
HAL Id: hal-04540027
https://hal.science/hal-04540027v1

Submitted on 7 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Languages of Higher-Dimensional Automata
Uli Fahrenberg, Christian Johansen, Georg Struth, Krzysztof Ziemiański

To cite this version:
Uli Fahrenberg, Christian Johansen, Georg Struth, Krzysztof Ziemiański. Languages of Higher-
Dimensional Automata. Mathematical Structures in Computer Science, 2021, 31 (5), pp.575-613.
�10.1017/S0960129521000293�. �hal-04540027�

https://hal.science/hal-04540027v1
https://hal.archives-ouvertes.fr

Mathematical Structures in Computer (2020), 1–00
doi:10.1017/xxxxx

Languages of Higher-Dimensional Automata
Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański

École Polytechnique, Palaiseau, France
Norwegian University of Science and Technology, Norway
University of Sheffield, UK
University of Warsaw, Poland

Abstract
We introduce languages of higher-dimensional automata (HDAs) and develop some of their properties. To
this end, we define a new category of precubical sets, uniquely naturally isomorphic to the standard one,
and introduce a notion of event consistency. HDAs are then finite, labeled, event-consistent precubical sets
with distinguished subsets of initial and accepting cells. Their languages are sets of interval orders closed
under subsumption; as a major technical step we expose a bijection between interval orders and a subclass
of HDAs. We show that any finite subsumption-closed set of interval orders is the language of an HDA,
that languages of HDAs are closed under binary unions and parallel composition, and that bisimilarity
implies language equivalence.
MSC 2020: Primary 68Q70, 68Q85

Keywords: Higher-dimensional automaton; concurrency theory; pomset; directed topology

1. Introduction
Higher-dimensional automata (HDAs) are a formalism for modeling and reasoning about behav-
iors of concurrent systems, introduced by Pratt [34] and van Glabbeek [40]. Like Petri nets [32],
event structures [30], configuration structures [45, 46], asynchronous transition systems [2, 39],
and similar approaches [24, 35, 37, 44], they form a model of non-interleaving concurrency as
they differentiate between interleaving and “truly” concurrent computations, i.e., a‖b 6= a.b + b.a
(using CCS notation [29]). Van Glabbeek [42] has shown that HDAs generalize “the main models
of concurrency proposed in the literature”, including those mentioned above.

HDAs extend finite automata with additional structure that distinguishes interleavings from
concurrency. As an example, Figure 1 shows Petri net and HDA models for a system with two
events, labeled a and b. The Petri net and HDA on the left model the (mutually exclusive) inter-
leaving of a and b as either a.b or b.a; those on the right model concurrent execution of a and b.
In the HDA, this independence is indicated by a filled-in square.

a b

a b

b a

a b

b a

a b

Figure 1. Petri net and HDA models distinguishing interleaving (left) from non-interleaving (right) concurrency.
Left: Petri net and HDA models for a.b + b.a; right: HDA and Petri net models for a ‖ b.

© Cambridge University Press 2020

ar
X

iv
:2

10
3.

07
55

7v
2

 [
cs

.F
L

]
 3

 S
ep

 2
02

1

https://doi.org/10.1017/xxxxx

2 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

c d

c d

a a

Figure 2. HDA which executes a in parallel with c.d. Initial and accepting cells marked with incoming and outgoing
arrows.

HDAs thus have states and transitions like finite automata, but may also contain squares, cubes,
and higher-dimensional cubical structures. A square stands for the concurrent execution of two
events; a cube for the concurrent execution of three events; and so on.

This paper is concerned with languages of HDAs. Like languages related to other formalisms
for concurrency, these need to account for both the sequential and the concurrent nature of com-
putations. Their elements will therefore be finite pomsets or partial words [49]. As an example,
Figure 2 displays an HDA consisting of two squares, with three events labeled a, c, and d. Here
the a-labeled event is executed concurrently to the sequence c.d, so that the language of this HDA
will contain the pomset (a

c // d

)
. (1)

(It will contain other elements; but in a sense to be made precise below, they are all generated by
this one pomset.)

Partial words and pomsets have been introduced by Winkowski [49] and have a long history as
semantics for concurrent systems [33, 48]. The subclass of interval orders, introduced by Fishburn
[15], has seen abundant attention in concurrency theory and distributed systems [8, 21, 22, 23, 26,
27, 47, 48]. A pomset is an interval order precisely if it is 2+2-free, that is, does not contain an
induced subpomset of the form

2+2=
(• // •
• // •

)
.

We will show that languages of HDAs are sets of interval orders, and that any interval order
may be generated by an HDA. For another example, the HDA in Figure 3 has a two-dimensional
loop created by identifying the horizontal edges in the bottom-left and top-right of the automaton
(together with their corresponding faces). Its language includes the infinite set{

(a // b // a) ,

(
a //

''
b //

''
a // b // a

c //

33

d
33
)
, . . .

}
, (2)

x y

z w

a b

a
a

b a

d

c

d

c

Figure 3. HDA which generates infinite set of pomsets (bottom left and top right edges identified).

Languages of Higher-Dimensional Automata 3

c d

c d

a a

(a
c // d

) c d

c d

a a

(a
((c // d

) c d

c d

a a

(a
c //

66

d

)

c d

c d

a a

(a // c // d)

c d

c d

a a

(c // a // d)

c d

c d

a a

(c // d // a)

Figure 4. Directed paths in HDA of Figure 2 together with corresponding pomsets.

where the second pomset is obtained by traversing the squares z, w, x and y in that order. We will
only be concerned with finite HDAs in this paper, yet as the above example shows, languages of
finite HDAs may well be infinite.

A precursor to this work is van Glabbeek’s [42], which introduces tracks in HDAs (there called
paths) and then defines their observable content in terms of ST-traces. We have shown in [8] that
there is a bijective correspondence between ST-traces and interval orders. Another precursor is
Fajstrup et al.’s [13], where the authors define computations as directed paths through geometric
cubical complexes. We introduce languages based on van Glabbeek’s tracks and languages based
on Fajstrup et al.’s directed paths, and show that they define the same objects.

Grabowski [18] has introduced a notion of smoothing for pomsets which is nowadays mostly
called subsumption [14, 17]: a pomset P subsumes a pomset Q if Q is at least as ordered as P. Sets
of pomsets closed under subsumption are generally called weak [14, 18]. We show that languages
of HDAs are weak sets of interval orders.

Figure 4 exhibits six directed paths through the HDA A of Figure 2 together with the corre-
sponding pomsets. The language of A consists precisely of these six pomsets; it is also the weak
closure of the pomset in (1) corresponding to the first directed path displayed. The language of
the HDA in Figure 3 is the weak closure of the infinite set in (2).

We finish the paper by showing that languages of HDAs are closed under binary union and
parallel composition, and further that bisimilarity of HDAs [10, 42] implies language equivalence.
A comprehensive treatment of regular operations on HDAs and their languages is left for future
work.

We start this paper with an overview section which introduces the main concepts and results
without going into too much technical detail. In order to properly define and develop languages of
HDAs, we first introduce a new base category for precubical sets, identify a new subclass of event
consistent precubical sets, and make clear the relationship between tracks and interval orders. This
is also why we define HDAs only on page 13.

We detail the main technical contributions of this paper at the end of the overview Section
2. Afterwards, we introduce precubical sets, event consistency, and HDAs in Section 3. Section
4 is concerned with pomsets with interfaces, their gluing composition, and representations of
interval orders. The connection between interval orders and tracks in precubical sets is made in

4 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

xδ 0
1 x δ 1

1 x

δ 0
2 x

δ 1
2 x

δ 0
1 δ 0

2 x = δ 0
1 δ 0

1 x

δ 0
1 δ 1

2 x = δ 1
1 δ 0

1 x

δ 1
1 δ 0

2 x = δ 0
1 δ 1

1 x

δ 1
1 δ 1

2 x = δ 1
1 δ 1

1 x

Figure 5. A square x with its four elementary faces δ 0
1 x, δ 1

1 x, δ 0
2 x, δ 1

2 x and four corners.

Section 5, and directed paths are introduced in Section 6. Section 7 concludes the paper by defining
languages of HDAs and developing some basic properties.

2. Overview
HDAs are built on precubical sets [19, 38], a generalization of directed graphs to higher dimen-
sions. To be precise, a precubical set consists of a graded set X =

⋃
n≥0 Xn of n-cells together

with elementary face maps δ ν
i,n : Xn→ Xn−1, i∈ {1, . . . , n}, ν ∈ {0, 1} that specify boundaries of

n-cells. These are required to satisfy the precubical identities

δ
ν
i,n−1δ

µ

j,n = δ
µ

j−1,n−1δ
ν
i,n,

for every i < j≤ n, which identify common elementary faces of elementary faces. Figure 5 shows
an example of a 2-cell with all its faces; we will generally omit parentheses for elementary faces
and the subscript n and thus, for example, write δ 0

1 x instead of δ 0
1,n(x).

A precubical set X with X1 = /0, hence Xi = /0 for all i≥ 1, is simply a set (of 0-cells or points).
A one-dimensional precubical set X , with X2 = /0, is a directed graph. 1-cells are generally called
edges, 2-cells, squares, and 3-cells, cubes. Modifying the standard setting [19], we introduce
precubical sets as presheaves over a category of linearly ordered sets with suitable morphisms
(Definition 1). From a technical point of view this does not matter, as our “large” category of pre-
cubical sets is uniquely isomorphic to the standard one (Proposition 9); yet it clarifies the relation
between ordered sets, presimplicial sets and precubical sets. This simplifies later developments.

An HDA is a tuple (X , I, F, λ) with X a precubical set, I, F ⊆ X subsets of initial and accepting
cells, and λ a labeling on X . This labeling is generated by a function λ1 : X1→ Σ, into an alphabet
Σ, which satisfies λ1(δ

0
1 x) = λ1(δ

1
1 x) and λ1(δ

0
2 x) = λ1(δ

1
2 x) for every x∈ X2; but we will extend

it to a precubical morphism λ : X→ !Σ into a special labeling object !Σ (Definition 13).
One-dimensional HDAs are equivalent to ordinary finite automata, with 0-cells as states and

1-cells as transitions. Two-dimensional HDAs are equivalent to asynchronous transition systems,
with the 2-cells denoting independence of events.

Most formalisms for non-interleaving concurrency have a notion of events: unique occurrences
of actions in space and time. HDAs, on the other hand, do not have a well-defined notion of event
[9, 36]. Going back to the example in Figure 1, we see that the Petri nets on each side of the
figure have two events each, induced by their transitions and labeled a and b, respectively. In the
two HDAs on the other hand, every label appears twice, and there is no immediate conception of
events. For the HDA on the right, we may deduce from the presence of the square, which indicates
two events running concurrently, that there are indeed precisely two events in the system; but on
the left, there might as well be four.

We make the notion of event identification precise in Definition 13 and identify a subclass
of event consistent precubical sets: precubical sets X that admit an equivalence relation ∼ on
X1 such that for all x∈ X2, δ 0

1 x∼ δ 1
1 x, δ 0

2 x∼ δ 1
2 x, and δ 0

1 x 6∼ δ 0
2 x (Lemma 18). The equivalence

Languages of Higher-Dimensional Automata 5

(a //

b //c

)
∗

(//a
d

)
=

(a

b //c //d

)
Figure 6. Two ipomsets and their gluing composition (interfaces marked with incoming and outgoing arrows).

b c

a

d

a

b c d

a

Figure 7. Three HDAs corresponding to ipomsets of Figure 6.

classes of the smallest such equivalence are called the universal events of X : the largest possible
identification of events which is consistent with the structure of the HDA.

In the example in Figure 1, the HDA on the left has four universal events, whereas the one on
the right has two. (An example of a precubical set which is not event consistent is shown in Figure
10 on page 11.)

Any labeling factors uniquely through the universal events (Proposition 20), so that we could
have written this paper only with unlabeled (but event consistent) HDAs in mind and then added
labels as an afterthought, much in the spirit of [50]. For sake of readability we have refrained from
doing so.

In Section 4 we recapitulate the notion of pomset with interfaces (ipomset) from [8]. An ipomset
(P, <P, λP, SP, TP) consists of a labeled partial order (P, <P, λP) together with subsets SP, TP ⊆ P
of minimal and maximal elements which designate starting and terminating interfaces. Ipomsets
may be glued along their interfaces: if (Q, <Q, λQ, SQ, TQ) is another ipomset such that P∩Q =
TP = SQ, then P ∗Q is the ipomset

(P∪Q, <P ∪<Q ∪ (P \ TP)× (Q \ SQ), λP ∪ λQ, SP, TQ),

with the order defined by those of P and Q together with imposing that every event not in Q
precedes every event not in P. Hence events in the overlap P∩Q are continued across the gluing
composition; Figure 6 shows an example.

We extend ipomsets with an event order: a second strict order, denoted 99KP, which is required
to be linear on <P-antichains. This allows us to assign which interfaces are identified in gluing
compositions and also establishes a close relation between interval-ordered ipomsets and a sub-
class of HDAs, see Definition 60. As an example, Figure 7 shows the three HDAs corresponding
to the ipomsets of Figure 6; we show in Lemma 65 that gluing compositions of interval ipomsets
correspond to pushouts of their induced HDAs.

Most papers in concurrency theory define pomsets as isomorphism classes of labeled partial
orders. We find it convenient to work directly with labeled partial orders instead and consider
properties up to isomorphism. As any isomorphic ipomsets are uniquely isomorphic (Lemma 34),
the difference is without significance.

One central mathematical insight on which this paper is built is that both precubical sets
and interval ipomsets can be obtained by gluing linear orders, i.e., precubical sets glued as
presheaves, and interval ipomsets as gluing compositions of discrete ipomsets. An ipomset
(P, <P, 99KP, λP, SP, TP) is discrete if <P is trivial, thus 99KP is a linear order. We always think
of <P as a precedence order; hence all events are concurrent in a discrete ipomset, and the event
order 99KP is used as a book-keeping device. Seen as linear 99KP-ordered sets, discrete ipomsets
form our base category for precubical sets; as trivial <P-ordered sets, we may glue them into
interval orders.

6 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

x1
x2

a x3 d

x4

b

c

x5 x6

e

Figure 8. A track in a precubical set.

The subclass of precubical sets that correspond to interval ipomsets under this identification is
comprised of tracks: sequences of cells connected at intermediate faces. This notion generalizes
paths in finite automata to higher dimensions. Figure 8 shows an example, a track consisting of
six cells x1, . . . , x6 (x4 is the central cube in the figure) with face relations

x1 / x2 . x3 /
3 x4 .

2 x5 / x6,

where x1 / x2 denotes that x1 is a lower face of x2, and x4 .
2 x5 that x5 is an upper face of an upper

face of x4 (in anticipation of notation introduced later on). We show in Section 5 how tracks give
rise to interval ipomsets, but also how interval ipomsets can be converted into tracks.

