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DISPLACEMENT SMOOTHNESS OF ENTROPIC OPTIMAL

TRANSPORT

Guillaume Carlier1,* , Lénäıc Chizat2 and Maxime Laborde3

Abstract. The function that maps a family of probability measures to the solution of the dual
entropic optimal transport problem is known as the Schrödinger map. We prove that when the cost
function is Ck+1 with k ∈ N∗ then this map is Lipschitz continuous from the L2-Wasserstein space
to the space of Ck functions. Our result holds on compact domains and covers the multi-marginal
case. We also include regularity results under negative Sobolev metrics weaker than Wasserstein under
stronger smoothness assumptions on the cost. As applications, we prove displacement smoothness of the
entropic optimal transport cost and the well-posedness of certain Wasserstein gradient flows involving
this functional, including the Sinkhorn divergence and a multi-species system.
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1. Introduction

The main goal of this paper is to study the regularity of the multi-marginal Entropic Optimal Transport
(EOT) problem under “displacement” of the marginals, and to apply these results to prove the well-posedness
of certain evolution equations and optimization methods involving EOT. For clarity of presentation, let us first
present the context and our results in the classical two marginals case. Let X1,X2 ⊂ Rd be two compact convex
sets, µ = (µ1, µ2) ∈ P(X1) × P(X2) two probability measures and c ∈ Ck(X1 × X2) a k-times continuously
differentiable cost function. We consider the entropic optimal transport problem defined as

E(µ1, µ2) := min
γ∈Π(µ1,µ2)

∫
c(x1, x2)dγ(x1, x2) +H(γ|µ1 ⊗ µ2) (1.1)

where Π(µ1, µ2) is the set of transport plans between µ1 and µ2, that is probability measures on X1 ×X2 with
marginals µ1 and µ2, and H is the relative entropy defined as H(µ|ν) =

∫
log(dµ/dν)dµ if µ is absolutely

continuous w.r.t. ν and +∞ otherwise.
This problem can be seen as a regularization of the optimal transport problem [1, 2] that benefits from

improved computational [3, 4] and statistical properties [5–7], at the expense of an approximation error that can
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be quantified [8–13]. It is also tightly related to the Schrödinger bridge problem [14, 15], which is a modification
of equation (1.1) obtained by replacing µ1 ⊗ µ2 by the product Lebesgue measure in the relative entropy term.

1.1. Schrödinger map

Equation (1.1) defines a convex optimization problem which admits a dual concave maximization formulation

E(µ1, µ2) = max
ϕ1∈C0(X1)

ϕ2∈C0(X2)

∫
X1

ϕ1dµ1 +

∫
X2

ϕ2dµ2 + 1−
∫
X1×X2

eϕ1(x1)+ϕ2(x2)−c(x1,x2)dµ1(x1)dµ2(x2).

This dual problem admits solutions which satisfy, for µ1 ⊗ µ2 almost every (x1, x2), the following first order
optimality conditions, known as the Schrödinger system:

ϕ1(x1) = − log

∫
X2

eϕ2(x2)−c(x1,x2)dµ2(x2)

ϕ2(x2) = − log

∫
X1

eϕ1(x1)−c(x1,x2)dµ1(x1)

.

In this paper, our main object of interest is the particular solution (ϕ1, ϕ2) which satisfies the Schrödinger
system for every (x1, x2) ∈ X1 × X2. It is not difficult to see that this solution inherits the Ck regularity of c
and is unique in the quotient space C̃k := Ck(X1)× Ck(X2)/ ∼ where the equivalence relation

(ϕ1, ϕ2) ∼ (ψ1, ψ2) ⇔ ∃κ ∈ R such that ϕ1 = ψ1 + κ and ϕ2 = ψ2 − κ

captures the trivial invariance of the dual problem. This particular choice of solution (ϕ1, ϕ2) is arguably the
most natural to consider thanks to its stability. It is also useful in many contexts because it represents the
differential of the functional E [16]. We refer to this special solution (ϕ1, ϕ2) as the Schrödinger potentials and
we define the Schrödinger map S : P(X1)× P(X2) → C̃k as

S : µ = (µ1, µ2) 7→ ϕ = (ϕ1, ϕ2). (1.2)

1.2. Main result in the two-marginals case

Our main contribution is a proof that the Schrödinger map S is Lipschitz continuous with respect to the
following distances:

� We endow P(Xi) with the Wasserstein metric defined for two probability measures µ, ν ∈ P(Xi) by

W2(µ, ν) :=

(
min

γ∈Π(µ,ν)

∫
Xi×Xi

∥y − x∥2dγ(x, y)
) 1

2

.

and then we endow P(X1)× P(X2) with the product Wasserstein W2 metric given for µ = (µ1, µ2), ν =
(ν1, ν2) ∈ P(X1)× P(X2)

W2(µ,ν) :=
(
W2(µ1, ν1)

2 +W2(µ2, ν2)
2
) 1

2 .

� We endow C̃k with the product, quotient supremum Ck norm defined from the usual Ck norm ∥ · ∥Ck as

∥(ϕ1, ϕ2)∥C̃k := inf
κ∈R

∥ϕ1 − κ∥Ck + ∥ϕ2 + κ∥Ck .
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Our Lipschitz stability result for the Schrödinger map – which is a particular case of the more general results
Theorem 2.3 and Corollary 2.4 that cover the multi-marginal case and finer regularity results – reads as follows
(where by convention N∗ := N \ {0}).

Theorem 1.1. If c ∈ Ck+1(X1 × X2) for k ∈ N∗, then there exists C > 0 that only depends on ∥c∥Ck+1 such
that for all µ,µ′ ∈ P(X1)× P(X2),

∥S(µ)− S(µ′)∥C̃k ≤ CW2(µ,µ
′).

This translates into a useful regularity result for the functional E (see Thm. 4.1).

Corollary 1.2. If c ∈ C2(X1 × X2), then given (µt
1)t∈[0,1] and (µt

2)t∈[0,1] two Wasserstein geodesics, the map
h : t 7→ E(µt

1, µ
t
2) is differentiable and its derivative satisfies

|h′(t)− h′(s)| ≤ C|t− s|W2(µ
0,µ1)

where µt = (µt
1, µ

t
2) and C > 0 only depends on ∥c∥C2 . In particular, E and −E are displacement semi-convex.

As an application of these results, we will prove the well-posedness of Wasserstein gradient flows for several
energies involving the functional E in Section 4, and also establish exponential convergence to equilibrium in
some cases. Since the Wasserstein gradient of E is ∇S1,∇S2 where S = (S1, S2) is defined in (1.2), we have for
example the following result (see Prop. 4.5), where H(µ) := H(µ|Leb) is the (convex) differential entropy.

Corollary 1.3. Let c ∈ C2(X1 ×X2) and µ0 = (µ0
1, µ

0
2) ∈ P(X1)× P(X2). Then the functional F defined by

F (µ) := E(µ) +H(µ1) +H(µ2),

admits a unique Wasserstein gradient flow starting from µ0, i.e. there exists a unique absolutely continuous
curve µt = (µt

1, µ
t
2) ∈ P(X1)× P(X2) for W2, satisfying

∂tµ1 = ∇ · (µ1∇S1(µ)) + ∆µ1

∂tµ2 = ∇ · (µ2∇S2(µ)) + ∆µ2

µ|t=0
= µ0

with no-flux boundary conditions. If in addition H(µ0
1), H(µ0

2) < +∞, then µt converges at an exponential rate
to the unique equilibrium µ∗ (see Eq. (4.7)), in the sense that there exists κ > 0 independent of µ0 such that

F (µt)− F (µ∗) ≤ e−κt(F (µ0)− F (µ∗)).

Let us mention that the system of PDEs in the previous corollary may naturally appear as an evolution
model for cities: µ1 represents the distribution of agents, µ2 the distribution of firms, S2 the wage paid by
firms to agents and the fact that S1 and S2 are given by (1.2) captures an equilibrium condition on the labour
market. For more details about such models, we refer to [17] (for a gradient flow approach without entropic
regularization) and to [18] (in the different context of mean-field games). For extensions to more than two
species and more general functionals (typically F +G where G is displacement convex), see Section 4.

More applications of Theorem 1.1 are developed in companion papers that study optimization dynamics for
trajectory inference [19] and regularized Wasserstein barycenters [20], also involving the functional E.

