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Tackling Interpretability in Audio Classification
Networks with Non-negative Matrix Factorization

Jayneel Parekh, Sanjeel Parekh, Pavlo Mozharovskyi, Gaél Richard, Florence d’Alché-Buc

Abstract—This paper tackles two major problem settings for
interpretability of audio processing networks, post-hoc and by-
design interpretation. For post-hoc interpretation, we aim to in-
terpret decisions of a network in terms of high-level audio objects
that are also listenable for the end-user. This is extended to
present an inherently interpretable model with high performance.
To this end, we propose a novel interpreter design that incor-
porates non-negative matrix factorization (NMF). In particular,
an interpreter is trained to generate a regularized intermediate
embedding from hidden layers of a target network, learnt as time-
activations of a pre-learnt NMF dictionary. Our methodology
allows us to generate intuitive audio-based interpretations that
explicitly enhance parts of the input signal most relevant for a
network’s decision. We demonstrate our method’s applicability
on a variety of classification tasks, including multi-label data for
real-world audio and music.

Index Terms—Audio interpretability, explainability, by-design
interpretable models, audio convolutional networks, non-negative
matrix factorization

I. INTRODUCTION

Deep learning models, while state-of-the-art for several
tasks in domains such as computer vision, natural language
processing and audio, are typically not interpretable. Their
increasing use, in decision-critical domains, in every-day ap-
plications, raises the problem of interpreting their decisions.
This issue has been grappled with in two different ways by
the research community. The first one relies on the availability
of a predictive model trained and optimized for performance
but not for interpretability and aims to devise an additional
approach to interpret the given model. This problem setting
is usually referred to post-hoc interpretation. While highly
popular in the research community, post-hoc interpretation
methods, have been criticised recently for being potentially
misleading or unreliable in a variety of contexts [1]-[4].
Consequently, it has led to increasing importance of another
problem setting with the goal to build predictive models that
are interpretable. This has specially been argued to be crucial
for critical decision-making applications [5], [6]. The chal-
lenge then is to demonstrate high classification performance
while maintaining interpretability in the same model. This
setting is often referred to as by-design interpretation problem.
Real-world scenarios of utilizing interpretability of networks
can occur under variety of constraints and demands regarding
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deployment, level of interpretability and performance. Thus,
from a practical standpoint, both problem settings hold inde-
pendent value.

In this paper, our aim is to address both problems for audio
classification networks while proposing a system more suited
for understanding interpretations for audio modality than other
common methods in literature.

An ideal interpreter is supposed to offer insights about a
model’s decision in an understandable fashion to humans. In
the case of audio classification, there are certain desirable
traits for an interpreter that effectively help to fulfil this
purpose. Firstly, we advocate that the interpretations should
be generated in terms of high-level audio objects. Even more
importantly, the interpretation should be listenable for an end-
user. The rationale behind posing these traits as desirable is as
follows: Audio scenes are often composed of multiple high-
level audio objects [7]. Moreover, understanding events/scenes
through the notion of audio objects also aligns with cognitive
development in human and animals [8], [9]. Listenability is
essential since it is significantly more intuitive and easier to
listen to an interpretation rather than visualizing it in its time-
frequency representation (eg. spectrogram). Its utility to users,
even for multimodal applications has previously been argued
in [10]. Usefulness for both the traits can be reinforced through
an example. Imagine an audio-based surveillance system for
a house raising an alarm for break-in. An interpreter can be
expected to be able to localize the event among a host of
concurrent events that triggered the alarm. If for example
"glass-breaking’ is the triggering event that the interpreter
recognizes in the input, a human would find it easier to
understand, if they can hear the interpretation rather than
visualize it on a spectrogram.

To this end, we propose an interpreter that relies on pro-
cessing selected hidden representations of the classifier by a
neural network to extract an intermediate embedding. This
intermediate encoding is regularized in multiple ways, the two
essential ones being: (i) Mimicking the classifier output to be
able to interpret its decisions, and (ii) Reconstruct the input
through the help of a dictionary of spectral patterns. The latter
loss and its design is strongly inspired by the structure in Non-
negative Matrix Factorization (NMF, [11]), known to provide
part-based decompositions. The loss is crucial in imposing a
highly understandable meaning of “time activations” on the
intermediate embedding. This decomposition structure also
allows the interpreter to benefit from filtering information from
the input. It’s worth emphasizing that audio interpretability
is not the same as classical tasks of separation or denoising.
These tasks involve recovering complete object of interest in
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the output audio. On the other hand, a classifier network might
focus more on salient regions. When interpreting its decision
and making it listenable we expect to uncover such regions
and not necessarily the complete object of interest.

This paper builds upon our work on post-hoc interpretability
[12]. Tt differs in two significant ways:

o In addition to post-hoc, we present a novel by-design
interpretable neural architecture that is one of the first
such systems apart from prototypical networks [13]. Our
proposed network achieves state-of-the-art performance
among interpretable models for audio. Moreover, it marks
an important step to bridge the performance gap be-
tween state-of-the-art audio classification models and
interpretable audio classifiers on highly complex tasks.
To do so, we modify the training procedure to allow the
hidden layers of the classifier to be fine-tuned, and apply
a classification loss at its output.

o Our prior application focus was limited to object/event
detection tasks to outdoor audio. We extend the appli-
cability of our design and demonstrate the utility of the
proposed methods on music data. In particular, we present
results on the largest non-synthetic publicly available
polyphonic (non-synthetic) music instrument recognition
dataset, OpenMIC-2018 [14].

In summary, our aforementioned contributions help us in
building a holistic approach that generates listenable concept-
based interpretations to tackle post-hoc and by-design in-
terpretability for audio classification networks. Our system’s
learning relies on an original formulation that constrains the
interpreter encoding through two loss functions, one for input
reconstruction through NMF dictionary and the other for
fidelity to the network’s decision. From a learning perspective,
it is a novel way to link NMF with deep neural networks,
especially for generating interpretations. We extensively eval-
uate on a diverse set of audio event analysis benchmarks,
tackling both multi—class and multi-label classification tasks.
Our method’s design allows us to simulate feature removal
and perform faithfulness evaluation.

II. RELATED WORKS

We organize the discussion about literature in three parts.
We first cover interpretability works in a broad sense, followed
by audio specific methods. We conclude the section by dis-
cussion on applications of NMF to audio signal processing.

A. General Interpretability literature

Feature attribution: The vast majority of interpretability
literature is covered under feature attribution methods. They
are a class of methods which offer interpretations through
input feature importance or selection. In case of post-hoc
interpretation, this includes perturbation based approaches
[15]-[17], as well as saliency map based approaches [18]—
[22]. Perturbation based approaches rely on observing model
output on many locally perturbed versions of the input to
determine importance of each individual feature for the de-
cision. Part of the research challenge for these methods is to
define “meaningful” perturbations [23]. Saliency map based

approaches typically generate interpretations through modified
gradient backpropagation [18], [21], but some also utilize
upsampled versions of intermediate activation maps [20], [22].
This form of interpretation is also common for by-design
interpretable models. Common ways of training such models
involve modifying the architecture, loss function (or both) to
incorporate interpretability in the model.