In Section 6 we give a geometric interpretation of executions in HDAs, following [13] and
subsequent related work [12, 51, 52]. Precubial sets may be realized geometrically as directed
spaces [19], and executions of HDAs may then be seen as directed paths through their geometric
realization. We introduce the interval arrangement of a directed path, which tracks the events that
are active during different phases of the execution, and use this to define labels of directed paths.

In Section 7 we show that languages of HDAs defined by directed paths are the same as lan-
guages defined by tracks. We also see that languages of HDAs are weak sets of interval orders,
and that any finite weak set of interval orders may be generated by an HDA.

In summary, the main contributions of this paper are as follows:

• New Definitions 1 and 10 of precubical sets as presheaves over a category�· . This has linearly
ordered sets as objects, and the morphism are pairs (f , ε) of a poset map f and a function ε

which partitions elements not in the image of f into two classes. This is similar to construc-
tions in [1, 3]; the standard base category � [19] of precubical sets is uniquely isomorphic to
the skeleton of �· .

• The identification of a new subclass of event consistent precubical sets in Definitions 13 and
17 and the introduction of universal events for such precubical sets.

• The exposition of a bijection, in Definitions 55 and 60, between interval-ordered ipomsets
and HDA tracks. The first of these definitions introduces the label of a track in an HDA X ,
which forms the basis on which we define track-based languages of HDAs; the second defines
the track object �P pertaining to an interval ipomset P. These notions unite in the important
Proposition 89: P is contained in the language of X precisely if there is an HDA morphism
from �P into X .

• The notion of interval arrangement of a directed path through the geometric realization of an
HDA and the subsequent Definition 77 of labels of directed paths.

• Definition 86 of the language of an HDA, the closure properties (under binary union and
parallel composition) in Theorems 100 and 108, and Theorems 110 and 111 that bisimilarity
implies language equivalence. We expect that together with Proposition 89 this may form the
basis of a theory of regular pomset languages, but leave this for future work.

Languages of Higher-Dimensional Automata 7

3. Precubical Sets and Higher Dimensional Automata
In this section we introduce precubical sets and HDAs, but we start with order-theoretic defi-
nitions, mainly to fix notation. We will return to posets and posets with interfaces in the next
section.

A poset is a pair (P, <) consisting of a set P and a strict partial order < on P. We henceforth
assume tacitly that the set P is finite. For any alphabet, i.e., finite set Σ, a pomset is a triple
(P, <, λ) with (P, <) a poset and λ : P→ Σ the labeling of P. If the order is linear, i.e., a total
relation in which x = y, x < y, or y < x for all x, y∈ P, then we will speak of linear posets and
linear pomsets (and generally denote linear po(m)sets by S, T , U instead of P, Q, R).

Elements x, y∈ P of a po(m)set P are comparable if x = y, x < y, or y < x; otherwise they are
incomparable, denoted x ‖ y. An element x∈ P is minimal if there exists no y∈ P with y < x; and
maximal if there is no y∈ P with x < y.

A subset Q⊆ P of a po(m)set P is an antichain if its elements are pairwise incomparable. A
maximal antichain is one which is not a proper subset of any other antichain. The sets of minimal,
respectively maximal elements of P are both maximal antichains.

A function f : P→Q between posets P, Q is a poset mapa if x <P y implies f (x)<Q f (y)
for all x, y∈ P. By irreflexivity, f is injective on comparable elements: if x <P y or y <P x, then
f (x) 6= f (y). If P is linearly ordered, then f must be injective.

A function f : P→Q between pomsets P, Q is a pomset map if it is a poset map that preserves
the labeling, i.e., λQ ◦ f = λP. Posets and poset maps form the category Pos, and pomsets and
pomset maps form the category Poms. Isomorphism in these and all subsequent categories will
be denoted ∼=.

3.1 Precube Categories
Precubical sets are usually defined as presheaves over a small skeletal category �, see Definition
2 below. We find it more convenient to work with a large version of �, denoted �· and defined
below, which as objects has all linear posets.

Definition 1. The large precube category �· consists of the following data:

• objects are linear posets (S, 99K);
• morphisms S→ T in �· (S, T) are pairs (f , ε), where f : S→ T is a poset map and ε : T →
{0, , 1} a function such that f (S) = ε−1();

• the composition of morphisms (f , ε) : S→ T and (g, ζ) : T →U is (g ◦ f , η), where

η(u) =

{
ε(g−1(u)) for u∈ g(T),
ζ (u) otherwise.

The function ε distinguishes events that have not yet started (labelled by 0) from those that have
finished (labelled by 1) and those that are executing (labelled by). This notation is inspired by
Chu spaces [35]; see also [9] for the relation between HDAs and Chu spaces. For every morphism
(f , ε), the isomorphism f : S→ ε−1()⊆ T is unique; the map f is therefore determined by ε .

In an inclusion (f , ε) : S→ T , the events in f (S) = ε−1() are executing, whereas the events in
T \ f (S) are either not started or terminated. In the composition (g ◦ f , η), η is defined such that
events in U \ g(T) retain their status from the inclusion of T in U , events properly in T preserve
their status from the inclusion of S in T , and events coming from S are executing. See Figure 9 for
an example.

aWe use map and morphism interchangeably for the arrows in a category.

8 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

S

•

•

•

T

0

U

1

0

Figure 9. Composition of morphisms S→ T →U in �·

For each n≥ 1 denote by [n] the linear poset

[n] = {1 99K 2 99K · · · 99K n},

together with [0] = /0.

Definition 2. The precube category is the full subcategory �⊆�· on objects [n] for all n≥ 0.

Proposition 3. The category � is skeletal, and the inclusion �⊆�· is an equivalence of
categories and admits a unique left inverse.

Proof. It is clear that � contains no non-trivial isomorphisms, hence is skeletal. For every S ∈�·
of cardinality |S|= n there is a unique isomorphism ιS : S→ [n] in �· . Hence there is a unique
functor ρ :�· →�, which is a left inverse of the inclusion�⊆�· ; it is given by ρ(S) = [|S|] = [n]
on objects and for any (f , ε) : S→ T by ρ(f , ε) = (ιT ◦ f ◦ ι

−1
S , ε ◦ ι

−1
T) on morphisms. �

Remark 4. The construction above mimics the situation for the base category of presimplicial
sets. Let ∆· be the full subcategory of Pos spanned by the linear posets and ∆⊆ ∆· the full subcat-
egory on objects [n] for n≥ 0. Except for the maps being injective, ∆ is the augmented simplex
category, see [28, VII.5], and presheaves on ∆, i.e., functors from the opposite category ∆op into
Set, are presimplicial sets. The category ∆ is skeletal, and the inclusion ∆⊆ ∆· is an equivalence
of categories and admits a unique left inverse. Consequently, the presheaf categories Set∆

op
and

Set∆·
op

are uniquely naturally isomorphic, and one may be used as drop-in replacement of the
other. See [31] for more discussion on this subject.

Remark 5. A similar base category is introduced in [3] for cubical homotopy type theory, see
also [1, 4]. Let B be the category with objects linear posets and morphisms in B(S, T) those
functions f : S→ T t {0, 1} (disjoint union) for which the restrictions f | f−1(T) to elements which
do not map to 0 or 1 are poset isomorphisms. Then B =�· op, as any f ∈B(S, T) is uniquely
determined by ε : S→{0, , 1} given by

ε(x) =

{
if f (x)∈ T,

f (x) if f (x)∈ {0, 1}.

The category defined in [3] uses unordered sets and also permits morphisms f for which f | f−1(T) is
merely injective. These two extensions are independent of each other; removing the order amounts

Languages of Higher-Dimensional Automata 9

to introducing symmetries, and removing surjectivity equips precubical sets with degeneracies
(thus passing to cubical sets). See [20] for the presheaf categories of cubical and symmetric
cubical sets.

We proceed to show that the (reduced) precube category � is isomorphic to the standard base
category for precubical sets [19, 20]. For any n≥ 1, i∈ [n], and ν ∈ {0, 1}, define a �-map dν

i,n =

(di,n, εν
i) : [n− 1]→ [n] by

di,n(k) =

{
k for 1≤ k < i,
k + 1 for i≤ k≤ n− 1

and ε
ν
i (k) =

{
ν for k = i,

for k 6= i.

Lemma 6. Let (f , ε)∈�([m], [n]), m < n, and let s = max{i∈ [n] | i 6∈ f ([m])}. Then (f , ε) =

dε(s)
s,n ◦ (g, ζ), where (g, ζ)∈�([m], [n− 1]) is given by

g(i) =

{
f (i) for f (i)< s,
f (i− 1) for f (i)> s

and ζ (j) =

{
ε(j) for j < s,
ε(j + 1) for j≥ s.

Proof. Elementary calculations. �

Lemma 7. Let (f , ε)∈�([n− s], [n]) and denote [n] \ f ([n− s]) = {a1 < · · ·< as}. Then

(f , ε) = dε(as)
as,n ◦ dε(as−1)

as−1,n−1 ◦ · · · ◦ dε(a2)
a2,n−s+2 ◦ dε(a1)

a1,n−s+1.

Proof. From Lemma 6 by induction. �

Proposition 8. The category � is generated by morphisms dν
i,n and the co-precubical identities

dν
j,n ◦ dµ

i,n−1 = dµ

i,n ◦ dν
j−1,n−1 for 1≤ i < j < n and ν , µ ∈ {0, 1}. Every �-map [n− s]→ [n] can

be written uniquely as a composition

dν1,...,νs
a1,...,as = dνs

as,n ◦ dνs−1
as−1,n−1 ◦ · · · ◦ dν2

a2,n−s+2 ◦ dν1
a1,n−s+1

where νi ∈ {0, 1} and 1≤ a1 < · · ·< as ≤ n.

Proof. Lemma 7 implies that every morphism (f , ε)∈�([m], [n]) can be presented as a compo-
sition of elementary morphisms in which the sequence of lower indices is strictly decreasing.
Such presentations are unique since f can be recovered from the sequences as, . . . , a1 and
ε(as), . . . , ε(a1). It remains to show that the co-precubical relations hold, which is elemen-
tary. �

3.2 Precubical Sets
Precubical sets are usually defined as presheaves over �, i.e., functors �op→Set [19]. Using
Proposition 3, we may instead use presheaves over �· :

Proposition 9. The presheaf categories Set�
op

and Set�·
op

are uniquely naturally isomorphic.

Proof. Each functor F :�op→Set extends uniquely to a functor Ḟ = ρ ◦ F :�· op→Set by com-
position with the functor ρ from the proof of Proposition 3. The functor Ḟ , in turn, restricts to F
on �op. �

10 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

Definition 10. The category of precubical sets is the presheaf category Set�
op

or, equivalently,
Set�·

op
. That is, a precubical set is a functor �op→Set or �· op→Set, and a precubical map is

a natural transformation of precubical sets.

We write Xn for X([n]), δ
ν1,...,νs
{a1,...,as} for X(dν1,...,νs

a1,...,as), and δ ν

{a1,...,as} for X(dν ,...,ν
a1,...,as). The map

X(dν
i,n) : Xn→ Xn−1 is denoted by δ ν

i . For any x∈ Xn, n is called the dimension of x and indi-
cated by dim x = n. The maps δ ν

i are called elementary face maps and the maps δ
ν1,...,νs
{a1,...,as}, face

maps.

Definition 11. The standard S-cube on a linear poset (S, 99K) is the precubical set �S, where

• �S
k is the set of functions x : S→{0, , 1} taking value on exactly k elements;

• δ ν
i converts the i-th occurence of into ν ∈ {0, 1}, i.e., if x−1() = {p1 99K · · · 99K pk},

then

δ
ν
i x(p) =

{
ν for p = pi,

x(p) otherwise.

Every function x : S→{0, , 1} in �S
k determines a unique poset map fx : [k]→ S by the iso-

morphism fx : [k]→ fx([k]) = x−1(). Denote the unique top-dimensional cell of �S (the unique
element of �S(S)) by yS. Then yS(x) = for all x∈ S. The order on S is necessary to define face
maps: it determines which of the values should be converted into ν .

For n≥ 0, the standard n-cube is �n :=�[n], and its unique n-cell is denoted by yn.
Regarded as a presheaf, �S is the functor represented by S, i.e., �S(T) =�· (T, S). The cell yS

corresponds to the identity morphism on S. The following is an immediate consequence of the
Yoneda lemma.

Lemma 12. Let X be a precubical set and x∈ Xn. Then there exists a unique precubical map
ix :�n→ X such that ix(yn) = x. �

3.3 Labelings and Events
Definition 13. Let A be a finite set. The labeling object on A is the precubical set !A with !An = An

and δ ν
i defined by

δ
ν
i ((a1, . . . , an)) = (a1, . . . , ai−1, ai+1, . . . , an).

The event object on A is the precubical subset !!A⊆ !A given by

!!An = {(a1, . . . , an) | ai 6= a j whenever i 6= j}.

Regarded as a presheaf, !A(S) =Set(S, A), hence !A is representable in Set via the forgetful
functor �· →Set. In particular, !An is exactly the set of isomorphism classes of linear posets over
A with n elements. Similarly, !!A(S) = Inj(S, A), where Inj is the category of sets and injective
maps, so that !!A is representable in Inj via the forgetful functor �· → Inj. Also note that !A is
infinite, whereas !!A is finite: if A has m elements, then !!Am consists of all permutations of these
elements and !!An = /0 for n > m.

Every function f ∈Set(A, B) induces a precubical map ! f : !A→ !B, and every injective func-
tion g∈ Inj(A, B) induces a precubical map !!g : !!A→ !!B, turning them into functors ! : Set→
Set�

op
and !! : Inj→ Inj�

op
. These are left adjoint to the functors Set�

op
→Set and Inj�

op
→ Inj

mapping X to X1, hence !A and !!A are free in the following sense.

Languages of Higher-Dimensional Automata 11

x y z

Figure 10. Example of a precubical set that is not event consistent (left and bottom right edges identified).

Lemma 14. Let X be a precubical set and A a finite set.

(1) Any function λ1 : X1→ A for which λ1(δ
0
1 x) = λ1(δ

1
1 x) and λ1(δ

0
2 x) = λ1(δ

1
2 x) for all x∈

X2 extends uniquely to a precubical map λ : X→ !A.
(2) Any function ev1 : X1→ A for which ev1(δ

0
1 x) = ev1(δ

1
1 x), ev1(δ

0
2 x) = ev1(δ

1
2 x), and

ev1(δ
0
1 x) 6= ev1(δ

0
2 x) for all x∈ X2 extends uniquely to a precubical map ev : X→ !!A.

Proof. For the first claim, define functions fi : [1]→ [n], for all n≥ 0 and i∈ [n], by fi(1) = i. Then
define λ by λ (x) = (λ1((f1, ε1)

op(x)), . . . , λ1((fn, εn)
op(x))) for x∈ Xn. Because of λ1 ◦ δ 0

i =

λ1 ◦ δ 1
i , the choices of εi do not matter. It is clear that λ is the unique extension of λ1.

