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1Université Paris Cité and Sorbonne Université, CNRS, Laboratoire de Probabilités, Statistique et
Modélisation, F-75013 Paris, France, e-mail: ugazin@lpsm.paris

2Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, Israel, e-mail:
ruheller@gmail.com

3The Alan Turing Institute, London, United Kingdom, e-mail: amarandon-carlhian@turing.ac.uk
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Abstract: In supervised learning, including regression and classification, conformal meth-
ods provide prediction sets for the outcome/label with finite sample coverage for any ma-
chine learning predictor. We consider here the case where such prediction sets come after a
selection process. The selection process requires that the selected prediction sets be ‘infor-
mative’ in a well defined sense. We consider both the classification and regression settings
where the analyst may consider as informative only the sample with prediction sets small
enough, excluding null values, or obeying other appropriate ‘monotone’ constraints. We
develop a unified framework for building such informative conformal prediction sets while
controlling the false coverage rate (FCR) on the selected sample. While conformal predic-
tion sets after selection have been the focus of much recent literature in the field, the new
introduced procedures, called InfoSP and InfoSCOP, are to our knowledge the first ones
providing FCR control for informative prediction sets. We show the usefulness of our re-
sulting procedures on real and simulated data.

Keywords and phrases: Classification, false discovery rate, label shift, prediction inter-
val, regression, selective inference.

1. Introduction

In modern data analysis, machine learning algorithms are often used to make predictions and
a main challenge is to measure the uncertainty of such methods. Conformal inference offers an
elegant solution to this problem, by providing prediction sets that provably cover the true value
with high probability, for any sample size, any predictive algorithm, and any distribution of the
data Vovk et al. (2005). We consider the following classic split/inductive conformal prediction
setting Papadopoulos et al. (2002); Vovk et al. (2005); Lei et al. (2014). Let (X,Y ) ∈ X × Y
be a random vector with unknown distribution PXY . Typically, X is a subset of Rd (real valued
covariates), and Y = [K] (classification among K ≥ 2 classes) or Y = R (regression, with a
real valued outcome)1. In this setting, there are two independent samples of points (Xi, Yi):
the calibration sample {(Xj , Yj), j ∈ [n]}; and the test sample {(Xn+i, Yn+i), i ∈ [m]}. We also
have a prediction machine for Yj given Xj , built from training data that is independent of the
calibration and test data.

1Our theory can be applied for more general observation spaces (e.g., Y = Rd′ ) but we consider the most
common settings Y ∈ {[K],R} for simplicity.
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While all measurements are observed in the calibration sample, only the Xi’s are observed in
the test sample and the aim is to provide prediction sets for the unobserved (Yn+i, i ∈ [m]). We
denote the prediction set for Yn+i by Cn+i. It is a subset of [K] for classification and a subset
(often an interval) of R for regression. The classic conformal prediction set for Yn+i, denoted
by Cα

n+i, is a function of {(Xj , Yj), j ∈ [n]}, Xn+i, and α (Sadinle et al., 2019; Lei et al., 2018)
and has the following coverage guarantee, assuming that (Xn+i, Yn+i) and (Xj , Yj), j ∈ [n], are
exchangeable pairs of observations from any distribution PXY :

∀α ∈ (0, 1), P
(
Yn+i ∈ Cα

n+i

)
≥ 1− α. (1)

In practice, the size of the test sample m is often large, encompassing hundreds or thousands
of unlabeled examples. Inferring on all of them is unnecessary or inefficient in many applications
(Jin and Candes, 2023; Bao et al., 2024). For example, in classification, if each image belongs
to one of [K] categories, the analyst is not interested in the examples where Cα

n+i = [K]. Thus,
it is natural to assume that a subset of individuals will be selected. However, reporting their
prediction sets constructed to have at least 1 − α confidence is problematic, since conditional
on being selected, the coverage may be much smaller (Benjamini and Yekutieli, 2005; Benjamini
and Bogomolov, 2013), see also Figure 1 below.

Our focus is on the common setting where the analyst is only interested in reporting “inter-
esting” or “informative” prediction sets, i.e., that cover only part of the Y space in a well defined
sense to the analyst, which definition depends on the specific context. For concreteness, we start
by providing typical examples of what can be the pre-specified collection I of informative subsets
of Y.

