intershot analysis is crucial to
generate enough data to train real-time accurate models.

This paper is structured as follows. In section 2,
the possibility of using unsupervised learning as a new
signal representation is discussed. Afterward, the TJ-II’s
diagnostic data used in this work is described in section
3. Section 4 is devoted to describing the new algorithm
proposed to label the Alfvén modes and to explaining why
it is a step forward in terms of speed and performance. In
section 5, we describe the results obtained by applying the
algorithm to a dataset of 1291 TJ-II shots, using statistics
of mode distributions and clustering of the results to
demonstrate the algorithm’s performance. Finally, future
work and conclusions are presented in section 6.
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2. Unsupervised learning for Alfvén modes
detection

In classification problems, when labels are not available,
we can still try to find patterns in data and predict those
patterns. For example, clustering algorithms applied to
a dataset of experimental observations could be used to
label the data automatically. Although expert knowledge
is always needed to interpret the cluster grouping.

In the case of most plasma signals, the data is collected
as time series. The approach of this work for clustering time
series is based on the observation that finding modes in a
signal is equivalent to creating a new signal representation
in which only the modes are presented. It is important
to mention that, previous work [10–14] used unsupervised
learning to mine plasma signals but don’t specifically
address the problem on labeling Alfvénic activity or use
sparse coding.

Signal representations can be obtained by a projection
over a basis. Consequently, algorithms chose different base
expansions and different projection recipes. Therefore,
they have various advantages and disadvantages depending
on the signal’s nature. Paraphrasing Mallat on [15],
page 1; “there is not an ideal transform adapted to all
signals”. For instance, the Fourier transform is a linear
projection of a signal S (t) over a basis of sines and
cosines, but it loses all the time information. The
short-time fast Fourier transform (STFFT) allows us to
calculate time-frequency representations (spectrograms); it
offers computational efficiency, but it has difficulties in
analyzing quick transients. Moreover, none of these time-
frequency representations automatically identify the mode
components of the signal.

We aim to find a representation that keeps the
mode features but discards undesired features like noise,
facilitating the performance of the clustering algorithm. We
assume the following ansatz : in which the signal recovered
on a pickup coil can be written as a linear combination
of terms of the form si = W (t − τi) cos (2πfit+ ϕi),

where W (t − τi) = exp
(
− (t−τi)

2

2σ2

)
is a Gaussian time

window function of fixed standard deviation σ, which
modulates the amplitude. The cos(2πfit+ ϕi) reconstructs
the oscillatory structure. These terms are usually referred
to as atoms. The linear combination of all these atoms can
be constructed by setting a vector of coefficients ci that
we have to fit to characterize the reconstruction of the full
signal

s ≈
∑
i

ci · si =
∑
i

ci · exp
(
− (t− τi)

2

2σ2

)
cos (2πfit+ ϕi).

(1)
When the selected window function W (t − τi) is

Gaussian, the waveform in Eq.(1) is also known as the
real part of a Gabor’s atom. Then, selecting multiple
parameters (τi, fi, ϕi) will characterize different time
oscillations which can represent parts of the signal. It’s
worth mentioning the possibility of changing the atoms’
Eq.1. For instance, a first Gaussian derivative function
could be used to detect sawteeth or pellet injections. In
addition, the ansatz could be extended to model mode

Figure 1. Spectrogram of shot 38399, using MIR5C coil signal
sampled at 2MHz, having complex mode activity between 0 and
400 kHz.

numbers W (t − τi) cos(mθj + nϕj − 2πfit) using multiple
Mirnov signals, although it would multiply the amount of
data to be processed as the phase difference between various
Mirnov coil signals is needed.

This collection of atoms composes a signal, as words
in a dictionary represent sentences. The terms dictionary
and atoms were proposed by Mallat and Zhang [16] in
1993. The dictionary D is usually stored in matrix form.
Each column vector of D represents an atom’s time series.
Therefore the matrix product D · c will reconstruct the
signal D · c = s. For this reason, the vector of weights c is
also known as code. If the sparsity of the basis vector c is
promoted during the optimization, it is possible to cluster
neighbor atoms according to the parameters (τi, fi). Then,
the time-frequency groups determined by the cluster will
be the most significant components of the signal, i.e. the
plasma modes.

3. Data

The signals used in this study: magnetic field variation,
electronic density, plasma current, and magnetic energy,
were obtained from magnetic sensors and a microwave
interferometer. Specifically, the variation in the magnetic
field was registered in one of the Mirnov coils of the straight
array, known as MIR5C. This coil captures the voltage
induced by the magnetic field fluctuations. Notably, the
spectrograms generated using MIR5C are exceptionally
clear, because of its position inside the vessel, very close to
the plasma. Fig.1 illustrates the spectrogram of a typical
shot observed in TJ-II.
The plasma current is measured in kA using a Rogowski
coil. This current is the contribution of the bootstrap
current, the currents induced by one or both NBIs and
the current driven by oblique ECRH injection (ECCD).
Moreover, due to the proximity of the TJ-II’s main field
conductors to the plasma, an unwanted Ohmic contribution
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due to the ripple in the currents flowing through the
conductors induces current fluctuations in the plasma [17].
A diamagnetic loop measures the energy stored in the
plasma. It is worth noting that the diamagnetic loop is
also affected by the plasma current, part of the current
fluctuations will be present in the energy’s time traces.
The microwave interferometer is important in measuring
the plasma density along a specific line of sight. The
integrated line approximately crosses the magnetic axis
with an inclination of 18.7◦ with the vertical. This
measurement, which also is involved in the machine’s
operation, will be used in this work to find correlations
with frequency.
The sampling frequencies for the different measurements
vary. The Mirnov coil is sampled most frequently, typically
at 1 MHz, whereas the magnetic energy is collected at the
least frequency (≈ 10 kHz). Therefore, linear interpolation
is needed to calculate relationships between variables.