For the second claim, we already know that ev1 extends uniquely to ev : X→ !A. We show that
the image of ev lies in !!A. With a slight abuse of notation, write ev(x) = (ev1(x), . . . , evn(x)) for
x∈ Xn, and suppose there exists an x∈ Xn with evi(x) = ev j(x) for i < j. Let (f , ε)∈�([2], [n]) be
the morphism that satisfies f (1) = i and f (2) = j (ε is again irrelevant), and let y = (f , ε)op(x)∈
X2. Then ev1(δ

0
1 y) = evi(x) = ev j(x) = ev1(δ

0
2 y), in contradiction to the second property of ev1.

�

Let henceforth Σ be a fixed finite set.

Definition 15. Let X be a precubical set. A labeling of X is a precubical map λ : X→ !Σ. An
event identification on X is a map ev : X→ !!Σ.

Every event identification on X is also a labeling on X , but the converse does not hold; in fact,
all precubical sets admit labelings, but not necessarily event identifications:

Example 16. Figure 10 shows a precubical set with three 2-cells x, y, z and δ 0
1 x = δ 0

2 z. Any event
identification ev : X→ !!Σ must fulfill

ev(δ 0
2 z) = ev(δ 0

1 x) = ev(δ 1
1 x) = ev(δ 0

1 y) = ev(δ 1
1 y) = ev(δ 0

1 z),

a contradiction.

Definition 17. A precubical set X is event consistent if it admits an event identification ev : X→
!!Σ.

Lemma 18. A precubical set X is event consistent iff there exists an equivalence relation∼ on X1
such that for all x∈ X2, δ 0

1 x∼ δ 1
1 x, δ 0

2 x∼ δ 1
2 x, and δ 0

1 x 6∼ δ 0
2 x.

Proof. First suppose that X is event consistent. Let ev : X→ !!Σ and define the equivalence rela-
tion ∼ on X1 by x∼ y iff ev(x) = ev(y). From the definition of !Σ we have ev(δ 0

i x) = δ 0
i ev(x) =

δ 1
i ev(x) = ev(δ 1

i x) and therefore δ 0
i x∼ δ 1

i x holds for all x∈ X2 and for i∈ {1, 2}. From the defi-
nition of !!Σ we have ev(δ 0

1 x) = δ 0
1 ev(x) 6= δ 0

2 ev(x) = ev(δ 0
2 x) and therefore δ 0

1 x 6∼ δ 0
2 x holds for

all x∈ X2.

12 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

For the other direction, suppose there is a relation ∼ that satisfies the properties in the lemma
and let Σ = X1/∼ be the set of equivalence classes. The quotient map X1→ Σ then extends
uniquely to ev : X→ !!Σ by Lemma 14, which yields the event identification needed. �

Any event consistent precubical set admits a smallest equivalence relation owing to Lemma
18, denoted∼ev. It is given as the transitive closure of {(δ 0

i x, δ 1
i x) | x∈ X2, i∈ {1, 2}}, we call its

equivalence classes the universal events of X .
We will generally only concern ourselves with event consistent precubical sets in the rest of

this work, but come back to the more general case at the end of Section 7.1.

Example 19. The standard S-cube �S from Definition 11 is event consistent for any linear poset
S. Its universal event equivalence is given by x∼ev y iff x−1() = y−1(), induced by the event
identification ev :�S→ !!S with ev(x) = x−1(). If X is a precubical subset of �S, then X is also
event consistent. Such precubical subsets of standard cubes are called sculptures in [9], where it
is shown that they correspond to Chu spaces over {0, , 1} [35, 36].

The term “universal events” is justified by the following factorization property, which follows
immediately from the definitions.

Proposition 20. Every labeling λ : X→ !Σ factors uniquely through EX , i.e., there is a unique
factorization λ1 = λ ev

1 ◦ ev1 : X1→ EX → Σ that extends to a factorization λ = λ ev ◦ ev : X→
!!EX → !Σ. �

Hence also any event identification factors uniquely through the universal events.

Proposition 21. Let λ : X→ !Σ be a labeling. If x∈ Xn and (f , ε)∈�([m], [n]), then
λ ((f , ε)op(x)) = λ (x) ◦ f . In particular,

λ (δ ν
i x) = (λ1(x), . . . , λi−1(x), λi+1(x), . . . , λn(x)).

Proof. Straightforward from the definitions. �

Lemma 22. Let X be an event consistent precubical set, n≥ 0, x∈ Xn, A, B⊆ [n], and ν ∈ {0, 1}.
Then δ ν

A x = δ ν
B x implies A = B.

Proof. Applying Proposition 21 to ev : X→ !!EX yields ev(δ ν
A x) = (evi(x))i∈[n]\A and ev(δ ν

B x) =
(evi(x))i∈[n]\B. Since events evi(x) are pairwise distinct, we obtain A = B. �

Remark 23. For n = 2, the above lemma reduces to the definition of event consistency. The
lemma will show its importance once we consider tracks, i.e., sequences of cells connected at
faces, in Section 5. There is a related property of being non-selfintersecting which has been
used for the same purpose, see for example [11]: a precubical set X is non-selfintersecting if
δ ν

A x = δ
µ

B x implies A = B and ν = µ for all x∈ X . Example 16 shows that precubical sets may
be non-selfintersecting, but not event consistent; similarly, event consistency does not imply the
non-selfintersecting property, see [9]. Finally, also Section 4 of [41] contains some precursors to
our notion of event consistency.

If f : X→Y is a precubical map, then x∼ev y implies f (x)∼ev f (y) for x, y∈ X1, and f1 : X1→
Y1 induces a map E f : EX → EY . This defines a functor E : Set�

op
→Set.

Languages of Higher-Dimensional Automata 13

3.4 Higher-Dimensional Automata
Higher-dimensional automata are labeled precubical sets with initial and accepting cells.

Definition 24. A labeled precubical set is an event consistent precubical set X together with a
labeling λ : X→ !Σ. Maps f : X→Y of labeled precubical sets preserve labelings: λX = λY ◦ f .

That is to say, the category of labeled precubical sets is the full subcategory of the slice category
Set�

op
/!Σ on event consistent objects.

Definition 25. Let (X , λ) be a labeled precubical set. The label of a cell x∈ Xn is the linear
pomset `(x) = (ev(x), 99K, λev(x)) with

ev(x) = (ev1(x) 99K ev2(x) 99K · · · 99K evn(x))

and λev(x)(evi(x)) = λi(x).

Note that `(x) is basically the tuple λ (x), but using Proposition 20 we now regard it as a pomset.
Event consistency is essential for this to make sense. Of the two following elementary lemmas,
the first follows from Proposition 21 and Lemma 18; the second one is trivial.

Lemma 26. If x is a face of y, then there is a pomset inclusion `(x)⊆ `(y). �

Lemma 27. Let f : X→Y be a map of labeled precubical sets and x∈ Xn. Then `(f (x)) =
E f (`(x))∼= `(x). �

Definition 28. A higher-dimensional automaton (HDA) is a tuple (X , I, F, λ), where (X , λ) is a
labeled precubical set, I ⊆ X is a set of initial cells and F ⊆ X a set of accepting cells. If X and Y
are HDAs, then a precubical map f : X→Y is an HDA map if it preserves labels and initial and
accepting cells: λX = λY ◦ f , f (IX)⊆ IY , and f (FX)⊆ FY .

4. Pomsets with Interfaces
We now return to posets and pomsets and introduce interfaces for them, building on our work in
[8] but enriched with event orders. Recall that Σ is a fixed finite set.

4.1 Ipomsets
Definition 29. An ipomset is a tuple (P, <P, 99KP, λP, SP, TP), where P is a finite set;

• <P is a strict partial order on P called precendence order;
• 99KP is a strict partial order on P called event order;
• λP : P→ Σ is a function called labeling;
• SP is a subset of the <-minimal elements of P called source set;
• TP is a subset of the <-maximal elements of P called target set.

We require that the relation <P ∪ 99KP is total: if x 6= y∈ P, then x and y are comparable by <P
or by 99KP.

Note that <P ∪ 99KP need not be a partial order, see Example 32 below. The linear pomset
(SP, 99KP ∩ (SP × SP), λP|SP), where λP|SP denotes the domain restriction of λP : P→ Σ to SP, is
called source interface of P; we often simply write (SP, 99KP, λP). Similarly, (TP, 99KP, λP) is the

14 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

target interface of P. If S = T = /0, then P is a pomset in the classical sense [17, 33] (ignoring the
event order). If S = T = /0 and < is linear, then P corresponds to a string.

Remark 30. In [8] we defined ipomsets without an event order. Instead we picked out sources
and targets using injections s : [n]→ P and t : [m]→ P. This implicitly defines (linear) event orders
on the subsets SP = s([n])⊆ P and TP = t([m])⊆ P, so the only essential difference between [8]
and our present setting is that the event order is extended to the whole of P. When SP ∩ TP = /0,
such an extension is always possible; and we will see later that the ordered structures properly
corresponding to HDAs are our present event-ordered ipomsets, see Definitions 55 and 60.

Remark 31. The ordered structure (P, <P, 99KP) underlying an ipomset is a biposet in the sense
of [5], but because of the requirement that <P ∪ 99KP be total, not all biposets may be used. [5]
is concerned with n-posets, i.e., finite sets with n partial orders, and then introduces a notion of
higher-dimensional automata as recognizers of such structures. Except for the name, the higher-
dimensional automata of [5] have nothing to do with our HDAs.

Example 32. By definition, the maximal antichains of the precedence order are linearly ordered
by the event order, but the event order may contain further arrows. As an example, consider the
ipomset

P =

(
a //b
}}c

OO

)
with precedence order a < b and event order b 99K c 99K a. Both maximal antichains a ‖ c and
b ‖ c are linearly 99K-ordered, but by transitivity, also b 99K a.

Let Q⊆ P be a subset of the ipomset (P, <, 99K, λ , S, T). Then the restriction

P|Q := (Q, <∩ (Q×Q), 99K∩ (Q×Q), λ |Q, S ∩Q, T ∩Q)

is also an ipomset.

Definition 33. Ipomsets P and Q are isomorphic if there exists a bijection f : P→Q (an ipomset
isomorphism) that

• respects precedence: for all x, y∈ P, x <P y iff f (x)<Q f (y);
• respects essential event ordering: for all x, y∈ P with x ‖P y, x 99KP y iff f (x) 99KQ f (y);
• respects labels and interfaces: λQ ◦ f = λP, f (SP) = SQ, and f (TP) = TQ.

By definition, f is only required to respect the part of the event ordering which orders events
in antichains. In Section 4.4 we will introduce a notion of morphism between ipomsets for which
the above form the isomorphisms.

Isomorphisms between ipomsets are unique:

Lemma 34. There is at most one isomorphism between any two ipomsets.

Proof. Using poset filtrations, we can combine the two orders on an ipomset into a linear order
and then use the fact that isomorphisms between linearly ordered sets are unique:

Let P be an ipomset and P0 its set of <P-minimal elements. Let P1 be the set of <P-minimal
elements of the sub-ipomset P \ P0, P2 the set of <p-minimal elements of P \ P0 \ P1, and so on.
The finite disjoint union P = P0 t P1 t P2 t . . . is called filtration of P. (More precisely, one can

Languages of Higher-Dimensional Automata 15

set P>−1 = P and then inductively for i≥ 0, until exhaustion, let Pi be the <P-minimal elements
of P>i−1 and P>i = P>i−1 \ Pi.)

Now all Pi are <P-antichains and hence linearly ordered by 99KP. Let ≺P be the relation on P
defined by x≺P y if x∈ Pi and y∈ Pj for i < j, or x, y∈ Pi for some common i and x 99KP y. Then
≺P is a linear order on P. Further, if f : P→Q is an ipomset isomorphism, then f : (P,≺P)→
(Q,≺Q) is an isomorphism of linear orders; hence f is unique. �

4.2 Gluing and Parallel Compositions
The gluing composition P ∗Q of two ipomsets is defined if the target interface of P is isomorphic
to the source interface of Q, in which case it identifies the targets of P with their corresponding
sources in Q and makes all non-interface elements in P precede all non-interface elements in Q.
Below, (·)+ is used for transitive closure.

Definition 35. Let P and Q be ipomsets such that (TP, 99KP, λP) is isomorphic to (SQ, 99KQ, λQ).
The gluing composition of P and Q is P ∗Q = (Pt (Q \ SQ), <, 99K, λ , SP, TQ) with <, 99K, and
λ defined as follows:

<=<P ∪<Q ∪ (P \ TP)× (Q \ SQ),

99K= (99KP ∪ 99KQ)
+,

λ (x) =

{
λP(x) if x∈ P,
λQ(x) if x∈Q.

It is clear that P ∗Q, if defined, is indeed again an ipomset: the only non-trivial property to
check is irreflexivity of 99K, which follows from the fact that the restrictions of 99K to P and
Q are precisely 99KP and 99KQ, respectively. It is also clear that gluing composition respects
isomorphisms:

Lemma 36. If P∼= P′ and Q∼= Q′, then P ∗Q is defined iff P′ ∗Q′ is, and in that case, P ∗Q∼=
P′ ∗Q′. �

Gluing composition of pomsets, i.e., ipomsets with empty interfaces SP = TP = /0, is the same
as the standard serial composition [17, 18]. Gluing composition of strings is concatenation. We
also introduce a parallel composition of ipomsets that generalizes the eponymous operation for
pomsets.

Definition 37. The parallel composition of ipomsets P and Q is P ‖Q = (PtQ, <, 99K, λ ,
SP t SQ, TP t TQ) with <, 99K, and λ defined as follows:

<=<P ∪<Q,

99K= 99KP ∪ 99KQ ∪ P×Q,
λ (x) =

{
λP(x) if x∈ P,
λQ(x) if x∈Q.

It is easy to see that P ‖Q is again an ipomset. Parallel composition of ipomsets is not
commutative because of the event order. It is again clear that parallel composition respects
isomorphisms:

Lemma 38. If P∼= P′ and Q∼= Q′, then P ‖Q∼= P′ ‖Q′. �

4.3 Interval Orders
An interval order is a poset P in which x < z and y < w imply x < w or y < z for all x, y, z, w∈ P.

16 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

a b 1

c d

e 2

∗

b1 g

e2 f

=

a b

c d

e

g

f

| | | |

| | | |

| |

I(a) I(b)

I(c) I(d)

I(e)

∗

| | | |

| | | |

I(b) I(g)

I(e) I(f)

=

| | |

| | | |

|

| | |

| | |

I(a) I(b)

I(c) I(d)

I(e)

I(g)

I(f)

Figure 11. Two interval ipomsets and their gluing: above as ipomsets, below using interval representations (event
order not shown)

Lemma 39 ([15, 16, 22]). The following are equivalent for any poset P:

(1) P is an interval order;
(2) P does not contain an induced subposet 2+2=

(• // •
• // •

)
;

(3) P has an interval representation: a pair of functions s, t : P→Q into a linear poset (Q, <Q)
such that for all x, y∈ P, s(x)<Q t(x), and x <P y iff t(x)<Q s(y);

(4) the order≺ on maximal antichains of P defined by X ≺Y if X 6=Y and y 6<P x for all x∈ X,
y∈Y is linear.

Definition 40. An interval ipomset is an ipomset P for which the underlying precedence poset
(P, <P) is an interval order.

