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Abstract
Here we explore the latest four years (2019–2022) of using satellite data to objectively analyze tropical cyclones (TC) and issue recom-
mendations for improved analysis. We first discuss new methods of direct retrieval from SAR and geostationary imagers. Next, we survey some of
the most prominent new techniques in AI and discuss their major capabilities (especially accuracy in nonlinear TC behavior, characterization of
model uncertainty and creation of synthetic satellite imagery) and limitations (especially lack of transparency and limited amount of training data).
We also identify concerns with biases and unlabeled uncertainties in the Best Track records as being a first-order limitation for further progress in
objective methods. The article concludes with recommendations to improve future objective methods, especially in the area of more accurate and
reliable training data sets.
© 2023 The Shanghai Typhoon Institute of China Meteorological Administration. Publishing services by Elsevier B.V. on behalf of KeAi
Communication Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Objective satellite methods are essential to help forecasters
characterize tropical cyclones in terms of position, intensity
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and structure from a steadily increasing number of satellite
observations and issue reliable warnings. In the past four years,
sensors with higher spatiotemporal resolution have been made
more widely available. The use of AI techniques for processing
TC satellite imagery has been explored and led to some oper-
ational tools. Section 2 describes major sensors and conven-
tional methods that improve TC analyses, notably in the inner-
core. Section 3 specifically focuses on the development of AI
methods for TC analysis and short-term forecasting, discussing
their characteristics, the challenges that arise with them and the
opportunities for emerging application. Section 4 highlights a
drift in TC characteristics archived in the historical Best Track
dataset due to evolving observing systems, which is a major
inistration. Publishing services by Elsevier B.V. on behalf of KeAi Communi-
ttp://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Quoc-phi.Duong@meteo.fr
www.sciencedirect.com/science/journal/22256032
https://doi.org/10.1016/j.tcrr.2023.11.001
https://doi.org/10.1016/j.tcrr.2023.11.001
www.keaipublishing.com/tcrr
https://doi.org/10.1016/j.tcrr.2023.11.001
http://creativecommons.org/licenses/by-nc-nd/4.0/


Q.-P. Duong, A. Wimmers, D. Herndon et al. Tropical Cyclone Research and Review 12 (2023) 259–266
concern for the development of accurate objective satellite
methods. The report ends with a summary and conclusions in
Section 5.

2. Major advancements in objective TC analysis methods
in the past 4 years

Objective TC analysis involves the post processing of sat-
ellite and in situ observations and can be classified into three
main types, each with increasing levels of complexity:

1. Meteorological product derivation: this type of analysis
involves deriving meteorological products such as wind
fields or cloud cover observations through post-processing
of each sensor's raw data. This process includes calibration,
bias removal, and denoising, which refers to reducing noise
or artifacts in the images. The spatiotemporal resolution
depends on the type of sensor used. Geostationary satellites
provide high spatiotemporal resolutions but are limited to
visible and infrared imaging observations. Low-earth-orbit
satellites offer various observations, including precipitation
and surface wind measurements, but their temporal reso-
lutions are limited.

2. Fix extraction: this type of analysis focuses on extracting
fixes related to a tropical cyclone, such as its center position,
maximum sustained wind (MSW), mean sea-level pressure
(MSLP), radius of maximum winds (RMW), and wind radii
at different speeds (34-, 50-, and 64-kt) for each quadrant.
These fixes are then archived in the Best Track dataset,
providing a global view of the TC at the surface level.

3. TC analyses/reanalyses with NWP/data assimilation: this
type of analysis goes beyond TC-specific tasks and in-
volves data assimilation and numerical weather prediction
(NWP). Data assimilation aims to combine the latest
observations with a short-range forecast to obtain the best
possible estimate of the current state of the atmosphere. It
provides a comprehensive, gridded description of model
variables at multiple vertical levels within the TC and
its large-scale environment. This type of analysis is pri-
marily used as initial conditions for TC forecasting with
NWP.

