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AN ESTIMATE FOR AN EQUATION WITH HOLDERIAN CONDITION AND

WEIGHT AND BOUNDARY SINGULARITY.

SAMY SKANDER BAHOURA

ABSTRACT. We consider the following problem on open set Ω of R2:

{

−∆ui = |x− x0|
2βVie

ui in Ω ⊂ R
2,

ui = 0 in ∂Ω.

Here, x0 ∈ ∂Ω and, β ∈ (0, 1).

We assume, for example that:

∫

Ω

|x− x0|
+2βVie

uidy ≤ 16π − ǫ, ǫ > 0

1) We give, a quantization analysis of the previous problem under the conditions:

∫

Ω

|x− x0|
+2βeuidy ≤ C,

and,

0 ≤ Vi ≤ b < +∞

2) In addition to the previous hypothesis we assume that Vi s− holderian with 1/2 + β/2 <
s ≤ 1, then we have a compactness result, namely:

sup
Ω

ui ≤ c = c(b, C,A, s, ǫ, β, x0,Ω).

where A is the holderian constant of Vi.

1. INTRODUCTION AND MAIN RESULTS

We set ∆ = ∂11 + ∂22 on open set Ω of R2 with a smooth boundary. Here we assume that we

are on the unit disk.

We consider the following problem on Ω ⊂ R2:

(P )

{

−∆ui = |x− x0|
2βVie

ui in Ω ⊂ R
2,

ui = 0 in ∂Ω.

Here, x0 ∈ ∂Ω and, β ∈ (0, 1).

We assume that,

0 ≤ Vi ≤ b < +∞,

∫

Ω

|x− x0|
2βeuidy ≤ C, ui ∈ W 1,1

0 (Ω)

The above equation is called, the Prescribed Scalar Curvature equation in relation with con-

formal change of metrics. The function Vi is the prescribed curvature.

Here, we try to find some a priori estimates for sequences of the previous problem.

Equations of this type (in dimension 2 and higher dimensions) were studied by many authors,

see [1-24]. We can see in [8], different results for the solutions of those type of equations with

or without boundaries conditions and, with minimal conditions on V , for example we suppose

Vi ≥ 0 and Vi ∈ Lp(Ω) or Vie
ui ∈ Lp(Ω) with p ∈ [1,+∞].

Among other results, we can see in [8], the following important Theorem,

Theorem A(Brezis-Merle [8]).If (ui)i and (Vi)i are two sequences of functions relatively to

the previous problem (P ) with, 0 < a ≤ Vi ≤ b < +∞, then, for all compact set K of Ω,
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sup
K

ui ≤ c = c(a, b,K,Ω).

A simple consequence of this theorem is that, if we assume ui = 0 on ∂Ω then, the sequence

(ui)i is locally uniformly bounded. We can find in [8] an interior estimate if we assume a = 0,

but we need an assumption on the integral of eui . We have in [8]:

Theorem B (Brezis-Merle [8]).If (ui)i and (Vi)i are two sequences of functions relatively to

the previous problem (P ) with, 0 ≤ Vi ≤ b < +∞, and,

∫

Ω

euidy ≤ C,

then, for all compact set K of Ω,

sup
K

ui ≤ c = c(b, C,K,Ω).

If, we assume V with more regularity, we can have another type of estimates, sup+ inf . It

was proved, by Shafrir, see [23], that, if (ui)i, (Vi)i are two sequences of functions solutions of

the previous equation without assumption on the boundary and, 0 < a ≤ Vi ≤ b < +∞, then

we have the following interior estimate:

C
(a

b

)

sup
K

ui + inf
Ω

ui ≤ c = c(a, b,K,Ω).

We can see in [12], an explicit value of C
(a

b

)

=

√

a

b
. In his proof, Shafrir has used the

Stokes formula and an isoperimetric inequality, see [6]. For Chen-Lin, they have used the blow-

up analysis combined with some geometric type inequality for the integral curvature.