The stellarator has two heating systems: two NBI
(Neutral Bean Injection) units, and two ECRH (Electron
Cyclotron Resonant Heating) beams. Fig.1 shows the
spectrogram of magnetic fluctuations registered by the
MIR5c pickup coil in a NBI heated plasma (no ECRH in
this case). When both NBI’s are launched consecutively,
a complex mode activity appears between 0 and 400 kHz.
Not all modes that can be observed are necessarily Alfvénic.
The Alfvenic activity in TJ-II has been widely observed in
the frequency range of 50kHz to 400kHz [18–26] along with
other types of instability.

4. The Elastic Random Mode Decomposition
algorithm (ERMD)

Figure 2. Examples of atoms that minimize reconstruction
error, corresponding code values ci will be significantly greater
than zero.

To construct the dictionary matrix D, we can use
Gabor’s atom as in Eq.(1), assuming a uniform distribution
of parameters (τi, fi, ϕi) time, frequency, and phase. By
taking random samples of these distributions we can assign
an atom to each column of the matrix D:,i. Then, each
atom (D:,i column) constitutes a time series’s feature. It

should be noted that the number of atoms in the basis is
not predetermined, and the variance of the parameters (τi,
fi, ϕi) has to be enough to represent the signal accurately.
This method for constructing the dictionary is derived from
an algorithm called Sparse Random Mode Decomposition
(SRMD), proposed by Richardson et al. [27]. The complete
algorithm is available as open-source code. In Figs. 2-3-
4 an application of the algorithm on a synthetic signal is
shown. The atoms in Fig.2 have a similar frequency and
phase to the original signal, the code values will adjust
to set a proper amplitude for each atom to represent the
sign. On the other side, atoms in Fig.3 cannot represent
the local features of the time signal, SRMD will adjust their
amplitudes to be close to zero. In Fig.4 we can see that
very few atoms can reconstruct the right frequency, and
increasing the number of atoms improves the capability of
representation of the signal’s features.

Figure 3. Examples of atoms that don’t minimize
reconstruction error, respective code values ci need to be close
to zero.

Figure 4. Examples of reconstruction improvement by adding
atoms to the code.

The motivation for finding a sparse code for the
dictionary is not only algebraic. Indeed, a closer look at the
spectrograms with mode activity reveals that MHD mode
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signals are very sparse in the frequency domain. Imposing
sparsity in the dictionary representation will help to encode
and cluster the MHD activity. Finding a sparse code c such
that D · c ≈ s constitutes an optimization problem. In
Appendix A, we explain in detail the different optimization
options and their properties. It’s worth mentioning that
sparsity is an important regularization in machine learning,
and it is gaining attention in plasma physics [28] with
applications as different as calculating mode numbers [29]
or optimizing stellarators [30].

In [27], a Basis Pursuit De-Noised optimizer (BPDN)
was used the obtain the code vector; the optimization
problem is formulated as follows: c = {argminc{||c||1}
subject to ||D ·c− s||22 ≤ σ}. The norm ||c||1 is responsible
for promoting sparsity in the code c [31]. However, the
optimizers that solve BPDN require the allocation of the
full dictionary matrix D. This difficult the analysis of
Mirnov signals for complete shots, which usually comprise
several million samples. To solve this problem, we propose
the use of a linear neural network to encode the atoms
dictionary using the elastic net regularization [31, 32] in
the loss function.

Figure 5. Diagram of the proposed neural network architecture:
dictionary columns D:,i are inputs of the neural network with
weights ci.

We can use a single-layer neural network with linear
activation function y = X · w + b, and b = 0. We train
the network in such a way that the training is equivalent to
solving our signal representation s = D · c. In other words,
the neural network architecture is equivalent to the decoder
equation (

Decoder

equation

)
s = D · c, (2)

and training the neural network is equivalent to solving the
optimization problem of the encoder equation(
Encoder

equation

)
c = argmin

c

{
||D · c− s||22 + λ1||c||1 + λ2||c||2

}
.

(3)
It is worth noting the large asymmetry between coding
and decoding. Because the decoder equation is linear,
whereas the encoder equation is nonlinear. Fig.5 illustrates
schematically the architecture of the employed neural
network. Even though the activation function is linear,
nonlinearity is present in the Gabor’s atom, which acts as
a nonlinear kernel. The deepness is replaced by the large
length of the input layer. In this work, PyTorch [33] with

Lightning modules have been used to implement this model.
By using this neural network, we can benefit from parallel
computing on GPUs.

Note that the encoder equation is different than the
BPDN formulation, the loss function inside the encoder
equation is known as elastic net [31]. There are two
main differences though. First, the problem formulation
is unconstrained (it does not need a noise parameter σ).
Second, there are two regularization terms λ1 and λ2

associated with the modules of the code c in ℓ1 norm
||c||1 and ℓ2 norm ||c||2 respectively, while in BPDN only
the norm ℓ1 is used. The norm ||c||2 is responsible for
promoting the presence of correlated groups in the code c
[31].

In this work, the use of elastic net is proposed based on
a fundamental observation: the random atoms used in the
construction of the random dictionary can be correlated.
This idea is illustrated in Fig.6. It can be seen that atoms
with the same frequency and phase but different amplitude
are highly correlated, while atoms out of phase are not
correlated at all. Most importantly, atoms with connecting
tails in phase have some correlation. The improvement of
adding ℓ1 regularization can be appreciated by comparing
Fig.7 and Fig.8. It is important to emphasize that the
atom’s correlations can be exploited to promote the time
continuity of the encoded modes, which is an essential
physical feature of the signal. More details on optimization
formulations are explained in Appendix A.

Figure 6. Varying correlations between different pairs of atoms:
Overlapping needed to reconstruct the signal can correlate.