Example 1.1 (Informative prediction sets in regression, Y = R). 1. Intervals excluding a range
of values: I = {I interval of R : I ∩ Y0 = ∅} for some subset of null values Y0 ⊂ Y that
are considered as uninteresting for the user. The choice Y0 = (−∞, y0] is related to the
selection proposed in Jin and Candes (2023), for which a “normal” value for the outcome
is a value below y0.

2. Length-restricted intervals: I = {I interval of R : |I| ≤ 2λ0} for some λ0 > 0, which are
useful for only reporting prediction intervals that are accurate enough.

Example 1.2 (Informative prediction sets in classification, Y = [K]). 1. Excluding one class:
I = {C ⊂ [K] : y0 /∈ C} for some null class y0 ∈ [K]. It is suitable when the user does not
want to report prediction sets for individuals that are in class y0. This can be extended to
excluding several classes: I = {C ⊂ [K] : C ∩ Y0 = ∅} for some label set Y0 ⊂ [K].

2. Non-trivial classification: I = {C ⊂ [K] : |C| ≤ K − 1}. It is appropriate when the
analyst wants a label set that is minimally informative. More generally, at most k0-sized
classification can be considered with I = {C ⊂ [K] : |C| ≤ k0}.

A common target error guarantee is that the inference on at most α examples among the
selected is expected to be false. This is a classical error criterion in the selective inference litera-
ture, (Benjamini and Yekutieli, 2005; Benjamini and Bogomolov, 2013; Weinstein and Ramdas,
2020). It has been used, e.g., for novelty detection (Bates et al., 2023; Marandon et al., 2024), for
classification (Rava et al., 2021; Zhao and Su, 2023; Jin and Candes, 2023), for regression (Bao
et al., 2024), and for unsupervised clustering (Mary-Huard et al., 2022; Marandon et al., 2022).
For selecting prediction sets, the target error guarantee is thus that at most α examples among
the selected are expected to have prediction sets that do not cover their true outcome value. The
false coverage proportion (FCP) for the procedure R = (Cn+i)i∈S is defined as the proportion of
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non-covered examples in the selected set S:

FCP(R, Y ) =

∑
i∈S 1{Yn+i /∈ Cn+i}

1 ∨ |S|
, (2)

and the target error is simply its expectation, which we refer to as the false coverage rate (FCR)
as in Bao et al. (2024):

FCR(R) = E[FCP(R, Y )]. (3)

In this work, we consider two popular models for generating the samples2. First, the iid model
(both for regression and classification): the variables (Xi, Yi) ∼ PXY , i ∈ [n +m], are all inde-
pendent and identically distributed (iid). This is the standard assumption classically used for
conformal prediction (Vovk et al., 2005). The parameter of the model is in that case PXY . Second,
the class-conditional model (only the classification setting): all the labels (Yi, i ∈ [n + m]) are
deterministic and the covariates (Xi, i ∈ [n+m]) are mutually independent with Xj ∼ PX|Y=Yj

.
It relaxes the exchangeable model assumptions of iid model, by only requiring that the distribu-
tion within each class is the same for the test and calibration sample (Sadinle et al., 2019; Ding
et al., 2023). The target FCR is then conditional on the labels. The parameters of the model are
then given by (PX|Y=k)k∈[K] and (Yi, i ∈ [n+m]).

We now briefly summarize the contributions of our work. We first introduce a new method,
called InfoSP (Informative selective prediction sets), that selects only informative prediction
sets with a level α FCR guarantee on the selected (§ 3.1). Formally, this means that we achieve
both FCR(R) ≤ α and ∀i ∈ S, Cn+i ∈ I, for I being the collection of informative subsets. The
FCR control of InfoSP is established both in the iid model and class-conditional model (see
Theorem 3.1).

We introduce a second procedure, called InfoSCOP (Informative selective conditional predic-
tion sets), that has the same theoretical properties as InfoSP in the iid model (§ 3.2) and that
relies on an initial selection step that is aimed at eliminating (at least some of) the examples for
which informative prediction sets cannot be constructed. Further selection then takes place in
order to ensure that all reported prediction sets are informative. While the pre-processing step
is inspired by Bao et al. (2024), their theoretical framework precludes this type of selection (see
§ A for more details).

