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A B S T R A C T

We study a two-player zero-sum game (matrix game for short) with the objective of finding the saddle point
and its value. We develop a novel convolutional neural network (CNN for short) approach to achieve the goal.
We propose a complete training pipeline, including a specific CNN model structure to handle varying game
sizes, generating training datasets, and model fitting. The experiment results show that our proposed method
outperforms the traditional linear programming (LP for short) method and two regret minimization learning
algorithms in terms of computational efforts.
1. Introduction

A two-player zero-sum game or matrix game is a game where there
are only two players, and one player wins whatever the other player
loses. It can be reduced to a matrix form 𝐀 = (𝑎𝑖,𝑗 )𝑛×𝑚, where the
number of rows and columns represent the size of the action set of the
row player and column player, respectively. The row player and the
column player choose a pure strategy (𝑖, 𝑗) will get a return (𝑎𝑖𝑗 ,−𝑎𝑖𝑗 ),
respectively. 𝐀 is the payoff function of the row player, and −𝐀 is the
payoff function of the column player.

The saddle point in a two-player zero-sum game describes a situa-
tion when two players optimize their payoff functions simultaneously.
The definitions of the saddle point and its value are

(𝐱∗, 𝐲∗) = arg max
𝐱

(

arg min
𝐲

𝐱𝑇𝐀𝐲
)

, (1)

𝑣∗ = max
𝐱

(

min
𝐲

𝐱𝑇𝐀𝐲
)

. (2)

The saddle point equilibrium in (1) can be solved by linear programs
(3) and (4). The minimax theorem states that the optimal objective
values 𝑣 in those two linear programs are equal (von Neumann, 1928).

(P1) max 𝑣

s.t. 𝐀𝑇 𝐱 ≥ 𝑣𝐞𝐦
𝐞𝐧𝑇 𝐱 = 1, 𝐱 ≥ 𝟎,

(3)

(P2) min 𝑣

s.t. 𝐀𝐲 ≤ 𝑣𝐞𝐧
𝐞𝐦𝑇 𝐲 = 1, 𝐲 ≥ 𝟎,

(4)

where 𝐞𝐤 is a k-dimensional vector with all elements equal to 1.

∗ Corresponding author.
E-mail addresses: dawen.wu@centralesupelec.fr (D. Wu), abdel.lisser@l2s.centralesupelec.fr (A. Lisser).

A neural network is a statistical model that can acquire predictive
ability after learning from data. CNN represents a class of deep neural
networks widely used in the computer vision area. A CNN model is a
function (5) with the following components: model parameter 𝜃, input
𝐌 and predicted value 𝐩̂. The input 𝐌 of a CNN model is usually a
three-dimensional array with size (𝑐, ℎ,𝑤), where 𝑐, ℎ, and 𝑤 represent
the number of channels, the height, and the width, respectively. The
output of a CNN model 𝐩̂ is a real vector or a value representing
the model’s prediction. The training for the CNN model aims at min-
imizing the expected risk (6) w.r.t parameters 𝜃. However, due to its
inaccessibility, we usually minimize the empirical risk (7). Our paper’s
objective is to use the current popular and powerful model CNN to solve
two-player zero-sum games, i.e., the problems (1) and (2).

𝑓𝜃(𝐌) = 𝐩̂ (5)

𝐿(𝜃) = E𝓁
(

𝑓𝜃(𝐌),𝐩
)

(6)

𝐿̂𝑛(𝜃) =
1
𝑛

𝑛
∑

𝑖=1
𝓁
(

𝑓𝜃(𝐌𝐢),𝐩𝐢
)

(7)

Our contributions are three-fold.

• We use a CNN approach to find the saddle point of the two-
player zero-sum game. The CNN model gives the prediction of
the optimal value, and the associated strategy profile is obtained
by solving two linear systems.

• We design training algorithms to train our CNN models and
discuss training data generation.

