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Abstract

Fuel cell technology is a promising alternative to traditional internal

combustion engines in various applications, especially in transportation

applications. However, the high cost and limited lifetime of fuel cells have

hindered their widespread commercialization. Accurately predicting fuel cell

lifetime is crucial for reducing the cost of ownership, ensuring safety, and

promoting the adoption of this technology. The objective of the present work is

to develop a tool that is able to estimate the lifespan of a proton exchange

membrane fuel cell and to predict its behavior to anticipate failures. Therefore,

this paper contributes to proposing a multi‐input time‐series prediction

network based on an echo state network, which takes the future current into

consideration. A degradation trend extraction method is proposed in this

paper and the remaining useful life of the fuel cell is predicted. Results have

shown that the proposed methods in both short‐term and long‐term prediction

have achieved satisfying prediction accuracy.
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1 | INTRODUCTION

Fuel cell technology is a promising alternative to
traditional internal combustion engines in various appli-
cations, including transportation and stationary power
generation.1 However, the high cost and limited lifetime of
fuel cells have hindered their widespread commercializa-
tion.2 Accurately predicting fuel cell lifetime is crucial for
reducing the cost of ownership, ensuring safety, and
promoting the adoption of this technology.

The prediction of fuel cell lifetime is a complex and
multidisciplinary research topic as the lifetime of fuel cells
is affected by multiple factors, such as material degradation,

electrochemical reactions, water management, and operat-
ing conditions. These factors interact with each other and
vary with time, making it challenging to accurately model
and predict fuel cell lifetime. Among them, on‐board
dynamic operating conditions are a key trigger for the
accelerated degradation of automotive fuel cell perform-
ance.3 Complex road conditions such as urban, suburban,
and highway conditions and variable environmental
conditions such as varying temperature and humidity tend
to cause dynamic changes in the operating characteristics
and frequent fluctuations in fuel supply, pressure, temper-
ature, and humidity of the automotive fuel cell system,
resulting in accelerated degradation and reduced lifetime of
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key fuel cell components. The process and mechanism of
fuel cell degradation are complex.4 Dynamic load and
frequent start‐stop lead to alternating potential and
fluctuations in gas supply response inside the fuel cell,
resulting in flooding, lack of air, and local overheating,
causing corrosion of electrode materials and shortening the
service life of the fuel cell.5 The evolution of environmental
physical parameters such as temperature and relative
humidity causes fluctuations in cathode air pressure and
oxygen content, leading to electrochemical degradation of
the electrodes and membrane. Besides, the increase in
interlayer contact resistance due to fluctuations in mechan-
ical stress will also further accelerate the degradation of the
membrane electrode assembly, exacerbating the degrada-
tion of the fuel cell performance and seriously affecting the
reliable operation of automotive fuel cell systems.

The multi‐influence coupling and interaction mecha-
nisms between the input and output characteristics of the
system make the fuel cell performance degradation
strongly nonlinear, and the compact assembly of the stack
makes its internal parameters difficult to measure. In
addition, as the changes in operating parameters under
the dynamic conditions of the automotive fuel cell can
hardly be predicted, this makes it difficult to accurately
predict the lifetime of automotive fuel cells without a
comprehensive degradation information structure, which
makes it more difficult to optimize the lifetime control,
and is not conducive to the positive design of automotive
fuel cell systems. As automotive fuel cells are expensive
to maintain and replace, the accuracy and reliability of
life prediction methods are crucial to reduce costs and
improve efficiency.