Interpretation beyond attribution: Feature attribution
methods have been under scrutiny for their robustness and
faithfulness [1], [2]. This has overlapped with increasing
amount of research for both post-hoc and by-design inter-
pretation models to develop systems that offer interpretations
through different means. Prior research has now proposed
systems that provide interpretations via logical rules [24],
counterfactuals [25] and even natural language [26]. Each
of them can potentially be a more suited choice for certain
problem domains and use-cases. Our approach uses high-
level audio objects for interpretation. This aspect renders it
closer to prototype and concept-based approaches. Prototype-
based approaches [27], [28] tackle by-design interpretability
by learning a predefined number of embeddings which are
encouraged to represent singular training datapoints. The final
classification decision is made based on similarity of given test
sample to all the prototypes. Concept-based approaches aim to
represent high-level concepts explicitly and subsequently offer
interpretation in terms of them. An interesting approach is that
of FLINT [29] with whom we share the idea of utilizing the
hidden layers and loss functions to encourage interpretability.
However we crucially differ from FLINT and other related
approaches in concept representation and their applicability
for audio interpretations. FLINT represents concepts by a
dictionary of attribute functions over input space. The learnt
concepts are not obviously comprehensible to a user, requiring
a separate visualization pipeline to get insights. Approaches
based on TCAV [30], such as ACE [31], ConceptSHAP [32],
define concept using a set of images and learn a representation
for it in terms of hidden layers of the network, termed as
concept activation vector (CAV). These designs for concepts
are not related to our NMF-inspired dictionary representation.
Importantly, none of the above mentioned approaches can
generate listenable interpretations which is key for understand-
ability of audio processing networks.

B. Audio Interpretability

Compared to literature in other domains like text or images,
work on interpretability with audio signals is considerably
sparse. Usefulness of saliency-map based methods for audio
interpretability has been illustrated by prior works. Becker et
al. [33] demonstrate the use of popular Layerwise Relevance
Propagation (LRP) [21] algorithm for audio digit recognition
task. Won et al. [34] highlight the use of attention for music
tagging task. Muckenhirn et al. [35] use GuidedBackprop [18]
to analyze CNNs operating on 1D waveform. However, these
methods do not address the issue of listenability of interpre-
tations and moreover are limited to post-hoc interpretation. A
few works based on the LIME algorithm [15] have attempted
to address this issue. SLIME [36], [37] proposed to segment
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the input along time or frequency. The input is perturbed by
switching “on/off” the individual segments. AudioLIME [38],
[39] proposed to separate the input using predefined sources to
create the simplified representation. AudioLIME arguably gen-
erates more meaningful interpretations than SLIME as it relies
on audio objects readily listenable for end-users. However, it
suffers from limited applicability, requiring existence of known
and meaningful predefined sources that compose the input
audio. Schuller et al. [10] discussed in detail the various re-
search themes surrounding sonification of explanations. More
recently, [40] extended the idea of TCAV to represent concepts
in music data. The supervised approach requires the overhead
of human annotation of concepts, whereas the unsupervised
approached based on non-negative tensor decomposition faces
the challenge of meaningful learning of concepts. APNet [13]
proposes an interpretable system by-design that extends proto-
typical networks [27], [28] for audio input by defining a more
suitable distance measure for audio prototypes. An advantage
of our approach over all the previous methods is its ability to
address both post-hoc and by-design problem settings. Another
unique feature of the approach is its means of generating
interpretations, relying on a dictionary of NMF components
for the same. From the point of view of interpretability, this
is a novel strategy to gain insights about a model.

C. NMF applications for audio

NMF is a data decomposition technique popularized by Lee
and Seung [11] as a method to learn “parts of an object”.
It has since been used widely within the audio community
to tackle source separation [41], denoising [42], inpainting
[43] and transcription [44], [45]. Typically, a nonnegative
time-frequency audio representation is decomposed into two
nonnegative factors namely, spectral patterns or dictionary
matrix and their time activations. Its traditional usage as
a supervised dictionary or feature learning method involves
learning class-wise dictionaries over training data [46]. Time
activations, the so-called features, can then be generated for
any input by projecting it onto the learnt dictionaries. These
features can subsequently be used for downstream tasks such
as classification. In this section we focus on prior works that
combine NMF with deep architectures.

Bisot et al. [47] couple NMF-based features with neural
networks to boost performance of acoustic scene classification.
NMF has also been successfully employed with audio—visual
deep learning models for separation [48] and classification
[49].

Iterations of NMF optimization algorithms can be unfolded
as novel deep neural networks. This observation has led
to development of “Deep NMF” methods. In particular, Le
Roux et al. [50] unfold the multiplicative updates of NMF
parameters into a deep network for speech separation. Wisdom
et al. [51] apply this strategy to iterative soft thesholding
algorithm to propose deep recurrent NMF.

While these works share with us the high-level idea of com-
bining neural networks and NMF, there is no overlap between
our goals and methodologies. Unlike aforementioned studies,
we wish to investigate a classifier’s decision using NMF as a

regularizer. Furthermore, to our best knowledge, attempting
to regress temporal activations of a fixed NMF dictionary
by accessing intermediate layers of an audio classification
network is novel even within the NMF literature.

III. SYSTEM DESIGN

We organize this section as follows: We start with a brief
note on notation used throughout the paper. We describe the
setup of our framework to address post-hoc interpretation in
section III-B. This is extended to address by-design interpreta-
tion in section III-C. We expound on the specific architectural
details common to both problem settings in section III-D and
conclude the section by detailing how we generate interpreta-
tions with our design in section III-E.

A. Data Notation

We denote a training dataset by S := (x,y)Y |, where x € X
is the time domain audio signal and y € ), a label vector. The
label vector could be a one-hot or binary encoding depending
upon a multi-class or multi-label dataset, respectively. For
listenable interpretations through NMF, we favor a represen-
tation of x that can be easily inverted back to the time-
domain and use a log-magnitude spectrogram X € RI*T
that is computed by applying an element-wise transformation
xo — log(1l + xg) on the magnitude spectrogram with F
frequency bins and 7' time frames. This is preferred over
using magnitude spectrograms as it corresponds more closely
to human perception of sound intensity [52]. A deep neural
network classifier for post-hoc interpretations is denoted as

f: X =)

B. Post-hoc Interpretation

When addressing the problem of post-hoc interpretation, the

classifier f will be pre-trained and then fixed throughout. We
describe now the components of the interpreter and what are
its inputs and outputs.
Overview The system design is illustrated in figure 1. The
interpreter is designed to have access to hidden representations
of the classifier and is tasked to produce an intermediate
embedding through the function W. This embedding is placed
under certain constraints via function © and a pre-learnt
dictionary of NMF components W. These constraints impose
a highly meaningful structure on the embedding and help
in interpreting the decision f(x). We discuss the constrains,
which form the core of our approach, in this subsection. The
precise architectures of ¥ and © and optimization problem
used to pre-learn W are covered later in Sec. III-D.