Restrictions of interval ipomsets are again interval. The following is shown in [8] using interval
representations, see Figure 11 for an example.

Lemma 41. If P and Q are interval ipomsets and P ∗Q exists, then P ∗Q is an interval ipomset.
�

We develop a decomposition property for interval ipomsets which will be useful later.

Definition 42. An ipomset P is discrete if <P is empty (thus, 99KP is a linear order). In addition,
P is a starter if TP = P, and P is a terminator if SP = P. A starter P is elementary if P \ SP is a
singleton, and a terminator P is elementary if P \ TP is a singleton.

Starters may be used to start events and terminators to terminate them. In compositions, they
can switch off parts of starting or terminating interfaces, see Figure 12.

Every starter is a gluing of elementary starters, and every terminator a gluing of elementary
terminators (both not necessarily unique). Identity ipomsets are both starters and terminators, and
any discrete ipomset can be written as a gluing of a starter followed by a terminator.

We introduce special notation for discrete ipomsets: for subsets S, T ⊆U of a linear pomset
(U, 99K, λ) we write

SUT = (U, /0, 99K, λ , S, T).

The next lemma follows easily.

Languages of Higher-Dimensional Automata 17

//•

��

//

•
��

//

//• //

 ∗

//•
��

//

•
��

//

//•
��

//

//• //

 ∗

//•
��

//

//•
��

//

//•
��

//

//•

 ∗

//•
��

//

//•
��//• //

 =

//•
��

//

•
��•
��

//

//•

Figure 12. Decomposition of discrete ipomset into elementary starters and terminators.

Lemma 43. Let S, T , U be linear pomsets. If S⊆ T ⊆U, then STT ∗ TUU ∼= SUU and UUT ∗ T TS ∼=
UUS. If S, T ⊆U, then SUU ∗UUT ∼= SUT . �

Proposition 44. For an ipomset P the following are equivalent:

(1) P is an interval ipomset;
(2) P is a finite gluing of discrete ipomsets;
(3) P is a finite gluing of elementary starters and terminators.

Proof. Equivalence of (2) and (3) is clear. Given that discrete ipomsets are interval, (2) implies
(1) by Lemma 41.

To show that (1) implies (2), let P be an interval ipomset and P1 ≺ · · · ≺ Pm the sequence of
maximal antichains in P given by Lemma 39(4). Each Pi is linearly ordered by the restriction 99Ki
of 99KP to Pi. Let S1 = SP, Tm = TP, and Ti = Si+1 = Pi ∩ Pi+1 for i∈ [m− 1], and define ipomsets
Pi = (Pi, /0, 99Ki, λ |Pi , Si, Ti). Then the gluing Q = P1 ∗ · · · ∗ Pm is defined; we show that Q = P.

It is clear that the underlying sets of Q and P are equal and that the source and target interfaces
agree. Further, 99KQ = (99K1 ∪ · · · ∪ 99Km)

+ = 99KP. To see that <Q =<P, we note that x <P y
implies that x∈ Pi and y∈ Pj with i < j and x, y /∈ Pi ∩ Pj, and vice versa. �

Figure 12 shows an example of a decomposition of a discrete ipomset into elementary starters
and terminators. This proposition also gives an alternate proof of Lemma 41.

4.4 Subsumption
Pomsets may be smoothened, or made less concurrent, by strengthening precedence relations. The
corresponding relation between pomsets has been introduced by Grabowski [18] and is nowadays
often called subsumption [17]. We adapt it to ipomsets.

Definition 45. An ipomset Q subsumes an ipomset P if there exists a bijection f : P→Q, called
a subsumption map, such that

• for all x, y∈ P, f (x)<Q f (y) implies x <P y;
• for all x, y∈ P with x ‖P y, x 99KP y implies f (x) 99KQ f (y); and
• λQ ◦ f = λP, f (SP) = SQ, and f (TP) = TQ.

We write PvQ if Q subsumes P. That is, the points of P and Q are in bijection, but P may be
more precedence ordered than Q, and Q may be more event ordered than P.

If P is discrete or Q is linear, then any subsumption map f : P→Q is an isomorphism and, in
particular, unique. We extend gluing composition to subsumptions:

18 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

Definition 46. Let f : P→ P′ and g : Q→Q′ be subsumption maps and assume P ∗Q and P′ ∗Q′

to be defined. Define h = f ∗ g : P ∗Q→ P′ ∗Q′ by

h(x) =

{
f (x) if x∈ P,
g(x) if x∈Q,

Lemma 47. The map h from Definition 46 is well-defined and a subsumption map.

Proof. By Lemma 36 we may assume that TP = SQ and TP′ = SQ′ , showing that h is well-defined
and a bijection. The other properties follow easily. �

Lemma 48. If Pv P′ and QvQ′, then P ∗Q is defined iff P′ ∗Q′ is, and in that case, P ∗Qv
P′ ∗Q′.

Proof. Let f : P→ P′ and g : Q→Q′ be the subsumption maps. The first claim is clear as f and g
respect interfaces and labels. The second claim follows from Definition 46. �

Using subsumption maps as 2-morphisms, ipomsets assemble as morphisms into a bicat-
egory. Below, the identity on a linear pomset (S, 99K, λ) is the discrete ipomset idS = SSS =
(S, /0, 99K, λ , S, S), with trivial precedence order and all points in both interfaces.

Proposition 49. Ipomsets form a (large) bicategory iPoms with objects linear pomsets
(S, 99K, λ), ipomsets (P, <, 99K, λ , S, T) as morphisms from (S, 99K, λ) to (T, 99K, λ) with glu-
ing as composition and identities idS, subsumptions as 2-morphisms, and ipomset isomorphisms
as 2-isomorphisms.

Proof. It is clear that subsumption maps compose associatively and are invertible precisely when
they are ipomset isomorphisms. Gluing composition is associative up-to 2-isomorphism, and
the ipomsets idS are on-the-nose units for ∗. The pentagon identity is trivially satisfied due to
uniqueness of 2-isomorphisms. �

Remark 50. The bicategory iPoms is large as its objects and morphisms form a proper class.
However, given that any ipomset is uniquely isomorphic to one on points [k] and with interfaces
[n] and [m], for some k, n, m≥ 0, iPoms is equivalent to its skeleton, which is a small 2-category;
hence iPoms is essentially small.

By Lemma 41, interval ipomsets form a sub-bicategory of iPoms which we will denote iiPoms.

5. Tracks and their labels
We are now ready to introduce tracks in precubical sets, which are our model of computations, i.e.,
sequences of cells connected at faces. We define labels of tracks as interval ipomsets and show,
conversely, how interval ipomsets give rise to tracks.

5.1 Tracks
Let X be an event consistent precubical set. For x, y∈ X , we say that x is an elementary lower
face of y, denoted x / y, if x = δ 0

i y for some i; x is an elementary upper face of y, denoted y . x, if
x = δ 1

i y. The reflexive transitive closures of the relations / and . are denoted /∗ and .∗.

Languages of Higher-Dimensional Automata 19

We say that x is a lower, resp. upper face of y if x /∗ y, resp. y .∗ x. This is equivalent to the
condition that x = δ

0,...,0
A y for some (possibly empty) A, resp. x = δ

1,...,1
A y. By Lemma 22, A is

determined uniquely by x and y.

Definition 51. A track in X is a non-empty sequence ρ = (x1, . . . , xm), m≥ 1, of elements of X
such that for all i = 1, . . . , m− 1, xi /

∗ xi+1 or xi+1 .
∗ xi. A track ρ as above is from x1 to xm,

denoted ρ : x1 xm.

We allow repeated cells xi = xi+1 in tracks for notational convenience. A track (x1, . . . , xm) is
full if it does not contain such repeated cells and all face relations are elementary, that is, xi / xi+1
or xi . xi+1 for all i = 1, . . . , m− 1. Any track without repeated cells may be filled to a full track
by inserting appropriate (not necessarily unique) cells. In [42], full tracks are called execution
paths.

Example 52. Figure 8 in the introduction displays the track (x1, x2, x3, x4, x5, x6). As x3 /
3 x4,

this track is not full; it may be filled by inserting appropriate faces of x4 and x6, for example

(x1, x2, x3, δ
0
1 δ

0
1 x4, δ

0
1 x4, x4, δ

1
1 x4, x5, x6).

Definition 53. Let ρ = (x1, . . . , xm), τ = (y1, . . . , yk) be tracks in X. The concatenation ρ ∗ τ of
ρ and τ is defined if xm = y1, and in that case, ρ ∗ τ = (x1, . . . , xm, y2, . . . , yk).

The unit tracks are (x) for x∈ X . Tracks containing exactly two cells are called basic.
Concatenation is associative, and every non-unit track is a unique concatenation of basic tracks.
The following is clear.

Lemma 54. Tracks in X form a small category Track(X) with objects x∈ X, tracks ρ : x y as
morphisms, ∗ as composition, and identities idx = (x). �

5.2 Labels of Tracks
Let (X , λ) be a labeled precubical set.

Definition 55. The label of a track ρ in X is the ipomset `(ρ) defined recursively as follows:

• If ρ = (x) is a unit track, then `(ρ) = id`(x): the identity ipomset on `(x).
• If ρ = (x, y) with x /∗ y, then `(ρ) = `(x)`(y)`(y): a starter.
• If ρ = (y, x) with y .∗ x, then `(ρ) = `(y)`(y)`(x): a terminator.
• If ρ = τ ∗ ρ ′ with τ a basic track, then `(ρ) = `(τ) ∗ `(ρ ′).

By Proposition 44, labels of tracks are interval ipomsets, and `(ρ1 ∗ ρ2)∼= `(ρ1) ∗ `(ρ2) for all
tracks ρ1, ρ2. The following is therefore clear.

Proposition 56. Labeling defines a functor ` : Track(X)→ iiPoms.

Next we see that filling a track with extra cells does not change its label. Let ∼ be the equiv-
alence on sets of tracks generated by (x1, . . . , xm)∼ (x1, . . . , xi−1, xi+1, . . . , xm) for xi−1 /

∗ xi /
∗

xi+1 or xi−1 .
∗ xi .

∗ xi+1.

Lemma 57. If ρ ∼ τ , then `(ρ)∼= `(τ).

20 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

a

a

b bx

a

a

b bx

a

a

b bx

`((δ 0
1 δ 0

1 x, x)) =
(a
��

//

b //

)
`((δ 0

1 x, x)) =
(a
��

//

//b //

)
`((δ 0

2 x, x, δ 1
1 x)) =

(//a
��

b //

)
Figure 13. Some tracks and their labels in X =�{a99Kb} (solid cells indicate the respective faces).

Proof. If x /∗ y /∗ z, then

`((x, y, z)) = `((x, y)) ∗ `((y, z)) = `(x)`(y)`(y) ∗ `(y)`(z)`(z) = `(x)`(z)`(z) = `((x, z))

from Lemma 43. The computations for x .∗ y .∗ z are similar, and the result then follows by
induction. �

The next lemma shows that labels of tracks that consist of a cell and two of its faces on either
side are discrete ipomsets. Its proof is a straightforward application of the definition.

Lemma 58. If x /∗ y .∗ z, then `((x, y, z)) = `(x)`(y)`(z). �

Figure 13 shows some examples of simple tracks and their labels.

5.3 Interval Ipomsets as Tracks
We have seen how labels of tracks in HDAs can be computed as interval ipomsets. Now we show
the inverse: how interval ipomsets may be converted into HDAs consisting essentially of a single
track. To this end, first introduce a relation ≺ on the set {0, , 1} by

≺= {(0, 0), (, 0), (1, 0), (1,), (1, 1)}.
The relation ≺ (which is not a partial order, given that it is neither reflexive nor irreflexive)

corresponds to the meaning that we associate to the elements of {0, , 1}: 0 meaning the event
has not yet started; for an executing event; and 1 if the event has terminated. The intuition is
that when x and y are events so that x < y in the precedence order, then either y has not yet started,
in which case x may be in any state, hence the first three pairs (0, 0), (, 0), (1, 0); or x has
terminated and y may be in any state, hence the last three pairs (1, 0), (1,), (1, 1). In particular,
it is impossible that both are active, so that (,) /∈≺.

Remark 59. In Chu spaces for concurrency [35], K3 = {0 <C <C 1} is the structure that defines
the possible execution forms that an event can take. The intuition of the order <C is that 0 (the
event has not yet started) can happen only before (the event is executing), which can happen
only before 1 (the event has terminated). This order can be extended to sets of (execution values of)
events, which in Chu terminology is called a state. For states, the order <C expresses admissible
sequences of executions of the system. For two independent events x, y, all execution forms (ex, ey)
with ex, ey ∈ {0, , 1} would thus be admissible; but if there is a precendence order x < y, then
the allowed tuples are precisely the ones in the relation ≺ above.

The following generalizes Definition 11 of the standard S-cube �S on a linear poset S to
arbitrary ipomsets.

Languages of Higher-Dimensional Automata 21

Definition 60. For an ipomset P, define the HDA (�P, I�P , F�P , λ�P) as follows:

• �P
k is the set of all relation-preserving functions x : (P, <P)→ ({0, , 1},≺) taking value

on exactly k elements;
• for x∈�P

k and x−1() = {p1 99KP · · · 99KP pk},

δ
ν
i (x)(p) =

{
ν for p = pi,

x(p) for p 6= pi;

• I�P = {i�P} and F�P = { f�P} are given by

i�P(p) =

{
if p∈ SP,

0 if p 6∈ SP,
f�P(p) =

{
if p∈ TP,

1 if p 6∈ TP;

• For x∈�P
k with x−1() = {p1 99KP · · · 99KP pk}, λ�P(x) = (λP(p1), . . . , λP(pk)).

Above, x−1() is indeed an antichain in the precedence order and hence linearly ordered
by 99KP.

Example 61. Let P be the ipomset

P =

(
a //b

c //

OO 88

d

OOff
)

.

The cells of�P are as follows, in increasing order of dimension (and with the event order omitted):

x1 =

(
0 // 0
0 //

77

0

)
x2 =

(
1 // 0
0 //

77

0

)
x3 =

(
0 // 0
1 //

77

0

)
x4 =

(
1 // 0
1 //

77

0

)
x5 =

(
0 // 0
1 //

77

1

)
x6 =

(
1 // 0
1 //

77

1

)
x7 =

(
1 // 1
1 //

77

0

)
x8 =

(
1 // 1
1 //

77

1

)
y1 =

(
// 0

0 //

66

0

)
y2 =

(
0 // 0

//

66

0

)
y3 =

(
// 0

1 //

66

0

)
y4 =

(
0 // 0
1 //

66

)
y5 =

(
// 0

1 //

66

1

)
y6 =

(
1 // 0

//

66

0

)
y7 =

(
1 //

1 //
66

0

)
y8 =

(
1 // 0
1 //

66

)
y9 =

(
1 //

1 //
66

1

)
y10 =

(
1 // 1
1 //

66

)
z1 =

(
// 0
//

66

0

)
z2 =

(
// 0

1 //

66

)
z3 =

(
1 //

1 //
66

)
The cells y1, y3 and y5 are labeled by a, y7 and y9 by b, y2 and y6 by c, y4, y8, y10 by d. The

labels of z1, z2 and z3 are (c, a), (d, a) and (d, b), respectively. The order of letters in these pairs
is determined be the event order on P. Geometrically these are arranged as shown in Figure 14
(left).