Now, if we suppose (Vi)i uniformly Lipschitzian withA the Lipschitz constant, then, C(a/b) =
1 and c = c(a, b, A,K,Ω), see Brezis-Li-Shafrir [7]. This result was extended for Hölderian

sequences (Vi)i by Chen-Lin, see [12]. Also, we can see in [18], an extension of the Brezis-

Li-Shafrir to compact Riemann surface without boundary. We can see in [19] explicit form,

(8πm,m ∈ N∗ exactly), for the numbers in front of the Dirac masses, when the solutions blow-

up. Here, the notion of isolated blow-up point is used.

In [8], Brezis and Merle proposed the following Problem:

Problem (Brezis-Merle [8]).If (ui)i and (Vi)i are two sequences of functions relatively to the

previous problem (P ) with,

0 ≤ Vi → V in C0(Ω̄).

∫

Ω

euidy ≤ C,

Is it possible to prove that:

sup
Ω

ui ≤ c = c(C, V,Ω) ?

Here, we assume more regularity on Vi, we suppose that Vi ≥ 0 is Cs (s-holderian) 1/2 <
s ≤ 1) and when we have a boundary singularity. We give the answer where bC < 16π for an

equation with boundary singularity.

The following first theorem can be proved with the assumption β ∈ (0,+∞) but we prove it

in the case β ∈ (0, 1).

Our main results are:

Theorem 1.1. Assume Ω = B1(0), x0 ∈ ∂Ω, β ∈ (0, 1), and,

∫

B1(0)

|x− x0|
2βVie

uidy ≤ 16π − ǫ, ǫ > 0,
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ui(xi) = sup
B1(0)

ui → +∞.

There is a sequences (x0
i )i, (δ

0
i ), such that:

(x0
i )i ≡ (xi)i, δ0i = δi = d(xi, ∂B1(0)) → 0,

and,

ui(xi) = sup
B1(0)

ui → +∞,

ui(xi) + 2 log δi + 2β log d(xi, x0) → +∞,

∀ ǫ > 0, lim sup
i→+∞

∫

B(xi,δiǫ)

|x− x0|
+2βVie

uidy ≥ 4π > 0.

If we assume:

Vi → V in C0(B̄1(0)),

then,

∀ ǫ > 0, sup
B1(0)−B(xi,δiǫ)

ui ≤ Cǫ

∀ ǫ > 0, lim sup
i→+∞

∫

B(xi,δiǫ)

|x− x0|
+2βVie

uidy = 8π.

And, thus, we have the following convergence in the sense of distributions:

∫

B1(0)

|x− x0|
2βVie

uidy →

∫

B1(0)

|x− x0|
2βV eudy + 8πδx1

0
.

Theorem 1.2. Assume that, Vi is uniformly s−holderian with 1/2 + β/2 < s ≤ 1, x0 ∈ ∂Ω,

β ∈ (0, 1), and,

∫

B1(0)

|x− x0|
2βVie

uidy ≤ 16π − ǫ, ǫ > 0,

then we have:

sup
Ω

ui ≤ c = c(b, C,A, s, β, ǫ, x0,Ω).

where A is the hölderian constant of Vi.

2. PROOFS OF THE RESULTS

Proofs of the theorems:

Without loss of generality, we can assume that Ω = B1(0) the unit ball centered on the origin.

Here, G is the Green function of the Laplacian with Dirichlet condition on B1(0). We have

(in complex notation):

G(x, y) =
1

2π
log

|1− x̄y|

|x− y|
,

Since ui ∈ W 1,1
0 (Ω) and β ∈ (0, 1), we have by the Brezis-Merle result and the elliptic

estimates, (see [1]):

ui ∈ C2(Ω) ∩W 2,p(Ω) ∩ C1,ǫ(Ω̄)

for all 2 < p < +∞.

Set,
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vi(x) =

∫

B1(0)

G(x, y)Vi(y)|x− x0|
2βeui(y)dy.

We decompose vi in two terms (Newtionian potential):

v1i (x) =

∫

B1(0)

−
1

2π
log |x− y|Vi(y)|x− x0|

2βeui(y)dy,

and,

v2i (x) =

∫

B1(0)

1

2π
log |1− x̄y|Vi(y)|x− x0|

2βeui(y)dy,

According to the proof in the book of Gilbarg-Trudinger see [15], v1i , v2i and thus vi are C1(Ω̄).
Indeed, we use the same proof as in [15] (Chapter 4, Newtonian potential).

We use this fact and the maximum principle to have vi = ui.