1.3. Discussion of prior work

Several works have studied the stability of the unregularized optimal transport problem [21–23]. In particular,
it is known that with the square-distance cost, the Kantorovich potential from µ1 to µ2 (i.e. the counterpart
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of the Schrödinger potential ϕ1 in unregularized optimal transport) is a 1
2 -Hölder function of µ2 from W2 to

Ḣ1(µ1) under suitable assumptions on the fixed reference measure µ1, and that this is the strongest regularity
that one can hope for in general [23].

In [24], it is proved by inverse function arguments that S is Lipschitz continuous and smooth as a map from
L∞
++ → L∞, given some fixed reference measures on the ambient space. Our results will use a similar strategy

but in contrast to [24] and other follow-up works such as [25], Theorem 3, we do not consider stability under
additive perturbations of the marginals, but under displacement perturbations by changing the parametrization
of the problem. This leads to the stronger conclusion that E is smooth in Wasserstein distance which, as we
shall see, is particularly useful in the context of gradient flows of energies involving E. Let us also mention that
much less is known about stability in the non-compact case, see e.g. [26] that shows Lipschitz continuity of E,
[27] where the continuity of the Schrödinger map for the topology of convergence in probability in a certain
non-compact setting, see also [28] for further stability results for the primal variable. Our results are finer, but
rely in an essential way on the compact setting.

Note that a result equivalent to Theorem 1.1 for k = 0 was already proved in [29]. Their elegant approach
consists in showing that the Sinkhorn’s iteration is stable under W1 perturbations (or, equivalently in the
compact setting, W2 perturbations) of the marginals which, combined with the fact that this iteration is a
contraction for the so-called Hilbert metric, leads to the conclusion. The strength of their analysis is that it
applies to k = 0 (i.e. merely Lipschitz continuous costs); and from the result with k = 0, it is not difficult to
prove the k ≥ 1 case under regularity assumptions on the cost. However, their proof technique would likely not
extend to the multi-marginal case (a well-know limitation of the Hilbert metric approach). Here, we propose
an independent proof technique for all k ≥ 1 (for displacement smoothness, we need the case k = 1) and our
analysis also gives additional information on higher degrees of smoothness of the Schrödinger map and of E.

The rest of the paper is organized as follows. In Section 2, we introduce the multi-marginal setting and state
the full version of our regularity results for the Schrödinger map. The proofs of those statements can be found in
Section 3. Finally, in Section 4 we study the regularity of the functional E and apply our results to the analysis
of certain Wasserstein gradient flows involving E.

2. The multi-marginal case

Notation and assumptions on the domain. Let N ≥ 2 be the number of marginals, let Xi ⊂ Rd be convex
and compact, for i ∈ [N ] := {1, . . . , N}, and let X :=

∏N
i=1 Xi. Given i ∈ [N ], we denote X−i =

∏
j ̸=i Xj and

identify X to Xi ×X−i, i.e. we denote x = (x1, . . . , xN ) as x = (xi, x−i).
For k ≥ 0, let Ck(Xi) be the space of k-times continuously differentiable functions over Xi (that is, functions

defined on Xi that admit a Ck extension on Rd) endowed with the usual supremum norm. Using the multi-index
notation, this norm is defined as ∥f∥Ck := inf f̃ sup|α|≤k ∥f̃ (α)∥∞ where the infimum is over functions f̃ that are

extensions of f defined on Rd. Endowed with this norm, Ck(Xi) is a Banach space, see [30], Chapter 8, II for
details.

We denote by P(Xi) the space of Borel probability measures on Xi, which we endow with the weak topology,
characterized by its convergent sequences as µn ⇀ µ⇔

∫
ϕdµn →

∫
ϕdµ for all ϕ ∈ C0(Xi). Given (µ1, . . . , µN ) ∈∏N

i=1 P(Xi), we denote by µ the N -tuple (µ1, . . . , µN ) and by µ the product measure ⊗N
i=1µi ∈ P(X ). For

µ = ⊗N
i=1µi ∈ P(X ) we let µ−i := ⊗j ̸=iµj and

∏N
i=1 P(Xi) is endowed with the product Wasserstein W2 metric,

given, for µ = (µ1, . . . , µN ), ν = (ν1, . . . , νN ) ∈
∏N

i=1 P(Xi), by

W2(µ,ν) :=

(
N∑
i=1

W2(µi, νi)
2

) 1
2

.

In the following, k ∈ N∗ is arbitrary and always denotes the regularity of the output space C̃k of the
Schrödinger map S, while the regularity we require for the cost function c varies across statements.
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In the proofs, we use C,C ′, . . . to denote positive constants that may change from line to line and only
depend on general characteristics of the problem such as N and other quantities that are specified when needed.

2.1. Multi-marginal Schrödinger system

The multi-marginal Schrödinger system arises as the optimality conditions for the multi-marginal entropic
optimal transport problem, defined for µ ∈

∏N
i=1 P(Xi) by

E(µ) := min
γ∈Π(µ)

∫
X
c(x)dγ(x) +H(γ|µ). (2.1)

where Π(µ) is the set of probability measures on X having marginals (µ1, . . . , µN ). This convex problem admits
a concave dual formulation in terms of the Lagrange multipliers for the marginal constraints

E(µ) = max
ϕ∈

∏N
i=1 C0(X i)

N∑
i=1

∫
Xi

ϕi(xi)dµi(xi) + 1−
∫
X
e
∑N

i=1 ϕi(xi)−c(x)dµ(x). (2.2)

Notice that these problems are multi-marginal generalizations of those presented in Section 1. The primal-dual
optimality conditions read

γ(dx) = e
∑N

i=1 ϕi(xi)−c(x)µ(dx). (2.3)

We refer to [15, 31] for the basic theory of entropic optimal transport and [24, 32] for the multi-marginal
theory. The optimality conditions for equation (2.2) coincide with the condition that γ ∈ Π(µ) in equation (2.3),
and lead to the Schrödinger system.

Definition 2.1 (Schrödinger system/potentials/map). Consider the map T :
∏N

i=1 C(Xi) ×
∏N

i=1 P(Xi) →∏N
i=1 C(Xi) defined for i ∈ [N ] and xi ∈ Xi as

Ti(ϕ,µ)(xi) := log
(∫

X−i

e
∑N

j=1 ϕj(xj)−c(xi,x−i)dµ−i(x−i)
)
. (2.4)

A function ϕ = (ϕ1, . . . , ϕN ) is called a Schrödinger potential associated to µ if it solves the Schrödinger system

T (ϕ,µ) = 0. (2.5)

The Schrödinger map is the function S that maps µ to its Schrödinger potential ϕ, i.e. that satisfies T (S(µ),µ) =
0 (Prop. 2.2 states that this map is well-defined in a suitable sense).

Let us stress that we require equation (2.5) to hold in the space of continuous functions, that is for every
x ∈ X , rather than only µ-a.e. which is the optimality condition of equation (2.2).

Clearly, if ϕ = (ϕ1, . . . , ϕN ) solves (2.5) for some fixed µ, then so does every family of potentials of the form

(ϕ1 + κ1, . . . , ϕN + κN ) where the κ ∈ RN satisfies
∑N

i=1 κi = 0. This defines an equivalence relation ∼ and we
define the quotient space

C̃k :=
( N∏

i=1

Ck(Xi)
)
/ ∼ .
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Endowed with the quotient norm (the infimum of the norm over all representatives in the equivalence class), C̃k

is a Banach space.

2.2. Existence and weak continuity of the Schrödinger map

Let us state some preliminary results about the Schrödinger map.

Proposition 2.2. If c ∈ Ck(X ) for k ∈ N∗ then for any µ ∈
∏N

i=1 P(Xi), there exists a unique ϕ = ϕµ ∈ C̃k

such that T (ϕ,µ) = 0, i.e. the Schrödinger map S : µ 7→ ϕµ is well-defined. Moreover,

(i) for i ∈ [N ], ϕµi is Li-Lipschitz continuous, where Li = supx∈X ∥∇xi
c(x)∥2,

(ii) the Schrödinger map S :
∏N

i=1 P(Xi) → C̃k is weakly continuous and is bounded.

The continuity claim (ii) is not needed in the sequel – and is weaker than Theorem 2.3 – but it is instructive
to recall this known result that can be obtained by elementary means, before delving into more technical proofs.