Two major improvements in memory usage have been
implemented. First, it is possible to use the atom formula
given by Eq.1 and the random number generator seed to
allocate dictionary atoms only when a signal’s batch is
allocated in the GPU. This is a breakthrough in memory
optimization; we can refer to this method as in-GPU
dictionary construction. Second, we can adapt the gradient
descent to optimize the weights of the full signal while
working by batches. This technique is known as gradient
accumulation. The gradient update is worked out for each
batch until a given number of batches is reached, then
all updates are combined indicating the direction of the
gradient descent. This method works assuming that the
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Figure 7. Result of ℓ1 encoding: setting λ1 ̸= 0 and λ2 = 0 in
Elastic Net regularization loss.

Figure 8. Result of mixed ℓ1 and ℓ2 encoding: setting λ1 ̸= 0
and λ2 ̸= 0 in Elastic Net regularization loss.

averaged gradient direction of all batches considered is
in the right direction. Gradient accumulation allows the
encoding of high-resolution signals, and to the best of our
knowledge, it is used to encode signals for the first time in
this work. It is worth mentioning that we used PyTorch’s
Adam optimizer with its default parameters.
Finally, a strong scaling test has been carried out to
quantify the speed-up of the proposed encoding algorithm.
The result can be seen in Figs. 9.a-9.b. The test was
carried out using 8 NVIDIA Tesla P100 GPUs, each one
with 16384 MB of memory. Execution times are averaged
over 5 epochs, the error bars cannot be appreciated in
the figure. The result shows that the time execution
scales linearly with the number of atoms in the dictionary,
as is evidenced in Fig.9. Also, the speed-up saturates
over 8 GPUs due to data communication, as reported in
Fig.9. Therefore, an epoch can be completed in less than
5 minutes. On the contrary, the encoding can be done

on the CPU with the SPGL1 algorithm [34, 35], dividing
the signal into 10-15 chunks, running times take from 40
to 60 minutes, and chunks codes need to be re-weighted
at the end. If we compare the performance with SPGL1’s
running times, the improvement achieved using the neural
network is remarkable. More details about the optimization
algorithms can be found in Appendix A.
It is to be noted that the elastic net regularization
has been used before for images in dictionary learning
algorithms (when code and dictionary need to be learned
simultaneously [36, 37]). And recent works accelerated
image encoding using a linear neural network [38]. In
addition, there are some use precedents with deterministic
Gabor’s dictionaries [39][40] but not with dictionaries of
random features. The use of elastic net regularization in
these publications consistently improves performance, when
identifying correlated atoms (modes) is needed.

Figure 9. a Strong Scaling Benchmark. Each experiment has
been repeated 5 times, error bars can not be appreciated.

Figure 9. b Linear scaling with number of atoms. Each
experiment has been repeated 5 times, error bars can not be
appreciated.

The different atoms are grouped using an unsupervised
cluster algorithm. The resulting clusters are identified as
modes. In addition, improvements have been made in
the clustering algorithm. The clustering algorithms based
on density are adequate for our application as encoded
atoms tend to concentrate on the time-frequency mode
structures, and they are equipped to handle noise points
and non-linearly separable clusters of arbitrary shapes and
sizes. The clustering algorithm initially proposed in [27] for
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Figure 10. Cluster result using HDBSCAN (Annotated the
centers of 10 largest clusters and noise (-1).)

grouping the atoms in modes is DBSCAN [41]. However,
DBSCAN has two limitations. First, the most sensitive
hyperparameter ϵ, which controls the maximum neighbor
distance, varies between shots. Second, DBSCAN assumes
constant density clusters, which is not true for the results of
encoding. In contrast, hierarchical DBSCAN (HDBSCAN)
[42] does not assume constant density and is capable
of determining the varying density structure. Moreover,
HDBSCAN does not have a sensitive hyperparameter to
modify on each shot. For these reasons, HDBSCAN is more
adequate than DBSCAN. An example of an HDBSCAN’s
result is shown in Fig.10.

We propose the adoption of the name Elastic
Random Mode Decomposition (ERMD) to refer to our new
algorithm. ERMD is summarized as follows:

Algorithm 1 Elastic Random Mode Decomposition
(ERMD) for Alfvénic mode classification

INPUTS: signal s, time t.
OUTPUT: code c, best model code cbest, atom’s time
position τ , frequencies f , phases ϕ, cluster labels l and
Alfvénic character a. All with the same vector length.
PARAMETERS: {λ1, λ2, σ, Nmax, Nf , Bs, η, maxepoch,
Q, Qc minsize, ρthr. } See table (1).
STEPS:

(i) Standardize signal s−µ(s)
σ(s)

and time t−µ(t)
σ(t)

arrays.

(ii) Apply high-pass filter (Optional: it can help to detect
high-frequency modes)

(iii) Set a global seed for all GPUs, it is necessary
because sampling features space {τi, fi, ϕi} has to
be deterministic.

(iv) Set the number of atoms in the random dictionary N
as a multiple of signal length sl. N = Nf × lenght(s).
It is useful to set a maximum number of atoms Nmax

to avoid out-of-memory problems.

(v) Repeat in parallel until reach maxepoch:

(a) For each batch of time signals, load the data
(segment of size Bs) to an assigned GPU and
compute a segment of matrix Dbatch in the
assigned GPU. Use seed and atom equations to
calculate the value of corresponding atoms in
Dbatch (in-GPU dictionary construction)

Dbatch = [si(tbatch)] =[
exp

(
− (tbatch − τi)

2

2σ

)
· cos (2πfitbatch + ϕi)

]
.

(4)

(b) Forward pass for each batch: Calculate elastic
net regression loss

Lbatch =

||Dbatch · c− sbatch||22 + λ1||c||1 + λ2||c||2,
(5)

then calculate each batch gradient gbatch(c) and
keep it.

(c) When the number of batches processed completes
the epoch: accumulate gradient (the sum of
all batches gradients determine the descend
direction), and actualize code weights.

cnew = cold − η
∑

batches

gbatch(c) (6)

(d) Keep the best code cbest: model with best loss∑
Lbatch so far.

(vi) Return c, cbest, τ , f , ϕ.