Also, we can use integration by part (the Green representation formula, see its proof in the first

chapter of [15]) to have in Ω (and not Ω̄):

ui(x) = −

∫

B1(0)

G(x, y)∆ui(y)dy =

∫

B1(0)

G(x, y)Vi(y)|x− x0|
2βeui(y)dy.

We write,

ui(xi) =

∫

Ω

G(xi, y)|x− x0|
2βVi(y)e

ui(y)dx =

∫

Ω−B(xi,δi/2)

G(xi, y)|x− x0|
2βVie

ui(y)dy+

+

∫

B(xi,δi/2)

G(xi, y)|x− x0|
2βVie

ui(y)dy

According to the maximum principle, the harmonic function G(xi, .) on Ω−B(xi, δi/2) take

its maximum on the boundary of B(xi, δi/2), we can compute this maximum:

G(xi, yi) =
1

2π
log

|1− x̄iyi|

|xi − yi|
=

1

2π
log

|1− x̄i(xi + δiθi)|

|δi/2|
=

1

2π
log(2|(1+|xi|)+θi|) < +∞

with |θi| = 1/2.

Thus,

ui(xi) ≤ C+

∫

B(xi,δi/2)

G(xi, y)|x−x0|
2βVie

ui(y)dy ≤ C+eui(xi)+2β log d(xi,x0)

∫

B(xi,δi/2)

G(xi, y)dy

Now, we compute
∫

B(xi,δi/2)
G(xi, y)dy

we set in polar coordinates,

y = xi + δitθ

we find:

∫

B(xi,δi/2)

G(xi, y)dy =

∫

B(xi,δi/2)

1

2π
log

|1− x̄iy|

|xi − y|
=

1

2π

∫ 2π

0

∫ 1/2

0

δ2i log
|1− x̄i(xi + δitθ)|

δit
tdtdθ =

=
1

2π

∫ 2π

0

∫ 1/2

0

δ2i (log(|1 + |xi|+ tθ|)− log t)tdtdθ ≤ Cδ2i .

Thus,

ui(xi) ≤ C + Cδ2i e
ui(xi)+2β log d(xi,x0),

which we can write, because ui(xi) → +∞,

ui(xi) ≤ C′δ2i e
ui(xi)+2β log d(xi,x0),

We can conclude that:
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ui(xi) + 2 log δi + 2β log d(xi, x0) → +∞.

Since in B(xi, δiǫ), d(x, x0) is equivalent to d(xi, x0) we can consider the following func-

tions:

vi(y) = ui(xi + δiy) + 2 log δi + 2β log d(xi, x0), y ∈ B(0, 1/2)

The function satisfies all conditions of the Brezis-Merle hypothesis, we can conclude that, on

each compact set:

vi → −∞

we can assume, without loss of generality that for 1/2 > ǫ > 0, we have:

vi → −∞, y ∈ B(0, 2ǫ)−B(0, ǫ),

Lemma 2.1. For all 1/4 > ǫ > 0, we have:

sup
B(xi,(3/2)δiǫ)−B(xi,δiǫ)

ui ≤ Cǫ.

Proof of the lemma

Let t′i and ti the points of B(xi, 2δiǫ) − B(xi, (1/2)δiǫ) and B(xi, (3/2)δiǫ) − B(xi, δiǫ)
respectively where ui takes its maximum.

According to the Brezis-Merle work, we have:

ui(t
′

i) + 2 log δi + 2β log d(xi, x0) → −∞

We write,

ui(ti) =

∫

Ω

G(ti, y)|x− x0|
2βVi(y)e

ui(y)dx =

∫

Ω−B(xi,2δiǫ)

G(ti, y)|x− x0|
2βVie

ui(y)dy+

+

∫

B(xi,2δiǫ)−B(xi,(1/2)δiǫ)

G(ti, y)|x− x0|
2βVie

ui(y)dy+

+

∫

B(xi,(1/2)δiǫ)

G(ti, y)|x− x0|
2βVie

ui(y)dy

But, in the first and the third integrale, the point ti is far from the singularity xi and we know

that the Green function is bounded. For the second integrale, after a change of variable, we can

see that this integale is bounded by (we take the supremum in the annulus and use Brezis-Merle

theorem)

δ2i e
ui(t

′

i)+2β log d(xi,x0) × Ij

where Ij is a Jensen integrale (of the form
∫ 1

0

∫ 2π

0 (log(|1 + |xi| + tθ) − log |θi − tθ|)tdtdθ
which is bounded ).

we conclude the lemma.