Major advancements over the last four years (2019–2022) in
objective TC analysis have relied on both the emergence of
new satellite sensors and calibration/validation methods for
higher quality observations with better spatiotemporal resolu-
tion, and on the development of methods for extracting the
useful information from all types of satellite sensors.
2.1. Availability of new observations

2.1.1. Development of SAR
Since IWTC-9, the number of TC observations using C-

band co-polarized and cross-polarized Synthetic Aperture
Radar (SAR) has dramatically increased. With their high res-
olution (~1 km) and capability to retrieve high speeds
(covering up to at least 70 m/s), SAR images bring an
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unprecedented means to estimate TC surface wind speed field
in the near and inner core region, that was previously poorly
estimated by L-band radiometers (that fail to capture high wind
speed gradients because of their low spatial resolution) or
scatterometers (that have a better spatial resolution but suffer
from signal saturation at high wind speeds and rain effects). In
4 years, many papers have been published, reporting valida-
tion, tuning, and application (e.g Mouche et al., 2019; Vinour
et al., 2021).

The National Environmental Satellite Data and Information
Service (NESDIS) produces fix data from the 3-km SAR wind
speeds that are now accessible to operational forecast centers.
The fix values (MSW, RMW, R34, R50, & R64) are deter-
mined from the 95th percentile found in azimuthal/quadrant
averages (Jackson et al., 2021, Fig. 1). These are impacting
operations positively, along with SMAP/SMOS and AMSR-2,
providing a good 2-D estimate of the surface winds at times
and intensities (Howell et al., 2022) These offer a limited but
very detailed view of the TC wind field used to influence the
working and final best tracks (Knaff et al., 2021), and are being
used for research studies(e.g. Combot et al., 2020).

2.1.2. Use of high frequency imaging with third generation
geostationary satellites

The use of high-frequency imaging with third generation
geostationary satellites (Himawari-8/9, GOES-16/17/18, GEO-
KOMPSAT-2A/B) targeting TCs gives access to more detailed
TC characteristics. Tsukada and Horinouchi (2020) and
Tsujino et al. (2021) showed that the 2.5-min “targeted
observation of TCs” with Himawari-8 can be used to estimate
low-level tangential winds in clear TC eyes, allowing contin-
uous monitoring of TC intensity changes and indirect estimates
of small-scale turbulent processes (Fig. 2). The high-frequency
observation was also shown to be useful to detect convective
bursts and gravity waves (Horinouchi et al., 2020). A special
operation of Himawari-8 to observe TCs every 30 s was tested,
and it is becoming evident that this ultra-high frequency sam-
pling allows one to detect transient asymmetric disturbances in
the inner core (Horinouchi et al., 2023, Fig. 3).

2.1.3. Recommendations for better satellite coverage to
improve products and services

The near- and inner-core TC structure is still insufficiently
sampled. For instance, regarding the surface RMW of intense
storms, valuable observations are limited to a few aircraft and
SAR samples. Yet, the RMW contraction is in general either
concurrent with or preceding intensification, and these changes
are not sampled at sufficient frequency (Li et al., 2021; 2022).
In addition, inner-core wind distribution also seems important
when predicting TC intensification (Vinour et al., 2021). In
their review, Knaff et al. (2021) recommended a satellite
coverage of at least 1100 km from the TC center with a 2 km
spatial resolution and a 6-hr temporal resolution in order to
picture the whole TC surface structure and its evolution. To
address the need, the efforts should focus on developing the
sampling rate of these sensors: scatterometers (dual-polariza-
tion C-band), SAR (C or L Band) and L-band radiometers.