(vii) Code thresholding: group atoms code values cbest by
quantiles, using the specified (number of quantiles Q)
and keep those above the (quantile cut Qc).

(viii) Cluster modes using HDBSCAN with desired Min.
cluster size minsize. Return l.

(ix) For each identified mode, except noise clusters (-1),
there are two options:

(a) Calculate Pearson’s correlation between mode
frequencies and 1/

√
n. If the correlation is

greater than the correlation cut ρthr, label the
mode as 1 (Alfvénic) otherwise 0 (No Alfvénic).
Return a.

(b) Use mutual information (MI) instead, this can
help to retrieve more modes. The details can be
found in Appendix B. Return a.

(x) Store result c, cbest, τ , f , ϕ, l, a.

The relevant hyperparameters and used values are
summarized in the table 1. Among them, the most
important parameters are the regularization terms λ1

and λ2 which adjust the promotion of sparsity and
regularization. The values of λ1 and λ2 depend on the
signal-to-noise ratio and they have an important effect on
the mode retrieval. Unfortunately, there is no rule to adjust
these parameters as they heavily depend on the data and
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the hyperparameter search space has multiple local minima.
Using hyperparameter optimization is difficult, as there
can be multiple objectives (minimize reconstruction error,
minimize the number of modes, or minimize the number of
epochs). Instead, it is advisable to first determine λ1 with
λ2 = 0 and then add λ2 as needed. All in all, it can be
found values of λ1 and λ2 that work reasonably well with
all shots. Nevertheless, to obtain the best result, avoiding
the loss of modes, or fully eliminating broadband noise, it
is necessary to fine-adjust λ1 and λ2.

Parameter Value(s)

λ1 0.00005
λ2 0.001

Atom standard deviation σ 256 samples
Maximum number of atoms Nmax 14×106

Feature factor Nf 20
Batch size Bs 32-64 samples
Learning rate η 0.00008

Maximum epochs maxepoch 5
Number of quantiles Q 1000

Quantile cut Qc 999
Minimum cluster size minsize 10
Correlation threshold ρthr 0.9

Table 1. ERMD Hyperparameters

Figure 11. Shot 23811 signals, from top to bottom: heating
power, electronic density < n > and temperatures T 0

e , T
0
i ×100,

and the MIR5C signal, Ip, and Wp.

5. Results of unsupervised feature extraction
of Alfvén activity

5.1. Performance

To evaluate the performance of the algorithm, we run
ERMD on 1000 shots with a fixed set of parameters. The
hyperparameters were first selected by trial and error to

Figure 12. Cluster results of shot 23811. Marked the center of
top 10 numerous clusters. Black circles (-1) are noise.

Figure 13. Result of labeling shot 23811: modes identified as
Alfvénic (big blue circles) follow 1/

√
n.

obtain good performance on a selection of shots. About the
execution times, it took 206.8 hours to run the 1000 shots,
so this gives an average of 4.8 shots per hour approximately.
The shots have different numbers of samples so this number
can fluctuate from 3 to 7 shots per hour. In total, we
accumulated 1291 shots in the database.

As an example of a typical result, the encoding and
clustering of shot 23811 are shown in Fig.12. Three high-
frequency modes are correctly identified, with the assigned
numbers 1,4, and 6. Some noise atoms are correctly
identified as noise by HDBSCAN. Finally, in Fig.13 the two
higher-frequency modes are identified as Alfvénic, as they
are strongly correlated with the 1/

√
n signal. However,

part of the broadband noise structure is misidentified with
fragmented low-frequency modes, this behavior is found to
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Figure 14. Cluster results of shot 38393: ERMD handles
crossing modes (7,8,9). Noise (-1) is distributed between low
and high frequencies.

Figure 15. Time-frequency distributions of Alfvénic mode
atoms of this set of 1291 shots.

be common but does not affect the labeling of Alfvénic
modes if the correlation threshold is set high. It is to
be noted, how the amplitude of broadband noise increases
when heating systems are activated, this can be seen
comparing power inputs in Fig.11 with the spectrogram in
Fig.12 and Fig.13.

Because each mode has a different density of atoms,
the algorithm is capable of labeling crossing modes, as is
shown in Fig.14. This task is very difficult for algorithms
based on the segmentation of the spectrogram. Therefore,
this is a remarkable advantage of this algorithm which is
reinforced with the addition of the density signal 1/

√
n to

the analysis. However, there is a trade-off: the density-
based clustering also tends to divide one mode into different
sub-modes. In consequence, ERMD results might not be
reliable to measure mode duration ∆t.

Figure 16. Frequency distribution of Alfvénic mode activity in
the analyzed shots.

The frequency distribution of atoms in Alfvén modes
is checked for agreement with the frequencies expected from
the literature. As can be seen in Fig.15 and Fig.16. Alfvén
frequencies range from 100 kHz to 400 kHz, overlapping
with the mentioned interval 50kHz to 400kHz [18–26].
Most Alfvénic modes appear between 50 ms and 200 ms,
and the majority of modes (80%) in this set of shots are
chirping down.

The use of the algorithm is not exempt from
difficulties, as some modes can be missed in this encoding
(Fig.14). The risk of missing modes is in general low except
for two cases: when there are several modes stacked in
parallel frequencies or when the signal-to-noise ratio is very
low. Because the algorithm is based on minimizing the
signal reconstruction error with some regularization, these
two errors will persist without fine-tuning the parameters
for each shot. The reconstruction error is small in the case
of modes with less amplitude, this makes the encoding
difficult as other frequencies with greater amplitude are
encoded first. When the signal-to-noise ratio is very low,
the regularization needs to have very shot-specific values to
separate modes from broadband noise, like in some modes
of Fig.14.

More difficulties have been found in the presence of
sawteeth. These fast transient signals generate broad
frequency spectral leakage, as it happens in STFFT. When
minimizing the signal reconstruction error, many different
atoms can fit these transients. Therefore, the sparsity
assumption does not hold anymore and the regularization
parameters should be changed to address this difficulty,
reducing both λ1 and λ2. This phenomenon could be
tackled in principle by adding sawteeth atoms to the
dictionary.