We will later apply Definition 60 to interval ipomsets to conclude in Proposition 92 that the
language of �P is generated by P. Our definition applies to general ipomsets, but as we will
see, Proposition 92 fails for ipomsets which are not interval. It is an interesting open problem to
characterize those HDA which are isomorphic to some �P.

22 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

x1

x2

x3

x4

x5

x6

x7 x8

z1 z2

z3

c

y2

d

y4

y6 y8

y10

y1 y3

y7

ay5

by9

x1

x2

x3

x4

x5

x6

x7 x8
x9

z1 z2

z3z4

y2 y4

y6 y8

y10

y1 y3

y7

y5

y9y11

y12

Figure 14. The HDAs �P (left) and �Q (right) from Examples 61 and 62.

(a
��

b

)

a

a

b b

(a //b)

a

b

(b //a)

a

b

Figure 15. Subsumptions (top) give rise to HDA inclusions (bottom)

Example 62. If we instead of the ipomset P of Example 61 take Q to be the 2+2-ipomset

Q =

(
a //b

c //

OO 88

d

OOff
)

,

then �Q contains �P and the following extra cells:

x9 =

(
1 // 1
0 // 0

)
y11 =

(
1 //

0 // 0

)
y12 =

(
1 // 1

// 0

)
z4 =

(
1 //

// 0

)
Geometrically this amounts to adding the top-left square to �P, see Figure 14 (right).

The following can be shown by easy calculations; Figure 15 shows some simple examples.

Lemma 63. If f : P→Q is a subsumption map, then the function � f :�P→�Q given by
� f (x)(p) = x(f (p)) is an injective HDA map. �

For the next lemma, recall the notions of event consistency and universal events from
Section 3.3.

Lemma 64. Let P be an ipomset. Then �P is event consistent, and E�P ∼= P as labeled sets. For
every x∈�P, ev(x) = x−1() as linear posets.

Languages of Higher-Dimensional Automata 23

P :

• //

��

• //• //•

• //

p //•

??

• //•

?? xp :

1 //

��

0 //0 //0

1 //

��

//0

@@

0 //0

@@

x :

1 //

��

1 //0 //0

1 //

��

//0

@@

1 //1

@@ (elements of Dx in red)

y :

1 //

��

1 //0 //0

1 //

��

//0

@@

1 //

?? x′ :

1 //

��

1 //0 //0

1 //

��

//0

@@

1 //0

@@

Figure 16. Pomsets and cells in the proof of Lemma 64.

Proof. To show that �P is event consistent, let f : P→Q be a subsumption map into a discrete
ipomset Q; Q may be obtained from any linearization of 99KP. Then the precubical set underly-
ing �Q is a standard cube, and by Lemma 63, � f :�P→�Q is an embedding. By Example 19,
�P is event consistent.

There is a P-labeling of �P, i.e., a precubical map �P→ !P that sends x∈�P to x−1() =
(p1 99KP · · · 99KP pn). This induces a function π : E�P → P (Proposition 20). For every p∈ P,
define xp ∈�P

1 by

xp(q) =

1 if q <P p,

if q = p,
0 otherwise.

Since π(xp) = p, π is surjective.
It remains to show that π is injective. Let x∈�P

1 satisfy π(x) = p; we will show that x∼ev xp.
Note that x(q) = iff q = p. We proceed by induction on the number of elements in the set
Dx = {q∈ P | x(q) 6= xp(q)}, see Figure 16 for an illustration.

All elements of Dx are parallel with p, since monotonicity of x and xp implies that x(q) =
xp(q) = 1 if q <P p and x(q) = xp(q) = 0 if p <P q. Thus, xp(q) = 0 and x(q) = 1 for all q∈Dx.

Let q∈Dx be a <P-maximal element. Let y : P→{0, , 1} be given by y(q) = and y(r) =
x(r) for r 6= q. We show that y is monotone and hence a 2-cell in �P.

We have y(r) = x(r) = 1, hence y(r)≺ y(q), for all r <P q, since x preserves <P. For q <P r, on
the other hand, maximality of q in Dx implies that r /∈Dx, so that y(r) = x(r) = xp(r) = 0, hence
y(q)≺ y(r). Given that y(r) = x(r) for r 6= q, we have shown that y is monotone.

Now y(p) = y(q) = , so y is a 2-cell in �P. Let i = 1 if q 99K p and i = 2 if p 99K q, then
δ 1

i (y) = x. Let x′ = δ 0
i (y), then also π(x′) = p, and Dx′ = Dx \ {q}. The inductive hypothesis

asserts that x = δ 1
i (y)∼ev δ 0

i (y) = x′ ∼ev xp. �

Next we see that gluings of ipomsets correspond to pushouts of their HDA objects. Recall the
Yoneda inclusions ix from Lemma 12.

24 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

Lemma 65. Let Q and R be composable ipomsets with TQ ∼= S∼= SR and P = Q ∗ R. There is a
pushout

�S
i f
�Q
//

ii
�R
�� p

�Q

j0
Q⊆P
��

�R
j1
R⊆P

// �P

where

j0
Q⊆P(x)(p) =

{
x(p) for p∈Q,

0 otherwise,
j1
R⊆P(x)(p) =

{
x(p) for p∈ R,
1 otherwise.

Proof. It is clear that all the maps in the diagram are injective. Fix x∈�P.

• If there exists q∈Q \ TQ with x(q)∈ {0, }, then obviously x 6∈ j1
R⊆P(�

R). But for all r ∈
R \ SR we have q < r and then x(r) = 0. It is easy to verify that the restriction x|Q ∈�Q and
then x = j0

Q⊆P(x|Q)∈ j0
Q⊆P(�

Q).
• Similarly, if x(r)∈ { , 1} for some r ∈ R \ SR, then x∈ j1

R⊆P(�
R).

• We have

j0
Q⊆P ◦ i f�Q (y)(p) = j1

R⊆P ◦ ii�R (y)(p) =

1 for p∈Q \ TQ,

for p∈ S∼= TQ ∼= SR,

0 for p∈ R \ SR.

Thus, the diagram commutes. Denote j = j0
Q⊆P ◦ i f�Q = j1

R⊆P ◦ ii�R . The condition x(q) = 1
for all q∈Q \ TQ and x(r) = 0 for all r ∈ R \ SR is equivalent to both x∈ j0

Q⊆P(�
Q)∪

j1
R⊆P(�

R) and x∈ j(�P).

As a consequence, �P = j0
Q⊆P(�

Q)∪ j1
R⊆P(�

R) and j(�S) = j0
Q⊆P(�

Q)∩ j1
R⊆P(�

R). �

Lemma 66. Let X be a labeled precubical set, ρ : x y∈ Track(X), and P = `(ρ). There is a
map of labeled precubical sets g :�P→ X such that g(i�P) = x and g(f�P) = y.

Proof. Induction on the number of cells in ρ .

• If ρ = (x), then P = id`(x) and �P =�ev(x). The Yoneda map ix :�ev(x)→ X satisfies the
required condition.

• If ρ = (x, y) with x /∗ y, then P = `(x)`(y)`(y). Again, we may take g = iy.
• The case ρ = (y, x) with y .∗ x is similar.
• In case ρ = σ ∗ τ , where both σ : x z and τ : z y are shorter than ρ , let Q = `(σ), R =
`(τ). By the inductive hypothesis, there are labeled precubical maps gQ :�Q→ X and gR :
�R→ X such that gQ(i�Q) = x, gR(f�R) = y, and gQ(f�Q) = gR(i�R) = z. The last equality,
together with Lemma 65, guarantees that gQ and gR glue to a map g :�P→ X . It is clear that
g(i�P) = gQ(i�Q) = x and g(f�P) = gR(f�R) = y. �

Proposition 67. For any interval ipomset P there exists a track ρ : i�P f�P such that `(ρ)∼= P.

Languages of Higher-Dimensional Automata 25

Proof. If P = SUT is discrete, then `((i�P , yU , f�P))∼= P. If P is not discrete, then there is a pre-
sentation P = Q ∗ R (Proposition 44). If σ : i�Q f�Q is a track with `(σ)∼= Q and τ : i�R f�R

a track with `(τ)∼= R, then

`(j0
Q⊆P(σ) ∗ j1

R⊆P(τ))
∼= Q ∗ R = P

by Lemma 65. �

Example 68. We follow up on Example 61. For

P =

(
a //b

c //

OO 88

d

OOff
)

,

we have i�P = x1 and f�P = x8 (see also Figure 14), and the track ρ of the proposition is given by
ρ = (x1, z1, y3, z2, y8, z3, x8). If we add interfaces to P, for example

Q =

(
//a //b

c //

OO 88

d //

OOff
)

,

then i�Q = y1, f�Q = y10, and ρ = (y1, z1, y3, z2, y8, z3, y10).

6. The Geometric View
Precubical sets may be realized as directed topological spaces, and then directed paths through
these spaces give an intuitive model of computations. In this section we first recap the geometric
realization and then introduce labels of directed paths in HDAs. We will see that for every directed
path there exists a track with the same label, and vice versa, so that HDA languages defined using
tracks and using directed paths are the same.

6.1 Geometric Realization
Recall that the concatenation α ∗ β of two paths α, β : I = [0, 1]→X in a topological space X
is defined, if α(1) = β (0), as

α ∗ β (t) =

{
α(2t) for t ≤ 1

2 ,

β (2t − 1) for t ≥ 1
2 .

A directed topological space, or d-space [19] is a pair (X , ~PX) consisting of a topological
space X and a set ~PX ⊆X I of paths in X such that ~PX

• contains all constant paths;
• is closed under concatenation: if α, β ∈ ~PX and α(1) = β (0), then α ∗ β ∈ ~PX ;
• is closed under reparametrization and subpath: for any α ∈ ~PX and h : I→ I continuous and

(weakly) increasing, also α ◦ h∈ ~PX .

The elements of ~PX are called directed paths or d-paths.
Prominent examples of d-spaces are the directed interval ~I = [0, 1] with the natural ordering

on the real numbers and the directed n-cubes~In for n≥ 0. Similarly, there are directed Euclidean
spaces ~Rn for all n≥ 0. In each of these, the d-paths a precisely the paths which are (weakly)
increasing in each coordinate, that is, α : I→ ~Rn is a d-path iff t1 ≤ t2 implies α(t1)≤ α(t2) in the
usual ordering (x1, . . . , xn)≤ (y1, . . . , yn) iff xi ≤ yi for all i.

26 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

Morphisms f : (X , ~PX)→ (Y , ~PY) of d-spaces are d-maps; they are those continuous func-
tions that also preserve directedness, i.e., f ◦ α ∈ ~PY for all α ∈ ~PX . For any d-space (X , ~PX)

we have ~PX =X
~I as function spaces.

The so-defined category dTop of d-spaces is complete and cocomplete [19]. In particular, quo-
tients of d-spaces are well-defined. If X is a d-space and ∼ an equivalence on X , then d-paths in
the quotient space X /∼ are of the form

α = (π(β1) ∗ · · · ∗ π(βm)) ◦ h

where all βi are d-paths in X such that βi(1)∼ βi+1(0) and h :~I→~I is a surjective d-map.
Surjective d-maps h :~I→~I as above are called reparametrizations and will play a central role

below.

Definition 69. The geometric realization of a precubical set X is the d-space

|X |=
⊔
n≥0

Xn ×~In/∼,

where the equivalence relation ∼ is generated by

(δ ν
i x, (t1, . . . , tn−1))∼ (x, (t1, . . . , ti−1, ν , ti+1, . . . , tn−1)).

The geometric realization of a precubical map f : X→Y is the d-map | f | : |X | → |Y | given by
| f |([x, (t1, . . . , tn)]) = [f (x), (t1, . . . , tn)].

Above, [x, (t1, . . . , tn)] is used to denote equivalence classes of ∼. Geometric realization is a
functor from Set�

op
to dTop.

Example 70. The geometric realization of the n-cube �n is the directed cube ~In. The purpose
of the equivalence relation ∼ in the definition is to embed faces as subspaces, for example, the
elementary face δ 0

1 yn of the top cell of �n is the subset {(0, t2, . . . , tn) | 0≤ ti ≤ 1} ⊆ In.

The interior image]x[⊆ |X | of a cell x∈ Xn in a precubical set X is defined as

]x[= {[x, (t1, . . . , tn)] | 0 < ti < 1 for all i∈ [n]}.

The set]x[is open for x /∈ X0; for x∈ X0,]x[= {x}.

Definition 71. The carrier carr(p) of a point p∈ |X | is the unique cell x∈ X such that p∈]x[.

For later use we record the following lemma, whose proof easily follows from the definition;
see also [7]:

Lemma 72. For a precubical map f : X→Y and p∈ |X |, carr(| f |(p)) = f (carr(p)). �

We conclude with a description of d-paths on |X |. Recall the Yoneda inclusions ix :�n→ X
from Lemma 12. These induce d-maps |ix| :~In→ |X |.

Lemma 73. Every d-path α ∈ ~P|X | has a presentation

α =
(
(|ix1 | ◦ β1) ∗ (|ix2 | ◦ β2) ∗ · · · ∗ (|ixm | ◦ βm)

)
◦ h, (∗)

where x1, . . . , xm ∈ X, βi ∈ ~P(~Idim xi), [xi, βi(1)] = [xi+1, βi+1(0)]∈ |X |, and h :~I→~I is a
reparametrization. Moreover, we can assume that carr(βi(

1
2)) = ydim(xi).

Languages of Higher-Dimensional Automata 27

x1 x2 x3

x4

x1 x2 x3

x4

Figure 17. Left: d-path α with presentation ((|ix1 | ◦ β1) ∗ (|ix2 | ◦ β2) ∗ (|ix3 | ◦ β3) ∗ (|ix4 | ◦ β4)) ◦ h (Lemma 73);
right: counterexample in the proof of Lemma 73, with presentation ((|ix1 | ◦ β1) ∗ (|ix2 | ◦ β2)∗ (|i

δ 0
1 x3
| ◦ γ1)∗

(|i
δ 1

1 x3
| ◦ γ2) ∗ (|ix4 | ◦ β4)) ◦ h′′.

Figure 17 shows an example: on the left, a d-path and a presentation; on the right, the
counterexample used below in the proof.

Proof. Apart from the last statement, this follows immediately from the description of d-paths on
quotient d-spaces and the definition of the geometric realization.

Let S be the set of sequences (d0, d1, . . .) of natural numbers which are eventually vanishing,
that is, there exists n≥ 0 such that d j = 0 for all j > n. Equip S with the reverse lexicographic
order, i.e., (d j)< (d′j) if there exists n such that dn < d′n and d j = d′j for j > n. For every presen-
tation (∗) of α we associate the sequence (d j)∈S such that d j is the number of indices i such
that dim(xi) = j. Choose a presentation (∗) with a minimal associated sequence (d j)∈S. Denote
ni = dim xi.