• We conduct numerical experiments to compare our CNN ap-
proach with the traditional LP method and learning algorithms
FP and EXP3.
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The rest of the paper is organized as follows. In Section 2, we give
a literature review for two-player zero-sum games, CNN, the recent
progressing connection between these two areas, and two regret mini-
mization learning algorithms. In Section 3, we present our CNN method
for solving two-player zero-sum games. In Section 4, we provide the
numerical results in terms of two aspects, computation speed and
accuracy, and compare our CNN method with other approaches such as
LP, FP, and EXP3. In Section 5, we sum up the paper and give directions
for future works.

The notation used in the paper can be summarized as follows.

• 𝐀 denotes the payoff matrix of a two-player zero-sum game.
• 𝑛 and 𝑚 denote the sizes of an action set of row player and column

player, respectively.
• (𝐱, 𝐲) denotes a strategy profile, where 𝑥 and 𝑦 denote a row player

and column player strategies, respectively, either pure or mixed.
• (𝐱∗, 𝐲∗) denotes the optimal strategy profile of a saddle point.
• (𝐱̂, 𝐲̂) denotes a predicted strategy profile obtained by solving two

linear systems.
• 𝑣∗ denotes the optimal value of a saddle point.
• 𝑣̂ denotes a predicted value from a CNN model.
• 𝑓𝜃(⋅) denotes a CNN model, where 𝜃 is the model parameter.
• 𝓁 denotes a loss function used in training.
• P denotes a matrix game generating distribution.

. Literature review

As a mathematical model of conflict and cooperation, game theory
tudies the situations where a set of self-motivated players act to
aximize its own profit. Since the pioneering results of von Neumann

1928), game theory has been widely developed both from theoretical
nd practical points of view (Charilas & Panagopoulos, 2010; Dixit,
keath, & McAdams, 2020; Gibbons, 2019; Hauert & Szabó, 2005;
yerson, 1997; von Neumann & Morgenstern, 2007). In a two-player

ero-sum context, saddle point states a situation where the outcome is
aximum for one player and is minimum for the other. Later, in a finite
ultiple players general-sum context, Nash (1950) proved that there is

t least one mixed strategy profile where no player can improve his/her
ayoff by changing his strategy unilaterally, namely Nash equilibrium.

Two-player Zero-sum games or matrix games, as a basic type of
ame, plays a central role in game theory development. A fundamen-
al useful mathematical theorem for zero-sum games is the Minimax
heorem (Fan, 1953; von Neumann, 1928), which guarantees that
he interchange of the orders max-min and min-max in (2) would
ot affect the result. Two-player Zero-sum games model many real-
orld situations in order to help decision-makers to make the good
ecisions in a competitive environment, including business (Dixit &
indyck, 2012; Simmons, 1998), economics (Vega-Redondo, 2003),
nd engineering (Singh, 1999). Dantzig (2018) shows that solving any
atrix game is equivalent to a linear program. Most commercial or

cademic software such as Gurobi, CPLEX, Matlab,Scipy (Cplex, 2009;
earhart et al., 2012; Gurobi Optimization, LLC, 2021; Matlab, 2017;
irtanen et al., 2020) provide tools for linear programming based on

nterior point methods and simplex method (Nocedal & Wright, 2006;
anderbei, 2014). Besides, there are also some studies on the situation
here the game contains randomness (Cheng, Leung, & Lisser, 2016;
ingh & Lisser, 2019).

CNN (LeCun & Bengio, 1995) is a kind of Deep neural networks
Courville, Bengio, & Aaron, 2016). As a type of Feedforward neu-
al network, it uses the backpropagation algorithm for the training
tep (Rumelhart, Hinton, & Williams, 1986). The main characteristic of
NN is its use of shared parameter filters to scan the previous feature
aps, which can significantly reduce the size of the parameter space.