5.2. Profiling TJ-II modes

Once the atoms representing the Mirnov coil signal have
been conveniently extracted and clustered into modes, a
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Figure 17. T-SNE embedding of mode features. Clusters 2, 21, 16, 8, 10, and 18 are mostly Alfvénic modes the rest can be noise
or a mix of different modes.

second clustering can be applied to extract higher-level
patterns. The plasma signals used in addition to the
frequency of the modes are the current Ip, the magnetic
energy W , and the density 1/

√
n. An example of these

signals is plotted in Fig.11. Profiling each cluster will help
to understand the result of the ERMD run, and the nature
of the modes collected. The clustering method selected
is K-means, which differs from HDBSCAN. K-means is
based on minimizing within-cluster variance, it does not
use density like HDBSCAN, and it has great scalability
with the number of samples [43].

If we project the modes obtained by ERMD into
a lower dimensional embedding, using the T-distributed
Stochastic Neighbor Embedding (T-SNE) algorithm [44], we
can mark the cluster numbers and visualize which groups
are similar by their separation distance and neighborhood.

The features used for the projections are the
same as the features used for clustering: the mutual
information (MI) of the mode’s frequencies with the density
MI(f,1/

√
n), current MI(f,Ip), and energy of the plasma

MI(f,W ). In stellarators, and particularly in TJ-II, small
changes in plasma current can have a measurable impact
on the spectrum of shear Alfvén waves and therefore,
evaluating the correlations between changes in mode
frequency and plasma current is necessary. In addition, the
modes’s frequency chirp ∆f = fmax−fmin, the variation of
density ∆(1/

√
n) = (1/

√
n)max − (1/

√
n) min, the variation

of current ∆Ip = Ip max − Ip min, and plasma energy
∆W = W max − W min are included to give directionality
and magnitude of parameters change.

The result of T-SNE is shown in Fig.17, all discovered
modes are represented in a two-dimensional space. The
numbers of the labels are positioned in the plot by taking
the mean values of dimension 1 and dimension 2 in each
group. Finally, the class label that results from the K-

means clustering is used to assign a color to the projection
points and interpret the projection result.

The interpretation of the cluster analysis is summa-
rized in the table 2. For the sake of clarity we pro-
vide some examples of clusters in Fig.18. We can observe
that the clustering algorithm is capable of separating the
Alfvénic class from other types of modes with the given
variables. The region of Alfvénic modes is highlighted with
a dashed red line polygon, in the upper right corner of
Fig.17. Groups 8, 16, 21, and 2 are mostly composed of
Alfvénic modes, and clusters 10, 18, and 7 have a mixed
composition, as their position is close to the border of the
polygonal region.

The groups neighboring cluster 0 in the opposite
region to the Alfvénic class are noise. We consider noise
broadband frequency structures mislabeled in some cases
by ERMD. In addition, we consider as noise the very low-
frequency structures misidentified by modes that can be
seen in Fig.12, which also occurs when broadband noise is
present. The MI values of these groups are close to 0, as
they do not have any relationship with fluctuating plasma
signals, which helps discard errors of the algorithm.

If we look at the time-frequency distributions of modes
in Fig.18 we can appreciate variate behavior. Note that the
density gets very high in some values due to the presence
of repeated shots. Moreover, even if the time variable has
not been used, the modes appear to be grouped around
specific times at the beginning of the pulse when NBI is
engaged. We can observe as well that the less Alfvénic
activity, the more probable the presence of noise. Though
some noise might be present, the identification of Alfvénic
activity is satisfactory. In addition, some clusters appear
to have different natures, like clusters 7 and 17, in which
modes are correlated with the current, in this case, modes
appear to have lower frequencies.
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Figure 18. Time-frequency histograms of mode distributions from different clusters.
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Cluster
Number

Interpretation

8, 16, 21 Strongly driven Alfvénic modes oc-
curring when heating is engaged

2 Alfvénic modes correlated with mag-
netic energy

7 Mix of Alfvénic and Non Alfvénic
modes around 100 kHz correlated
with current

18 Mix of Alfvénic and Non Alfvénic
modes (probably False negatives)

10 Mix of Alfvénic and Non Alfvénic
modes

17 Anti-Alfvénic modes strongly corre-
lated with current

1 Non Alfvénic modes and mid-
frequency noise

4-5, 9, 11-13,
19-20, 22-23

Noise + low-frequency
modes (No-Alfvénic)

0, 3, 6,
12, 14-15

Broadband and low frequency noise
produced by heating systems

Table 2. Clusters interpretation

It is of interest that this clustering technique can
be used for looking for patterns in shot databases and
eventually finding unexplored plasma activity. However,
a detailed physical interpretation of each cluster requires
further analysis based on complementary simulations
and first physical principles. For instance, now that
the presence of modes is detected it is possible to
run equilibrium reconstruction and stability analysis to
determine the physical nature of the modes. This could
add labels like HAE, TAE, GAE or MIAE to the clusters
groups. The mode identification problem in TJ-II from the
physics point of view has been addressed in [23–25].

It is worth mentioning that the MI information can
be replaced by Pearson’s correlation or even combined, and
the results of the cluster are comparable. Still, we prioritize
the use of MI as it is capable of capturing nonlinear
relationships, and it is more robust to outliers than
Pearson’s. The interested reader can find an alternative to
clustering in Appendix C. It is possible to create categorical
features using MI and constructing contingency tables to
analyze the mode’s relationship with other plasma signals.

Other mode variables can be created and added to
the clustering. However, we follow the parsimony principle,
i.e. adding variables until the result is interpretable, and
then stop including features. The same principle is followed
when selecting the number of clusters, i.e. the number of
clusters is increased until the granularity is fine enough to
describe Alfvénic subgroups.