Proof. The existence of a unique solution to equation (2.5) in
∏N

i=1 L
∞(µi)/ ∼, i.e. in the µ-almost-everywhere

sense, is proved in [24], see also [32]. In order to prove the same in C̃0, i.e. in the everywhere sense, let us observe
that T can be expressed as T = Id + T̄ with

T̄i(ϕ,µ)(xi) = log
(∫

X−i

e
∑

j ̸=i ϕj(xj)−c(xi,x−i)dµ−i(x−i)
)

(2.6)

by factorizing eϕi(xi) out in the definition of Ti. Thus, given a representer of the L∞ solution ϕL∞
∈∏N

i=1 L
∞(Xi), one can define a solution ϕCk

∈
∏N

i=1 Ck(Xi) in the “everywhere sense” by setting

ϕC
k

i (xi) := − log
(∫

X−i

e
∑

j ̸=i ϕ
L∞
j (xj)−c(xi,x−i)dµ−i(x−i)

)
= −T̄i(ϕL∞

,µ)(xi). (2.7)

Observe that ϕCk

inherits the Ck regularity of c. Moreover, by uniqueness in L∞, any “everywhere” solution must
coincide µ-a.e. with an “almost everywhere” solution and is thus of the form given by equation (2.7). Noticing

that T̄ (ϕ+κ,µ) = T̄ (ϕ,µ)− κ for any family of constants κ ∈ RN such that
∑N

i=1 κi = 0 and quotienting by

∼, it follows that there exists a unique solution of the Schrödinger system (2.5) in C̃k.
The Lipschitz continuity constant of xi 7→ ϕµi (xi) can be bounded by observing that differentiating ϕµ =

−T̄ (ϕµ,µ) in xi gives

∇ϕµi (xi) =
∫
X−i

∇xi
c(xi, x−i)dQ−i(x−i|xi)

where Q−i(·|xi) ∈ P(X−i) is a probability measure whose expression is given later in equation (3.3).
Finally, to prove weak continuity of S, it is enough to prove that if µn is a sequence weakly converging

to µ, then ϕµn

converges to ϕµ. By the previous point, {ϕµn

}n is uniformly Lipschitz continuous and one
can choose a uniformly bounded sequence of representatives so by Ascoli-Arzelà Theorem we can extract a
subsequence ϕmn which converges in C̃0 to some ϕ∞. Since the map T is jointly continuous, it follows that
T (ϕ∞,µ) = limm T (ϕµmn

,µmn) = 0, hence ϕ∞ = ϕµ. But this limit is unique, so the full sequence (ϕµn

)n
converges to ϕµ which proves the weak continuity in C̃0. Since one also has ϕµn

= −T̄ (ϕµn

,µn) for all n and T̄

is continuous as a function C̃0×
∏N

i=1 P(Xi) → C̃k, we have in fact that ϕµn

converges to ϕµ in C̃k. Boundedness
of S finally follows from the fact that it is weakly continuous on a weakly compact set.
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2.3. Main result: regularity of the Schrödinger map

In order to study regularity beyond the zero-th order, we bypass the lack of differentiable structure of P(X )
by considering parametrized paths generated by transport plans.

Consider µ0 = (µ0
i )

N
i=1 and µ1 = (µ1

i )
N
i=1 two families of probability measures in

∏N
i=1 P(Xi), and a family of

transport plans1 γ = (γi)
N
i=1 such that γi ∈ P(Xi × Xi) has marginals µ0

i and µ1
i . These transport plans define

interpolations between µ0
i and µ1

i , defined for t ∈ [0, 1] as

µt
i = ((1− t)π1 + tπ2)#γi (2.8)

where π1 (resp. π2) is the projection on the first (resp. second) factor of Xi×Xi. In other terms, µt
i is characterized

by ∫
Xi

φi(xi)dµ
t
i(xi) =

∫
Xi×Xi

φi((1− t)xi + tyi)dγi(xi, yi), ∀φi ∈ C(Xi).

Our main result is as follows.

Theorem 2.3. For p, k ∈ N∗, p ≤ k, if c ∈ Ck+p(X ) then the parametrized Schrödinger map t 7→ ϕt := S(µt)
belongs to Cp([0, 1]; C̃k). Moreover, there exists C > 0 that only depends on ∥c∥Ck+1 and N such that

∥ϕt −ϕs ∥C̃k ≤ C|t− s|
√
cost(γ)

where cost(γ) :=
∑N

i=1

∫
Xi×Xi

∥yi − xi∥2dγi(xi, yi) is the L2-transport cost associated with γ.

The detailed proof is postponed to the next section, the basic ingredient being the application of the Implicit
Function Theorem to the map G(ϕ, t) := T (ϕ,µt). We can make the following comments:

� Tracking the constants in the proof, it can be seen that C depends exponentially on the oscillation of the
cost supx c(x)− infx c(x) and polynomially on ∥c∥Ck+1 .

� From the primal-dual relation equation (2.3), one could easily deduce stability results for the primal
variable γ from this theorem.

� The fact that the map t 7→ S(µt) belongs to Cp([0, 1]; C̃k), also holds if (µt)t∈[0,1], instead of being of the
form (2.8), is of the form µt

i = ξi(·, t)#µ0
i for i ∈ [N ], for some µ0

i ∈ P(Xi) and a measurable ξi(xi, ·) ∈
Cp([0, 1];Xi) with a Cp norm uniformly bounded in xi. This can be seen by suitably adapting the proof of
Lemma 3.4.

Applying Theorem 2.3 by choosing γi as the optimal transport plan between µi and νi immediately leads to
the following Lipschitz continuity result for the Schrödinger map.

Corollary 2.4. For k ∈ N∗, assume that c ∈ Ck+1(X ). The Schrödinger map S :
∏N

i=1 P(Xi) → C̃k is Lipschitz

continuous, i.e. there exists C > 0 such that, for all µ,ν ∈
∏N

i=1 P(Xi), letting (ϕµ,ϕν) = (S(µ), S(ν)),

∥ϕµ −ϕν ∥C̃k ≤ CW2(µ,ν).

Our approach will also enable us to deduce a control of the Schrödinger potentials and their derivatives in
terms of negative Sobolev distances between the marginals (see Sect. 3.4 for detailed definitions):

Proposition 2.5. Assume that c ∈ Ck+p(X ) with p > d/2 and p ∈ N∗. The Schrödinger map S :
∏N

i=1 P(Xi) →
C̃k is Lipschitz continuous in the negative Sobolev norm H−p, i.e. there exists C > 0 such that, for all µ,ν ∈

1To be clear, we do not assume that γi is an optimal transport plan.



8 G. CARLIER ET AL.

∏N
i=1 P(Xi), letting (ϕµ,ϕν) = (S(µ), S(ν)),

∥ϕµ −ϕν ∥C̃k ≤ C∥µ−ν ∥H−p .

Note that when p > d/2 + 1, by Morrey’s Theorem (see Sect. 3.4) and our compactness assumption, there
exists C > 0 that only depends on X such that ∥µ−ν ∥H−p ≤ C ·W1(µ,ν) ≤ C ·W2(µ,ν). Thus, the conclusion
of Proposition 2.5 is generally stronger than that of Corollary 2.4, but this is at the expense of requiring more
regularity on the cost function.

For illustration purposes, let us explain how this inequality leads to nonasymptotic estimation guarantees
for the Schrödinger potentials given random samples. In the two marginal case, this is essentially a known
result, obtained via different means in [7, 33]. Specifically, suppose that µ̂ is an empirical measure built by
drawing n independent samples from each of the measures µi, i ∈ N . Then, since Hp is a Reproducible Kernel
Hilbert Space with a bounded kernel for p > d/2 (by Morrey’s Theorem again), Hoeffding’s inequality shows
that ∥µ̂− µ ∥H−p is bounded by C · n−1/2

√
log(1/δ) with probability 1− δ where here C depends only on X .

By Proposition 2.5, this directly translates into a high-probability bound on ∥ϕµ −ϕµ̂ ∥C̃k . It might also be
worth mentioning that Proposition 2.5 is obtained by linearly interpolating the marginals, as such, it is a slight
departure from the rest of the paper which essentially focuses on displacement interpolation.

3. Proofs

The main tool to prove Theorem 2.3 is the Implicit Function Theorem. We will apply it to the function
G : C̃k × [0, 1] → Ck defined as

G(ϕ, t) := T (ϕ,µt) (3.1)

whose expression2 is, using the convention yi := xi,

Gi(ϕ, t)(xi) = ϕi(xi) + log
(∫

X−i×X−i

e
∑

j ̸=i ϕj((1−t)xj+tyj)−c((1−t)x+ty)dγ−i(x−i, y−i)
)
.

For this purpose, in the next sections, we study the properties of the maps T and G.