ince the CNN model Alexnet (Krizhevsky, Sutskever, & Hinton, 2017)
on the ImageNet challenge in 2012 (Deng et al., 2010), there is a

remendous amount of research on this topic (Li, Liu, Yang, Peng, &
2

hou, 2021; Wiatowski & Bolcskei, 2018; Zhou, 2020), and more so-
histicated CNN structures have been proposed (He, Zhang, Ren, & Sun,
016; Howard et al., 2017; Huang, Liu, Van Der Maaten, & Weinberger,
017). CNN has applications in many fields, e.g., image classifica-
ion (Rawat & Wang, 2017), medical image analysis (Tajbakhsh et al.,
016), video recognition (Karpathy et al., 2014), natural language
rocessing (Duque, Santos, Macêdo, & Zanchettin, 2019). It is worth
oting that the problem we are dealing with in this paper has two
haracteristics different from most situations: regression rather than
lassification and varying input size. For regression, it can be viewed
s a prediction of the rotation angle of the image (Fischer, Dosovitskiy,
Brox, 2015; Mahendran, Ali, & Vidal, 2017). For varying input sizes,

here are three approaches for solving game problems: global pooling,
ariable-sized pooling, and padding input images (Yamashita, Nishio,
o, & Togashi, 2018). PyTorch is an open-source machine learning

ibrary used for building neural network models, and it also provides
PU-CUDA support to accelerate the training step (Paszke et al., 2019)

More recently, two-player zero-sum games built many connections
ith deep learning, such as Generative adversarial networks(GAN)

Dasgupta & Collins, 2019; Goodfellow et al., 2020; Tembine, 2020;
hou, Kantarcioglu, & Xi, 2019). In GAN, there are two neural network
odels, generator and discriminator, which can be viewed as two
layers in a zero-sum game, and the objectives of the two players are
pposite. In Adversarial learning, another topic related to game theory
esides GAN, the two players are the model parameter and input data,
nd the objective of this training is to push the neural network model to
ecome more robust (Chivukula & Liu, 2017; Zhu, Li, Wang, Gong, &
ang, 2020). Moreover, some research work uses the zero-sum game
heory framework to promote or understand machine learning algo-
ithms (Farnia & Ozdaglar, 2020; Ganapathiraman, Zhang, Yu, & Wen,
016). On the contrary, some research work uses machine learning
ethods to solve zero-sum games with incomplete observations (Ling,

ang, & Zico Kolter, 2018, 2019).
A large number of learning algorithms belong to the regret mini-

ization methods family amongst all Fictitious play (FP for short) and
xp3. These algorithms are generally used to solve stochastic games
nd are often used in multi-armed bandits topic (Auer, Cesa-Bianchi,
reund, & Schapire, 2003; Berger, 2007; O’Donoghue, Lattimore, &
sband, 2020).

. Methodology

In this section, we give a detailed presentation of our CNN ap-
roach. Section 3.1 introduces our CNN model, and how it predicts 𝑣̂.

Section 3.2 introduces the concrete training algorithms. Section 3.3 de-
scribes how to obtain the associated strategy profile when the predicted
saddle point value 𝑣̂ is known. Section 3.4 states the advantages and
isadvantages of the CNN method.

.1. The CNN model

The CNN model maps a matrix game 𝐀 to a predicted saddle point
value 𝑣̂. As shown in Fig. 1, the input matrix game on the left-hand side
goes through the CNN model to get the predicted value.

Given different sizes of matrix games, the convolutional layer will
lead to different sizes of the feature maps. This might lead to an issue
as the afterward fully-connected layer requires a fixed input size. To
overcome this issue, we insert either a maximum or an average global
pooling layer at the end of convolutional layers. A global pooling layer
down-samples an entire 2-d feature map to a single value. For example,
consider two different input matrix games with sizes 10 ∗ 10 and
50 ∗ 50, respectively. After going through a padding convolutional layer
with 6 filters and kernel size 3 ∗ 3, the feature map sizes are 6 ∗ 10 ∗ 10
and 6 ∗ 50 ∗ 50, respectively. After crossing a maximum pooling layer
that follows the previous convolutional layer and has a kernel size 2 ∗ 2
and stride 2, the feature map sizes are 6 ∗ 5 ∗ 5 and 6 ∗ 25 ∗ 25,
respectively. A global pooling layer can compress these two different

sizes of feature maps to vectors with the same size of 6.
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Fig. 1. A CNN model.
Fig. 2. The training procedure for the CNN model.
Remark 3.1. Our CNN method addresses the problem in a different
way than the traditional LP method. The LP method first solves a pair
of primal-dual linear programs to obtain the optimal strategy profile
(𝐱∗, 𝐲∗) together with 𝑣∗. Our CNN model directly predicts 𝑣̂ without
any knowledge of the strategy profile. This is because the output of the
CNN model is only the prediction ℎ𝑎𝑡𝑣 to the optimal value 𝑣∗. And the
whole CNN predicting process does not involve any knowledge of the
strategy profile.