From the lemma, we see that far from the singularity the sequence is bounded, thus if we

take the supremum on the set B1(0)−B(xi, δiǫ) we can see that this supremum is bounded and

thus the sequence of functions is uniformly bounded or tends to infinity and we use the same

arguments as for xi to conclude that around this point and far from the singularity, the seqence is

bounded.

The process will be finished , because, according to Brezis-Merle estimate, around each supre-

mum constructed and tending to infinity, we have:

∀ ǫ > 0, lim sup
i→+∞

∫

B(xi,δiǫ)

|x− x0|
2βVie

uidy ≥ 4π > 0.

Finaly, with this construction, we have a finite number of ”exterior ”blow-up points and outside

the singularities the sequence is bounded uniformly, for example, in the case of one ”exterior”

blow-up point, we have:
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ui(xi) → +∞

∀ ǫ > 0, sup
B1(0)−B(xi,δiǫ)

ui ≤ Cǫ

∀ ǫ > 0, lim sup
i→+∞

∫

B(xi,δiǫ)

|x− x0|
2βVie

uidy ≥ 4π > 0.

xi → x0 ∈ ∂B1(0).

Remark: For the general case, the process of quantization can be extended to more than one

blow-up points.

We have the following lemma:

Lemma 2.2. Each δki is of order d(xk
i , ∂B1(0)). Namely: there is a positive constant C > 0

such that for ǫ > 0 small enough:

δki ≤ d(xk
i , ∂B1(0)) ≤ (2 +

C

ǫ
)δki .

Proof of the lemma

Now, if we suppose that there is another ”exterior” blow-up (ti)i, we have, because (ui)i is

uniformly bounded in a neighborhood of ∂B(xi, δiǫ), we have :

d(ti, ∂B(xi, δiǫ)) ≥ δiǫ

If we set,

δ′i = d(ti, ∂(B1(0)−B(xi, δiǫ))) = inf{d(ti, ∂B(xi, δiǫ)), d(ti, ∂(B1(0)))}

then, δ′i is of order d(ti, ∂B1(0)). To see this, we write:

d(ti, ∂B1(0)) ≤ d(ti, ∂B(xi, δiǫ)) + d(∂B(xi, δiǫ), xi) + d(xi, ∂B1(0)),

Thus,

d(ti, ∂B1(0))

d(ti, ∂B(xi, δiǫ))
≤ 2 +

1

ǫ
,

Thus,

δ′i ≤ d(ti, ∂B1(0)) ≤ δ′i(2 +
1

ǫ
).

Now, the general case follow by induction. We use the same argument for three, four,..., n
blow-up points.

We have, by induction and, here we use the fact that ui is uniformly bounded outside a small

ball centered at xj
i , j = 0, . . . , k − 1:

δji ≤ d(xj
i , ∂B1(0)) ≤ C1δ

j
i , j = 0, . . . , k − 1,

.

d(xk
i , ∂B(xj

i , δ
j
i ǫ/2)) ≥ ǫδji , ǫ > 0, j = 0, . . . , k − 1,

.

and let’s consider xk
i such that:

ui(x
k
i ) = sup

B1(0)−∪
k−1

j=0
B(xj

i
,δj

i
ǫ)

ui → +∞,

take,

δki = inf{d(xk
i , ∂B1(0)), d(x

k
i , ∂(B1(0)− ∪k−1

j=0B(xj
i , δ

j
i ǫ/2))},

if, we have,
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δki = d(xk
i , ∂B(xj

i , δ
j
i ǫ/2)), j ∈ {0, . . . , k − 1}.

Then,

δki ≤ d(xk
i , ∂B1(0)) ≤

≤ d(xk
i , ∂B(xj

i , δ
j
i ǫ/2)) + d(∂B(xj

i , δ
j
i ǫ/2), x

j
i ) + d(xj

i , ∂B1(0))

≤ (2 +
C1

ǫ
)δki .