Specifically, hidden layer outputs of the classifier f, taken
as input by the interpreter, are denoted as fz(x) € Z. They are
processed through the function ¥ : Z — Rf *T modelled as
a neural network. This produces an intermediate encoding. For
simplicity, we will denote this encoding generated from hidden
layers as Hz(z) = W o fz(x), a function over input x. The
constraints on this encoding, implemented as loss functions
are as follows:

Loss 1 (Fidelity loss): To be able to identify the relevant
signal for interpretation, we constrain Hz(x) to approximate
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Classifier fI(x)
T
Interpreter Lymr
/ HI(CC‘)

Fig. 1: System overview: The core design common to both post-hoc and by-design interpretation. The interpreter (indicated
in blue) accesses hidden layer outputs fz(x) of the classifier. These are used to predict an intermediate encoding Hz(z) via
a network W. Through regularization terms Lnvr and Lgp, we encourage this encoding to both mimic the classifier’s output

(through the network ©) and also serve as the time activations

of a pre-learnt NMF dictionary W. In post-hoc interpretation,

the classifier is pre-trained and fixed, and only the interpreter is trained. For by-design interpretation we train both jointly and

make final predictions using output of interpreter.

classifiers output probabilities f(x) through the function © :
RE*T — Y. The term ©(Hz(x)) is also referred to as
interpreter’s output. We implement this constraint as a loss
function by minimizing the generalized cross-entropy loss
between ©(Hz(z)) and f(x). We refer to it as the fidelity
loss Lpp. Denoting the parameters of ¥, © as Vi, Vg, for
multi-class classification the loss can be written as,

—f ()T log(©(Hz(x))) (1)
On the other hand, for multi-label classification this loss reads,

Lep (7, Ve, Vo) = — Z f(z) ©log(6(Hz(x)))
+ (1 - f(z)) ©log(1 — ©(Hz(x))).

Here © denotes element-wise multiplication.

Loss 2 (Reconstruction loss): We additionally constrain
Hz(z) to be able to reconstruct the input audio using pre-
learnt dictionary W € REXK . This constraint asks to decom-
pose input log-magnitude spectrogram as X ~ WHz(x), that
is, a product of two non-negative matrices. This loss is based
on popular non-negative matrix factorization. Crucially, this
allows us to consider Hz(z) as a time activation matrix for
W. We refer to this as the reconstruction loss, denoted as

ﬁFlD(x, Va, V@)

2

ﬁNMF-

Lawr(, V) = [|X — WHZ(2)]3. 3)

Loss 3 (Sparsity loss): In addition to Lgp and Lnwmg,
we impose ¢; regularization on Hz(z) to encourage well-
behavedness, especially for large dictionary sizes [53].
Training optimization. The complete loss function over our
training dataset S can thus be given as:

L(Vg,Ve) = Z L (2, Vo, Vo)+alnve(z, Vi )+5||Hz(z)|
zeS
4

where «, 8 > 0 are loss hyperparameters. All the parameters
of the system are constituted in the functions ¥, © and dictio-
nary W. Since W is pre-learnt and fixed, the training loss L is
optimized only w.r.t Viy, Vo. As a reminder, when training the
interpreter for post-hoc analysis, the classifier network is kept
fixed. The final optimization problem addressed for post-hoc
interpretation writes as follows:

v,0= argrqgl’lgﬁ(Vq/,Ve) ©))

C. By-design Interpretation

Interestingly, the same framework can also be utilized to
train an inherently interpretable model. As a first step, we
propose the following function to be used for making final
predictions

g: X =Y, g9(x) =00To fr(x)

which is a mixture of interpreter and classifier layers. One
might be tempted to employ the same training mechanism
for by-design problem as done for post-hoc interpretation.
However, there is a difference in the problem setting that poses
a crucial challenge. Namely, the classifier layers are not trained
for prediction as before. This implies that we cannot simply
aim to generate meaningful representations from it as is.

To remedy the difficulty, we modify the training in two
different ways: (i) Layers of f are now modified by back-
propagating all interpreter losses to them, and thus are now
jointly trained with the interpreter. (ii) We modify the loss

|1function to include an additional prediction loss on the output
f () to train all the layers in f. The training loss function and
optimization problem are written as follows:
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Lz, Vi) =—yTlog(f(x))
Lxme (2, Vi, Vi) = [ X — WHz(z) |3
Lep(x, Vo, Ve, V) = —f(2)T log(0(Hz(x)))

L(Va,Vo,Vy) =Y Le(x,Vy) +vLrw(z, Va, Vo, Vy)
zeS

+a£NMF(‘T>VW7Vf)+BHHI($)||1
0,0, f= i
,0, f = arg qgl}é{lfﬁ(qu, Ve, Vy)

A reader might question the need for applying a prediction
loss at output of f when the function g described above is
proposed to make final predictions. This is indeed a reasonable
variant of our current choice and we resolve this issue by
comparing the performance of both systems in experiments in
section V-D

D. Filling the gaps

It should be noted that the network architectures and other
implementation details remain the same in both problem
settings. We now cover the remaining architectural details of
¥, O and the algorithm for pre-learning W.
Design of ¥. The network U is tasked with producing
the encoding Hz(z) € Rf *T" from the set of convolutional
feature maps of the classifier, given by fz(z). These feature
maps potentially originate from different layers and thus can
be of different resolutions. To perform joint processing on
them, each one is first appropriately transformed to ensure
same width and height dimensions. The subsequent layers
process these maps through some convolutional (with ReLU
activation) and resampling layers. However, this composition
is based on certain important aspects. Firstly, audio feature
maps of CNNs with spectrogram-like inputs contain the notion
of time and frequency along the width and height dimensions.
Secondly, our goal with this network is to process a 3D rep-
resentation of feature patterns across time and frequency, and
convert it to a 2D intermediate encoding that can serve as time
activation matrix of size K xT. To achieve this, the subsequent
convolutional layers continuously decrease resolution on the
frequency axis and increase resolution the time axis to 7T
frames. Furthermore, the input axis for number of feature maps
corresponds to the axis of number of components K in output
of U, equal to the number of components in dictionary W.
Design of ©. The goal of this network is to mimic the output
f(x) by processing Hz(x) This directly helps in shaping
Hz(z) to interpret f(z). An important consideration for
designing © was to keep its operations on Hz () interpretable.
This helps during the interpretation phase in easily quantifying
how different parts of Hz(z) influence the interpreters output.
It is thus composed of two parts. The first part pools activations
Hz(z) across time. This pooling can be implemented in mul-
tiple ways, for eg. max or average pooling. However, we opt
for an intermediate style of attention—based pooling [54], i.e.,
z =Y Hz(z)a, where a € R” are the attention weights
and z € R¥ is the pooled vector. In the scenario of a multi-
label task with many classes and potentially high overlap, we

allow the network to attend to activations Hz(z) separately
for prediction of each class by generating a class-specific
attention vector. The pooled representation vector is passed
through a linear layer. This is followed by an appropriate
activation function to convert its output to probabilities, that is,
softmax for multi-class classification and sigmoid for multi-
label classification.