3.2. The training algorithm

Fig. 2 shows the training procedure for the CNN model. The game
sizes pool and the distributions pool represent several game sizes and
distributions as highlighted in red in Fig. 2. A training data sample has
the form (𝐀, 𝑣∗), where the matrix 𝐀 is sampled from a given probability
distribution, and the corresponding true value 𝑣 is obtained by solving
a linear program.

Algorithms 1 and 2 are the concrete training methods for the CNN
model. Algorithm 1 shows the procedures to generate one batch of
data and trains the CNN model for one iteration. Algorithm 2 presents
the main procedure to train the CNN model. We provide two training
options in Algorithm 2, namely the separated training and the joint
training. The separated training is the same as most machine learning
3

training procedures where the model weight training occurs after the
complete dataset is created. The joint training generates data and trains
the model parameters at the same time. At each iteration, joint training
first generates a batch of data in order to train the model weight and
then discards this data.

From the perspective of minimizing the objective function, the
separated training minimizes the following empirical risk at each
iteration,

𝐸𝑁 (𝜃) = 1
𝑁

𝑁
∑

𝑖=1
𝓁
(

𝑓𝜃(𝐀𝐢), 𝑣∗𝑖
)

, (8)

where 𝑁 is the number of data samples. The joint training minimizes
the following empirical risk at iteration 𝑖,

𝐸(𝑖)(𝜃) = 𝓁
(

𝑓𝜃(𝐀𝐢), 𝑣∗𝑖
)

. (9)

At each iteration, the separated training considers the same empirical
risk, while the joint training considers different empirical risks.

Different hyperparameter settings can affect the performance in
different ways. The learning rate is set between 10−3 and 10−6 in our
case. In practice, we generate and use data in batches instead of just one
sample. Additionally, we introduce a dedicated hyperparameter for the
joint training to reuse data, namely the training round, which indicates
how many times a sample will be used repeatedly.
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Algorithm 1: Generate one matrix game and train
Input: Game size (𝑚, 𝑛); Probability distribution P; CNN model

net
1 Function Generate(𝑚, 𝑛, P):
2 𝐀 ∼ P: sample a matrix game 𝐀 with shape (𝑚, 𝑛) from

distribution P
3 𝑣∗ = 𝐿𝑃 (𝐀): Find 𝑣∗ by solving the LP
4 𝐛 = (𝐀, 𝑣∗)
5 return 𝐛
6 end
7 Function Train(𝐛, net):
8 net ← 𝐛: Train the CNN model by the sample 𝐛.
9 end

lgorithm 2: Main procedure: Training for the CNN model
Hyperparameters: CNN structure Net; Learning rate 𝛼;

Training rounds 𝐾; Sample size 𝑁 ;
Iterations number 𝑇

Input : Game sizes pool; Probability distributions
pool

Output : The CNN model
Initialize : net = Net(), 𝐁 = [ ]

1 Function Separated(net):
2 for 𝑛 in 𝑁 do
3 randomly select a game size (𝑚, 𝑛) from the game sizes

pool
4 randomly select a distribution P from the probability

distributions pool
5 𝐛 = Generate(𝑚, 𝑛,P)
6 𝐁.append(𝐛)
7 end
8 for 𝑡 in 𝑇 do
9 for 𝐛 in 𝐁 do
10 Train(𝐛, net)
11 end
12 end
13 return net
14 end
15 Function Joint(net):
16 for 𝑡 in 𝑇 do
17 randomly select a game size (𝑚, 𝑛) from the game sizes

pool
18 randomly select a distribution P from the probability

distributions pool
19 𝐛 = Generate(𝑚, 𝑛,P)
20 for 𝑘 in 𝐾 do
21 Train(𝐛, 𝑛𝑒𝑡)
22 end
23 end
24 return net
25 end