Several techniques have been proposed and developed
for predicting fuel cell lifetime, including empirical
models, mathematical models, and data‐driven models.
Empirical models rely on experimental data to establish
relationships between fuel cell performance and lifetime,
while mathematical models use fundamental principles
and mathematical equations to describe the physical and
chemical processes in fuel cells. Bressel et al. proposed to
use an extended Kalman filter to estimate the state of a
single linear performance degradation parameter based on
the assumption of linearity in the ohmic resistance and
ultimate current density of the fuel cell, to calculate the
remaining service life.6 Similarly, Jouin et al. used a
particle filter algorithm to perform state estimation of
multiple performance degradation parameters in a semi-
empirical performance degradation model for fuel cells,
using the fuel cell output voltage as an observation, to
achieve fuel cell performance degradation prediction
based on a semiempirical model.7 Data‐driven models
leverage machine learning and artificial intelligence
algorithms to extract patterns and relationships from

large datasets. This type of prediction method uses
historical data to train relevant behavioral models with
good nonlinear fitting capability, and has good results in
dealing with nonlinear and coupled performance degra-
dation characteristics of fuel cells. Commonly used data‐
driven prediction methods include recurrent neural net-
works (RNNs),8 echo state networks (ESNs),9 and long
short‐term memory.10 Researchers have continued to
make improvements in terms of accuracy and model
adaptability on data‐driven prediction methods, such as
using self‐selection of key parameters in neural networks
through hyperparameter tuning methods based on evolu-
tionary algorithms11 and the use of neural networks
combined with traditional time‐series forecasting models
to weaken the error accumulation problem of forecasting
models.12 However, most of the methods used in the
above research work are suitable for predicting steady‐
state systems, and the prediction results are better when
the input variables are single and remain constant;
however, in real‐world automotive fuel cell systems, the
output characteristics of fuel cells are characterized by
high nonlinearity due to dynamic changes in operating
conditions. Therefore, the development of online predic-
tion methods that can describe the dynamic performance
degradation mechanisms of fuel cells is particularly
critical and is a much needed research effort with great
research value.

To address the above issues, the current research has
explored two main aspects: first, the steady‐state represen-
tation of the dynamic output characteristics of fuel cells is
investigated, and then the prediction method of the
steady‐state performance degradation index is used for
prediction. For example, Hua et al. proposed a fuel cell
performance degradation prediction method based on the
relative power loss rate.13 Li et al. fitted the voltage signal
by segmenting the linear parameter variation equivalent
model and constructed a virtual steady‐state voltage for
life prediction based on the model identification method.14

Wang et al. used an adaptive Brownian bridge aggregation
method to extract the performance indicators from the
fuel cell equivalent circuit model that can represent the
degradation evolution.15 He et al. used an unsupervised
learning‐based autoencoder to encode the load cycles and
extracted the intermediate layer features as degradation
indicators for prediction, which better restored the
degradation process of fuel cells under dynamic loads.16

However, such methods are still essentially predictions of
the steady‐state characteristics of the fuel cell and lack the
consideration of information on the dynamic operating
conditions in the actual operation of the fuel cell. Another
solution is to make predictions by coupling the known
operating conditions, that is, current intensity, tempera-
ture, pressure, and so forth. They are used as inputs to the
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prediction model, so that the dynamic changes in the fuel
cell output characteristics can be predicted. For example,
Jin et al. found that hydrogen inlet and outlet pressures
can reflect the performance degradation characteristics of
fuel cells through sensitivity analysis of multidimensional
data, and using them as inputs to a neural network can
improve the fuel cell life prediction results.17 Xie et al.
used deep neural networks to predict system parameters
such as fuel cell current and air temperature, and
proposed a method to reconstruct voltage profiles through
system parameters.18 Liu et al. classified the automotive
operating conditions of fuel cells into four categories based
on current density, and trained a multi‐input fuel cell
performance degradation prediction model based on
Bayesian ridge regression and Gaussian process regression
using the operating times of the four categories as
inputs.19