Pre-learning W. The non-negative matrix W forms an
integral part of the interpreter design. It is pre-learnt from
the input data, and essential in formulating the reconstruction
loss Lnvr. We employ Sparse-NMF [53] for the pre-learning.
The following optimization problem is solved through multi-
plicative updates to pre-learn W:

D (Xigain|[ WH) + pf | H|y
subject to W >0,H > 0, (6)
Wkl =1, Vk.

min

where X, is a subset of the training data S. Note that its
construction is dataset dependent and will be covered in exper-
iments. Here D(.|.) is a divergence cost function. In practice,
euclidean distance is used. Training audio files are converted
into log-magnitude spectrogram space for factorization.

E. Generating Interpretations

Having described the goals and details of all components
of our framework, we finally discuss how the interpretations
are generated. To generate audio that interprets the classifier’s
decision for a sample =z and a predicted class ¢, we follow
a two-step procedure: The first step consists of identifying
the components which are considered “important” for the
prediction. This is determined by estimating their relevance
using the pooled time activations in © and the weights for
linear layer. Precisely, given a sample x, the pooled activations
are computed as z = Hz(x)a. Denoting the weights for
class c in the linear layer as 07, tlé}g relevance of component

ZU
the normalized contribution of component k£ in the output
logit for class c. To select the “important” components, we
simply threshold the relevance via a parameter 7 € (0, 1) as,
Leyp=A{k:rkecs>T}

The second step consists of estimating a time domain signal
for each relevant component k£ € L., and also for set L., as
a whole. In this paper, we refer to the latter as the generated
interpretation audio, zjy. For certain classes, it may also be
meaningful to listen to each individual component, xg. As
discussed earlier under NMF basics, estimating time domain
signals from spectral patterns and their activations typically
involves a soft-masking and inverse STFT procedure. We
detail this step with appropriate equations in Algorithm 1.

k is estimated as 7., = This is essentially

IV. EXPERIMENTAL DESIGN

Most of the experimental settings remain the same for
post-hoc, and by-design interpretations since the underlying
architecture and the loss functions directly affecting interpreter
are identical. Thus, the datasets, audio representation used
by the network and the learnt dictionaries remain unchanged.
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Algorithm 1 Audio interpretation generation

1: Input: log-magnitude spectrogram X, input phase P,

components W = {wj,...,Wg}, time activations
Hz(z) = [bf(x),...,h% (2)]T, set of selected compo-
nents L., = {ki1,....kg}.
for all k € L., do

Xy wihi @) o x {/ Soft masking}

ity wihf (2)7

end for

Xint ¢ ZkeLm X

Tint = INV(Xinh P’I‘)
Output: {xg,,..., Ty} Tint

{// Tnverse STFT}

However, there are some differences in training and evaluation
that will be discussed explicitly. We start by covering the above
details in section IV-A-IV-B. We discuss the interpretation
evaluation strategies relevant for both problems in section
IV-C, including all the systems evaluated.

A. Datasets

We experiment with three datasets covering different types
of learning tasks, source data etc. We discuss each of them in
greater detail below.

1) ESC50: ESC-50 [55] is a popular benchmark for envi-
ronmental sound classification task. It is a multi-class dataset
that contains 2000 audio recordings of 50 different envi-
ronmental sounds. The classes are broadly arranged in five
categories namely, animals, natural soundscapes/water sounds,
human/non-speech sounds, interior/domestic sounds, exte-
rior/urban noises. Each clip is five-seconds long and extracted
from publicly available recordings on the freesound.org
project. The dataset is prearranged into 5 folds. The authors
also conducted a subjective evaluation to estimate human
performance for this task. Quality control was maintained
via participant pre-screening and ongoing monitoring through
randomly inserted test questions with an expected answer.
Around 4000 judgements were collated after filtering for
potential outliers. The reported human accuracy was 81.3%.

2) SONYC-UST: The DCASE task used a very challenging
real-world dataset called Sounds of New York City-Urban
Sound Tagging (SONYC-UST) [56]. It contains audio col-
lected from multiple sensors placed in the New York City
to monitor noise pollution. It consists of eight coarse-level
and 20 fine-level labels. We opt for the coarse-level labeling
task that involves multi-label classification into: ‘engine’,
‘machinery-impact’, ‘non-machinery-impact’, ‘powered-saw’,
‘alert-signals’, ‘music’, ‘human-voice’, ‘dog’. This task is
highly challenging for several reasons: (i) since it is real-world
audio, the samples contain a very high level of background
noise, (ii) the audio sources corresponding to the classes are
often weak in intensity, as they are not necessarily close to
the sensors, (iii) some classes may also be highly localized in
time and more challenging to detect, (iv) lastly, noisy audio

also makes it difficult to annotate, leading to labeling noise.
This is especially true for training data labeled by volunteers.

3) OpenMIC-2018: The OpenMIC-2018 dataset [14] is
composed of 20000 polyphonic audio recordings annotated
with weak labels from among 20 instrument classes. The
dataset was created by querying the content available on Free
Music Archive under the Creatives Commons license with
AudioSet concept ontology and using a multi-instrument esti-
mator model trained on AudioSet data to suggest candidates
for annotation. Each recording/clip is 10 seconds long. A
single sample generally consists of weak labels of only a
small subset of classes. Each instrument class has at least
500 positive and 1500 total annotated samples. Compared to
SONYC-UST, the number of positive samples intra class and
inter class are considerably more balanced. It is currently
the only large publicly available dataset with multi-label
annotation for polyphonic audio.