Assume that for some i, βi(t) 6∈]yni [for all t. But then βi ∈ ~P|�ni
ni−1|, the set of d-paths in the

(ni − 1)-restriction of �ni , and hence it has a presentation

βi =
(
(|iy1 | ◦ γ1) ∗ · · · ∗ (|iyl | ◦ γl)

)
◦ h′.

Obviously dim(yk)< ni for all k. Collecting these two presentations, we have

α =
(
(|ix1 | ◦ β1) ∗ · · · ∗ (|ixi−1 | ◦ βi−1) ∗ (|ixi | ◦ ((|iy1 | ◦ γ1) ∗ · · ·

· · · ∗ (|iyl | ◦ γl)) ◦ h′) ∗ (|ixi+1 | ◦ βi+1) ∗ · · · ∗ (|ixm | ◦ βm)
)
◦ h

=
(
(|ix1 | ◦ β1) ∗ · · · ∗ (|ixi−1 | ◦ βi−1) ∗ (|iixi (y1)| ◦ γ1) ∗ · · ·

· · · ∗ (|iixi (yl)| ◦ γl) ∗ (|ixi+1 | ◦ βi+1) ∗ · · · ∗ (|ixm | ◦ βm)
)
◦ h′′

for some reparametrization h′′ obtained from h and h′. Let (d′j) be the associated sequence of
this presentation. Then d′j = d j for j > ni and d′ni

= dni − 1, since xi no longer appears in the
presentation and cells ixi(yk) have smaller dimensions: a contradiction to the minimality of (d j).

As a consequence, for every i there exists ti with carr(βi(ti)) = yni . By reparametrizing βi and
adjusting h′′ we can ensure that ti = 1

2 . �

6.2 Labels of d-paths
For the rest of this section, (X , λ) is a labeled precubical set (which is, by definition, event con-
sistent). We will associate to every d-path α in |X | its label `(α) as an interval ipomset. In order
to do so, we first need to find the (universal) events in X that are active during the execution α .

We say that an event e∈ EX is active at point p = [x, (t1, . . . , tn)]∈ |X |, for x∈ Xn, if there is
i∈ [n] such that evi(x) = e and 0 < ti < 1. Otherwise, e is inactive at p. It is easy to verify that this
does not depend on the choice of a presentation of p. Let UX

e ⊆ |X | be the set of points in which e
is active. The following is clear.

28 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

a b

a
a

b a

c

d

c

d

•
•p1

p2

p3

p4

p4
p5

Figure 18. Directed path which wraps around a two-dimensional loop (bottom left and top right edges identified).

Lemma 74. UX
e =

⋃
{]x[| e∈ ev(x)}= {p∈ |X | | e∈ ev(carr(p))}. �

Note that all events are inactive at vertices, exactly one event is active along an edge, and so
on: if dim(carr(p)) = n, then exactly the n events in ev(carr(p)) are active at p. We will write Ue
for UX

e when X is clear.
Now fix a d-path α ∈ ~P|X |. For every event e∈ EX , let

Jα
e = α

−1(Ue)⊆ [0, 1]

be the set of points in time when e is active. Jα
e is an open subset of [0, 1], since Ue is open.

Moreover, by Lemma 73 it has a finite number of connected components. Thus, there is a unique
presentation

Jα
e = Iα

e,1 ∪ · · · ∪ Iα
e,nα

e
(3)

as a union of connected components ordered increasingly. Each of these components is open in
[0, 1], though not necessarily in R: possibly Iα

e,1 = [0, t[or T α
e,nα

e
=]t, 1], or even Iα

e,1 = [0, 1] for
nα

e = 1. The collection of presentations (3) is called the interval arrangement of α .

Example 75. Figure 18 shows a d-path α through a labeled precubical set with a two-dimensional
loop: α starts inside the bottom-left square with events a and c, continues until the upper face
of the top-right square, which is identified with the lower face of the bottom-left square, and
finishes in the right c-labeled edge. Assuming that α is parametrized so that α(i

6) = pi for i∈ [5]
(the intersection points p1, . . . , p5 of α with the edges are indicated in the figure), its interval
arrangement is

Jα
a =

[
0, 1

6

[
∪
] 1

2 ,
5
6

]
, Jα

b =
] 1

6 ,
1
2

[
∪
] 5

6 , 1
[
, Jα

c =
[
0, 1

3

[
∪
] 2

3 , 1
]
, Jα

d =
] 1

3 ,
2
3

[
.

Now, for every x∈ X , define a relation 99Kx on ev(x) by e 99Kx e′ if e = evi(x) and e′ = ev j(x)
for i < j. From Lemma 26 we immediately get

Lemma 76. If e, e′ ∈ δ ν
i x for some i and ν , then e 99Kδ ν

i x e′ iff e 99Kx e′. �

As a consequence, on every connected component C⊆Ue ∩Ue′ there is a well-defined relation
99KC between e and e′ (although it may differ between different components). We write 99Kp =
99KC for any point p∈C.

Definition 77. The label of α is the ipomset `(α) = (P, <P, 99KP, λP, SP, TP) given as follows:

Languages of Higher-Dimensional Automata 29

H1

H2

H3

a1 b1

a2 b2

a3 b3
. . .Figure 19. Progression of intervals in the proof of Proposition 78.

• P = {(e, i) | e∈ EX , 1≤ i≤ nα
e };

• (e, i)<P (e′, i′) if Iα
e,i < Iα

e′,i′;
• 99KP is the transitive closure of the relations (e, i) 99Kα(t) (e′, i′) for t ∈ Iα

e,i ∩ Iα

e′,i′ (this does
not depend on the choice of t since Iα

e,i ∩ Iα

e′,i′ is connected);
• λP((e, i)) = λ ev(e), SP = {(e, i)∈ P | 0∈ Iα

e,i}, and TP = {(e, i)∈ P | 1∈ Iα
e,i}.

Hence all elements of SP are of the form (e, 1) and all elements of TP are of the form (e, nα
e).

Further, SP ∼= carr(α(0)) and TP ∼= carr(α(1)) as linear posets.

Proposition 78. The label `(α) is an interval ipomset.

Proof. By definition, <P is an interval order, SP contains only <P-minimal elements, and TP
contains only <P-maximal elements. Assume that (e, i) and (e′, i′) are <P-incomparable, then
Iα
e,i ∩ Iα

e′,i′ 6= /0. Let t ∈ Iα
e,i ∩ Iα

e′,i′ , then (e, i) 99Kα(t) (e′, i′) or (e′, i′) 99Kα(t) (e, i), hence (e, i) and
(e′, i′) are 99KP-comparable.

It remains to show that 99KP is irreflexive. So let

(e1, i1) 99Kα(t1) · · · 99Kα(tr−1) (er, ir) 99Kα(tr) (e1, i1)

be a shortest loop of elementary relations and denote Hk = Iα
ek,ik

=]ak, bk[(or [ak, bk[,]ak, bk], or
[ak, bk], in case ak = 0 or bk = 1; this will not matter for our argument below).

We have Hk ∩Hk+1 6= /0 for k ∈ [r− 1], and also Hr ∩H1 6= /0. On the other hand, Hk ∩Hl = /0
for k < l − 1 and (k, l) 6= (1, r); otherwise we can construct a shorter loop. Further, H1 ∩ · · · ∩
Hr = /0; otherwise, these elements would be linearly ordered by 99Kα(t) for some t ∈

⋂
Hk.

We show that for every k, Hk+1 is either to the right or to the left of Hk. Let k ∈ [r− 2] and
assume Hk+1 ⊆Hk. Then Hk ∩Hk+2 ⊇Hk+1 ∩Hk+2 6= /0, forcing k = 1 and r = k + 2 = 3; but now
also H1 ∩H2 ∩H3 6= /0, a contradiction. A similar contradiction is obtained when assuming Hk ⊆
Hk+1, and also for Hr ⊆Hr−1, Hr−1 ⊆Hr, H1 ⊆Hr, and Hr ⊆H1.

Now assume that H2 is to the right of H1 (the argument for the other case is similar), then
a1 < a2 < b1 < b2, see Figure 19 for an illustration.

We proceed by induction. Let k ∈ [r− 2] and assume Hk+1 is to the right of Hk, then ak <
ak+1 < bk < bk+1. We show that also Hk+2 is to the right of Hk+1. Assume otherwise, then ak+2 <
ak+1 < bk+2, hence ak+2 < bk and ak < bk+2, which implies Hk ∩Hk+2 6= /0, again forcing k = 1
and r = k + 2 = 3 and then a contradiction.

Hence if H2 is to the right of H1, then the sequence of intervals H1, . . . , Hr proceeds to the
right; but the same argument as above then also shows that H1 is to the right of Hr which is
impossible. Similarly, if H2 is to the left of H1, then the sequence proceeds to the left, and H1 then
has the impossible task of being to the left of Hr. Overwhelmed by contradictions, we are forced
to accept that 99KP is irreflexive. �

6.3 Properties of d-path labels
The main goal of this section is to prove that for every d-path α in |X | there is a track ρ in X with
the same labeling and vice versa. First, we show several properties of labels of d-paths.

30 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

Lemma 79. Let α ∈ ~P|X | and h :~I→~I a (surjective) reparametrization. Then `(α)∼= `(α ◦ h).

Proof. If Jα
e = Iα

e,1 ∪ · · · ∪ Iα
e,nα

e
, then

Jα◦h
e = h−1(Jα

e) = h−1(Iα
e,1)∪ · · · ∪ h−1(Iα

e,nα
e
)

is a presentation as a union of connected components, so that nα◦h
e = nα

e and Iα◦h
e,i = h−1(Iα

e,i). The
result follows from the definition of d-path label. �

Lemma 80. Let f : X→Y be a map of labeled precubical sets and e∈ EY . Then

| f |−1(UY
e) =

⊔
e′∈E−1

f (e)

UX
e′

as a disjoint union.

Proof. For p∈ |X | we have

p∈ | f |−1(UY
e)⇐⇒ | f |(p)∈UY

e

⇐⇒ e∈ ev(carr(| f |(p))) (74)
⇐⇒ e∈ ev(f (carr(p))) (72)
⇐⇒ e∈ E f (ev(carr(p))) (27)

⇐⇒∃e′ ∈ E−1
f (e) : e′ ∈ ev(carr(p))

⇐⇒∃e′ ∈ E−1
f (e) : p∈UX

e′ . (74)

If p∈UX
e′ ∩UX

e′′ for e′ 6= e′′ ∈ EX , then e′, e′′ ∈ ev(carr(p)). By Lemma 27, E f (e′), E f (e′′)∈
ev(carr(| f |(p))), so E f (e′) 6= E f (e′′). Consequently, e′ and e′′ cannot both belong to E−1

f (e). �

Lemma 81. For any map of labeled precubical sets f : X→Y and α ∈ ~P|X |, `(α)∼= `(| f | ◦ α).

Proof. By Lemma 80 there is a bijection between connected components of J| f |◦αe and⋃
e′∈E−1

f (e) Jα

e′ for every e∈ EY . These induce a bijection between the ipomsets `(| f | ◦ α) and `(α).

It is easy to check that this is an ipomset isomorphism. �

Proposition 82. Let α, β ∈ ~P|X | be such that α(1) = β (0). Then `(α ∗ β) = `(α) ∗ `(β).

Proof. Let p = α(1) = β (0) and l, r : [0, 1]→ [0, 1], l(t) = t
2 , r(t) = t+1

2 . Then, for each e∈ EX ,

Jα∗β
e = 1

2 Jα
e ∪ (1

2 (J
β
e + 1

2) = l(Jα
e)∪ r(Jβ

e).

If e 6∈ carr(p), then 1 6∈ Jα
e and 0 6∈ Jβ

e . Thus l(Jα
e) and r(Jβ

e) are disjoint, nα∗β
e = nα

e + nβ
e and

Iα∗β
e,i =

{
l(Iα

e,i) for 1≤ i≤ nα
e ,

r(Iβ

e,i−nα
e
) for nα

e < i≤ nα∗β
e .

If e∈ carr(p), then 1∈ Jα
e and 0∈ Jβ

e . Therefore l(Jα
e) and r(Jβ

e) are glued along 1
2 and

consequently nα∗β
e = nα

e + nβ
e − 1 and

Iα∗β
e,i =

l(Iα

e,i) for 1≤ i < nα
e ,

l(Iα
e,nα

e
)∪ r(Iβ

e,1) for i = nα
e ,

r(Iβ

e,i−nα
e
) for nα

e < i < nα∗β
e .

Languages of Higher-Dimensional Automata 31

x1

x2 x3 x4 x5 x6

x7

Figure 20. Track ρ = (x1, . . . , x7) together with d-path α through center points of ρ.

It follows that the maps iαe : `(α)3 (e, i) 7→ (e, i)∈ `(α ∗ β) and

iβe : `(β)3 (e, i) 7→

{
(e, i + nα

e) if e 6∈ carr(p)
(e, i + nα

e − 1) if e∈ carr(p)

glue to the bijection i : `(α) ∗ `(β)→ `(α ∗ β). It is elementary to check that i is an ipomset
isomorphism. �

We record the following easy fact for use in the next proof.

Lemma 83. Let S be a linear pomset and α ∈ ~P|�S| a path such that carr(α(t)) = yS for some
t ∈ [0, 1]. Let x = carr(α(0)) and y = carr(α(1)), then `(α) = `(x)S`(y). �

Proposition 84. For every d-path α ∈ ~P|X | there exists a track ρ : carr(α(0)) carr(α(1)) in X
such that `(α)∼= `(ρ).

Proof. By Lemma 73 there exists a presentation

α =
(
(|ix1 | ◦ β1) ∗ (|ix2 | ◦ β2) ∗ · · · ∗ (|ixm | ◦ βm)

)
◦ h

such that xi ∈ Xni , βi ∈ ~P|�`(xi)| and ixi :�`(xi)→ X is the unique HDA map sending y`(xi) into xi

(we replace �ni with �`(xi) to obtain compatible labelings and make ixi HDA maps). We have

`(α) = `(((|ix1 | ◦ β1) ∗ · · · ∗ (|ixm | ◦ βm)) ◦ h)
= `((|ix1 | ◦ β1) ∗ · · · ∗ (|ixm | ◦ βm)) (79)
= `(|ix1 | ◦ β1) ∗ · · · ∗ `(|ixm | ◦ βm) (82)
= `(β1) ∗ · · · ∗ `(βm)) (81)
= `(carr(β1(0)))`(x1)`(carr(β1(1))) ∗ · · · ∗ `(carr(βm(0)))`(xm)`(carr(βm(1))) (83)

= `(carr(β1(0)), x1, carr(β1(1))) ∗ · · · ∗ `(carr(βm(0)), xm, carr(βm(1))) (58)
= `(carr(α(0)), x1, carr(β1(1)), . . . , carr(βm(0)), xm, carr(α(1))),

hence we can set ρ = (carr(α(0)), x1, carr(β1(1)), . . . , carr(βm(0)), xm, carr(α(1))). �

For the converse result, we construct a d-path through the center points of a given track, see
also [11] and Figure 20 for an example.