6. Conclusions, further applications and future
work

In this paper, we successfully illustrated the practical use
of sparse coding in plasma instabilities detection. Overall,
the results shown using our new proposed algorithm

called ERMD are promising. However, it has some
practical limitations, mostly the computational cost, and
the hyperparameter tuning. Nevertheless, ERMD allows
us to work on the time domain with raw signals, it can
extract the Alfvénic pattern in a TJ-II sample of shots,
and it is capable of outperforming other algorithms in less
computing time.

This novel approach required algorithmic innovations
as well. The major contributions to the sparse coding field
are (1) the use of an in-GPU dictionary construction of
Gabor’s atoms, (2) the use of accumulated gradient descend
for parallelizing the optimization algorithm in multiple
GPUs with small signal batches, (3) the improvement
of mode identification by using a variable density based
clustering HDBSCAN, and (5) the acknowledge of the
multicollinearity in random atoms dictionaries by using
elastic net regularization to improve mode decomposition.

The use of MI information to capture linear and non-
linear relationships between variables is another innovation
in mode detection, that provides more robustness against
noise and outliers. Moreover, the clustering technique used
for profiling the modes retrieved by ERMD has proven to
be useful in summarizing mode activity in the 1291 shots.
It complements the ERMD algorithm as it can be used to
remove noisy clusters from the ERMD result.

Mirnov signals have a very high sampling rate, up to
2 MHz, which is the main factor slowing down the ERMD
runs. Nevertheless, the algorithm can label more than 700
shots in a week, with consistency that cannot be provided
by a human team. Though the technique is useful for
inter-shot analysis, a ML surrogate model of ERMD could
in principle detect Alfvén activity using raw Mirnov coil
signals in real-time. Subsequent work might investigate
the training of machine learning models using the created
database for the detection of the Alfvénic class or the
clustering sub-classes. In addition, researching the use
of dictionary learning (learning dictionary elements while
encoding) opens new possibilities to process plasma signals.

ERMD is adapted to analyze high-resolution, non-
stationary time signals in any field. Future applications
can be as variate as mode decomposition of heart
electrocardiograms, seismic analysis, animal calls, or
musical analysis. Owing to the broad application of ML
and signal processing, our algorithm could impact other
scientific disciplines as well.
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Appendix A: Optimization schemes for signal
coding

In this subsection, we formulate the signal representation
by starting with the most general constrained minimization
problem and subsequently introducing step-by-step differ-
ent alternative approaches to achieve sparsity in the codi-
fication, a detailed discussion can be found in Elad’s book
[45].

It is assumed that the dictionary matrix has more
columns than rows, so the system of equations D · c = s
will be undetermined as there will be more unknowns than
equations. If the system is consistent, meaning s can be
linearly generated by columns of D, there will be infinite
solutions. Therefore, to cope with infinite solutions we aim
to find the solution c with minimum norm. The problem
can be formulated as a constrained optimization problem
(PL),

(PL) ≡ min
c

L(c) subject to s = D · c, (7)

where the loss function L(c) controls the solutions we can
obtain. Choosing L(c) to be the Euclidean squared norm
||c||22 is the common choice,

(P 2
2 ) ≡ min

c
||c||22 subject to s = D · c (8)

as it can be shown [45] (page 4), the problem P 2
2 has

a unique solution because the objective functional is
convex and the solution can be obtained [45] using the
Moore–Penrose pseudoinverse matrix X+.

Now, we can formulate an unconstrained version of
the problem (P ′

2) which has equivalent results, and it is
stated as the minimization of the signal’s mean squared
reconstruction error (MSE), so choosing the cost function
as L(x) ≡ ||D · c− s||22 results in

(P 2′
2 ) ≡ min

c
||D · c− s||22. (9)

The unconstrained formulation can be more familiar
to the reader because it is by definition the ordinary least
squared (OLS) estimator for linear regression. Remarkably,
the unconstrained version does not enforce obtaining a
solution of s = D · c, nor does it assume any property
of the solution vector c components. Above all, we can
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get a result that is as good as the optimization algorithm’s
performance.
However, the solution of the OLS estimator is not
adequate for creating a basis; because generally every c’s
components [c1, c2, ..., cN ] can be different than zero, and
the explanatory power of the code is lost. We need to vanish
as many code coefficients [c1, c2, ..., cN ] as possible; that can
be achieved using l0 norm instead of l0 in the constrained
problem P 2′

2 . The norm l0 is defined as the number of
vector components different than zero, so minimizing l0 and
the MSE simultaneously can lead to a suitable basis. Hence,
we can define the problem P0 as

(P0) ≡ min
c

||c||0 subject to s = D · c. (10)

This problem is significantly difficult to solve, since (P0)
is an NP hard problem [46], so trying to solve it directly
is not common practice. Nevertheless, we can relax the
constraints if we use the ℓ1 norm which is defined as the sum
of the vector’s components. Consequently, minimization of
the ℓ1 norm will shrink some vector components close to
zero. This optimization strategy [47] is called basis pursuit
(BP) , it will be noted as P1

(P1) ≡ min
c

||c||1 subject to s = D · c. (11)

Additionally, we need to take into account that most signals
will not be pure and they will have noise. That can be
modeled by adding an σ error parameter to the functional
in the following way

(BPDN) ≡ min
c

||c||1 subject to ||D ·c−s||22 ≤ σ. (12)

The later version is called basis pursuit denoised (BPDN).
Though it was first proposed [47] in its unbound version
(P ′

1), it can be formulated as follows:

(P ′
1) ≡ min

c

{
||D · c− s||22 + λ1||c||1

}
. (13)

This problem is also found in machine learning known as
Lasso regression.

Another alternative for regularization is using ℓ2 norm
(no squared). This functional takes the form

(P ′
2) ≡ min

c

{
||D · c− s||22 + λ2||c||2

}
(14)

in its unconstrained version. As in this case, the equivalent
problem in machine learning is named Ridge regression.
which is useful for avoiding shrinkage of the solution vector
when data have multicollinearities.