B. Implementation details

1) Classification network: We interpret a VGG-style con-
volutional neural network proposed by Kumar et al. [57]. This
network was chosen due to its popularity and applicability for
various audio scene and event classification tasks. It can pro-
cess variable length audio and has been pretrained on AudioSet
[58], a large-scale weakly labeled dataset for sound events. It
takes as input a log-mel spectrogram. The architecture broadly
consists of six convolutional blocks (B1-B6) followed by a
convolutional layer with pooling for final prediction. Most
convolutional blocks consist of two sets of conv2D + batch
norm + ReL U layers followed by a max pooling layer. We fine-
tune this network on each dataset separately before training our
system for any post-hoc interpretations. For ESC-50, following
the original paper [57], we modify only fully-connected layers
after the convolutional blocks while for SONYC-UST and
OpenMIC-2018, we modify all the layers during fine-tuning.
Classifier performance. We benchmark the classifier per-
formance with other baselines in Tab. I to establish that
the model we interpret in the post-hoc phase is a complex
system with strong performance. On ESC-50, the classifier is
evaluated using 5-fold cross-validation. It achieves an accuracy
of 82.5+1.9% over the 5 folds, higher than the average human
accuracy of 81.3%. SONYC-UST is an unbalanced multi-
label dataset. The evaluation is done using AUPRC based
metrics. Our fine-tuned classifier achieves a macro-AUPRC
(official metric for DCASE 2020 challenge) of 0.601. This
is higher than the DCASE baseline performance of 0.510
and comparable to the best performing system macro-AUPRC
of 0.649 [59]. Note that it is obtained without use of data
augmentation or additional strategies to improve performance.
OpenMIC-2018 is a relatively balanced multi-label dataset. To
evaluate our trained classifier, we use the weighted average
Fl-score metric, proposed in the original paper. The metric
computes for each class a weighted average of Fl-scores
over the positive and negative samples. The final score is the
average over 20 classes. Our classifier achieves final score of
0.83, better than the VGGish based baseline score of (.78 and
competitive with other recent models. As noted earlier, the
pre-training is only executed for post-hoc interpretations.
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ESC-50 (in %) SONYC-UST OpenMIC-2018

System top-1 macro-AUPRC avg-weighted-F1
Human accuracy [55] 81.3 X X
ESC50-CNN baseline [55] 64.5 X X
Arnault et al. [59] X 0.649 X
Koutini et al. [60] X X 0.822
VGGish [14], [61] X 0.510 0.785
Current- f 82.5 0.601 0.831

TABLE I: Benchmarking performance of pre-trained classifier
f for post-hoc interpretation.

2) Audio time-frequency representation: For both the tasks,
we perform the same audio pre-processing steps. All audio
files are sampled at 44.1kHz. STFT is computed with a
1024-pt FFT and 512 sample hop size, which corresponds to
about 23ms window size and 11.5ms hopsize. The log-mel
spectrogram is extracted using 128 mel-bands.

3) Dictionary learning: The matrix on which we apply
sparse-NMF to learn W, Xy, is constructed differently
for each dataset due to their specific properties. For ESC-
50, Xinin 1S constructed by concatenating the log—magnitude
spectrograms corresponding to each sample in the training
data of the cross-validation fold (1600 samples for each
fold). SONYC-UST however, is an imbalanced multilabel
dataset with very strong presence of background noise. A
procedure to learn components, as for ESC-50, yields many
components capturing significant background noise, affecting
understandability of interpretations. Hence, we process this
dataset differently. We first learn W, that is, a set of 10
components to model noise using training samples with no
positive label. Then, for each class, we randomly select 700
positively-labeled samples from all training data and learn
10 new components (per class) with W held fixed for
noise modeling. All 10 x 8 = 80 components are stacked
column-wise to build our dictionary W. While this strategy
helps us reduce the number of noise-like components in the
final dictionary, it does not completely avoid it. OpenMIC is
instead a balanced multilabel dataset for rare noise presence.
We simply select random 500 positively labeled samples for
each of the 20 classes and learn 15 components. All of them
are stacked together to create Xpip.

4) Hyperparameters: The hidden layers input to the in-
terpreter module are selected from the convolutional block
outputs. As is often the case with CNNs, the latter layers are
expected to capture higher-order features. We thus select the
last three convolutional block outputs as input to the network
W. The loss weights and number of components used for post-
hoc interpretation are summarized in table II. Ablation studies
about all the hyperparameters and justification of their choices
will be presented in the next section. The hyperparameters
for by-design interpretation are guided by choices in post-hoc
interpretation and are tabulated in table III.

5) Optimization: All the networks are optimized using
Adam [62] with learning rate 2 X 10~

Dataset « B K # of epochs
ESC-50 10.0 0.8 100 35
SONYC-UST 100 08 80 21
OpenMIC-2018 5.0 0.2 300 21

TABLE II: Hyperparameters for all datasets for post-hoc
interpretation

Dataset 01 «@ Jo] K # of epochs
ESC-50 1.0 30 02 100 51
SONYC-UST 1.0 40 02 80 21
OpenMIC-2018 1.0 3.0 02 300 21

TABLE III: Hyperparameters for all datasets for by-design
interpretation

C. Evaluating Interpretations

Quantifying different aspects of interpretability has been a

challenging research question recently. This challenge stems
from the inherent subjectivity involved in its definition. Our
unique style of “concept-like” basis for interpretation and
global approximation of the base model results in a testing
situation to conduct its evaluation, wherein no other method
can be directly compared to it. We resolve this hurdle by
evaluating different aspects of the interpretation separately. We
first discuss quantitative metrics for post-hoc and by-design
interpretation along with their goals, followed by discussion
on subjective evaluation of interpretations.
Metrics and baselines (Post-hoc). The simplest aspect to
evaluate is how well does the interpreter agree with the
classifier’s output. We refer to this metric as the fidelity metric.
To do so for any given task, we utilize the same metric
used to evaluate the classifier performance but instead treat
classifiers output as ground truth and evaluate the interpreter’s
approximation ©(Hz(z)) w.rt to it. Thus, for multi-class
classification, this is done by computing fraction of samples
where the class predicted by f is among the top-k classes
predicted by the interpreter, referred to as top-k fidelity. For
multi-label classification tasks with unbalanced number of
positive samples of classes, we compute Area Under Precision-
Recall Curve (AUPRC) based metrics. In case of balanced
classes, we compute Fl-score based metrics. We denote our
proposed Listen to Interpret (L2I) system, with attention based
pooling in © by L2I w/ O 1. The most suitable baselines to
benchmark its fidelity are post-hoc methods that approximate
the classifier over input space with a single surrogate model.
We select two state-of-the-art systems, FLINT [29] and VIBI
[63]. A variant of our own proposed method, L2I w/ Oyux,
is also evaluated. Herein, attention is replaced with 1D max-
pooling operation.

We also conduct a faithfulness evaluation for our interpre-
tations. In general for any interpretability method, faithfulness
tries to assess if the features identified to be of high rele-
vance are fruly important in classifier’s prediction [64]. Since
a “ground-truth” importance measure for features is rarely
available, attribution based methods evaluate faithfulness by
performing feature removal (generally by setting feature value
to 0) and observing the change in classifier’s output [64].
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However, it is hard to conduct such evaluation for non-
attribution or concept based interpretation methods on data
modalities like image/audio, as simulating feature removal
from input is not evident in these cases.

Interestingly, our interpretation module design allows us to
simulate removal of a set of components from the input. Given
any sample x with predicted class ¢, we remove the set of
relevant components L., = {k : 7y, > 7} by creating a
new time domain signal o = INV(Xy, P,), where Xy =
X = > e, Xi. We define faithfulness of the interpretation
to classifier f for sample x with:

FF, = f(z). — f(72). (7

where f(z)., f(x2). denote the output probabilities for class
c. It should be noted that this strategy to simulate removal may
introduce artifacts in the input that can affect the classifier’s
output unpredictably. Also, interpretations on samples with
poor fidelity can lead to negative FF,. Both of these obser-
vations point to the potential instability and outlying values
for this metric. Thus, we report the final faithfulness of the
system as median of FF, over test set, denoted by FFegian. A
positive FFpeqian Would signify that interpretations generally
tend to be faithful to the classifier.