Proposition 85. For every track ρ : x y in X there is a d-path α with carr(α(0)) = x,
carr(α(1)) = y, and `(α) = `(ρ).

Proof. If ρ = (x) is a unit track, we can let β ∈ ~P(~Idim x) be the constant d-path β (t) = (1
2 , . . . ,

1
2)

and α = |ix| ◦ β . Otherwise, write ρ = (x1, . . . , xm) with m≥ 2 and let ni = dim xi for i∈ [m]. We
construct α as a concatenation of d-paths α1 ∗ · · · ∗ αm−1. Let i∈ [m− 1].

32 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

• If xi /
∗ xi+1, then xi = δ

0,...,0
A xi+1 for a unique set A⊆ [ni+1]. Let βi ∈ ~P(~Ini+1) be the d-path

βi(t) = (t1, . . . , tni+1), t j =

{
1
2 t if j ∈ A,
1
2 if j /∈ A

and αi = |ixi+1 | ◦ βi. Then carr(αi(0)) = xi and carr(αi(t)) = xi+1 for 0 < t ≤ 1.
• If xi .

∗ xi+1, then xi+1 = δ
1,...,1
A xi for a unique set A⊆ [ni]. Let βi ∈ ~P(~Ini) be the d-path

βi(t) = (t1, . . . , tni), t j =

{
1
2 + 1

2 t if j ∈ A,
1
2 if j /∈ A

and αi = |ixi | ◦ βi. Then carr(αi(t)) = xi for 0≤ t < 1 and carr(αi(1)) = xi+1.

By construction, αi(1) = αi+1(0) for all i∈ [m− 1], so the concatenation α = α1 ∗ · · · ∗ αm−1
exists. Further, this is a representation as in Lemma 73, hence `(α) = `(ρ) by Proposition 84. �

7. Languages of Higher-Dimensional Automata
We define languages of HDAs and discuss some of their properties.

7.1 Languages
Using the work in Sections 5 and 6, we can define languages of HDAs in two different ways.
The first one is a straight application of van Glabbeek’s track-based approach from [42], and the
second one uses d-paths through geometric realizations in the spirit of [13].

Definition 86. A track ρ : x y in an HDA (X , I, F, λ) is accepting if x∈ I and y∈ F. The track
language of X is Lt(X) = {λ (ρ)∈ iiPoms | ρ accepting track in X}.

A d-path α ∈ ~P|X | is accepting if carr(α(0))∈ I and carr(α(1))∈ F. The path language of X
is Lp(X) = {λ (α)∈ iiPoms | α accepting d-path in |X |}.

Theorem 87. For every HDA X, Lt(X) = Lp(X).

Proof. Immediate from Propositions 84 and 85. �

From now on we write L(X) = Lt(X) = Lp(X) and call this set simply the language of X . It
follows immediately from Proposition 56 that languages of HDAs are sets of interval ipomsets:

Proposition 88. For any HDA X, L(X)⊆ iiPoms. �

The following property allows us to reason about languages using maps from objects �P.

Proposition 89. For any HDA X and any interval ipomset P, P∈ L(X) iff there is an HDA map
�P→ X.

Proof. For the forward direction, assume P∈ L(X), then there exists a track ρ : x y with x∈ IX ,
y∈ FX , and λ (ρ) = P. The conclusion follows from Lemma 66.

For the reverse direction, let g :�P→ X . Then, by Proposition 67, there exists a track ρ :
i�P f�P such that λ (ρ) = P, g(i�P)∈ IX , and g(f�P)∈ FX . Now Proposition 56 implies that
λ (f (ρ)) = P. �

Languages of Higher-Dimensional Automata 33

Remark 90. Thanks to Proposition 89, the language of an HDA X may alternatively be defined
as the set of interval ipomsets P that admit an HDA map �P→ X . This definition remains valid
even if we do not assume event consistency, hence it may be used to introduce languages also of
HDA which are not event consistent. We will expand on this in future work.

We finish this section with some properties of languages of HDAs generated by interval
ipomsets. The following is immediate from Proposition 67.

Lemma 91. P∈ L(�P) for every interval ipomset P. �

Proposition 92. For all interval ipomsets P and Q, Q∈ L(�P) iff Qv P.

Proof. The backwards direction is immediate from Lemma 63 and Proposition 89: a subsumption
map f : Q→ P gives rise to � f :�Q→�P, thus Q∈ L(�P). For the forward direction, let ρ :
i�P f�P be an accepting track in �P. We show that λ (ρ)v P by induction on the length of ρ .

If ρ = (x), then i�P = x = f�P , which implies that P = PPP = `(ρ). Otherwise, there is a
presentation ρ = (x, y) ∗ τ . Note that `(x)∼= SP. There are two cases to consider:

• x /∗ y. Then y(p) = for p∈ ev(y) and y(p) = 0 otherwise. Let Q be an interval ipomset
with the same elements as P, <Q =<P, 99KQ = 99KP, λQ = λP, TQ = TP; the only difference
is that SQ = ev(y). Then �P and �Q are naturally isomorphic as labeled precubical sets and
τ can be regarded as an accepting track in �Q. Moreover, P = `(x)`(y)`(y) ∗Q. By induction,
`(τ)vQ; using Lemma 48, `(ρ) = `(x, y) ∗ `(τ)v P.

• x .∗ y. Then

y(p) =

0 for p∈ P \ ev(x),

for p∈ ev(y),
1 for p∈ ev(x) \ ev(y).

Let Q be the restriction of P to P \ (ev(x) \ ev(y)), then the precubical map j1
Q⊆P :�Q→

�P is an injection onto {x | x(p) = 1 for p∈ ev(x) \ ev(y)}. Furthermore, τ is a track from
j1
Q⊆P(i�Q) to j1

Q⊆P(f�Q) lying in j1
Q⊆P(�

Q). Thus, τ lifts uniquely to an accepting track τ ′

on �Q. By induction hypothesis, `(τ)vQ, and then with Lemma 48, `(ρ) = `(x, y) ∗ `(τ)v
`(x)`(x)`(y) ∗Q = P. �

Remark 93. Example 62 shows that the above proposition fails if P is not an interval ipomset:
for P = 2+2, P /∈ L(�P). In general, Proposition 88 implies that if P /∈ iiPoms, then P /∈ L(�P).
We will get back to this issue in Example 107 below.

7.2 Languages are Subsumption-Closed
Because of Proposition 88 we henceforth restrict ourselves to interval ipomsets.

Definition 94. The weak closure of a set S ⊆ iiPoms is S ↓= {Q∈ iiPoms | ∃P∈S : Qv P}.

That is, S ↓ is the smallest subsumption-closed superset of S . The set S is called weak if
S ↓=S .

34 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

Theorem 95. For every HDA X, L(X)⊆ iiPoms is weak.

Proof. This follows from subsumption closedness of L(�P), Proposition 92: Choose interval
ipomsets Qv P with P∈ L(X). Proposition 89 gives a map f :�P→ X and Proposition 92 gives
a map g :�Q→�P. The composition f ◦ g with Proposition 89 again gives the conclusion. �

As a partial converse, we will see in Theorem 101 below that any finite subsumption-closed set
of interval ipomsets can be generated by an HDA.

Lemma 96. If f : X→Y is an HDA map, then L(X)⊆ L(Y).

Proof. Let P∈ L(X), then Proposition 89 gives a map �P→ X . Composition with f yields a map
�P→Y , hence P∈ L(Y). �

For HDAs generated by interval pomsets, Proposition 92 implies the following.

Lemma 97. L(�P) = {P}↓. �

7.3 Languages are Closed under Union
We now show that languages of HDAs are closed under union (that is, they form filters). To
this end, we introduce coproducts of HDAs. First, the coproduct of precubical sets X and Y is
Z = X tY given by

Zn = Xn tYn, δ
ν
i (z) =

{
(δX)

ν
i (z) if z∈ X ,

(δY)
ν
i (z) if z∈Y.

Definition 98. The coproduct of HDAs (X , IX , FX , λX) and (Y, IY , FY , λY) is the HDA X tY =
(X tY, IX ∪ IY , FX ∪ FY , λ) with λ (z) = λX (z) if z∈ X and λ (z) = λY (z) if z∈Y .

It can easily be shown that these are in fact the categorical coproducts in the categories of
precubical sets and HDAs, respectively. Next we note that subsumption closure of sets of interval
ipomsets distributes over union [18]:

Lemma 99. For any subsets S1,S2 ⊆ iiPoms, (S1 ∪S2)↓=S1↓ ∪S2↓. �

Theorem 100. For HDAs X and Y , L(X tY) = L(X)∪ L(Y).

Proof. By construction of X tY , any accepting track in X tY is an accepting track in X or in Y ,
and vice versa. The result follows with Lemma 99. �

Theorem 101. Let S ⊆ iiPoms be weak and finite. There is an HDA X with L(X) =S .

Proof. Write S = {P1, . . . , Pn}↓ and let X =�P1 t · · · t�Pn . By Lemma 97, L(�Pi) = {Pi}↓
for all i = 1, . . . , n, so using Theorem 100, L(X) = {P1}↓ ∪ · · · ∪ {Pn}↓= (P1 ∪ · · · Pn)↓ by
Lemma 99. �

Languages of Higher-Dimensional Automata 35

a b

c d
c d

a

b

Figure 21. HDAs X =�(a<b) and Y =�(c<d) (left) and their tensor product X ⊗Y .

7.4 Languages are Closed under Parallel Composition
We show below that parallel compositions of HDA languages are languages of tensor products of
HDAs. First, the tensor product of precubical sets X and Y is Z = X ⊗Y given by

Zn =
⊔

k+l=n

Xk ×Yl , δ
ν
i ((x, y)) =

{
(δX)

ν
i (x) if i≤ dim x,

(δY)
ν
i−dim x(y) if i > dim x.

We will below use the important fact that geometric realizations of tensor products are products
of geometric realizations [19]:

Lemma 102. For precubical sets X and Y , |X ⊗Y |= |X | × |Y |. �

Definition 103. The tensor product of HDAs (X , IX , FX , λX) and (Y, IY , FY , λY) is X ⊗Y = (X ⊗
Y, I, F, λ) with I = {(x, y) | x∈ IX , y∈ IY}, F = {(x, y) | x∈ FX , y∈ FY}, and λ ((x, y)) = λX (x) ∗
λY (y).

Above, λ ((x, y)) = λX (x) ∗ λY (y) denotes the concatenation of λX (x) and λY (y) as sequences
in !Σ. More formally, one can easily show that !Σ⊗ !Σ = !Σ, so that λ is the tensor product of the
maps λX and λY .

Remark 104. If X and Y are one-dimensional HDAs, i.e., X2 =Y2 = /0, then Z = X ⊗Y is two-
dimensional, with Z2 = X1 ×Y1 and Z1 = X1 ×Y0 t X0 ×Y1. The labels of 2-cells (x, y)∈ Z2 are
λ ((x, y)) = (λX (x), λY (y)), and the labels of 1-cells (x, y)∈ Z1 are λ (x, y) = λX (x) for x∈ X1 and
λ (x, y) = λY (y) for y∈Y1. Hence X ⊗Y can be seen as the synchronized product [50, Sec. 2.2.3]
of the finite automata X and Y .

Lemma 105. For ipomsets P and Q, �P‖Q ∼=�P ⊗�Q.

Proof. Let X =�P‖Q. As the underlying set of P ‖Q is the disjoint union PtQ and <P‖Q =
<P t<Q, any poset map x : (P ‖Q, <P‖Q)→{0, , 1} has a unique decomposition x = xP t xQ
into poset maps xP : (P, <P)→{0, , 1} and xQ : (Q, <Q)→{0, , 1}; and any two such maps
give rise to a poset map x. Hence Xn ∼=

⊔
k+l=n �

P
k ×�

Q
l as sets. It is easy to see that the face maps

agree on both sides, and the same holds for the labeling. For the initial cell we have i�P‖Q(p) =
iff p∈ SP‖Q (and 0 otherwise), iff p∈ SP or p∈ SQ, hence i�P‖Q maps to i�P t i�Q under the
isomorphism; similarly for the accepting cell. �

Definition 106. The parallel composition of subsumption-closed subsets S1,S2 ⊆ iiPoms is
S1 ‖S2 = {P‖Q | P∈S1, Q∈S2}↓ ∩ iiPoms.

We need to take the intersection with iiPoms above because parallel compositions of interval
ipomsets may not be interval.

36 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

Example 107. Let P and Q be the ipomsets P = (a−→ b), Q = (c−→ d). Figure 21 shows the
one-dimensional HDAs X =�P and Y =�Q as well as their tensor product X ⊗Y =�P‖Q (cf.
Example 62 and Figure 14). Now L(X) = {P}↓ and L(Y) = {Q}↓, but as P‖Q is not an interval
ipomset, L(X ⊗Y) 6= {P ‖Q}↓. Instead,

L(X ⊗Y) = {P ‖Q}↓ ∩ iiPoms=
{(

a // b
c //

77

d

)
,

(
a //

''
b

c // d

)}y.
Theorem 108. For HDAs X and Y , L(X ⊗Y) = L(X) ‖ L(Y).

Proof. To show L(X) ‖ L(Y)⊆ L(X ⊗Y), let R∈ L(X) ‖ L(Y), then there are P∈ L(X) and Q∈
L(Y) such that Rv P ‖Q. Let f :�P→ X and g :�Q→Y be the maps given by Proposition 89.
There is a composition

�R (63)−→�P‖Q (105)−→�P ⊗�Q f⊗g−−→ X ⊗Y,

thus R∈ L(X ⊗Y).
For showing L(X ⊗Y)⊆ L(X) ‖ L(Y) we have to do more work. Let R∈ L(X ⊗Y), then there

is a d-path γ ∈ ~P|X ⊗Y | with λ (γ) = R, carr(γ(0))∈ IX⊗Y , and carr(γ(1))∈ FX⊗Y . Now |X ⊗
Y |= |X | × |Y |, so let α and β be the projections of γ to |X | and |Y |, respectively. Let P = λ (α)
and Q = λ (β). We have carr(α(0))∈ IX , carr(α(1))∈ FX , carr(β (0))∈ IY , and carr(β (1))∈ FY ,
so that P∈ L(X) and Q∈ L(Y).

We show that Rv P ‖Q. We have EX⊗Y = EX t EY , so for every e∈ EX⊗Y , Jα
e = /0 or Jβ

e = /0.
Further, Jγ

e = Jα
e ∪ Jβ

e for every e∈ EX⊗Y , so that the presentation Jγ
e = Iγ

e,1 ∪ · · · ∪ Iγ
e,nγ

e
is the same

as the one for Jα
e or Jβ

e . Hence the underlying sets R = PtQ, and x <P y or x <Q y imply x <R y.
Regarding the event orders, we work directly with the elementary relations 99Kγ(t). Assume

x 99Kγ(t) y, then t ∈ Iγ
x ∩ Iγ

y . Now, writing J α = {Jα
e | e∈ EX} and J β = {Jβ

e | e∈ EY},

• if Iγ
x , Iγ

y ∈J α , then x 99Kα(t) y;
• if Iγ

x , Iγ
y ∈J β , then x 99Kβ (t) y;

• if Iγ
x ∈J α and Iγ

y ∈J β , then x∈ P and y∈Q, hence x 99KP‖Q y; and
• the case Iγ

x ∈J β and Iγ
y ∈J α cannot occur: this would imply x∈Q and y∈ P and hence

y 99Kγ(t) x instead of x 99Kγ(t) y.