3.1. Invertibility of the differential of T

Let us fix µ = (µ1, . . . , µN ) ∈
∏N

i=1 P(Xi) and µ = ⊗N
i=1µi ∈ P(X ) and study the map ϕ 7→ T (ϕ,µ), which

is a self-map of C̃k. Note that T is of class C∞ in the first variable and its differential is given, for h ∈ C̃k, by

DϕTi(ϕ,µ)(h)(xi) = hi(xi) +

∫
X−i

(∑
j ̸=i

hj(xj)
)
q−i(x−i|xi)dµ−i(x−i).

where we have introduced the function q−i defined, with the convention x′i = xi, by

q−i(x−i|xi) :=
e
∑

j ̸=i ϕj(xj)−c(x)∫
X−i

e
∑

j ̸=i ϕj(x′
j)−c(x′)dµ−i(x′−i)

.

2the maps G and T take values in Ck but it will sometimes be convenient to compose them from the left with the canonical
projection Ck → C̃k, slightly abusing notations, we will still denote by G and T these maps with values in C̃k.
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Note that q−i depends on ϕ and µ although this is not explicit in the notation. Similarly, let

q(x) :=
e
∑

j ϕj(xj)−c(x)∫
X e

∑
j ϕj(x′

j)−c(x′)dµ(x′)
, qi(xi) :=

∫
X−i

e
∑

j ϕj(xj)−c(x)dµ−i(x−i)∫
X e

∑
j ϕj(x′

j)−c(x′)dµ(x′)
. (3.2)

Observe that if ϕ and c are of class Ck then the functions q, qi, q−i are of class Ck as well. These functions are
densities of probability densities in the sense that it holds

Q := qµ ∈ P(X ), Qi := qiµi ∈ P(Xi), Q−i(·|xi) := q−i(·|xi)µ−i ∈ P(X−i), ∀xi ∈ Xi. (3.3)

By construction, for each i, Qi is the i-th marginal of Q on Xi and Q−i is the disintegration of Q with respect
to this marginal, i.e.:

dQ(xi, x−i) = dQ−i(x−i|xi)dQi(xi). (3.4)

In the next lemma, we remark that these densities are uniformly bounded from above and below by positive
quantities, a fact which we will often use in the following.

Lemma 3.1. Let q be defined by (3.2). Then, for all x ∈ X ,

e−2(N∥ϕ ∥C̃0+∥c∥C0 ) ≤ q(x) ≤ e2(N∥ϕ ∥C̃0+∥c∥C0 ).

Moreover qi and q−i satisfy the same bounds.

Proof. From the definition of q, for all x ∈ X ,

q(x) =
e
∑

j ϕj(xj)−c(x)∫
X e

∑
j ϕj(x′

j)−c(x′)dµ(x′)
≤ e

∑
j ∥ϕj∥∞+∥c∥C0

e−
∑

j ∥ϕj∥∞−∥c∥C0
≤ e2(N∥ϕ ∥C0+∥c∥C0 ),

since µ ∈ P(X ). In addition, from the definition of q, we remark that q does not depend of the representative
of ϕ in C̃0 which gives the upper bound on q. We obtain the lower bound, as well as the result for qi and q−i

with the same arguments.

Let us also remark that in the previous bounds, the norm ∥c∥C0 can be replaced by infκ∈R ∥c + κ∥C0 =
(sup c− inf c)/2, i.e. half the oscillation of c (in fact, the Schrödinger map is invariant if c changes by an additive
constant). The following lemma is central in our development and is an adaptation of [24], Proposition 3.1
(with different functional spaces). The first claim of invertibility appeared in a similar form in [34], Lemma 5
where it is key to prove a central limit theorem for EOT, but our proof (Step 1) is different as (i) in our context
there is no natural way to get rid of the non-uniqueness of Schrödinger potentials so we work directly in the
quotient space C̃k and (ii) our approach leads to control on the norm on the inverse (the second part of the
claim).

Lemma 3.2. Let k ∈ N∗ and assume that ϕ ∈ C̃0 and c ∈ Ck(X ).
Then DϕT (ϕ,µ) is an invertible linear self-map of C̃k. Moreover, there exists C > 0 that only depends on

N , ∥c∥Ck and ∥ϕ ∥C̃0 such that

∥[DϕT (ϕ,µ)]
−1∥C̃k→C̃k ≤ C.
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Proof. We have DϕT (ϕ,µ) = Id + L with

Li(h)(xi) =

∫
X−i

(∑
j ̸=i

hj(xj)
)
q−i(x−i|xi)dµ−i(x−i).

Observe that since c ∈ Ck(X ), Li(h) ∈ Ck(Xi) with its derivatives up to order k equi-continuous when h runs
through a bounded set of C̃0. It follows, by Arzelà-Ascoli Theorem, that L : C̃0 → C̃k is compact, and a fortiori
L : C̃k → C̃k is compact too.

Step 1. Let us show that id + L is invertible. Let h ∈
∏

C(Xi) be such that h+L(h) = 0 in C̃0, i.e.

hi(.) +

∫
X−i

(∑
j ̸=i

hj(xj)
)
dQ−i(x−i|.) = λi, i = 1, . . . , N,

N∑
j=1

λj = 0. (3.5)

Integrating (3.5) with respect to Qi, we deduce from (3.4), that

N∑
k=1

∫
Xk

hkdQk = λi, i = 1, . . . , N

so that all the λi’s are equal to 0; hence h+L(h) = 0 in C0 (and not only in the quotient C̃0). Then, taking the
dot product of h with h+L(h) in

∏
L2(Qi) and using (3.4), it follows, reasoning as in [24],

0 =

N∑
i=1

∫
Xi

hi(xi)
(
hi(xi) +

∫
X−i

(∑
j ̸=i

hj(xj)
)
dQ−i(x−i|xi)

)
dQi(xi)

=
∑
i

∫
Xi

hi(xi)
2dQi(xi) +

∑
i ̸=j

∫
X
hi(xi)hj(xj)dQ(x)

=

∫
X

(∑
i

hi(xi)
)2

dQ(x).

We deduce that x 7→
∑
hi(xi) is equal to 0 as a function in L2(Q) and hence in L2(µ).

Now consider the space L̃2
µ :=

∏N
i=1 L

2(µi)/ ∼ which, endowed with the quotient space structure, is also a

Hilbert space. By Lemma 3.3 (proved hereafter), it follows that h ∼ 0 in L̃2
µ, i.e. there exists κ ∈ Rn such that∑

κi = 0 and hi(xi) = κi for µi-a.e. xi. It only remains to show that this equality holds in fact everywhere.
Using h = −L(h) and q−iµ−i ∈ P(X−i), it holds for xi ∈ Xi

hi(xi) = −
∫
X−i

(∑
j ̸=i

hj(xj)
)
q−i(x−i|xi)dµ−i(x−i) = −

∑
j ̸=i

κj = κi

Thus h = 0 in C̃k. Conversely, any h = 0 in C̃k also clearly belongs to ker(DϕT (ϕ,µ)). Hence ker(DϕT (ϕ,µ))

is precisely the equivalence class of 0 i.e. DϕT (ϕ,µ) is injective on C̃k. Since L is a compact operator of C̃k, it

follows from the Fredholm Alternative Theorem [35], Chapter 6 that the range of Id+L is C̃k. Hence DϕT (ϕ,µ)

is onto and therefore an invertible linear self-map of C̃k.
Step 2. Now let us estimate the operator norm of DϕT (ϕ,µ)

−1 as a self-map of C̃k. Let h ∈ C̃k, g ∈ C̃k be
such that h+L(h) = g. Let us choose the representative of g that satisfies∫

X1

g1(x1)dQ1(x1) = · · · =
∫
XN

gN (xN )dQN (xN ). (3.6)
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Reasoning as above, it holds

N∑
i=1

∫
Xi

gi(xi)hi(xi)dQi(xi) =
∑
i

∫
Xi

hi(xi)
2dQi(xi) +

∑
i,j, i ̸=j

∫
X
hi(xi)hj(xj)dQ(x)

=

∫
X

(∑
i

hi(xi)
)2

dQ(x)

where the first integral is unambiguously defined because, thanks to our choice of representative for g, it does
not depend on the representative chosen for h. Let us choose the optimal representative for h in L̃2

µ appearing
in Lemma 3.3. We have, for some C > 0 that may change from a line to another but only depends on N , ∥c∥C0

and ∥ϕ ∥C̃0
:

∥h ∥2∏L2(µi)

(i)

≤ N
∥∥⊕N

i=1hi
∥∥2
L2(µ)

(ii)

≤ C
∥∥⊕N

i=1hi
∥∥2
L2(Q)

(iii)

≤ C∥ g ∥∏L2(Qi)∥h ∥∏L2(Qi)

(iv)

≤ C∥ g ∥∏L2(Qi)∥h ∥∏L2(µi)

where we have used (i) Lemma 3.3 (where the notation ⊕ is defined) , (ii) and (iv) Lemma 3.1, and (iii) the
previous computation and Cauchy-Schwarz inequality in

∏
L2(Qi). It follows, invoking once again Lemmas 3.3

and 3.1, that

∥h ∥L̃2
µ
= ∥h ∥∏L2(µi) ≤ C∥ g ∥∏L2(Qi) = C∥ g ∥L̃2

Q
≤ C∥ g ∥C̃0 .