To apply lemma 2.1 for m blow-up points, we use an induction:

We do directly the same approch for ti as xi by using directly the Green function of the unit

ball.

If we look to the blow-up points, we can see, with this work that, after finite steps, the sequence

will be bounded outside a finite number of balls , because of Brezis-Merle estimate:

∀ ǫ > 0, lim sup
i→+∞

∫

B(xk
i
,δk

i
ǫ)

|x− x0|
2βVie

uidy ≥ 4π > 0.

Here, we can take the functions:

uk
i (y) = ui(x

k
i + δki y) + 2 log δki + 2β log d(xi, x0).

Indeed, by corollary 4 of the paper of Brezis-Merle, if we have:

lim sup
i→+∞

∫

B(xk
i
,δk

i
ǫ)

|x− x0|
2βVie

uidy ≤ 4π − ǫ0 < 4π,

then, (uk
i )

+ would be locally bounded and this contradict the fact that uk
i (0) → +∞.

Finaly, we can say that, there is a finite number of sequences (xk
i )i, (δ

k
i ), 0 ≤ k ≤ m, such

that:

(x0
i )i ≡ (xi)i, δ0i = δi = d(xi, ∂B1(0)),

(x1
i )i ≡ (ti)i, δ1i = δ′i = d(ti, ∂(B1(0)−B(xi, δiǫ)),

and each δki is of order d(xk
i , ∂B1(0)).

and,

ui(x
k
i ) = sup

B1(0)−∪
k−1

j=0
B(xj

i
,δj

i
ǫ)

ui → +∞,

ui(x
k
i ) + 2 log δki + 2β log d(xk

i , x0) → +∞,

∀ ǫ > 0, sup
B1(0)−∪

m
j=0

B(xj

i
,δj

i
ǫ)

ui ≤ Cǫ

∀ ǫ > 0, lim sup
i→+∞

∫

B(xk
i
,δk

i
ǫ)

|x− x0|
2βVie

uidy ≥ 4π > 0.

The work of YY.Li-I.Shafrir

Since in B(xi, δiǫ), d(x, x0) is equivalent to d(xi, x0) we can consider the following func-

tions:

vi(y) = ui(xi + δiy) + 2 log δi + 2β log d(xi, x0).

With the previous method, we have a finite number of ”exterior” blow-up points (perhaps

the same) and the sequences tend to the boundary. With the aid of proposition 1 of the paper

of Li-Shafrir, we see that around each exterior blow-up, we have a finite number of ”interior”
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blow-ups. Around, each exterior blow-up, we have after rescaling with δki , the same situation as

around a fixed ball with positive radius. If we assume:

Vi → V in C0(B̄1(0)),

then,

∀ ǫ > 0, lim sup
i→+∞

∫

B(xk
i
,δk

i
ǫ)

|x− x0|
2βVie

uidy = 8πmk, mk ∈ N
∗.

And, thus, we have the following convergence in the sense of distributions:

∫

B1(0)

|x−x0|
2βVie

uidy →

∫

B1(0)

|x−x0|
2βV eudy+

m
∑

k=0

8πm′

kδxk
0
, m′

k ∈ N
∗, xk

0 ∈ ∂B1(0).

Consequence: using a Pohozaev-type identity, proof of theorem 2

By a conformal transformation, we can assume that our domainΩ = B+ is a half ball centered

at the origin, B+ = {x, |x| ≤ 1, x1 ≥ 0}, and, x0 = 0. In this case the normal at the boundary

is ν = (−1, 0) and ui(0, x2) ≡ 0. Also, we set xi the blow-up point and x2
i = (0, x2

i ) and

x1
i = (x1

i , 0) respectevely the second and the first part of xi. Let ∂B+ the part of the boundary

for which ui and its derivatives are uniformly bounded and thus converge to the corresponding

function.

The case of one blow-up point:

Theorem 2.3. If Vi is s-Holderian with 1/2 + β/2 < s ≤ 1 and,

∫

Ω

|x|2βVie
uidy ≤ 16π − ǫ, ǫ > 0,

we have :

2Vi(xi)

∫

B(xi,δiǫ)

|x|2βeuidy = o(1),

which means that there are no blow-up points.