We have shown that x 99Kγ(t) y implies x 99KP‖Q y, so this also holds for the transitive closure 99KR.
�

7.5 Language Equivalence is Implied by Bisimulation
As a final sanity check of our notion of language, we show that bisimilarity of HDAs implies their
language equivalence. Fahrenberg [10] has introduced a notion of hd-bisimilarity for HDAs which
in our setting can be stated as follows. An hd-bisimulation between HDAs X and Y is a graded set
R =

⋃
Rn with Rn ⊆ Xn ×Yn such that

(1) R is closed under face maps: for all (x, y)∈ Rn, i∈ [n] and ν ∈ {0, 1}, (δ ν
i x, δ ν

i y)∈ Rn−1;
(2) R respects labels: for all (x, y)∈ R, λX (x) = λY (y);
(3) the restrictions R∩ IX × IY and R∩ FX × FY are bijections;
(4) for all (x, y)∈ R and any x′ ∈ X and k ∈ [dim x′] such that x = δ 0

k x′, there exists y′ ∈Y such
that y = δ 0

k y′ and (x′, y′)∈ R;

Languages of Higher-Dimensional Automata 37

(5) for all (x, y)∈ R and any y′ ∈Y and k ∈ [dim y′] such that y = δ 0
k y′, there exists x′ ∈ X such

that x = δ 0
k x′ and (x′, y′)∈ R.

Hence initial and accepting cells are related bijectively (3), and (4) whenever a cell in X can
be extended, then a related extension is available in Y , and vice versa (5). Finally, X and Y are
hd-bisimilar if there exists an hd-bisimulation R⊆ X ×Y : this is an equivalence relation.

As in [10], we can express hd-bisimilarity using open maps [25]. We say that an HDA map
f : X→Y is open if f is bijective on initial and accepting cells and the following zig-zag property
holds for every x∈ X : if y′ ∈Y and k ∈ [dim y′] are such that f (x) = δ 0

k y′, then there exists x′ ∈ X
with x = δ 0

k x′ and y′ = f (x′). The following is shown in [10].

Lemma 109. HDAs X and Y are hd-bisimilar iff there exists an HDA Z and a span of open maps
X← Z→Y . �

Theorem 110. If HDAs X and Y are hd-bisimilar, then L(X) = L(Y).

Proof. It suffices to assume an open HDA map f : X→Y ; the inclusion L(X)⊆ L(Y) is then clear
by Lemma 96. For the reverse inclusion, let σ = (y1, . . . , ym) be an accepting track in Y . By
bijectivity of f on initial cells there is x1 ∈ IX such that f (x1) = y1, and then inductive application
of the zig-zag property yields a track ρ = (x1, . . . , xm) in X with f (xi) = yi for all i and λX (ρ) =
λY (σ), with xm ∈ FX because f is bijective on accepting cells. �

In [42], van Glabbeek introduces a notion of ST-bisimilarity for HDAs which in our notation is
given as follows. An ST-bisimulation between HDAs X and Y is a relation R between tracks in X
and Y such that

(1) R is a bijection between initial unit tracks {(x) | x∈ IX} and {(y) | y∈ IY};
(2) R respects accepting cells: for all (ρ, σ)∈ R such that ρ : x x′ and σ : y y′, x′ ∈ FX iff

y′ ∈ FY ;
(3) R respects labels: for all (ρ, σ)∈ R, `X (ρ) = `Y (σ);
(4) for all (ρ, σ)∈ R and track ρ ′ in X such that ρ and ρ ′ may be concatenated, there exists a

track σ ′ in Y such that (ρ ∗ ρ ′, σ ∗ σ ′)∈ R;
(5) for all (ρ, σ)∈ R and track σ ′ in Y such that σ and σ ′ may be concatenated, there exists a

track ρ ′ in X such that (ρ ∗ ρ ′, σ ∗ σ ′)∈ R.

That is, whenever a track in X can be extended, then a related extension is available in Y and vice
versa. Finally, X and Y are ST-bisimilar if there exists an ST-bisimulation R between them; this is
an equivalence relation.

Theorem 111. If HDAs X and Y are ST-bisimilar, then L(X) = L(Y).

Proof. By symmetry it suffices to show the inclusion L(X)⊆ L(Y). Let P∈ L(X), then there is a
track ρ : x x′ in X with x∈ IX , x′ ∈ FX and `(ρ) = P. By (1), there is y∈ IY such that the unit
tracks ((x), (y))∈ R. Now ρ = (x) ∗ ρ , so using (4) there exists a track σ : y y′ in Y such that
(ρ, σ)∈ R, but then by (2), y′ ∈ FY . Hence σ is an accepting track in Y , and by (3), `(σ) = `(ρ) =
P, so that P∈ L(Y). �

In [42], other notions of history-preserving and hereditary history-preserving bisimilarity for
HDAs are introduced; both imply ST-bisimilarity and, thus, language equivalence.

38 U. Fahrenberg, C. Johansen, G. Struth and K. Ziemiański

References
[1] Steve Awodey. A cubical model of homotopy type theory. Ann. Pure Appl. Log., 169(12):1270–1294, 2018.
[2] Marek A. Bednarczyk. Categories of Asynchronous Systems. PhD thesis, University of Sussex, UK, 1987.
[3] Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory in cubical sets. In Ralph Matthes and Aleksy

Schubert, editors, TYPES, volume 26 of LIPIcs, pages 107–128. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2013.

[4] Marc Bezem, Thierry Coquand, and Simon Huber. The univalence axiom in cubical sets. J. Autom. Reason., 63(2):159–171,
2019.

[5] Zoltán Ésik and Zoltán L. Németh. Higher dimensional automata. J. Autom. Lang. Comb., 9(1):3–29, 2004.
[6] Uli Fahrenberg. Bisimulation for higher-dimensional automata. A geometric interpretation. Research report R-2005-01,

Department of Mathematical Sciences, Aalborg University, 2005. Extended version of [10]. https://www.math.aau.
dk/digitalAssets/120/120681_r-2005-01.pdf.

[7] Uli Fahrenberg. Higher-Dimensional Automata from a Topological Viewpoint. PhD thesis, Aalborg University, Denmark,
2005.

[8] Uli Fahrenberg, Christian Johansen, Georg Struth, and Ratan Bahadur Thapa. Generating posets beyond N. In Uli
Fahrenberg, Peter Jipsen, and Michael Winter, editors, RAMiCS, volume 12062 of Lect. Notes Comput. Sci., pages
82–99. Springer, 2020. https://arxiv.org/abs/1910.06162.

[9] Uli Fahrenberg, Christian Johansen, Christopher Trotter, and Krzysztof Ziemianski. Sculptures in concurrency. Log.
Methods Comput. Sci., 17(2), 2021. https://lmcs.episciences.org/7363.

[10] Ulrich Fahrenberg. A category of higher-dimensional automata. In Vladimiro Sassone, editor, FoSSaCS, volume 3441 of
Lect. Notes Comput. Sci., pages 187–201. Springer, 2005. See also [6].

[11] Lisbeth Fajstrup. Dipaths and dihomotopies in a cubical complex. Adv. Appl. Math., 35(2):188–206, 2005.
[12] Lisbeth Fajstrup, Eric Goubault, Emmanuel Haucourt, Samuel Mimram, and Martin Raussen. Directed Algebraic Topology

and Concurrency. Springer, 2016.
[13] Lisbeth Fajstrup, Martin Raussen, and Éric Goubault. Algebraic topology and concurrency. Theor. Comput. Sci.,

357(1-3):241–278, 2006.
[14] Jean Fanchon and Rémi Morin. Regular sets of pomsets with autoconcurrency. In Luboš Brim, Petr Jančar, Mojmı́r

Křetı́nský, and Antonı́n Kučera, editors, CONCUR, volume 2421 of Lect. Notes Comput. Sci., pages 402–417. Springer,
2002.

[15] Peter C. Fishburn. Intransitive indifference with unequal indifference intervals. J. Math. Psych., 7(1):144–149, 1970.
[16] Peter C. Fishburn. Interval Orders and Interval Graphs: A Study of Partially Ordered Sets. Wiley, 1985.
[17] Jay L. Gischer. The equational theory of pomsets. Theor. Comput. Sci., 61:199–224, 1988.
[18] J. Grabowski. On partial languages. Fund. Inf., 4(2):427, 1981.
[19] Marco Grandis. Directed algebraic topology: models of non-reversible worlds. New mathematical monographs. Cambridge

Univ. Press, 2009.
[20] Marco Grandis and Luca Mauri. Cubical sets and their site. Theory Appl. Categ., 11(8):185–211, 2003.
[21] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent objects. ACM Trans.

Program. Lang. Syst., 12(3):463–492, 1990.
[22] Ryszard Janicki and Maciej Koutny. Structure of concurrency. Theor. Comput. Sci., 112(1):5–52, 1993.
[23] Ryszard Janicki and Xiang Yin. Modeling concurrency with interval traces. Inf. Comput., 253:78–108, 2017.
[24] Christian Johansen. ST-structures. J. Log. Algebr. Meth. Program., 85(6):1201–1233, 2015. https://arxiv.org/abs/

1406.0641.
[25] André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps. Inf. Comput., 127(2):164–185, 1996.
[26] Leslie Lamport. The mutual exclusion problem: Part I - A theory of interprocess communication. J. ACM, 33(2):313–326,

1986.
[27] Leslie Lamport. On interprocess communication. Part I: Basic formalism. Distributed Computing, 1(2):77–85, 1986.
[28] Saunders Mac Lane. Categories for the Working Mathematician. Springer, second edition, 1998.
[29] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
[30] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event structures and domains, part I. Theor. Comput.

Sci., 13:85–108, 1981.
[31] nLab authors. Simplex category. http://ncatlab.org/nlab/show/simplex%20category, January 2021. Revision

70.
[32] Carl A. Petri. Kommunikation mit Automaten. Number 2 in Schriften des IIM. Institut für Instrumentelle Mathematik,

Bonn, 1962.
[33] Vaughan R. Pratt. Modeling concurrency with partial orders. J. Parallel Programming, 15(1):33–71, Feb 1986.
[34] Vaughan R. Pratt. Modeling concurrency with geometry. In POPL, pages 311–322, New York City, 1991. ACM Press.
[35] Vaughan R. Pratt. Chu spaces and their interpretation as concurrent objects. In Jan van Leeuwen, editor, Computer Science

Today: Recent Trends and Developments, volume 1000 of Lect. Notes Comput. Sci., pages 392–405. Springer, 1995.
[36] Vaughan R. Pratt. Higher dimensional automata revisited. Math. Struct. Comput. Sci., 10(4):525–548, 2000.

https://www.math.aau.dk/digitalAssets/120/120681_r-2005-01.pdf
https://www.math.aau.dk/digitalAssets/120/120681_r-2005-01.pdf
https://arxiv.org/abs/1910.06162
https://lmcs.episciences.org/7363
https://arxiv.org/abs/1406.0641
https://arxiv.org/abs/1406.0641
http://ncatlab.org/nlab/show/simplex%20category
http://ncatlab.org/nlab/revision/simplex%20category/70
http://ncatlab.org/nlab/revision/simplex%20category/70

Languages of Higher-Dimensional Automata 39

[37] Vaughan R. Pratt. Transition and cancellation in concurrency and branching time. Math. Struct. Comput. Sci., 13(4):485–
529, 2003.

[38] Jean-Pierre Serre. Homologie singulière des espaces fibrés. PhD thesis, Ecole Normale Supérieure, Paris, France, 1951.
[39] Mike W. Shields. Concurrent machines. Comput. J., 28(5):449–465, 1985.
[40] Rob J. van Glabbeek. Bisimulations for higher dimensional automata. Email message, 1991. http://theory.

stanford.edu/~rvg/hda.
[41] Rob J. van Glabbeek. History preserving process graphs. Unpublished draft, 1996. http://kilby.stanford.edu/

~rvg/pub/history.draft.dvi.
[42] Rob J. van Glabbeek. On the expressiveness of higher dimensional automata. Theor. Comput. Sci., 356(3):265–290, 2006.

See also [43].
[43] Rob J. van Glabbeek. Erratum to “On the expressiveness of higher dimensional automata”. Theor. Comput. Sci., 368(1-

2):168–194, 2006.
[44] Rob J. van Glabbeek and Ursula Goltz. Refinement of actions and equivalence notions for concurrent systems. Acta Inf.,

37(4/5):229–327, 2001.
[45] Rob J. van Glabbeek and Gordon D. Plotkin. Configuration structures. In LICS, pages 199–209. IEEE Computer Society,

1995.
[46] Rob J. van Glabbeek and Gordon D. Plotkin. Configuration structures, event structures and Petri nets. Theor. Comput. Sci.,

410(41):4111–4159, 2009.
[47] Walter Vogler. Failures semantics based on interval semiwords is a congruence for refinement. Distributed Computing,

4:139–162, 1991.
[48] Walter Vogler. Modular Construction and Partial Order Semantics of Petri Nets, volume 625 of Lecture Notes in Computer

Science. Springer, 1992.
[49] Józef Winkowski. An algebraic characterization of the behaviour of non-sequential systems. Inf. Process. Lett., 6(4):105–

109, 1977.
[50] Glynn Winskel and Mogens Nielsen. Models for concurrency. In Samson Abramsky, Dov M. Gabbay, and Thomas S.E.

Maibaum, editors, Handbook of Logic in Computer Science, volume 4. Clarendon Press, Oxford, 1995.
[51] Krzysztof Ziemiański. Spaces of directed paths on pre-cubical sets. Appl. Algebra Eng. Commun. Comput., 28(6):497–525,

2017. https://arxiv.org/abs/1605.08305.
[52] Krzysztof Ziemiański. Spaces of directed paths on pre-cubical sets II. Appl. Comput. Topology, 4:45–78, 2020. https:

//arxiv.org/abs/1901.05206.

http://theory.stanford.edu/~rvg/hda
http://theory.stanford.edu/~rvg/hda
http://kilby.stanford.edu/~rvg/pub/history.draft.dvi
http://kilby.stanford.edu/~rvg/pub/history.draft.dvi
https://arxiv.org/abs/1605.08305
https://arxiv.org/abs/1901.05206
https://arxiv.org/abs/1901.05206

	1 Introduction
	2 Overview
	3 Precubical Sets and Higher Dimensional Automata
	4 Pomsets with Interfaces
	5 Tracks and their labels
	6 The Geometric View
	7 Languages of Higher-Dimensional Automata