For the last equality, we have used the fact that the L̃2
Q norm is precisely the

∏
L2(Qi) norm of the representative

that satisfies equation (3.6), by Lemma 3.3 (here L̃2
Q is defined similarly as L̃2

µ from the marginals Qi of Q).

Step 3. We now improve the L̃2
µ control into a C̃k control. Restarting from h+L(h) = g, it holds

hi(xi) = gi(xi)−
∫
X−i

(∑
j ̸=i

hj(xj)
)
q−i(x−i|xi)dµ−i(x−i). (3.7)

Thanks to our control on ∥h ∥∏L2(µi) by ∥ g ∥C̃0 , given constants κi, it follows from (3.7) that

∥hi + κi∥C̃0(Xi)
≤ ∥gi + κi∥C̃0(Xi)

+ C∥ g ∥C̃0

summing over i and minimizing with respect to the κi’s summing to 0, we get

∥h ∥C̃0 ≤ C∥ g ∥C̃0 .

In a similar way, using the fact that c ∈ Ck, successive differentiations of (3.7) yield

∥h ∥C̃k = ∥[DϕT (ϕ,µ)]
−1(g)∥C̃k ≤ C∥ g ∥C̃k

for a constant C that only depends on N , ∥c∥Ck and ∥ϕ ∥C̃0 .

To end this section, we prove Lemma 3.3 used in the previous proof.



12 G. CARLIER ET AL.

Lemma 3.3. For h ∈
∏N

i=1 L
2(µi), denoting ⊕N

i=1hi : x 7→
∑N

i=1 hi(xi) it holds

∥h ∥2
L̃2

µ
≤
∥∥⊕N

i=1hi
∥∥2
L2(µ)

≤ N∥h ∥2
L̃2

µ
.

Moreover, the quotient norm is achieved by the unique representative ĥ ∼ h that satisfies
∫
X1
ĥ1dµ1 = · · · =∫

XN
ĥNdµN , i.e. it holds ∥h∥2

L̃2
µ

=
∑N

i=1 ∥ĥi∥2L2(µi)
.

Proof. By definition,

∥h ∥2
L̃2

µ
= min

κ∈RN∑
i κi=0

N∑
i=1

∫
Xi

(hi(xi)− κi)
2dµi(xi). (3.8)

A vector κ ∈ RN solves this problem iff
∑

i κi = 0 and there exists a Lagrange multiplier ν ∈ R such that for
i ∈ [N ],

0 =

∫
Xi

(hi(xi)− κi)dµi(xi)− ν = Eµi
[hi]− κi − ν.

with the shorthand Eµ[h] :=
∫
hdµ and Varµ(h) := Eµ[(h−Eµ[h])

2]. It follows that ν = 1
N

∑N
i=1 Eµi

[hi] and as
a consequence

∥h ∥2
L̃2

µ
=

N∑
i=1

∫
Xi

(hi(xi)−Eµi
[hi] + ν)2dµi(xi)

=

N∑
i=1

[ ∫
Xi

(hi(xi)−Eµi
[hi])

2dµi(xi) + ν2
]

=

N∑
i=1

Varµi
(hi) +

1

N

( N∑
i=1

∫
hidµi

)2
where the second equality follows by expanding the square and observing that the cross-terms vanish. On the
other hand, using the fact that

∑
i κi = 0, it holds

∥∥⊕N
i=1hi

∥∥2
L2(µ)

=

∫
X

( N∑
i=1

(hi(xi)− κi)
)2
dµ(x)

=
∑

i,j,i ̸=j

∫
Xi×Xj

(hi(xi)−Eµi
[hi] + ν)(hj(xj)−Eµj

[hj ] + ν)dµi(xi)dµj(xj)

+
∑
i

∫
Xi

(hi(xi)−Eµi [hi]) + ν)2dµi(xi)

= N(N − 1)ν2 + ∥h ∥2
L̃2

µ

=

N∑
i=1

Varµi(hi) +
( N∑

i=1

∫
Xi

hidµi

)2
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The first claim follows. For the second claim, observe that this representative ĥ satisfies the optimality condition
of equation (3.8).

3.2. Differentiability of G

Let us first establish the regularity of the map G.

Lemma 3.4. For p, k ∈ N∗, p ≤ k, if c ∈ Ck+p(X ), then the map G : Ck × [0, 1] → Ck is of class Cp.

Proof. The i-th component of G can be expressed as

Gi(ϕ, t)(xi) = ϕi(xi) + log
(∫

X−i×X−i

e
∑

j ̸=i ϕj((1−t)xj+tyj)−c(xi,(1−t)x−i+ty−i)dγ−i(x−i, y−i)
)

Fixing i and (x−i, y−i) ∈ X−i × X−i, let us observe that when c ∈ Ck+p(X ), the curve t ∈ [0, 1] 7→ c(., (1 −
t)x−i + ty−i) ∈ Ck(Xi) is of class Cp and that its derivatives up to order p can be bounded independently of
(x−i, y−i). Now, for j ̸= i (and fixed xj and yj in Xj), consider the real-valued map Lj : (ϕj , t) ∈ Ck(Xj)× [0, 1] 7→
ϕj(xj + t(yj − xj)). For k = 1, this map admits partial derivatives with respect to t and ϕj which are given
respectively by ∇ϕj(xj + t(yj − xj))

⊤(yj − xj) and Lj(., t), both being continuous (for the C1 norm for ϕj)
so that Lj ∈ C1(C1(Xj)× [0, 1],R) note also that the first-order partial derivatives of Lj can be bounded by a
constant depending on the C1 norm of ϕj but not on xj , yj .

For k ≥ 2, we can argue inductively. Indeed, by the previous argument, showing k times continuous differ-
entiability of Lj amounts to showing k − 1 times continuous differentiability of Lj applied to ∇ϕj(.)⊤(yj − xj)
and t. This shows that Lj ∈ Ck(Ck(Xj)× [0, 1],R), with bounds on derivatives up to order k controlled by the
Ck norm of ϕj independently of (xj , yj) ∈ Xj × Xj . By the chain rule and differentiating under the integral
sign by dominated convergence, we can readily conclude that G is of class Cmin{k,p} = Cp from Ck(X )× [0, 1] to
Ck(X ).

We now give a quantitative regularity estimate for the partial derivative of G in its real variable t.

Lemma 3.5. Let k ∈ N∗ and assume that c ∈ Ck+1(X ). Given ϕ ∈ C̃1, the partial differential of G in t satisfies

∥DtG(ϕ, t)∥C̃k ≤ C
√
cost(γ)

where C > 0 only depends on ∥ϕ ∥C̃1 and ∥c∥Ck+1 and cost(γ) is the transport cost associated with γ as in
Theorem 2.3.

Proof. By Lemma 3.4, G is differentiable in t. Using the shorthand xt := (1− t)x+ ty and again the convention
yi = xi, it holds

d

dt
Gi(ϕ, t)(xi) =

∫
X−i×X−i

(∑
j ̸=i

(yj − xj)
⊤(∇ϕj(xtj)−∇jc(x

t))
)
dQt

−i(x−i, y−i|xi) (3.9)

with Qt
−i := qt−iγ−i ∈

∏
j ̸=i P(Xj ×Xj) and, posing (x′)ti = xti,

qt−i(x−i, y−i|xi) :=
e
∑

j ̸=i ϕj(x
t
j)−c(xt)∫

X−i×X−i
e
∑

j ̸=i ϕj((x′)tj)−c((x′)t)dγ−i(x′−i, y
′
−i)

.