Proof of the theorem

In order to use the Pohozaev identity we need to have a good function ui, since β ∈ (0, 1), we

have a function ui such that:

ui ∈ C2,ǫ(Ω̄)

Thus, we can use integration by parts. The Pohozaev identity gives us the following formula:

∫

Ω

< (x− xi
2)|∇ui > (−∆ui)dy =

∫

Ω

< (x− xi
2)|∇ui > |x|2βVie

uidy = Ai

Ai =

∫

∂B+

< (x − xi
2)|∇ui >< ν|∇ui > dσ +

∫

∂B+

< (x− xi
2)|ν > |∇ui|

2dσ

We can write it as:

∫

Ω

< (x−xi
2)|∇ui > (Vi−Vi(xi))|x|

2βeuidy = Ai+Vi(xi)

∫

Ω

< (x−xi
2)|∇ui > |x|2βeuidy =

= Ai + Vi(xi)

∫

Ω

< (x − xi
2)|x|

2β |∇(eui) > dy

And, if we integrate by part the second term, we have (because x1 = 0 on the boundary and

ν2 = 0):
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∫

Ω

< (x− xi
2)|∇ui > (Vi − Vi(xi))|x|

2βeuidy = −2(1 + β)Vi(xi)

∫

Ω

|x|2βeuidy+

+2βVi(xi)

∫

B(xi,δiǫ)

x2x
i
2|x|

2β−2euidy − 2βVi(xi)

∫

Ω−B(xi,δiǫ)

x2x
i
2|x|

2β−2euidy +Bi

where Bi is,

Bi = Vi(xi)

∫

∂B+

< (x− xi
2)|ν > |x|2βeuidy

applying the same procedure to u, we can write:

∫

Ω

< (x− xi
2)|∇u > (V − V (0))|x|2βeudy = −2(1 + β)V (0)

∫

Ω

|x|2βeudy+

−2βV (0)

∫

B(xi,δiǫ)

x2x
i
2|x|

2β−2eudy − 2βV (0)

∫

Ω−B(xi,δiǫ)

x2x
i
2|x|

2β−2eudy +B,

with,

B = V (0)

∫

∂B+

< (x− xi
2)|ν > |x|2βeudy

we use the fact that, ui is bounded outside B(xi, δiǫ) and the convergence of ui to u on

compact set of Ω̄− {0}, and the fact that β ∈ (0,+∞), to write the following:

2Vi(xi)

∫

B(xi,δiǫ)

|x|2βeuidy + o(1) =

=

∫

Ω

< (x−xi
2)|∇ui > (Vi−Vi(xi))|x|

2βeuidy−

∫

Ω

< (x−xi
2)|∇u > (V −V (0))|x|2βeudy+

+(Ai −A) + (Bi −B),

where A and B are,

A =

∫

∂B+

< (x− xi
2)|∇u >< ν|∇u > dσ +

∫

∂B+

< (x− xi
2)|ν > |∇u|2dσ

B = V (0)

∫

∂B+

< (x− xi
2)|ν > |x|2βeudy

and, because of the uniform convergence of ui and its derivatives on ∂B+, we have:

Ai −A = o(1) and Bi −B = o(1)

which we can write as:

2Vi(xi)

∫

B(xi,δiǫ)

|x|2βeuidy + o(1) =

=

∫

Ω

< (x− xi
2)|∇(ui − u) > (Vi − Vi(xi))|x|

2βeuidy+

+

∫

Ω

< (x− xi
2)|∇u > (Vi − Vi(xi))|x|

2β(eui − eu)dy+

+

∫

Ω

< (x − xi
2)|∇u > (Vi − Vi(xi)− (V − V (0)))|x|2βeudy + o(1)

We can write the second term as:

∫

Ω

< (x−xi
2)|∇u > (Vi−Vi(xi))|x|

2β(eui−eu)dy =

∫

Ω−B(0,ǫ)

< (x−xi
2)|∇u > (Vi−Vi(xi))(e

ui−eu)|x|2βdy+

+

∫

B(0,ǫ)

< (x− xi
2)|∇u > (Vi − Vi(xi))(e

ui − eu)|x|2βdy = o(1),
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because of the uniform convergence of ui to u outside a region which contain the blow-up and

the uniform convergence of Vi. For the third integral we have the same result:

∫

Ω

< (x− xi
2)|∇u > (Vi − Vi(xi)− (V − V (0)))|x|2βeudy = o(1),

because of the uniform convergence of Vi to V .