ESNs are a specialized form of RNNs that are
particularly well‐suited for temporal or time‐series data
prediction tasks. Unlike traditional RNNs, ESNs do not
require backpropagation through time for training the
hidden layer weights. Only the output weights are
trained, which significantly reduces the computational
cost and complexity. They also have a high memory
capacity due to their dynamic reservoir, which can
capture long‐term dependencies within the data more
effectively than many other types of networks. Particu-
larly pertinent to our work, Morando et al. have first
discovered the possibility of using ESN in proton
exchange membrane fuel cell (PEMFC) lifetime predic-
tion9 and applied it to predict the degradation of the fuel
cell under constant load. Hua et al. have explored the use
of ESNs in forecasting the degradation of the fuel cell by
combining wavelet transform method.20 Their findings
corroborated the potential of ESNs to capture the
nuanced degradation behaviors inherent to fuel cells,
which indicated that ESNs not only provided comparable
accuracy but also required significantly less computa-
tional resources, underscoring their suitability for real‐
time applications. The objective of the present work is to
develop a tool that is able to estimate the lifespan of a
PEMFC and to predict its behavior to anticipate failures.
Therefore, to dynamically predict the degradation
performance of automotive fuel cell under variable
operation conditions, this paper contributes to proposing
a multi‐input time‐series prediction network based on a
multi‐input ESN, which takes the future current into
consideration. Nevertheless, in real‐case applications, the
future load profile is not available. The aim of this paper
is not only to develop an accurate prognostic tool but also
to propose a solution to predict the lifetime of the
PEMFC, which is achieved by extracting the degradation
trend.

The following of this paper will first introduce the
experimental data used to train and to validate the
proposed ESN‐based fuel cell performance prediction
method. Then, the methodology of this paper is
explained and the results are demonstrated and discussed
before concluding.

2 | DATA DESCRIPTION

The fuel cell stacks utilized in the experiments were
fabricated by company PRAGMA Industries with an open
cathode and dead‐end anode structure. To evaluate their
degradation for transport applications, a long‐term test
was initiated in FCLAB Research Federation.14 Table 1
provides some of the operation condition parameters used
during the evaluations and Figure 1A showcases the
experimental platform where two stacks were simulta-
neously tested, with the only shared resource being the
common hydrogen supply, which is fixed near to 0.35 bar.
The current load is controlled by a programmable
electronic direct current load, which simulates the load
profile derived from a fuel cell used as a range extender in
a battery‐powered light mobile bike. The fuel cell activates
when the state‐of‐charge of the bike's battery falls below a
predefined threshold. When the fuel cell is enabled, the
current increases gradually from 0 to 8 A. The average
power of the hydrogen bike is 53.6W, as shown in
Figure 1B. This paper focuses on studying one of the
stacks that ran for 1750 h with the obtained current
profile. The stack temperature is managed by adjusting
the air fan's speed, which is regulated by altering the
duty cycle of a 25‐kHz pulse width modulation
signal. Optimal operating temperatures at various
current levels are referenced for guidance. A classic
proportional–integral–derivative controller is employed

TABLE 1 Fuel cell stack parameters.

Parameter Value

Number of cells 15

Active surface (cm2) 33.625

Temperature (°C) 25–72

Current density (A/cm2) 0–0.238

Anodic relative humidity 0

Cathodic relative humidity (%) 45–55

Maximum allowable pressure difference between
anode and cathode (bar)

0.35

Pressure at air inlet atm

Pressure at hydrogen inlet (bar) 1.35
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to achieve precise temperature control. Additionally, the
fuel cells are self‐humidifying, eliminating the need for an
external humidifier on the cathode side. The voltage
measurements are displayed in Figure 2.

3 | METHODOLOGY

3.1 | Echo state network

ESN is a type of RNN that is often used for time‐series
prediction and other dynamic system modeling tasks. At
each time step, the network takes an input vector x(t) and

generates an output vector y(t), which depends on the
current state of the network. The output weight matrix is
typically learned by solving a linear regression problem
using a training set of input–output pairs. The key idea
behind ESNs is that the recurrent weight matrix is
randomly initialized and only the output weight matrix is
learned. This allows the network to capture complex
temporal dynamics without suffering from the vanishing
gradient problem that often occurs in traditional RNNs.
In addition, ESNs are relatively easy to train and
require less computational resources compared to other
RNN architectures. The state update model of ESN is
written as

FIGURE 1 (A) Fuel cell degradation experiment platform and (B) fuel cell degradation experiment profile and power battery SOC
variation. cDAQ, compact data‐acquisition; DC, direct current; NI, National Instruments; SOC, state‐of‐charge.