As already discussed, it is not possible to measure faithful-
ness for concept-based post-hoc interpretability approaches.
While measurement for input attribution based approaches
is possible, the interpretations themselves and the feature
removal strategies are different, making comparisons with our
system significantly less meaningful. We thus compare our
faithfulness against a Random Baseline, wherein the less-
important components, those not present in L., ,, are randomly
removed. To compare fairly, we remove the same number of
components that are present in L., on average. This would
validate that, if the interpreter selects fruly important compo-
nents for the classifier’s decision, then randomly removing the
less important ones should not cause a drop in the predicted
class probability.

We also emphasize at this point that works related to audio
interpretability (see Sec. II-B), are not suitable for comparison
on these metrics. Particularly, APNet [13] is not designed for
post-hoc interpretations. AudioLIME [38] is not applicable
on our tasks as it requires known predefined audio sources.
Moreover, SLIME [37] and AudioLIME still rely on LIME
[15] for interpretations. It is a feature-attribution method
that approximates a classifier for each sample separately. As
discussed before, these characteristics are not suitable for
comparison on our metrics.

Separate from the quantitative metrics, we conducted a
subjective evaluation to evaluate quality and understandability
of interpretations. Our design for the same was based on
qualitative understanding of saliency maps for images. Attribu-
tion maps in images are qualitatively judged by observing the
visual overlap in input with the given class being interpreted.
In similar spirit, our design was based on providing the user
with input and class being interpreted and asking them to
rate auditory overlap of the interpretation and part of input
audio corresponding to the class. Further details and results

are covered in the next section. Apart from evaluating under-
standability, we also extensively analyze our interpretations
qualitatively.

Metrics and baselines (By-design). For by-design interpre-
tation, the faithfulness metric is much less significant. This
is because the final classification output is generated by the
interpreter itself and thus faithfulness is ensured by-design.
The classification performance of the interpreter is the primary
metric, similar in spirit to fidelity evaluation for post-hoc
interpretations. We compare this with several baselines to (i)
benchmark performance of our by-design interpretable net-
work, and (ii) to evaluate the two key modifications introduced
in the learning problem while extending from post-hoc to by-
design interpretation (section III-C). Specifically, the hidden
layers of f are not pre-trained on the given dataset in by-
design problem and updated jointly with interpreter layers.
And secondly, applying an additional classification loss on
f(x) to affect the hidden layers. The various baselines and
the reasons to include them are the following:

o Audio prototypical networks (APNet) [13] act as a pri-
mary baseline from literature. It is an audio processing
by-design interpretable network. While it generates inter-
pretation differently from us, it is the only system in the
literature addressing by-design interpretation for audio
modality. Note that the dedicated post-hoc interpretation
systems VIBI and SLIME are not relevant for this prob-
lem. For fair comparison, we use the same number of
prototypes in their network as our number of components.

e In order to ascertain that using a CNN based repre-
sentation for NMF offer advantage over typical NMF
based representations in terms of prediction performance,
we also evaluate performance of two NMF variants:
Unsupervised NMF based classification and the Task-
driven Dictionary Learning (TDL)-NMF model [47]. The
unsupervised NMF model simply learns a dictionary on
training data, computes average time activations on test
samples and makes predictions using a linear model.
The TDL-NMF model instead updates the initial learnt
dictionary with classification loss from the linear model
and thus learns them jointly. For both the systems, we
experiment with use of two data types to learn NMF-
dictionaries. The first is log-magnitude spectrograms and
second is power mel-spectrogram (with a square root
transformation). We vary dictionary sizes from 64 to 512
components and report results for best performance.

o Given the framework level similarities between FLINT
and L2I, we also evaluate the performance of the FLINT
interpreter when trained for by-design interpretation. As
before, we again emphasize that FLINT is not suitable for
audio interpretations, but provides a interpretable network
design for comparison of performance.

e Variants of L2I: We denote our proposed version of
L2I for by-design interpretation as L2Igp w/ O . We
further evaluate two variants of our proposed classifi-
cation network g(z). The first variant “L2Igp-NoPred”
does not include a classification loss applied to f(z) and
instead applies it directly to g(z). The second variant
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ESC-50 (in %)

SONYC-UST

OpenMIC-2018

System top-1 top-5 macro-AUPRC micro-AUPRC avg-weighted-F1
L2I w/ ©arr 65.7 + 2.8 882+ 1.7 0909 + 0.011  0.917 &+ 0.008 0.920 £ 0.004
L2l w/ ©Opax 733 +£23 927+ 12 0.866 £ 0.014 0913 4+ 0.012 0.906 £ 0.004
FLINT [29] 735 +23 934 +09 0816 £ 0.013 0.907 + 0.011 0.907 4+ 0.004
VIBI [63] 277 +23 530+ 1.8 0.608 £ 0.027  0.575 £ 0.019 0.581 + 0.037

TABLE 1V: Fidelity results for the interpreter w.r.t classifier’s output on all datasets. We report top-1 and top-5 fidelity (in
%) for ESC-50 (all five folds), AUPRC-based metrics for SONYC-UST and weighted F1-score averaged over all classes for
OpenMIC-2018. All results contain mean and variance over three runs. Values in bold indicate maximum of the metric among

all the evaluated systems (incl. baselines).

“L2I-PostHoc” is simply the interpreter trained for post-
hoc interpretation. We compare with these variants to
gain perspective on effect of differences between our
formulations of post-hoc and by-design problems.

The implementation details of all the baselines (post-hoc and
by-design) can be found on our companion website.!.

V. RESULTS AND DISCUSSION

A. Post-hoc Interpretation

1) Fidelity: As discussed previously, to quantify fidelity, we
use the same respective metrics as done to benchmark classifier
performance but evaluate them for interpreter output w.r.t
classifier output. For ESC-50, mean and standard deviation
of top-k fidelity is calculated over the 5 folds. We show
these results for £k = 1,5. For SONYC-UST, we report the
macro-AUPRC, micro-AUPRC and max-F1 for the interpreter
output w.r.t classifier. For fairness, we ignore the class ‘non-
machinery impact’ from all class-wise evaluations involved in
fidelity (i.e. macro-AUPRC) or faithfulness. This is because
the classifier predicts only one sample in test set with positive
label for this class, causing AUPRC scores to vary widely
for different interpreters. For OpenMIC-2018, we report the
Fidelity weighted Fl-score for each system. All the above
results are available in Tab. IV.