Fig. 1. This SAR-derived wind speed map (left) shows the eye region of Typhoon Haishen on September 5, 2020 at 21:17 UTC based on data from RADARSAT-2.
Two-dimensional wind speed maps like this produce very accurate estimates of eye location and extent and clearly resolve steep wind speed gradients (shown by
strong variations in the color scale). These maps are also used to create wind speed profiles (right) that help determine maximum wind speed, the radius of maximum
winds, and the extent of winds at the critical speed thresholds that forecasters use to characterize a storm as a tropical depression, tropical storm, or hurricane. Gray
dots represent SAR-derived wind speeds at each 3 × 3-km pixel in the northeastern quadrant of the map at left, and the solid black curve represents the average wind
speed at each distance from the storm's center (in nautical miles, nmi). The two peaks in the wind speed profile near 15 and 36 nautical miles (28 and 67 km) from the
center indicate that Haishen had a double eyewall. [Fig. 2 of Jackson et al., 2021); the figure caption is also taken from the paper].

Fig. 2. Radial distribution of tangential winds obtained from the 2.5-min target
observation, which is operationally conducted with the Himawari-8 satellite
whenever a typhoon is present over the Western Pacific. Visible-light images of
the clouds in the eye of Typhoon Lan (2017) are combined, and two-
dimensional spectra with respect to time and azimuth are used to estimate
the rotation speed of low-levels flow at radii from 10 to 30 km. The star marks
indicate independent estimates of the motion of the cloud features called
“striations” (or “finger-like features”) where the tangential winds are discon-
tinuously faster in the eye. These features are present in a limited portion of the
eye adjacent to the inner edge of the eyewall clouds, which were at around
30 km and the features are considered an outcrop of the main secondary cir-
culation. [Fig. 4a of Tsukada and Horinouchi, 2020].
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Currently, SAR images are acquired sporadically with only a
few observations per TC life cycle, which is insufficient in
terms of temporal resolution. In general, the series of satellite
within the same orbit should ideally respect a 6-hr time gap for
developing 6-hr TC structure products.

Geostationary satellites are the only platforms that observe
the whole life cycle of TCs without interruption, so the
development of their conventional imaging remains important.
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Geostationary IR hyper-spectral sounders would be very useful
for more detailed depiction of the near and inner-core TC
structure through moisture and wind (AMVs). Efforts should
also be put on increasing spatial and temporal resolution of
microwave sounders. Some areas such as the Arabian Sea are
at the edge of third generation geostationary satellite coverage
and are in need of higher temporal, spatial and spectral reso-
lution measurement.
2.2. Development of methods for objective TC analysis in
intensity and structure
The Advanced Dvorak Technique (ADT) (Olander and
Velden 2019) has undergone significant updates since ITWC-
9. Version 9 of the ADT includes upgrades to the ARCHER
algorithm for position centering and microwave inputs
(ARCHER-2), inclusion of subtropical intensity analysis and
extension of intensity fixes into and including extratropical
transition. It can now also provide continuous estimates of
outer vortex surface wind radii, and operate with the new
generation of higher spatiotemporal geostationary satellite
sensors.

As for TC structure, Chavas and Knaff (2021) have devel-
oped a simple and objective method to produce estimates using
only 3 predictors: the TC intensity (MSW), the outer size (R34)
and the latitude (in the form of the Coriolis parameter). With
potential limitations for fitting the coefficients of the relation-
ship using best-track data, this enables better methods to sys-
tematically estimate RMW using both intensity and outer-core
information. Tsukada and Horinouchi (2023) found that, when



Fig. 3. Left (Fig. 3d of Horinouchi et al., 2023): an example of the high-resolution high-frequency atmospheric motion vectors (AMVs) from a special observation of
Typhoon Haishen (2020) conducted on September 4, 2020 every 30 s with the Himawari-8 satellite. Five consecutive images over 2 min are used to derive AMVs on
a 2-km grid. The length scale of the arrows is shown on the lower-right margin in m/s. Contours show the cloud-top altitudes estimated from infrared images over the
2 min, while gray-scale shading showsthe reflectivity at a visible wavelength (0.64 μm)at the central time of the 2 min. Right (Fig. 10 of Horinouchi et al., 2023): an
example of analyses available with these AMVs. The figure shows the trajectory of the wind minima, which circulates at a period of 1-h. Further analysis indicates
that it is an algebraically growing unstable vortex-Rossby wave that redistributes angular momentum in the eye to speed up the rotation near the center.
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TCs have clear eyes, the RWMs diagnosed from C-band SAR
observations have a tight correlation with the eye radii diag-
nosed from IR images from geostationary meteorological sat-
ellites. It indicates that short-term RMW changes might be
detectable.