The effect of ℓ1 regularization on a group of correlated
variables is the selection of one variable, discarding the rest,
even if these discarded variables have explanation power or
are part of the solution. If there are correlated features
and a sparse solution that conserves groups of correlated
variables is desired, adding ℓ2 to the functional, like in

(
ELASTIC

NET

)
≡ min

c

{
||D · c− s||22 + λ1||c||1 + λ2||c||2

}
,

(15)

is a good alternative. This problem is known in the machine
learning community as elastic net regression.

About the decision of using constrained or uncon-
strained versions of the optimization problems, it usually
resolves in favor of the unconstrained version, because more
and faster algorithms are available with guaranteed perfor-
mance and studied convergence. For instance: solvers [34,
35] can be used to solve the basis pursuit problem with a
random dictionary as with SRMD [27]. However, a major
difficulty shared by all alternatives to ERMD is the alloca-
tion of the matrix in memory. The features in matrix D
must have the same number of samples as the signal. More-
over, because we have signals sampled with 1MHz with a
pulse duration of 1 second and thousands of features are
necessary to represent the modes accurately, the matrix
size can easily exceed all available memory in the comput-
ing node (of the order of hundred terabytes).

A first valid idea to address this issue is to divide the
signal into chunks and process each chunk sequentially on
one CPU, or in a parallel process on several computing
nodes. But this approach has one inconvenience, namely
each signal chunk has a different signal-to-noise ratio, and
the weights of vector c may be unevenly set along chunks.
In addition, there are discontinuities in the reconstruction
of the joins between chunks. The gradient accumulation
proposed in this paper tackles this issue.

Appendix B: Finding relationships between
frequency and density

As we mentioned in the introduction, the Alfvén waves’
frequencies f follow a linear dependency with 1/

√
n. Once

the encoded signal is clustered, we have a database of modes
that can be mined for finding Álfvén instabilities.

The linear relationship can be captured using Pear-
son’s correlation r = cov(x, y)/(σxσy), while assumptions
for the model are true. Pearson’s model assumes a lin-
ear relationship between variables X and Y , in addition,
the variables have to be normally distributed, with equal
variance (homoscedastic), and without outliers. If these as-
sumptions are True and Pearson’s value r(f, 1/

√
n) is close

to 1, we can say that we are identifying an Alfvénic mode.
These conditions are not true for all clustered modes.

For n observations of random variables X ,Y and
continuous distributions, the Pearson’s correlation can be
calculated as

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
∑n

i=1(Yi − Ȳ )2
. (16)

It is commonly known that correlation does not
imply causation; however, correlation does not even imply
correlation in many circumstances. Pearson’s formula is
very sensitive to outliers and noise, and clustered modes
can often have outliers. Then the normality assumption
and equal noise variance may not hold true. In addition,
the plasma conditions can be modified very fast, in this
case, Alfvén’s instabilities frequency follows the evolution of
1/

√
n, with some non-linear distortion. Another effect that

might distort the relationship is the fact that the measured
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density is integrated along one line of sight, and the changes
in density might be localized outside this line of sight.

Figure 19. Pearson correlation of modes frequencies and
density

Figure 20. MI of modes frequencies and density.

To avoid false correlations the threshold value can
be set high ≈0.9, but many Alfvén modes will be lost.
To avoid this limitation, we select mutual information
(MI) to estimate if the frequencies are related to the
density variation. Mutual information ranges from 0 to
∞, 0 meaning full statistical independence, then the higher
the value the stronger the dependence. MI is known as
“generalized correlation” [48](pages 213ff) as it is capable of
capturing linear and nonlinear dependencies on continuous
and categorical data, with better resistance to outliers, and
fewer assumptions.

For continuous distributions of random variables
X,Y the MI can be understood as the information gain
I(X;Y ) = DKL(µ(x, y)||µx(x)µy(y)) obtained if the two

variables are not independent [48](pages 213ff). The
Kullback-Leibler (KL) divergence, which measures the
“distance” between probability distributions, will be 0 if the
distribution µ(x, y) is independent µ(x, y) = µx(x)µy(y)
(separable), in other words: KL divergence will be 0
if both variables don’t have a relationship. MI can be
estimated using the marginals densities µx(x), µy(y) and
joint distribution µ(x, y) [49] in the formula

I(X;Y ) =

∫ ∫
µ(x, y) log

(
µ(x, y)

µ(x)µ(y)

)
dx dy. (17)

The integration of continuous variables is performed by
binning the data, we have used scikit-learn implementation
[50][49][51].

MI does have one limitation though. It does not
distinguish between positive and negative correlation. As
we found that the values obtained by Pearson’s correlation
and MI are similar, we take the sign from Pearson’s
correlation, to determine the Alfvénic character.

As we can see in figures 19 and 20. The results of
using MI and Pearson’s correlation are comparable. In
both cases, at time 0.15 s we identify a possible Alfvén
mode crossing other modes at ≈225 kHz approximately and
another one at ≈35 kHz. However, at time 0.17 s, subtle
differences can be appreciated. For instance, a time 0.17 s
and ≈100 kHz there is a mode that shows mild correlation
but high mutual information. This is caused by the bias of
MI when there are a high number of observations, it tends
to overestimate the relationship between variables. There is
some level of relationship expected only by chance. When
the number of observations is small, the opposite might
occur. MI could underestimate relationships. This bias
might be useful though, because it can avoid establishing
a relationship with few and noisy observations. This can
be appreciated on the long mode at ≈120 kHz from 0.15 to
0.19 s, which is broken into smaller density groups by the
encoding. It can be seen in this case that Pearson’s values
are higher than MI, but there is not a clear relationship
with 1/

√
n. This example from shot 38399 was selected

to show how complex can be encoding and finding Álfvén
eigenmodes, in other shots this relationship is clearer.
Selecting a different value cut to consider modes Alfvénic
significantly varies the result. Therefore, to compare both
methods, we show the result for the same threshold value
of 0.9 in Fig.21 and Fig.22.