FIGURE 2 (A) Measured fuel cell voltage and (B) details of measured fuel cell voltage.
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u t f w u t w x t˜( ) = ( ( − 1) + ( )),res in (1)

y t g w u t( ) = ( ( )),out (2)

where x t( ) and y t( ) are the input and output, u t( ) is the
internal state in the reservoir, and u t˜( ) is its update,
u t u t u t w˜( ) = ( ) − ( − 1), in is the input weight matrix,
wres is the recurrent weight matrix in the reservoir, and
wout is the output weight matrix. The tanh function is
generally adopted as the activation function f ( ) of the
reservoir, and g ( ) of the output layer could be defined
with a simple linear function, such as g ( ) = 1. win and
wres are initialized randomly and they are constant so
that there is no need to train them. Only wout is going to
be trained by linear regression. The structure of ESN is
shown in Algorithm 1.

Algorithm 1. Procedure of implementing echo state
network

1. Define the echo state network structure and parameters

‐ Initialize win randomly

‐ Initialize wres with sparse connectivity and set spectral radius
value

‐ Initialize wout to zero or small random values

2. Set hyperparameters

‐ Set reservoir size, input size, output size, leaking rate, and so
forth

3. Reservoir state initialization: Initialize u t( ) to zero

4. Data preparation: Normalize and split the time series into
training and testing sets

5. Training phase:

for each training input in training set do

Update u t( ) with w w,in res, and leaking rate

Collect states and desired outputs in matrices for training

end for

wout = Train using linear regression on collected states

6. Testing phase:

for each test input in testing set do

Update u t( ) with w w,in res, and leaking rate

Compute forecast using the trained wout and current u t( )

Store forecast for evaluation

end for

7. Evaluate the model performance with evaluation metrics

When working with prediction problems, it is
common to choose both a training window and a
prediction window. The training window determines
the length of the input sequence, while the prediction
window signifies how many steps will be predicted. In

applications such as fuel cell prognostics, the training
window length is determined based on the amount of
available input data. When conducting short‐term
prediction, specifically, if there are N available measure-
ments, a window length of p is used for the input
sequence, expressed as

i s i s i s i p

i N p

x( ) = [ ( + 1), ( + 2), …, ( + )],

= 0, …, − .
(3)

Then, the corresponding output with a prediction
window length of q is written as

i s i p s i p

s i p q i N p

y( ) = [ˆ ( + + 1), ˆ ( + + 2), …,

ˆ ( + + )], = 0, …, − .
(4)

In this paper, the inputs are the current signal at time
t and the voltage signal at time t − 1, while the output is
the voltage signal at time t .

3.2 | Degradation trend extraction

Multiplicative decomposition is a statistical method used
for time‐series analysis to decompose a time series into
several components. The idea behind the decomposition
is to isolate the trend, cyclical, and seasonal components
of the time series. In multiplicative decomposition, the
original time series is represented as the product of these
three components:

• Trend component: represents the long‐term increasing
or decreasing behavior of the time series.

• Cyclical component: represents periodic fluctuations in
the time series that are not of fixed frequency, such as
business cycles or economic cycles.

• Seasonal component: represents the regular pattern of
fluctuations that occur within a fixed time period.

The mathematical formula for multiplicative decom-
position can be written as  Y t T t C t S t( ) = ( ) ( ) ( ), where
Y t( ) is the observed value of the time series at time
t T t, ( ) is the estimated trend component, C t( ) is the
estimated cyclical component, and S t( ) is the esti-
mated seasonal component. The pseudocode of im-
plementing the multiplicative decomposition is shown
in Algorithm 2. Multiplicative decomposition is useful
for identifying patterns and trends in time‐series
data, which can be helpful in forecasting and
decision‐making.
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Algorithm 2. Procedure of implementing multiplicative
decomposition