Besides conventional methods, major recent advancements
have been obtained with the applications of Machine Learning/
AI tools in this area which are discussed specifically in the
following section.

3. AI for TC analysis and short-term forecasting
3.1. AI specific characteristics
Certainly, the most active area of development in TC
analysis over this last period has been the proliferation of
techniques using AI to improve on existing objective methods.
The highly data science-driven nature of this line of research
has enabled approaches with often greater capability, but this
comes from methods that may lie entirely outside the tradi-
tional skill set of forecasters and other meteorologists. Several
of the most promising aspects of AI include:

• The ability to resolve non-linear relationships between at-
mospheric variables and the TC system,

• The ability to mine complex spatial and temporal structures
in TC datasets,

• The ability to easily combine wide varieties of data
comprehensively (imagery, NWP, scalar observations,
vector fields),
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• The ability to easily characterize model uncertainty with
probabilistic output for binary yes/no predictions, and un-
certainty spreads for numerical output, and

• Modularity, such that one successful deep learning model
can be expanded for new applications.

Olander et al. (2021) serves as a good example for the
ability of deep learning to exploit nonlinear relationships with
the TC system by reconfiguring the ADTas a two-layer neural
network of the ADT state variables, which achieved major
improvements in estimating TC intensity.

The convolutional neural network (CNN) is the basis for
most AI tools that mine spatial TC structures (e.g. Giffard-
Roisin et al., 2020; Higa et al., 2021) through hierarchical
image convolution and layered network structures. This can
also exploit temporal patterns by using multiple image times as
inputs. Alternatively, the recursive neural network (RNN)
system applies to sequential data and can resolve temporal
patterns, such as using track history to improve landfall loca-
tions (Alemany et al., 2019; Bose et al., 2022).

Chen et al. (2019) showed an early example of combined
satellite imagery and environmental context (basin, day of year,
local time, longitude and latitude) to estimate TC intensity. And
finally, probabilistic outputs are used in DeepMultiNet (Fig. 4)
and OPEN-AIIR (CIMSS, 2022) for TC intensity estimation as
well. Lu et al. (2022) compared several machine-learning algo-
rithms to estimate RMW, R64, R50, and R34 from geostationary-
satellite brightness temperature averaged over each quadrant.
Even the best algorithm exhibited large variability against Best
Track records, indicating the need for further studies.



Fig. 4. Example of probabilistic output from DeepMultiNet (DMN) for Cyclone 13S (2022).
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However, the advantages listed here also pose challenges in
the areas of explainability and generalization, especially in rare
events. This is covered in the following section.
3.2. Advancements
Fig. 5. Example of a best track-trained deep learning model performance
compared to reconnaissance-based intensity values only. The deep learning
model replicates the bias of the Dvorak Technique in the three most bias-prone
intensity ranges. From work based on Wimmers et al. (2019).
The last several years has seen the publication of many AI
applications for the TC center fixing (e.g., Smith and Toumi
2021), TC intensity and size estimation (e.g., Wimmers et al.,
2019 - DeepMicroNet; Zhuo and Tan, 2021 - DeepTCNet;
Olander et al., 2021 - AiDT), and TC track and intensity
forecasting (e.g., Su et al., 2020; Xu et al., 2021), to name a
few. For TC intensity though, this topic is already quite
advanced and approaching the limit of precision. This is
obviously due to the availability of a labeled dataset in the form
of the Best Track (Chu et al., 2002; Landsea et al., 2015).
Recent AI model estimates of TC intensity have reached
7–10 kt RMS error, though all share the highest uncertainty in
the Category 5 range of intensities. This is due to the natural
imbalance of data with TC intensity, which highlights the
difficulty in using AI tools to model any comparatively rare
event in TC evolution.