Among the four systems, VIBI performs the worst in terms
of fidelity. This is very likely because it treats the classifier as
a black-box, while the other three systems access its hidden
representations. This strongly indicates that accessing hidden
layers can be beneficial for fidelity of interpreters. While
on ESC50, FLINT achieves the best fidelity, L2I w/ Oxrr
outperforms all systems on the other datasets. It should be
noted that our system variants distinctly hold the advantage
of generating listenable interpretations over FLINT and VIBI.
Nevertheless, these systems form strong baselines for fidelity
and the results demonstrate that our interpreter can generate
high-fidelity post-hoc interpretations. Moreover, its design is
flexible w.r.t different pooling functions. Results for a sig-
nificance test between each pair of systems are available in
supplementary discussion on our website 2

Uhttps://jayneelparekh.github.io/listen2interpretV2/
Zhttps://jayneelparekh.github.io/listen2interpretV2/appendix.pdf

System Threshold T FFinedian
7=0.9 0.002
T=0.7 0.004

L2I w/ ©Oarr 7=20.5 0.012
7=0.3 0.040
T7=0.1 0.113

Random Baseline 7=0.1 <10~4

TABLE V: Faithfulness results on ESC-50 for different thresh-
olds, 7. We report FF egian for proposed L2I w/ O ,rr and the
Random Baseline.

2) Faithfulness: In Table V, we report median faithfulness
FFiedian on ESC-50 for our primary system L2I w/ ©Oarr at
different thresholds 7 averaged over the five folds. Smaller
T corresponds to higher |L. .|, which denotes the number of
components being used for generating interpretations. Thus,
for Random Baseline, we report FFeqian at the lowest thresh-
old 7 = 0.1, to ensure removal of maximal number of
components. To recall the definition of Random Baseline,
please refer to Sec. IV-C. FF yegian for L2I w/ Ot is positive
for all thresholds. It is also significantly higher than the
Random Baseline, indicating faithfulness of interpretations.

The results for class-wise faithfulness on SONYC-UST and
OpenMIC are illustrated in Fig. 2 and 3 respectively. We show
FFedian (absolute drop in probability) for our system and
the Random Baseline. For most classes, interpretations can
be considered faithful, with a significantly positive median
compared to random baseline results, which are very close
to 0.

3) Subjective evaluation: The test was conducted with 15
participants. Each participant was provided with 10 input
samples, a predicted class by the classifier for each sample and
the corresponding interpretation audios from SLIME and L2I.
They were asked to rate the interpretations on a scale of 0-100
for the following question: “How well does the interpretation
correspond to the part of input audio associated with the
given class?”. The 10 samples were randomly selected from
a set of 36 (5-6 random test examples per class). For each
sample, we ensured that the predicted class was both, present
in the ground-truth and audible in input. Class-wise preference
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Fig. 2: Faithfulness (absolute drop in probability value) results
for SONYC-UST arranged class-wise for threshold, 7 = 0.1

Faithfulness on OpenMIC-2018 (T =0.1)
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Fig. 3: Faithfulness (absolute drop in probability value) results
for OpenMIC-2018 arranged class-wise for threshold, 7 = 0.1
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Fig. 4: Subjective evaluation results. Average scores for L2I
and SLIME and fraction of votes in favour of each system

results and average ratings are shown in Fig. 4. L2I is preferred
for 'music’, ’dog’ & ’alert-signal’, SLIME is preferred for
’machinery-impact’, no clear preference for others.

B. Qualitative analysis of interpretations

Qualitatively we observe that our interpretations are capable
of emphasizing the object of interest and are insightful for an
end-user to understand the classifier’s prediction. We share
multiple examples on our companion website.! Samples in
case of SONYC-UST and OpenMIC are often already chal-
lenging with the presence of other sources of audio. In case of
ESC50, to create more interesting and challenging scenarios
we devise an experiment described below
Audio corruption experiment: interpretability illustra-
tion. For ESC50, we generate interpretations after corrupting
the testing data for fold—1 in two different ways (i) either

with white noise at 0dB SNR (signal-to-noise ratio), (ii) or
mixing it with a sample of a different class. It should be
noted that in both these cases the system is exactly the
same as before and not trained with corrupted samples. Some
examples, covering both types of corruptions are shared on
our companion website.!.

For SONYC-UST, we observe good interpretations for
classes ‘alert-signal’, ‘dog’ and ‘music’. For them, the back-
ground noise is significantly suppressed and the interpretations
mainly focus on the object of interest. Interpretations for class
‘human’ are also able to suppress noise to a certain extent and
focus on parts of human voices. However, for this class, we
found presence of some signal from other audio sources too.
For the remaining classes, namely ‘Engine’, ‘Powered-saw’
and ’Machinery-impact’ the quality of the interpretation is
more sample dependent. This is due to their acoustic similarity
with the background noise. We provide example interpretations
for SONYC-UST on our companion website.!

The third dataset OpenMIC-2018, offers challenges under
unique scenarios. Unlike SONYC-UST while it does not
face issue of noise in data, it faces the hurdle of a strong
overlap between instruments. This is because their onsets are
often aligned by beats of the musical piece. This increases
difficulty of filtering the signal of interest. Even with the
greater complexity, the interpretations in many cases are able
to emphasize the class of interest. Classes with relatively
unique sounds such as ‘Bass’ or ‘Mallet-percussion’ are very
well extracted. String like instruments including Violin and
Guitar are also generally emphasized well.

Coherence of interpretations. We visualize interpretations
generated on the test set for SONYC-UST and OpenMIC-2018
by clustering relevance vectors. Specifically, we compute the
Vector 7. 5 € R¥ which contains relevances of all components
in prediction for class ¢ for sample x. The relevance vectors
are collected for each test sample x and its predicted class
c. We then apply a t-SNE [65] transformation to 2D for
visualization. This is shown in Fig. 5. Each point is la-
beled/colored according to the class for which we generate the
interpretation. Interpretations for any single class are coherent
and similar to each other. This is to some extent a positive
consequence of global weight matrix in ©. Moreover, globally
it can be observed that classes like "Machinery-impact’ and
"Powered-Saw’ have similar relevances which are to some
extent close to "Engine’. This is to be expected as these classes
are acoustically similar. ’Dog’ and 'Music’ are also close in
this space, likely due to the often periodic nature of barks or
beats. The visualization for OpenMIC is arguably even more
interesting because of larger number of classes and several
inter-class relationships. Various sets of similar instruments
end-up as clusters in proximity of each other. The examples
include ‘Cello-Violin’, ‘Drums-Cymbals’, ‘Clarinet-Flute’,
‘Ukulele-Mandolin-Banjo’, ‘Trombone-Trumpet-Saxophone’.
Moreover, the meaningfulness of clustering also extends to
higher-level of grouping. For example, the data is partitioned
so as the string-based, wind-based, or percussion instruments
are close to each other within their respective groups. This
indicates that the interpreter’s representations of what consti-
tutes sound of an instrument aligns to some extent to human
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ConvBlocks LNMF L¥D top-1
B3 0.104 1.788 53.0
B6 0.118 1.698 57.8
B2+B3 0.093 1.966 51.8
B5+B6 0.103 1.572 61.5
B4+B5+B6 0.079 1.546 65.5
Input 0.102 2.384 34.5

TABLE VI: Ablation study for hidden layers: loss values on
ESC50 (fold 1) test set for different subsets of hidden layers.
Current choice indicated in bold.
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Fig. 5: Visualized relevances (following a t-SNE transforma-
tion) of generated interpretations on test sets of SONYC-UST
(top) and OpenMIC-2018 (bottom), colour-coded according to
interpreted class. For clarity in case of OpenMIC, we show up
to random 25 interpretations of a class.