Data preparation

Input: Time‐series data (Y t( )), where t n= 1, 2, …,

Step 1: Initialize

‐ Set seasonal length L( ) based on periodicity of data

‐ Divide Y t( ) into segments of length L

Step 2: Seasonal component estimation

‐ Calculate the average of each segment to get initial seasonal
component (S t( ))

‐ Normalize S t( ) such that the product of seasonal components
over one period equals 1

Step 3: Trend and cyclical component estimation

‐ Detrend the time series by dividing Y t( ) by S t( ) to obtain
detrended series (D t( ))

‐ Apply a moving average on D t( ) to extract the trend
component (T t( ))

‐ Calculate the cyclical component (C t( )) by dividing D t( )

by T t( )

Step 4: Multiplicative decomposition

‐ Express the original time series as the product of the
components:  Y t T t C t S t( ) = ( ) ( ) ( )

Step 5: Output

‐ Return the trend component (T t( )), seasonal component (S t( )),
and cyclical component (C t( ))

End

As the fuel cell is operated under dynamic conditions
in automotive applications, the trend, rather than the
magnitude of the stack voltage, is the key element to
determine the degradation of the fuel cell. As the
magnitude of the time series may change due to ageing
phenomenon, multiplicative decomposition is used to
decompose the signal into trend, seasonal values, and
residual values, as shown in Figure 3.

In the decomposition results, the trend refers to the
increasing or decreasing value in the series, the seasonal
values refer to the repeating short‐term cycles in the
series and the residual values refer to the random
variation in the series, which in our case, are the noise
in the voltage measurement. Therefore, to indicate the
degradation of the stack, the trend of the decomposition
is extracted as the degradation feature and will be used to
train the prognostics network to predict the fuel cell
degradation, shown in Figure 4.

3.3 | PEMFC performance prediction

In this study, both short‐term and long‐term perform-
ance predictions for fuel cells using the proposed
prediction methodologies are explored. Short‐term pre-
diction is characterized by its immediacy; it forecasts

FIGURE 3 (A) Multiplicative decomposition result and (B) details of decomposition result.
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only a few time steps ahead based on recent historical
data. After each prediction, actual measurements are
incorporated to update the model, thereby refining
subsequent short‐range predictions. Figure 5A shows a
one‐step‐ahead prediction procedure. These short‐term
predictions facilitate dynamic adjustments in system
control and management strategies in response to
anticipated conditions.

In the long run, one may need to master the long‐term
performance degradation of fuel cells because it allows for
proactive maintenance and replacement planning. Fuel cell
systems rely on a combination of materials and chemical
processes to convert fuel into electricity, and as these
components degrade over time, their performance declines.
If left unchecked, this degradation can lead to reduced
efficiency, increased downtime, and even complete failure of
the fuel cell system. Therefore, long‐term predictions operate
independently of real‐time measurements during the
prediction phase. Once initiated, this approach relies solely
on predicted values for future forecasting, thereby generating
a sequence that projects the fuel cell stack's end‐of‐life
(EOL). Long‐term predictions provide strategic insights, such
as estimating the remaining useful life (RUL), which
are critical for maintenance scheduling, operational optimi-

zation, and minimizing unexpected failures.21 It is worth
noting that long‐term prediction poses greater challenges
than its short‐term counterpart due to the inherent
uncertainty of extended temporal horizons. An effective
prediction method must therefore be adept at navigating
both the immediate and distant futures to accurately capture
the behavior of the fuel cell under varying conditions. To
realize long‐term prediction purposes, the standard approach
of performing one‐step‐ahead prediction is modified, as
shown in Figure 5B. This modification allows for multitime
step prediction. The input sequence used for prediction
consists of a length of l and data collected until the end. The
model outputs a single predicted value, but to continue
making predictions, the predicted value from the previous
step is added back to the input sequence. This process
continues until the completion of the test phase.