.3. Saddle point strategy

Although the CNN model can predict the saddle point’s value 𝑣̂ after
raining, it cannot obtain the mixed strategy profile (𝐱̂, 𝐲̂) directly. In
rder to obtain the strategy profile (𝐱̂, 𝐲̂) associated with the predicted
alues 𝑣̂, we need to solve the following linear system,

̂𝑇𝐀𝐲̂ = 𝑣̂, (10)

here 𝐀 and 𝑣̂ are known.
4

r

Fig. 3. Saddle point value distribution.

Getting only one feasible strategy profile is sufficient, though several
easible solutions might exist. For example, let

=
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

, 𝑣̂ = 0.7. (11)

here are infinitely many feasible strategy profiles, such as 𝐱̂ =
1, 0, 0]𝑇 , 𝐲̂ = [0.7, 0.1, 0.2]𝑇 and 𝐱̂ = [1, 0, 0]𝑇 , 𝐲̂ = [0.7, 0.2, 0.1]𝑇 .

The linear system (10) can be reduced to (12) or (13). If the
redicted value is less than the true value, i.e., 𝑣̂ < 𝑣∗, the strategy
̂ can be obtained by (12), and the strategy 𝐲̂ is the best response of
̂ . Similarly, If 𝑣̂ > 𝑣∗, the strategy 𝐲̂ can be obtained by (13), and the
trategy 𝐱̂ is the best response of 𝐲̂. If 𝑣̂ = 𝑣∗, this indicates that our
NN model successfully predicts the optimal value, (12) and (13) will
oth have solutions.
𝑇 𝐱̂ ≥ 𝑣̂𝐞𝐦

̂𝑇 𝐞𝐧 = 1, 𝐱̂ ≥ 0,
(12)

𝐲̂ ≤ 𝑣̂𝐞𝐧
̂𝑇 𝐞𝐦 = 1, 𝐲̂ ≥ 0.

(13)

emark 3.2. When 𝑣̂ is between the minimum and maximum values
f 𝐀, the strategy profile (𝐱̂, 𝐲̂) corresponding to 𝑣̂ can always be found
y the equations system (10). However, when the predicted value 𝑣̂ is
reater than the maximum value of 𝐀, or 𝑣̂ is less than the minimum
alue of 𝐀, (10) will not have a solution. For such cases, the predicted
alue 𝑣̂ can be taken as the maximum value of 𝐀 (if 𝑣̂ is greater than
he maximum value of 𝐀), or the minimum value of 𝐀, (if 𝑣̂ is less than
he minimum value of 𝐀).

.4. Pros and cons of our CNN method

We give the advantages and disadvantages of the CNN method
n comparison with LP. The most significant advantage of the CNN
pproach is the computational performance. Our CNN approach can
olve these problems directly without using any optimization solver.
owever, the disadvantage is that the solution is approximate, and the
odel requires training time before use.

Theoretically, a predicting model should only be able to handle
given pool of game sizes and generating distributions known in

dvance. However, based on the experimental results, we are surprised
o find that our CNN model can also handle game sizes and generative
istributions outside the pool, and it is worth exploring the reason
ehind in the future.

Additionally, in order to compare the performances of our CNN
odel with existing learning algorithms from the literature, we test

wo algorithms, namely FP and Exp3. FP is a strategic game learning
lgorithm that proceeds in an iterative manner. In each round, the
layers play the best response to mixed strategy obtained by previous

ounds’ empirical frequencies of actions. FP was originally introduced
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Fig. 4. Saddle point value distribution.
by Brown (Berger, 2007). Exp3 is a popular adversarial multiarmed
bandits algorithm suggested and studied in this setting by Auer et al.
(2003). Exp3 stands for Exponential-weight algorithm for Exploration
and Exploitation. It is based on a list of weights for each of the
actions in order to choose randomly the action to be taken next. Exp3
increases the relevant weights in case of good payoff and decreases
them otherwise.