Reasoning as in Lemma 3.1, this function qt−i admits positive upper and lower bounds only depending on ∥ϕ ∥C̃0

and ∥c∥C0 . Let us now control equation (3.9), starting with a control in uniform norm. First, by Cauchy-Schwarz
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in L2(Qt
−i(·, ·|xi)), for i ∈ [N ] and xi ∈ Xi,

∣∣∣ d
dt
Gi(ϕ, t)(xi)

∣∣∣2
≤

(∫
X−i×X−i

∥y − x∥2dQt
−i(x−i, y−i|xi)

)(∫
X−i×X−i

∥(∇ϕ−∇c)(xt)∥2dQt
−i(x−i, y−i|xi)

)
(3.10)

where ∇ϕ := (∇ϕ1, . . . ,∇ϕN ). Observe that the second factor is uniformly bounded for xi ∈ Xi because
Qt

−i(·, ·|xi) is a probability measure and both ϕ and c are continuously differentiable on a compact set. It
follows,

∥∥∥ d

dt
Gi(ϕ, t)

∥∥∥
C0

≤ C sup
xi∈Xi

(∫
X−i×X−i

∥y − x∥2dQt
−i(x−i, y−i|xi)

)1/2

≤ C ′

(∫
X−i×X−i

∥y − x∥2dγ−i(x−i, y−i)

)1/2

≤ C ′
√

cost(γ)

where C,C ′ depend on ∥c∥C1 and ∥ϕ ∥C̃1 only. Moreover, one can further differentiate equation (3.9) in xi and
obtain analogous bounds because this variable only appears in the term ∇jc which is of regularity Ck and in
the factor qt−i which is of regularity Ck+1. With this reasoning, it follows

∥∥∥ d

dt
Gi(ϕ, t)

∥∥∥
C̃k

≤ Ck

√
cost(γ).

where Ck depends on ∥c∥C̃k+1 and ∥ϕ ∥C̃1 only.

3.3. Proof of Theorem 2.3

Proof. Let us first observe that c can be extended in a Ck+p way to a convex open set containing X . One
can therefore extend by extrapolation the definition of µt to an open time interval (−ε, 1 + ε), for some ε > 0
containing [0, 1]. We shall then apply the Implicit Function Theorem (IFT) to G : C̃k × [0, 1] → C̃k defined in
(3.1).

The existence and continuity on [0, 1] of the Schrödinger map t 7→ ϕt is guaranteed by Proposition 2.2.
In Lemma 3.4, we have shown that G is of class Cp and in Lemma 3.2, we have shown that DϕG(ϕ

t, t) =

DϕT (ϕ
t,µt) is an invertible linear self-map of C̃k. Thus all the hypotheses are gathered to apply the Implicit

Function Theorem, see e.g. [36], Theorem 10.2.1: the map t 7→ ϕt is of class Cp on [0, 1] and its derivative is
given by

Dt ϕ
t = −[DϕT (ϕ

t,µt)]−1 ◦DtG(ϕ
t, t).

Moreover, we have by respectively Lemma 3.2 and Lemma 3.5 that there exists C > 0 only depending on N ,
∥c∥Ck+1 and ∥ϕt ∥C̃1 such that

∥[DϕT (ϕ
t,µt)]−1∥op ≤ C and ∥DtG(ϕ

t, t)∥op ≤ C
√
cost(γ).
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Since we know by Proposition 2.2 that ∥ϕt ∥C̃1 is a priori bounded by ∥c∥C1 , it follows that ∥Dt ϕ
t ∥ ≤

C ′
√

cost(γ) for some C ′
k > 0 that only depends on ∥c∥Ck+1 . The Lipschitz estimate in Theorem 2.3 follows

by the mean-value inequality.

3.4. Proof of Proposition 2.5

Recall that the Sobolev space Hp(Xi) consists of all functions fi ∈ L2(Xi) whose partial derivatives up to
order p belong to L2(Xi) which is a Hilbert space for the norm

∥fi∥2Hp(Xi)
:=

∑
α : |α|≤p

∫
Xi

|∂αfi|2.

If p > d/2, by Morrey’s Theorem (see [35]), Hp(Xi) embeds continuously into the space of continuous functions,
hence, by duality, measures belong to the dual space H−p(Xi). We can therefore define

∥µ−ν ∥H−p :=

N∑
i=1

∥µi − νi∥H−p

where

∥µi − νi∥H−p := sup
{∫

Xi

fid(µi − νi) : ∥fi∥Hp(Xi) ≤ 1
}
.

To obtain the bound announced in Proposition 2.5, we simply consider the linear interpolation between µ and
ν, µt := µ+t(ν −µ) for t ∈ [0, 1] and G(ϕ, t) := T (ϕ,µt) as well as ϕt := S(µt) ∈ C̃k i.e. G(ϕt, t) = 0. Recall
that ϕt is bounded in Ck by a constant that only depends on c. The same holds for the operator norm of
[DϕT (ϕ

t,µt)]−1 in Ck as well. To conclude as before by the implicit function theorem, we have to differentiate
G with respect to t and bound the Ck norm of DtG(ϕ

t, t) by a constant depending on c times ∥µ−ν ∥H−p . To
simplify notations, let us set

ξi(ϕ, t)(xi) :=
1∫

X−i
e−c(xi,x−i)+

∑
j ̸=i ϕj(xj)dµt

−i(x−i)

and observe that ξi(ϕ
t, t)(.) has uniformly bounded derivatives up to order k (with bounds that depend on

∥c∥Ck only). If N = 2, we simply have

DtG1(ϕ, t)(x1) = ξ1(ϕ, t)(x1)

∫
X2

e−c(x1,x2)+ϕ2(x2)d(ν2 − µ2)(x2).

By Leibniz formula to bound the k first derivatives of DtG1(ϕ
t, t)(x1), we then just have to bound the k first

derivatives of x1 ∈ X1 7→
∫
X2

e−c(x1,x2)+ϕt
2(x2)d(ν2 − µ2)(x2) which are obviously controlled by ∥ν2 − µ2∥H−p

times the Ck+p norm of (x1, x2) 7→ e−c(x1,x2)+ϕt
2(x2) which can in turn be bounded by a constant only depending

on ∥c∥Ck+p . Proceeding in the same way for x2 7→ DtG2(ϕ
t, t)(x2) gives the desired result. The case N ≥ 3 is

slightly more tedious to write, for a fixed pair of indices i ̸= j, we denote by X−(i,j) the cartesian product of all
the Xl but i and j, and write x ∈ X as x = (xi, xj , x−(i,j)) ∈ Xi ×Xj ×X−(i,j), likewise we write µt

−(i,j) for the
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tensor product of µt
l for l ̸= i, l ̸= j. Doing so, we have

DtGi(ϕ, t)(xi) = ξi(ϕ, t)(xi)
∑
j ̸=i

∫
Xj

hij(ϕ, t)(xi, xj)d(νj − µj)(xj)

where

hij(ϕ, t)(xi, xj) :=

∫
X−(i,j)

e−c(xi,xj ,x−(i,j))+ϕj(xj)+
∑

l ̸=i,l ̸=j ϕl(xl)dµt
−(i,j)(x−(i,j))

so that by the same arguments as before, if α ∈ Nd with |α| ≤ k, we have for a constant C only depending on
N and the Ck+p norm of c, possibly varying from one line to another:

|∂αDtGi(ϕ
t, t)(xi)| ≤ C

∑
j ̸=i

∥µj − νj∥H−p(Xj)∥∂
α
xi
hij(ϕ

t, t)(xi, .)∥Hp(Xj) ≤ C∥µ−ν ∥H−p .

This enables us to conclude exactly as in the end of Section 3.3.

4. Smoothness of entropic optimal transport and Wasserstein
gradient flows

In this section, we apply our main stability results to the analysis of Wasserstein gradient flows of functionals
involving the entropic optimal transport functional E.

4.1. Displacement smoothness and gradient flows

Let µ0,µ1, γ,µt and ϕt be as in the beginning of Section 2.3. A consequence of Theorem 2.3 is that the
functional E is as nice as one could hope for in the Wasserstein space.

Theorem 4.1. If c ∈ C2k−1(X ) for some k ≥ 1, then the function t 7→ E(µt) is of class Ck. Moreover, if
c ∈ C2(X ) then its derivative is C cost(γ)-Lipschitz, for some C > 0 that only depends on N and ∥c∥C2 . In
particular both E and −E are (−C)-displacement convex.