In total, when using Pearson’s correlation method,
1315 modes are retrieved. While using the MI with
sign method recovers 1433 Alfvénic modes, 8.9% more
modes. This can be appreciated in Fig.21 and Fig.22.
This result gives us an average of Alfvénic mode 1.1 per
shot. On the other hand, if we examine the negative
class we have 35472 (Pearson’s) and 35354 (MI) non-
Alfvénic modes respectively. As we can see, the dataset
is heavily imbalanced towards the negative class, only 3-
4 % of the mode structures are Alfvénic. Given this
imbalance of classes, a 8.9% more Alfvénic modes is a
relevant result. Because each mode counts for training
models in imbalanced datasets. Therefore, because of its
superior performance in handling noise false positives, and
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Figure 21. Distributions of Alfvénic atoms frequencies using
Pearson’s for labeling

Figure 22. Distributions of Alfvénic mode frequencies using MI
for labeling

keeping a higher atom count in the frequency interval, the
MI method was selected to continue the analysis.

Appendix C: Modes contingency tables using
categorical variables

In this section, the relationships between variables
are explored with categorical features as an additional
descriptive effort. For this purpose, contingency tables
(or crosstabulations, or cross-tables) are calculated using
new categorical variables; using the following indicator
functions 1MI(f,1/

√
n)>0.9(modes), 1MI(f,Ip)>0.9(modes)

and 1MI(f,W )>0.9(modes), in a shorter notation; 11/
√
n,

1Ip , 1W .
The contingency table shows the multivariate fre-

quency distribution of the Alfvénic mode class, quantifying

the dependence on these new categorical variables, and in-
terpreting relative frequencies as a probability if the table
is normalized. First, all modes labeled as noise by HDB-
SCAN (-1) are discarded. Then, MI is used to establish the
relationship between the modes frequency chirp f and other
diagnostic signals like Ip, W , 1/

√
n. Once MI is calculated,

if the value is greater than 0.9 the indicator variables 11/
√

n,
1Ip and 1W , are set to 1, otherwise to 0: for all atoms in
the mode. Finally, the table needs to be grouped to count
modes instead of atoms if necessary. The contingency table
can be calculated indicating the relative frequency of hav-
ing an Alfvénic mode related with the given plasma signals.

If we study the result in Table 3: we can count 1433
Alfvénic modes in total, and 35354 non-Alfvénic. This
analysis includes all frequencies, and because many low-
frequency atoms are required to describe the signal: 35111
low-frequency modes are not related to any of the variables.
We observe that, if there is no relationship with 1/

√
n,

there is no Alfvénic mode count, as should be expected.
Meanwhile, 515 Alfvénic modes are related to variations of
the density exclusively. Remarkably, 533 Alfvénic modes
are related to changes in plasma energy as well, and 308
Alfvénic modes are related to changes in all variables;
density, plasma energy, and current simultaneously.

It is worth mentioning that the χ2 statistical test
has been used to find evidence of the relationships of
variables in the cross-table, rejecting the null hypothesis
in all combinations. However, this dependence is obvious
if we observe the large difference between the values of the
first and second columns. We can conclude that there is a
strong relationship between the Alfvén class variable and
all the plasma signals considered.

11/
√
n 1Ip 1W Alfvén=0 Alfvén=1

0 0 0 35111 0
0 0 1 44 0
0 1 0 78 0
0 1 1 22 0
1 0 0 46 515
1 0 1 13 533
1 1 0 26 77
1 1 1 14 308

Table 3. Alfvénic modes’ contingency table

If the low frequencies are included, P (Alfvén = 0|
11/

√
n,1Ip ,1W )= 0.95, but the remaining 5% is distributed

over 15 possibilities, which difficults the interpretation of
the result. What’s more, even if all modes labeled as noise
by the cluster algorithm has been discarded, there is a high
chance that low-frequency modes are just noise. Because
most Alfvénic modes appear over 100 kHz, a normalized
contingency table is calculated for atoms belonging to
modes over 100 kHz.

Now, if we examine the Table 4 of relative frequencies
(in %): Almost 6% of modes over 100 kHz are Alfvénic
modes related to the plasma energy, and 6.4% of modes are
Alfvénic modes related to the plasma current as well.

By using MI to construct the categorical variables, all
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11/
√
n 1Ip 1W f(Alfvén=0) (%) f(Alfvén=1) (%)

0 0 0 80.168150 0.000000
0 0 1 0.519288 0.000000
0 1 0 0.927300 0.000000
0 1 1 0.272008 0.000000
1 0 0 0.408012 5.984174
1 0 1 0.123640 6.441642
1 1 0 0.272008 0.952028
1 1 1 0.160732 3.771019

Table 4. Normalized contingency table for modes over 100kHz
in (%)

nonlinear relationships (and all linear) between variables
can be detected. However, when using MI to establish
relationships, the positive or negative relation is not
captured. Capturing nonlinear relationships is more
general and therefore more important than knowing the
sign of the relationship when studying modes in all shots.
Moreover, the sign of the relationship can be calculated
later.

There is a strong nonlinear dependence between mode
frequency and the plasma signals, this is because most
Alfvénic modes in this dataset are strongly driven when the
heating systems are connected. Examining the histograms
of Fig.23, we can find a resemblance with the results of K-
means clustering. In fact; some modes of cluster 2 appear to
be correlated with the density only; modes correlated with
energy and density appear in clusters 21 and 8. And non-
Alfvénic modes of cluster 17 are strongly correlated with
the current. However, to establish a complete equivalency
between the cluster analysis and the contingency tables
of categorical features it is not possible, as we arbitrarily
selected a criterion of the category creation. The treatment
of the full variance in the cluster analysis appears more
general than the use of contingency tables.

Figure 23. Contingency table modes
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