C. Ablation studies

Tab. VI and Tab. VII present ablation studies for loss
hyperparameters and choice of hidden layers. The values in
bold indicate our current choices for post-hoc interpretation.
The metrics and loss values given here are for a single run.
Selecting the hidden layers of the classifier that should be
accessed by the interpreter is an important choice. At first

« B LNMF [fFID macro-AUPRC
10.0 0.8 0.028 0.386 0.900
10.0 8.0 0.048 0.386 0.879
10.0 0.08 0.028 0.388 0.876
1.0 0.8 0.045 0.375 0.921
100.0 0.8 0.027 0.445 0.612

TABLE VII: Ablation study for loss hyperparameters: loss
values on SONCY-UST test set for different weights of loss
functions. Current choice indicated in bold.

glance, this model selection task might appear to be computa-
tionally too expensive as total possible choices is exponential
in number of hidden layers. However, practical considerations
can heavily reduce the search space. An upper bound to the
number of layers could be set depending upon the desired
size of interpreter. In our experiments throughout the paper,
we limited ourselves to at most 3 layers. Crucially, layers
close to the output are more favourable, for multiple reasons.
They generally result in better fidelity and inherently tie the
interpreter much closer to the output of classifier. Moreover,
the latter layers are also expected to capture higher level
features. We illustrate how selecting different subsets of hidden
layers affects optimization of our fidelity and reconstruction
loss by doing an ablation study. It’s results are reported in table
VI. The classifier consists of 6 major convolutional blocks
(B1-B6).

Loss weights. We illustrate the effect of varying loss weights
on optimization in table VII. Too high emphasis on LnyF, that
is, high « can hurt the fidelity of interpreter while a high 3
(sparsity loss) can result in poorer reconstruction. Importantly,
there is a good range of values wherein the system can be
regarded as operating reasonably.

Number of components. Choosing K, also known as order
estimation, is typically data and application dependent. It
controls the granularity of the discovered audio spectral pat-
terns. Determining the optimal value has been a long standing
problem within the NMF community [66]. Our choice for this
parameter was guided by three main factors:

o Choices made previously in literature for similar pre-
learning of W [47], who demonstrated reasonable acous-
tic scene classification results with a dictionary size of
K = 128. We used this as a reference to guide our choice.

« Dataset specific details which include number of classes,
samples for each class, variability of recordings etc. For
eg. acoustic variability of ESC-50 (larger number of
classes), prompted us to use a dictionary of larger size
compared to SONYC-UST. We use highest number of
components for OpenMIC, which has largest dataset size
among the three and reasonably high acoustic variability.

o When tracking loss values for different K, we observed a
plateauing effect for larger dictionary sizes as illustrated
in Fig. 6 for ESC-50 and OpenMIC-2018. In case of
OpenMIC, this effect is prominent for reconstruction loss
Lxmr. The fidelity remains high even for small K .

Architectural modification for OpenMIC. Given the com-
plexity of music data in OpenMIC-2018, we allowed for
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Fig. 6: Ablation study for number of components. Loss values
on test data for ESC-50 and OpenMIC-2018.

modification in architecture of © as mentioned in Sec. III-D.
We analyze its effects in supplement discussion available on
our website.?

D. By-design Interpretation

The performance of all systems is given in Tab. VIII. We
compute the same metrics as used to evaluate the classifiers
for each dataset. Mean performance along with variance
across 3 runs is reported. Pairwise system significance results
are available in supplements on our website>. We make the
following key observations:

o Among the interpretable neural networks for audio,
L2Igp W/ O, clearly outperforms APNet. The size of
the models plays an important role in this. L2I learns
with the help of a network architecture that feeds it with
higher quality representations for prediction compared to
architecture in APNet. It is generally able to sustain a
comparable performance w.r.t the base network BASE-
f while imposing an interpretable structure for final
prediction model.

o Comparison with NMF baselines. While TDL-NMF
performs better than unsupervised-NMF, L2I variants are
noticeably better than both. This highlights a unique
advantage of combining NMF representations with deep
neural network representations, wherein, the NMF struc-
ture leads to interpretability and using deep networks as
source provides higher prediction performance compared
to directly using NMF activations generated from input.

e We also validate our design of training procedure for
by-design interpretable network g(x), by comparing it
with the two variants of proposed system, L2I-PostHoc
and L2Igp-NoPred. The performance of L2Igp W/ O rr
compared to L2I-Posthoc highlights that g(z) tends to
perform better when hidden layers of f are trained jointly
with interpreter. L2Igp-NoPred performs the worst among
the three, emphasizing the benefits of updating the hidden
layers of f with classification loss imposed on f(x) rather
than on g(x).

VI. CONCLUSION

We have presented a framework to tackle both post-hoc
and by-design for audio classification networks. To this end,
a novel interpreter is designed with the key idea of using
an NMF-inspired regularizer. This enables listenable concept-
based interpretations. We motivate listenability as an important

attribute for audio interpretability. Efficacy of the proposed
framework is established through extensive qualitative and
quantitative experimentation. In particular, we quantitatively
evaluate both post-hoc and by-design interpretations on three
popular datasets pertaining to audio event and music instru-
ment recognition tasks. We perform a user-study to confirm
usefulness of our interpretations. In addition, through a visual-
ization of the generated interpretations, we show that they are
coherent across samples from different classes and cluster in
a fashion that aligns well with human understanding of sound.
Further works concern the extension of this framework to other
machine learning audio-based tasks.

Limitations and future work: From the point of view
of both interpretability and applicability our system faces
certain limitations. Firstly, the current system’s application
is more suited for traditional supervised classification tasks
wherein multiple audio sources constitute an acoustic scene
and identifying importance of a given source for the decision
is a useful information as interpretation. In this regard, it could
be interesting to extend the given system to arbitrary audio
processing tasks. Directions such as extending the dictionary
learning or interpreter learning to few-shot data scenarios
are also highly relevant and interesting. Finally, it can be
promising to explore the explicit representation of perceptually
grounded audio concepts. For instance, representing “shrill
sounds” via a single component is a hard task. Instead, it
might be possible to represent it by a small set of com-
ponents. However, this ability needs to be explored further.
Representing complex perceptual grounded concepts can make
the interpretations highly accessible and unlock the ability to
generate effective global interpretations for a model.
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