4 | RESULTS AND DISCUSSION

4.1 | Short‐term performance
prediction

In the experiment, 53,279 points of ageing data are
collected for prediction method validation. In all, 30,000
points are used for training and the rest for testing. The

FIGURE 4 Degradation feature extraction result.

FIGURE 5 Procedure of short‐term and long‐term prediction. (A) Short‐term performance prediction and (B) long‐term performance
prediction.

TABLE 2 Configuration of the proposed multistep echo state
network.

Parameter Value

Input parameter 2

Output parameter 1

Input window length 20

Output window length 1

Number of neurons 2000

Leaking rate 0.5

Spectral radius 0.5

Regression parameter 102
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configuration of the proposed multistate ESN is specified
in Table 2. The ESN was implemented in a Python
environment, leveraging easyesn package. For the setup,
we utilized the 12th Gen Intel Core i7‐12700H 2.30 GHz.
The training of the network was conducted using
backpropagation through time. The training phase takes
an average 3 s.

The training and testing results are shown in Figure 6
and details in Figure 7. As it can be seen from the results
that the fuel cell degrades along with the experiment
time and the voltage changes dynamically due to the
current load. By adding a current signal as one of
the inputs, the proposed prediction method can predict
the fuel cell performance accurately during its whole life

cycle. However, the prediction results are less satisfying
during the end period of the testing phase than those
during the beginning period. This may be due to the
accumulating degradation effects and can be improved
by increasing the prediction window length.

4.2 | Long‐term degradation prediction

Further analysis of the proposed method for predicting
fuel cell degradation is presented in Figure 8, with a split
ratio between training and testing phases remaining
constant. The sampled and smoothed data are utilized to
conduct long‐term predictions, showing that the multi‐
input ESN‐based model successfully predicts the degra-
dation trend of the fuel cell without requiring any
measurements during the testing phase. This conclusion
is supported by the comparison between the red dotted
line and the green line on the graph. The root‐mean‐
square error of the predicted results during the testing
phase is lower than 0.06, indicating high prediction
accuracy. These findings suggest the feasibility of further
implementing the proposed method for predicting fuel
cell degradation in real‐world applications.

The analysis of the RUL estimation for the fuel cell,
evaluated by Equation (5), is depicted in Figure 9. The
figure illustrates a comparison between the predicted
RUL and the true RUL, where tEOL represents the EOL
failure threshold, and tλ denotes the current time. The
prediction tests were initiated at four different starting
points, that is, [750; 800; 850; 900] hour, resulting in
corresponding predicted RULs of [444; 425; 343; 316].
The predicted RUL errors were computed relative to the

FIGURE 6 Short‐term prediction results of training phase and
testing phase.

FIGURE 7 Zoom results at the beginning and the end of the testing phase. (A) Zoom results at the beginning of the testing phase and
(B) zoom results at the end of the testing phase.

8 | YUE ET AL.



true RUL, yielding [39; 3; 36; 14] within a 10% confidence
interval. Interestingly, all the predictions were early
predictions, which meet the requirements for predictive
maintenance. These results demonstrate the effectiveness
and accuracy of the proposed approach for predicting the
RUL of fuel cells.

RUL t tˆ = ˆ − .EOL λ (5)

5 | CONCLUSION

In conclusion, this paper proposed an ESN‐based fuel cell
performance prediction method for both short‐term
performance prediction and long‐term degradation
prediction in automotive applications. The proposed

FIGURE 8 Long‐term prediction results. Prediction starting at (A) the 750th hour, (B) the 800th hour, (C) the 850th hour, and (D) the
900th hour.

FIGURE 9 RUL comparison results. CI, confidence interval;
RUL, remaining useful life.
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multi‐input time‐series prediction network based on
ESN, which takes future current into consideration, is a
promising method to estimate fuel cell lifespan and
predict potential failures. Additionally, the proposed
degradation trend extraction method addresses the issue
of unavailable future load profiles, providing a reliable
means for predicting the RUL of the fuel cell. The
prediction results show that the proposed prediction
method has reached satisfying accuracy and is suitable
for dynamic load applications.
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