Although FP and EXP3 are shown to have convergence properties,
they require a large number of iterations, especially when the problem
size is large. In contrast, CNN models do not require iterations to
achieve predictions, but the convergence property is not guaranteed.

4. Numerical experiments

In this section, we provide numerical results for solving zero-sum
games in order to investigate the performances of our algorithms. Our
CNN algorithms are implemented under the Google cloud platform for
training and testing tasks. We use eight virtual N2D CPUs, 64 GB of
memory, and one P100 Nvidia Tesla GPU computer. We use Python
3.8 language for our codes, Gurobi for solving linear programs, Pytorch
1.7.1 as the neural network library to build up our neural network
model, and CUDA 10.2 as the GPU computation platform.

4.1. Games distribution

Definition 4.1 (Saddle Point Value Distribution). Given a generating
procedure, generate a number 𝑛 of instances from it, and solve them
to get 𝑛 saddle point values.1 A saddle point value distribution of the
generating procedure is the distribution of these 𝑛 values.

1 The saddle point value 𝑣∗ instead of saddle point strategy 𝑥∗ and 𝑦∗.
5

Table 1
Moments of saddle point value distributions.

Generating procedure Mean Variance Skewness Kurtosis

U-10*10 45.32 22.32 −0.01 3.28
U-50*50 44.81 0.83 0.15 2.25
U-100*100 44.96 0.25 −0.23 2.67
N-10*10 23.96 17.19 −0.32 3.09
N-50*50 25.16 0.88 −0.35 3.36
N-100*100 25.03 0.25 −0.21 3.24
P-10*10 34.91 0.85 −0.11 4.33
P-50*50 34.99 0.03 0.17 2.66
P-100*100 34.99 0.01 −0.18 2.39
UU-10*10 74.23 239.38 0.18 2.50
UU-50*50 77.83 236.19 −0.14 2.31
UU-100*100 76.15 215.93 −0.20 2.46

A matrix game generating procedure in Definition 4.1 usually con-
tains one or more probability distribution. It decides how each matrix
components are sampled. The generated matrix game will be solved by
LP to get the saddle point value. Fig. 3 shows the connection from
the generating procedure to the saddle point values distributions. The
generating procedures studied in this subsection will be used in the
following subsection either for training or testing purposes.

We consider three game sizes, namely 10 ∗ 10, 50 ∗ 50 and
100 ∗ 100. We generate 100 instances for each game size and for
each one of the following three distributions as generating procedures:
Uniform distribution with interval [−10, 100], Normal distribution with
mean 25 and standard deviation 3, Poisson distribution with 𝜆 =
35, i.e., 𝑈 (−10, 100),  (25, 3), 𝑃 (35). Besides, we study a more com-
plex generating procedure with two uniform distributions denoted as
UU. The UU generating procedure starts with sampling two points
𝑙1, 𝑙2 from 𝑈 (0, 75) and 𝑈 (75, 150) respectively, and a matrix game is
generated by 𝑈 (𝑙1, 𝑙2). Fig. 4 shows the obtained saddle point value
distributions. Table 1 gives the four first moments of the saddle point
value distributions. The first column shows the saddle point value



Expert Systems With Applications 204 (2022) 117545D. Wu and A. Lisser
Table 2
The structure of the CNN model.
Layer Type Detail Output size

1 Conv2d Kernal size: 3*3, Filters number: 16, Padding: 1, Stride: 1
Activation: leaky relu

(16, 100, 100)

2 Conv2d Kernal size: 3*3, Filters number: 32, Padding: 1, Stride: 1
Activation: leaky relu
Pooling: 2*2 max pooling

(32, 50, 50)

3 Conv2d Kernal size: 3*3, Filters number: 64, Padding: 1, Stride: 1
Activation: leaky relu

(64, 50, 50)

4 Conv2d Kernal size: 3*3, Filters number: 64, Padding: 1, Stride: 1
Activation: leaky relu
Pooling: 2*2 max pooling
Global mean pooling

(64,)

5 Fully connected Neurons number: 32
Activation: leaky relu

(32,)

6 Fully connected Neurons number: 16
Activation: leaky relu

(16,)

7 Fully connected Neurons number: 10
Activation: leaky relu

(10,)

8 Fully connected Neurons number: 10
Activation: leaky relu

(10,)

9 Fully connected Neurons number: 1
Activation: leaky relu

(1,)
Table 3
Difference between the separated and the joint training.