Studies have shown that AI models of TC intensity esti-
mation generally reproduce the biases of the Best Track itself
(e.g. Wimmers et al., 2019, Fig. 5). This is arguably even more
prevalent with AI-based methods than with traditional methods
because of AI's more automated process and its power in fitting
to the training data. The consequence is that the current di-
rection of research in this area leaves little chance for
improving the Best Track itself.

AI techniques are also employed to generate synthetic sat-
ellite data of higher spatial and temporal resolution of signifi-
cant observational interest. Examples include nighttime visible
imagery combined with solar zenith angle corrected visible
imagery (ProxyVis; Chirokova et al., 2018) and synthetic mi-
crowave imagery (Slocum and Knaff 2021; Haynes et al.,
2022; Meng et al., 2022).

Another example is applying deep-learning based image
target detection methods for identifying TC vortex from sat-
ellite imagery (Zhou et al., 2022). Based on this TC
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identification model combined with two other machine-
learning based intensity estimation and prediction models, the
China Meteorological Administration (CMA) is building an
AI-based typhoon monitoring and forecasting system to ach-
ieve automated and objective TC center location determination,
intensity determination and intensity trend discrimination of
TCs (Zhou et al., 2022).
3.3. Specific challenges
The advantages of AI listed above come at a high cost,
particularly in the integration of new AI-based techniques into
the forecasting process. The key difficulty is in reaching a
sufficient level of explainability in any AI-based technique.
Skepticism naturally arises from the attempt of any data
science-based technique to reproduce the behavior of a system
as complex as the earth's atmosphere, and so the inherent
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constraints in AI models need to be appropriately identified.
However, AI models handle the interactions of potentially
millions of variables (each pixel in a geostationary image, for
example) and allow for highly nonlinear interactions between
each variable. This dynamic can be exceedingly difficult to
capture in words or visual patterns, and thus the source of an AI
model's power is paradoxically also its weakness. The great
challenge posed by AI in the near future is to bring the methods
of the most successful models to a level of transparency that
they allow the forecaster to actively engage with them.

The other significant challenge is in dealing with small and
unbalanced training datasets. As stated in Section 3.2, AI-
based TC intensity models show a major weakness in esti-
mating TC intensity in the Category 5 range because of the
relatively low case number. A similar challenge is to be ex-
pected from other rare TC structures such as small but intense
storms. More generally, detailed and high standard labeled
datasets data are paramount for research on valuable scientific
or user-oriented matters and beneficial for the quality of
objective models. Some progress, however, has been made on
labeled datasets and TC-centric microwave imagery and ho-
mogeneous large scale diagnostics (Razin et al., 2023; Slocum
et al., 2022).
3.4. Valuable scientific/user-oriented tasks
The following areas are the most desirable for future AI
efforts to aid analysis operations:

• Predicting cyclogenesis or tropical waves,
• Estimating overland wind,
• Reconstructing 2D/3D wind from remotely sensed
observations,

• Estimating/forecasting precipitation,
• Denoising and superresolution (process of enhancing the
resolution and level of detail in an image using AI
techniques),

• Gap filling for missing observations,
• Improving subgrid parameterizations within NWP and
hazard impact models,
Fig. 6. Moving sum of tropical cyclone and cyclone events in the Arabian Sea, 199
2020–2021 and 2021 respectively.
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Note also that TC intensity forecasting has natural ties to AI
application, but forecasting is discussed in a separate chapter of
the IWTC-10 report.