Proof. It follows from the dual formulation (2.2) that µ 7→ E(µ) is a convex function of ⊗iµi (eventhough E is

not convex) by optimality of ϕt in this dual formulation E, setting Vt(x) := e−c(x)+
∑N

i=1 ϕt
i(xi) it holds that for

every t and s in [0, 1], one has

∑
i

∫
Xi

ϕti(µ
s
i − µt

i)−
∫
X
Vt(⊗iµ

s
i −⊗iµ

t
i) ≤ E(µs)−E(µt) ≤

∑
i

∫
Xi

ϕsi (µ
s
i − µt

i)−
∫
X
Vs(⊗iµ

s
i −⊗iµ

t
i) (4.1)

Using the notation xti = (1− t)xi + tyi as before, remark that

∫
Xi

ϕtid(µ
s
i − µt

i) =

∫
X 2

i

(
ϕti(x

s
i )− ϕti(x

t
i)
)
dγi(xi, yi)

= (s− t)

∫
X 2

i

(yi − xi)
⊤∇ϕti(xti)dγi(xi, yi) + o(|s− t|).
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We now claim that the second term in the left hand side of (4.1) is o(|s − t|). To prove this, we shall for
notational simplicity restrict ourselves to the case N = 2 (the general case is similar but more tedious),

∫
X
Vt(µ

s
1 ⊗ µs

2 − µt
1 ⊗ µt

2) =

∫
X
Vt(µ

t
1 ⊗ (µs

2 − µt
2) + (µs

1 − µt
1)⊗ µt

2) +

∫
X
Vt(µ

s
1 − µt

1)⊗ (µs
2 − µt

2)

the first term in the right-hand side is 0 because the integral of Vt(., x2) (respectively Vt(x1, .) with respect to µt
1

(respectively µt
2) is constant equal to 1 and µs

2 and µt
2 (respectively µs

1 and µt
1) have the same total mass. We are

therefore left to show that the second term is o(|t− s|). Defining for x1 ∈ X1, ξs,t(x1) :=
∫
X2
Vt(x1, .)(µ

s
2 − µt

2)

and observing that since the 1-Wasserstein distance between µs
2 and µt

2 is bounded by M |t− s| where M is the
diameter of X2, it follows from the Kantorovich-Rubinstein inequality that

|
∫
X
Vt(µ

s
1 − µt

1)⊗ (µs
2 − µt

2)| ≤M |t− s| ∥∇ξs,t∥C0(X1).

Writing ∇ξs,t(x1) as

∇ξs,t(x1) = ∇ϕt1(x1)ξt,s(x1)−
∫
X2

Vt(x1, .)∇x1
c(x1, .)(µ

s
2 − µt

2)

we deduce from the uniform continuity of ∇x1
c and Vt and the weak ∗ continuity of s 7→ µs

2 that ∇ξs,t converges
uniformly to 0 as s→ t, hence that

∫
X
Vt(µ

s
1 − µt

1)⊗ (µs
2 − µt

2) = o(|s− t|).

Thus dividing equation (4.1) by |s− t| and using that ϕs → ϕt in C̃1 as s tends to t, we get:

d

dt
E(µt) =

N∑
i=1

∫
Xi×Xi

(yi − xi)
⊤∇ϕti(xti)dγi(xi, yi). (4.2)

From Theorem 2.3, we know that t 7→ ϕt is in Ck−1([0, 1], C̃k) (note that the case k = 1 is instead a consequence
of Prop. 2.2) and hence t 7→ ((xi, yi) 7→ ∇ϕt

i(x
t
i)) is in Ck−1([0, 1], C0(Xi ×Xi)).

It follows that h : t 7→ E(µt) ∈ Ck([0, 1]). Notice how this argument uses the two notions of regularity of the
Schrödinger map (indexed by p and k in Them. 2.3).

For the Lipschitz regularity of h′, fixing s, t ∈ [0, 1], one has

|h′(t)− h′(s)| ≤

∣∣∣∣∣
N∑
i=1

∫
Xi×Xi

(yi − xi)
⊤(∇ϕti(xti)−∇ϕsi (xsi )

)
dγi(xi, yi)

∣∣∣∣∣
≤

N∑
i=1

∫
Xi×Xi

∥yi − xi∥∥∇ϕti(xti)−∇ϕti(xsi )∥dγi(xi, yi)

+

N∑
i=1

∫
Xi×Xi

∥yi − xi∥∥∇ϕti(xsi )−∇ϕsi (xsi )∥dγi(xi, yi).
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Now, if c ∈ C2(X ), using the Lipschitz regularity of xi 7→ ∇ϕti(xi) and of t 7→ ∇ϕt, from Theorem 2.3, it follows
that

∥∇ϕti(xti)−∇ϕti(xsi )∥ ≤ C|t− s|∥yi − xi∥ and ∥∇ϕti(xsi )−∇ϕsi (xsi )∥ ≤ C|t− s|
√
cost(γ),

for some C that only depends on N and ∥c∥C2 . Then, we obtain

|h′(t)− h′(s)| ≤ C|t− s|
N∑
i=1

∫
Xi×Xi

∥yi − xi∥2dγi(xi, yi)

+ C|t− s|
√
cost(γ)

N∑
i=1

∫
Xi×Xi

∥yi − xi∥dγi(xi, yi)

≤ C|t− s| cost(γ).

In particular, this implies that t ∈ [0, 1] 7→ h(t) + C cost(γ)
2 t2 is convex hence

E(µt) ≤ (1− t)E(µ0) + tE(µ1) +
C cost(γ)t(1− t)

2

and displacement semi-convexity follows by choosing γi to be an optimal transport plan between µ0
i and µ1

i

for each i ∈ [N ] (see [38] for a definition). Displacement semi-convexity of −E is obtained in the same way,

observing that t ∈ [0, 1] 7→ −h(t) + C cost(γ)
2 t2 is convex.

Proposition 4.2. If c ∈ C1(X ), we have that S(µ) is the gradient of µ 7→ E(µ) and x 7→ ∇xS(µ)(x) is its

Wasserstein gradient, in the sense of [38] i.e. for µ0 and µ1 in
∏N

i=1 P(Xi) and for any γi optimal plan between
µ0
i , and µ

1
i , one has

E(µ1)− E(µ0) =

N∑
i=1

∫
Xi×Xi

(yi − xi)
⊤∇ϕi(xi)dγi(xi, yi) + o(W2(µ

0,µ1))

where ϕ := S(µ0). If c ∈ C2(X ) then the error o(W2(µ
0,µ1)) is in fact O(W2(µ

0,µ1)2).

Proof. For the case c ∈ C1(X ), this follows by integrating (4.2) in time and Proposition 2.2(ii), which guarantees
that S is weakly continuous as a function in C̃1. For the case c ∈ C2(X ), this follows from (4.2) and Theorem 2.3.

Theorem 4.1 and the above identification of the Wasserstein gradient of E enable us to deduce from [38],
Theorem 11.2.1 that E admits a unique Wasserstein gradient flow, which shows well-posedness of the Cauchy
problem for the system of PDEs {

∂tµi = ∇ · (µi∇Si(µ)), i ∈ {1, . . . , N}
µ |t=0 = µ0

This system, as all the PDEs below, is understood in the sense of distributions with no-flux boundary conditions,
i.e. for i ∈ {1, . . . , N}, for every ψ ∈ C∞

c ([0,+∞)× Rd) it holds∫ ∞

0

∫
Xi

(
∂tψ(t, xi) +∇Si(µ)(xi)

⊤∇xi
ψ(t, xi)

)
dµt

i(xi)dt = −
∫
Xi

ψ(0, xi)dµ
0
i (xi).
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We also have that the fact that the gradient flow map µ0 7→ µt satisfies

W2(µ
t,νt)2 ≤ eCt W2(µ

0,ν0)2.

Of course, adding to E a separable term of the form
∑N

i=1Ei(µi) where each Ei is displacement semi-convex,
we can deduce well-posedness for more general systems like

∂tµi − αi∆µi −∇ · (µi∇Si(µ)) = 0, i = 1, . . . , N, µ |t=0 = µ0

or

∂tµi − αi∆µ
mi
i −∇ · (µi∇Si(µ)) = 0, i = 1, . . . , N, µ |t=0 = µ0

withmi ≥ 1 and αi ≥ 0. For the sake of concreteness, we are going to detail three such examples with interesting
additional structure in the next paragraphs.

4.2. Wasserstein gradient flow of the Sinkhorn divergence

We consider the Sinkhorn divergence functional [16], the gradient flow of which has been previously considered
as a numerical method for density fitting. As a consequence of our analysis and of [38], Theorem 11.2.1 we have
the following result.