Now, we look to the first integral:

∫

Ω

< (x− xi
2)|∇(ui − u) > (Vi − Vi(xi))|x|

2βeuidy,

we can write it as:

∫

Ω

< (x−xi
2)|∇(ui−u) > (Vi−Vi(xi))|x|

2βeuidy =

∫

Ω

< (x−xi)|∇(ui−u) > (Vi−Vi(xi))|x|
2βeuidy+

+

∫

Ω

< xi
1|∇(ui − u) > (Vi − Vi(xi))|x|

2βeuidy,

Thus, we have proved by using the Pohozaev identity the following equality:

∫

Ω

< (x− xi)|∇(ui − u) > (Vi − Vi(xi))|x|
2βeuidy+

+

∫

Ω

< xi
1|∇(ui − u) > (Vi − Vi(xi))|x|

2βeuidy =

= 2Vi(xi)

∫

B(xi,δiǫ)

|x|2βeuidy + o(1)

We can see, because of the uniform boundedness of ui outside B(xi, δiǫ) and the fact that :

||∇(ui − u)||1 = o(1),

it is sufficient to look to the integral on B(xi, δiǫ).

Assume that we are in the case of one blow-up, it must be (xi) and isolated, we can write the

following inequality as a consequence of YY.Li-I.Shafrir result:

ui(x) + 2 log |x− xi|+ 2β log d(x, 0) ≤ C,

We use this fact and the fact that Vi is s-holderian to have that, on B(xi, δiǫ),

|(x − xi)(Vi − Vi(xi))|x|
2βeui | ≤

C

|x− xi|1−s
∈ L(2−ǫ′)/(1−s), ∀ ǫ′ > 0,

and, we use the fact that:

||∇(ui − u)||q = o(1), ∀ 1 ≤ q < 2

to conclude by the Hölder inequality that:

∫

B(xi,δiǫ)

< (x − xi)|∇(ui − u) > (Vi − Vi(xi))|x|
2βeuidy = o(1),

For the other integral, namely:

∫

B(xi,δiǫ)

< xi
1|∇(ui − u) > (Vi − Vi(xi))|x|

2βeuidy,

We use the fact that, because our domain is a half ball, and the sup+ inf inequality to have:

xi
1 = δi,

ui(x) + 4 log δi + 4β log d(x, 0) ≤ C

and,

10



|x|sβe(s/2)ui(x) ≤ |x− xi|
−s,

|Vi − Vi(xi)| ≤ |x− xi|
s,

Finaly, we have:

|

∫

B(xi,δiǫ)

< xi
1|∇(ui − u) > (Vi − Vi(xi))|x|

2βeuidy| ≤

≤ C

∫

B(xi,δiǫ)

|∇(ui − u)||x|2β(1/2−s/2)(eui)(3/4−s/2),

But in the second member, for 1/2 < s ≤ 1, we have qs = 1/(3/4 − s/2) > 2 and thus

q′s < 2 and,

(|x|2βeui)3/4−s/2 ∈ Lqs

|x|2β(−1/4) ∈ Lr, r =
4

β + ǫ
, ǫ > 0,

with,

1

r
+

1

qs
=

1

t
< 1/2,

and,

||∇(ui − u)||t′ = o(1),

This is possible if,

β < 2(s− 1/2).

or,

s >
β

2
+

1

2
,

This is possisble for β ∈ (0, 1).
one conclude that:

∫

B(xi,δiǫ)

< xi
1|∇(ui − u) > (Vi − Vi(xi))|x|

2βeuidy = o(1)

Finaly, with this method, we conclude that, in the case of one blow-up point and Vi is s-

Holderian with 1/2 < s ≤ 1 :

2Vi(xi)

∫

B(xi,δiǫ)

|x|2βeuidy = o(1)

which means that there is no blow-up, which is a contradiction.

Finaly, for one blow-up point and Vi is s-Hölderian with 1/2 < s ≤ 1, the sequence (ui) is

uniformly bounded on Ω.
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