A separate but related area of interest is the potential use of
AI to better integrate the wealth of TC data in real time for
decision making and emergency management. There is general
agreement that the constantly growing information environ-
ment for TC analysis is becoming overwhelming to its end-
users. Here we see the possibility of helping forecasters and
emergency managers improve their time management and
direct their limited attention to the proper sources. To our
knowledge, this idea remains mainly speculative and has not
been committed to practice. Nevertheless, the opportunities are
numerous and far-reaching. For example,

• Searching through and organizing the most forecast- and
impact-relevant data tailored to the event in order to reduce
the manual efforts of the forecaster,

• Highlighting key features and environmental context that
offer the most guidance for an objective analysis,

• Identifying the most relevant members of ensemble
forecasts,

• Using explainable AI (XAI) within the fundamental AI
forecasting tools that presents the proper user guidance,
including error bounds and uncertainty,

• Improving NWP models and enhancing their usability for
forecasting and hazard impacts,

• Translation of a weather image into nowcasting or alert
texts.

4. Drifts in TC characteristics in the historical record

An ongoing concern with using objective methods to
analyze TC characteristics is the lack of standardization in
historical data records. Normally this leads to a drift in relative
bias with time; other times, the problem is with uncertain error
bounds. The importance of this problem is made even more
acute because of TC responses to the changing background
climate. This was noted as a special concern in characterizing
the active 2018–2021 period in the Arabian Sea (Fig. 6).
0–2021. The last three points are the moving sums for the periods 2019–2021,



Fig. 7. Time series of the 17-kt wind radius (R17) from JMA best track (green; 1981–2017), JTWC best track with (red; 2016–2017) and without rigorous postseason
re-analysis (blue; 2001–2015), and DeepTCSize (black; 1981–2017). The lines and shades denote the mean and standard deviation, respectively. From work based
on Zhuo and Tan (2023).
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The most recognized problem with all Best Track records
is the bias toward higher intensities over the years, due in part
to newer satellites' more frequent viewing, higher spatial
resolution and lower noise. These factors lead to higher
observed eye temperatures over time, which in turn leads to
higher Dvorak estimates. However, these factors also result in
more observed breaks in the TC cold ring, which complicate
the trend analysis.

The other important symptom of drift is in Best Track and
Extended Best Track wind radii. We recognize a major
improvement in wind radii uncertainty since approximately
2016 because of the influence of improved microwave re-
trievals from SMAP, SMOS, AMSR2, ASCAT and SAR.
Some have also noted an improvement in wind radii estimates
in the JTWC Best Track around 2004, due to the institutional
change in quality-checking this data at that time.

These two issues could be partially addressed with cross-
platform validation. Specifically, this means comparing leg-
acy instruments and methods to the newer instruments/methods
most likely in use at the time. There is also an opportunity to
use transfer learning from AI models to backfill less reliable
histories with estimates trained on more recent and high-quality
records. This is used in a recent study to reconstruct TC wind
radii history (Zhuo and Tan 2023, Fig. 7).

5. Summary and conclusions

In the past four years, the development of new sensors such
as SAR and high-frequency imaging with third generation
geostationary satellites gave access to a better monitoring of
the wind structure in the TC inner-core. Remarkably,
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numerous methods using AI for objective TC analysis have
emerged, competing in terms of performance with traditional
ones such as the ADT. AI also opens doors to new applica-
tions such as synthetic satellite images or TC vortex identi-
fication. This rapid growth is both exciting and challenging,
and it is difficult to imagine what the state-of-the-art will be
for the next IWTC. It would be desirable that AI helps
objective TC analysis move from estimation of simple
aggregate point intensity values such as MSW and MSLP to
more complete TC 3D wind structure estimates with higher
fidelity with the expectation of improved vortex initialization
in NWP models. The forecaster community needs to gain
confidence in new objective methods to use them. It is
essential that future models are trained/calibrated with high
quality data and evaluated under standard procedures.
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