Training options Iterations

0 1000 2000 3000 4000 5000

Separated training 1293.70 19.64 13.59 11.12 7.50 4.44
Joint training 1293.70 24.02 15.53 6.55 1.47 0.55

Table 4
CNN for trained game sizes and distributions.

Game sizes Uniform Normal Poisson

Mean value Gap Mean value Gap Mean value Gap

10*10 45.77 5.88% 25.38 1.70% 35.59 2.30%
50*50 46.50 3.31% 25.75 2.74% 36.14 2.90%
100*100 45.37 0.90% 25.13 0.54% 35.20 0.63%

distribution obtained from each generating procedure, e.g., 𝑈 −10 ∗ 10
represents the saddle point value distribution generated by the uniform
distribution for the game size 10 ∗ 10.

Fig. 4(a)’s mean value is 45, which is the median number of the
Uniform distribution. Fig. 4(b)’s mean value is 25, which is the 𝜇 of
the Normal distribution. Fig. 4(c)’s mean value is 35, which is the
parameter 𝜆 of the Poisson distribution. From Table 1, we can see
that the variances of the distributions from these three generating
procedures are getting smaller when the game size increases, and the
distributions are sharper in Figs. 4(a), 4(b), and 4(c). The reducing
variance will make the learning method trivial because simply setting
the predicted value to the average value can get satisfying accuracy.
The UU generating procedure would not occur in such a situation,
and the variance remains high in larger game sizes. The generated
distribution is generally symmetric and tailedness as shown by the
Skewness and Kurtosis values which are generally close to zero and
three.

4.2. Accuracy of CNN

As for the CNN training, we use the joint one described in Algorithm
2. We use the following setting:
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Fig. 5. Training loss of the CNN model.

• The considered game sizes are: 10 ∗ 10, 30 ∗ 30, 50 ∗ 50, 70 ∗ 70,
100 ∗ 100, and 200 ∗ 200. The considered probability distributions
are: 𝑈 (−10, 100),  (25, 3), 𝑃 (35).

• For the CNN model, the loss function is mean square error, and
the structure of the CNN model is given in Table 2..

• For the hyperparameters, the learning rate is 0.00001. The batch
size is 90. The training rounds is 10.

Fig. 5 shows the training loss using the above-mentioned setting
and joint training. The loss function value is around 1200 at the start
of the training. Then, it drops off quickly in the first 500 iterations.
The loss function gradually converges to a single-digit value by our
proposed method after 10 000 iterations. It means that the CNN model
successfully acquires the ability to predict the matrix game problems
under the given selected game sizes and the distributions.

Table 3 compares the two training options provided in Algorithm
2 under the same setting. We can see that the loss function of the
separated training is mostly smaller than the one in the joint training
during the first 2000 iterations whilst the loss function of the joint
training is mostly smaller than the separated training counterpart when
the number of iterations is beyond 2000. That is, at shorter training
times, the separated training is more advantageous, but in the long run,
the joint training can reduce the loss function to a lower level.
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Table 5
CNN for untrained game sizes and distributions.

Game sizes Mixed [0.3, 0.5, 0.2]a Mixed [1, 1, 1]b UU generating procedurec

Mean value Gap Mean value Gap Mean value Gap

10*10 34.03 3.14% 106.42 3.23% 77.32 3.74%
25*25 32.57 1.60% 102.83 2.32% 74.75 2.35%
75*75 34.25 3.65% 108.12 2.91% 76.61 2.92%
150*150 33.82 2.44% 106.80 1.66% 77.00 1.61%

aThe mixed distribution  = 0.3 ∗ 𝑈 (−10, 100) + 0.5 ∗  (25, 3) + 0.2 ∗ 𝑃𝑜𝑖𝑠(35).
bThe mixed distribution  = 1.0 ∗ 𝑈 (−10, 100) + 1.0 ∗  (25, 3) + 1.0 ∗ 𝑃𝑜𝑖𝑠(35).
cDescribed in Section 4.1, a generating procedure with high variance.
Table 6
Comparison between LP and CNN.