Proposition 4.3. Let X ⊂ Rd be a compact convex set, c ∈ C2(X × X ) and let µ0, ν ∈ P(X ). There exists a
unique Wasserstein gradient flow starting from µ0 of the Sinkhorn divergence (from ν) functional

µ 7→ E(µ, ν)− 1

2
E(µ, µ)− 1

2
E(ν, ν).

Here, a Wasserstein gradient flow is a curve (µt)t≥0 ∈ P(X ) that is absolutely continuous for the W2 metric
and that satisfies

∂tµ
t = ∇ · (vtµt), vt = ∇S1(µ

t, ν)− 1

2
(∇S1(µ

t, µt) +∇S2(µ
t, µt)), µ|t=0 = µ0 (4.3)

where we recall that S is the Schrödinger map.
An interesting open question is whether this dynamics can be provably shown to converge to the unique

minimizer µ∗, which is µ∗ = ν for suitable choices of costs, e.g. for c(x, y) = ∥y − x∥2, as proved in [16].

4.3. Convergence to equilibrium for the Schrödinger bridge energy

Let us continue with another simple example that shows that our theory is also natural to deal with the
Lebesgue measure as a reference in the definition of E equation (1.1), which is the original definition of the
Schrödinger bridge problem. This alternative definition is equivalent (see e.g. [32]) to considering E +H where
H(µ) :=

∫
log(µ)dµ if µ is absolutely continuous and +∞ otherwise is minus the differential entropy.

Proposition 4.4. Let X ⊂ Rd be a compact convex set, c ∈ C2(X × X ) and let µ0, ν ∈ P(X ). There exists a
unique Wasserstein gradient flow of

µ 7→ E(µ, ν) +H(µ)
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starting from µ0. Moreover, if H(µ0) <∞ then this gradient flow converges at an exponential rate to the unique
global minimizer µ∗. Specifically, there exists κ > 0 independent of µ0, ν such that

F (µt)− F (µ∗) ≤ e−κt(F (µ0)− F (µ∗)).

In addition, there exists a constant C > 0, independent of µ0, ν such that

W2(µ
t, µ∗)2 ≤ Ce−κt(F (µ0)− F (µ∗)).

For this functional, the Wasserstein gradient flow (µt)t≥0 ∈ P(X ) solves

∂tµ
t = ∇ · (vtµt) + ∆µt, vt = ∇S1(µ

t, ν). (4.4)

Proof. We have semi-convexity along Wasserstein geodesics, by Theorem 4.1 for the first component and by a
standard result due to Mc Cann [37] (see [2], Thm. 7.28) for the H component. Thus the general well-posedness
results from [38], Theorem 11.2.1 applies. For the exponential convergence – in function value and in distance –
we apply the result from [39], Theorem 3.2, see also [40] where the same argument was discovered independently
(although stated on Rd, the argument goes through on a compact domain).

The main assumptions to check are that (i) µ 7→ E(µ, ν) is convex, which is clear from the dual formulation
equation (2.2) which expresses this functional as a supremum of affine forms, (ii) that a global minimizer µ∗

exists, which is not difficult here since P(X ) is weakly compact, H is weakly lower-semicontinuous and E is

weakly continuous and finally we need to check that the probability measure µ̂t ∝ e−S1(µ
t,ν) ∈ P(X ) satisfies a

log-Sobolev inequality, uniformly in t (Asm. 3 in [39]).
Since X is bounded, the normalized Lebesgue measure satisfies a log-Sobolev inequality [41], Theorem 7.3. By

the Holley-Stroock perturbation criterion [42] (see [41], Lem. 1.2), µ̂t satisfies it as well; this criterion applies here
because supx S1(µ, ν)(x)− infx S1(µ, ν)(x) is bounded, uniformly in µ, ν ∈ P(X ) by Prop. 2.2. The convergence
in Wasserstein distance is stated in [39], Corollary 3.3 and follows from the fact that log-Sobolev inequalities
imply Talagrand inequalities [43], Theorem 1.

4.4. Convergence to equilibrium in the multi-species case

We now consider Wasserstein gradient flow of3

F (µ) := E(µ) +

N∑
i=1

H(µi), µ = (µ1, . . . , µN ) ∈
N∏
i=1

P(Xi)

that is

∂tµi −∆µi −∇ · (µi∇Si(µ)) = 0, i = 1, . . . , N, µ |t=0 = µ0 . (4.5)

Up to adding a constant to c (which does not affect the dynamics (4.5)) we may assume that∫
X
e−c(x)dx = 1. (4.6)

3Note that F (µ) can also be written as the value of an entropic optimal transport problem but with the Lebesgue measure as
reference measure i.e. F (µ) = minγ∈Π(µ)

∫
X c(x)dγ(x) +H(γ).
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With this normalization, we have

inf
µ∈

∏N
i=1 P(Xi)

F (µ) = inf
γ∈P(X )

H(γ|e−c) = 0

so that F admits µ∗, the marginals of γ∗ := e−c, as unique minimizer

µ∗
i (xi) =

∫
X−i

e−c(xi,x−i)dx−i (4.7)

for every i and xi ∈ Xi and F (µ
∗) = 0. In the next proposition, we extend Proposition 4.4 to the multi-species

case. In this case, the functional µ 7→ E(µ) is not convex anymore but we can overcome this difficulty taking
advantage of the form of F .

Proposition 4.5. Let µ0 ∈
∏N

i=1 P(Xi). Then there exists a unique Wasserstein gradient flow of F starting
from µ0, that we call µt. Assume that H(µ0

i ) < +∞ for every i, then µt converges at an exponential rate to the
equilibrium µ∗, defined in equation (4.7), i.e. there exists κ > 0 independent of µ0 such that

F (µt)− F (µ∗) ≤ e−κt(F (µ0)− F (µ∗)).

In addition, there exists a constant C > 0, independent of µ0, such that

W2(µ
t,µ∗)2 ≤ Ce−κt(F (µ0)− F (µ∗)).

Proof. The well-posedness of the Wasserstein gradient flow is proved as previously using the geodesic semi-
convexity of F that follows from Theorem 4.1. For the convergence, first note the identities

E(µ) =

N∑
i=1

∫
Xi

Si(µ)dµi, F (µ) =

N∑
i=1

H(µi|e−Si(µ))

which hold for any µ ∈
∏N

i=1 P(Xi) and easily follow from (2.2) and (2.5). Let us then remark that, denoting
by γ(µ), the optimal entropic plan

dγ(µ)(x) := e−c(x)+
∑N

i=1 Si(µ)(xi)dµ1(x1) · · · dµN (xN )

and recalling that γ∗ = e−c we can conveniently rewrite F as a relative entropy with respect to the fixed
probability measure γ∗ on X :

F (µ) = H(γ(µ)|γ∗).

Since H(µ0
i ) < +∞ for every i, and denoting by µt the Wasserstein gradient flow of F starting from µ0, we

have using the chain rule, (4.5) and an integration by parts:

d

dt
F (µt) =

N∑
i=1

∫
Xi

(Si(µ
t) + log(µt

i))∂tµ
t
i = −

N∑
i=1

∫
Xi

∥∇ logµt
i +∇Si(µ

t)∥2dµt
i

= −
N∑
i=1

Ii(µ
t
i|e−Si(µ

t))
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where Ii(ρ|e−V ), for ρ ∈ P(Xi), stands for the relative Fisher information

Ii(ρ|e−V ) :=

∫
Xi

∥∥∥∇ log
( ρ

e−V

)∥∥∥2 dρ.
Defining γt := γ(µt), we have F (µt) = H(γt|γ∗) and

I(γt|γ∗) :=
∫
X

∥∥∥∥∇x log
( γt(x)
e−c(x)

)∥∥∥∥2 dγt(x) = ∫
X

N∑
i=1

∥∥∇xi
(log(µt

i(xi)) + Si(µ
t)(xi))

∥∥2 dγt(x)
=

N∑
i=1

Ii(µ
t
i|e−Si(µ

t))

where we used the fact that γt ∈ Π(µt) in the last line. But since X is convex, it follows from the Holley-Stroock
perturbation criterion [42] (see [41], Lem. 1.2), that γ∗ satisfies a log-Sobolev inequality, hence

I(γt|γ∗) ≥ κH(γt|γ∗)

with κ > 0 depending only on X and c. We thus have

d

dt
F (µt) =

d

dt
H(γt|γ∗) = −I(γt|γ∗) ≤ −κH(γt|γ∗) = −κF (µt)

hence

F (µt) ≤ e−κtF (µ0).

Thanks to Talagrand’s inequality, which follows from the log-Sobolev inequality [43], Theorem 1, we get an
exponential decay of W2(γt, γ

∗) hence also an exponential decay in Wasserstein distance between the marginals
of γt and γ∗ i.e. of W2(µ

t,µ∗).
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