Game sizes LP CNN

CPU time Value CPU time Value Gap

10*10 0.0002 44.95 0.0011 45.70 6.79%
50*50 0.0016 45.02 0.0011 46.47 3.15%
100*100 0.0066 44.92 0.0011 45.32 1.06%
500*500 0.2537 45.00 0.0013 45.58 1.27%
1000*1000 1.3562 44.97 0.0090 45.63 1.45%
2000*2000 6.4688 45.04 0.0341 45.63 1.27%
3000*3000 19.2352 45.01 0.0789 45.63 1.36%

We use GAP as the evaluation metric for our model accuracy,

AP =∣ True value − Predicted value
Predicted value ∣∗ 100%. (14)

Tables 4 and 5 show the model accuracy results after training.
ach entry is averaged from 100 untrained test samples, which can
e viewed as a test set. Table 4 presents the results for game sizes
nd distributions in the training candidate pool. Table 5 show the
esults when game sizes and generating distributions are not in the
raining candidate pool. For example, the game size 10 ∗ 10 and
he uniform distribution 𝑈 (−10, 100) in Table 4 are considered in the
raining candidate pool, while the game size 25 ∗ 25 and the mixed
istributions in Table 5 are not.

Tables 4 and 5 show that the CNN model receives an excellent
redictive ability with a satisfying gap error after training. Moreover,
able 5 shows that the CNN model can even solve a matrix game from
n untrained distribution and untrained game size.

.3. Computational performances of CNN

Table 6 compares the computational performances of CNN and
P. Each row entry representing a game size is averaged from 100
nstances. It goes from a small game size 10 ∗ 10 to a large game size
000 ∗ 3000, and gives the mean values of two approaches and gap
rror of the CNN method. We use GPU for both training and predicting
hrases for the CNN model. The computational speed increases by more
han 100 times for our case by utilizing GPU.

The difference is not significant for small game sizes since LP is
fficient enough to solve small-size linear programs. When the game
ize is large, the advantage of CNN becomes notable. It is much faster
han LP, and the gap error is relatively small. For example, for a
000*3000 size matrix game, the CNN approach is 200 times faster
han LP with a 1.36% gap loss.

Table 7 shows the simulation results of LP, CNN, FP, and Exp3 for
000*1000 games uniformly generated in the interval [−10, 100]. We
et the number of rounds for FP and Exp3 to 10 000. We can see that our
NN model outperforms LP, FP, and Exp3 in terms of CPU time. Notice
hat FP and Exp3 require a high number of rounds to provide a good
pproximation of the game’s value, which makes them less competitive
or large size games. Within 10 000 rounds, Exp3 shows the lowest gap
7

hilst FP requires the highest computing time.
Table 7
Comparison between LP, CNN and two learning algorithms.

Algorithms 1000*1000

CPU time Value Gap (%)

LP 1.3035 45.0293 –
CNN 0.00086 45.6481 1.3553%
FP 259.3845 47.6020 5.4043%
Exp3 0.7100 45.0431 0.0304%

5. Conclusion

In this paper, we study a two-player zero-sum game to find the
saddle point for any given matrix game. We use a novel machine
learning method CNN to achieve the goal and compare it with the
traditional linear programming method and two learning algorithms,
namely FP and Exp3. We design a specific CNN structure containing
a global pooling layer capable of handling varying input game sizes.
Hence, we develop a complete pipeline, including data generation and
model fitting. We study saddle point value distributions for different
matrix game generating procedures. Our numerical experiment shows
that the CNN method outperforms the traditional linear programming
method and the two learning algorithms with a reasonable loss. Fur-
thermore, the CNN method can take advantage of parallel computing,
which provides high computing performance when solving multiple
games simultaneously. Our approach can be extended to other game
theory problems, namely n-player games.
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