Third, our main theoretical FCR control guarantees come from a single general theorem in
§ C.1 that includes general classes of p-values and accommodates any concordant selection rule
(Benjamini and Yekutieli, 2005; Benjamini and Bogomolov, 2013). Importantly, our novel theory
supports conformal p-values, and selecting only informative prediction sets, as specific examples.

We optimize the analysis pipeline for common informative selection rules in § 4 (regression) and
§ 5-§ 6 (classification), while providing additional theoretical results and appropriate numerical
experiments. The interest of the method is also demonstrated in a specific application in the
field of molecular biology in § I.3, for which the practitioner aims at predicting gene expression
from promoter sequences. While the analyst is interested in selecting promoters that cause low-
expression, the produced prediction two-sided interval allows to establish that the expression is
above zero and to evaluate the plausible extent to which it exceeds zero. Finally, an application
to directional FDR control is also provided in § B.

To provide an intuition for our approach, InfoSP is illustrated in Figure 1 for the classification
case (for K = 3 classes). Left panels display a naive method reporting the marginal classical

2In both models, the independence assumption can be relaxed. In the iid model, it is enough that all n + m
samples are exchangeable. In the class-conditional model, it is enough that the subset of [n+m] of samples from
the same class is exchangeable, for all classes in [K]. See § C for more details.
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conformal prediction sets Cα
n+i in (1) for all those that are informative, that is, such that Cα

n+i ∈ I,
without further correction. Since no error can occur when the prediction set is trivial, the selection
always inflates the FCP values. The new procedure InfoSP is displayed in the right panels:
prediction sets are made slightly larger to maintain a correct FCP value while the selection
(red boxes) guarantees that only informative (i.e., non-trivial) prediction sets are selected. This
example is only for one data generation: it is presented here only for illustrative propose and
more accurate in-expectation FCR values are given in § 6. The regression case is illustrated in
Figures 2 and 3 (§ 4), for which the second procedure InfoSCOP is also displayed. It is worth to
note that in some situations, the latter may even results in prediction sets that are smaller (!)
than those of the naive method.

1.1. Relation to previous work

There are interesting connections between our approach and previous work of the literature: se-
lecting confidence interval that satisfies specific notions of informativeness Weinstein and Yeku-
tieli (2020); Weinstein and Ramdas (2020); multi-class classification Zhao and Su (2023); and
very recent works on selective conformal inference Bao et al. (2024); Jin and Ren (2024). Due to
the limited space, the details are in§ A of the SM.

We also underline that our second procedure InfoSCOP relies on the approach of splitting the
calibration sample, which has already been used in conformal literature in different contexts.
The idea is to enable an additional data-driven tuning of the method by only paying the price of
splitting the calibration sample. For instance, it has been provided in Marandon et al. (2024) for
the task of building adaptive scores. In the present aim of controlling the FCR on a data-driven
selection, we formulate a general statement in the SM, see Lemma H.5. It applies to any type of
data-driven selection and error rate.

Classical conformal with naive selection InfoSP

(FCP = 3/20 = 0.15) (FCP = 1/10 = 0.10)

Fig 1: Informative prediction sets in classification for CIFAR-10 dataset, restricted to the K = 3
classes “bird”, “cat”, and “dog” classes (iid setting). Informative prediction subsets are those of
size at most K − 1 = 2 (i.e., non-trivial, Example 1.2 item 1). Selection by InfoSP are framed
in red (right panel). α = 10%. See § 6 for more details.
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2. Preliminaries

2.1. Notation

Expectations and probabilities are denoted for the iid model with E(X,Y )∼PXY
(·) and P(X,Y )∼PXY

(·),
and for the class-conditional model with EX∼PX|Y (·) and PX∼PX|Y (·), respectively. If the data
generation process is clear from the context, or if the expression is relevant for both models, then
the subscript is omitted. In addition, A ⊂ B means that the set A is included in the set B with
a possible equality. For any subset C ⊂ R, |C| denotes the cardinality of C if the set C is finite,
and the Lebesgue measure of C if C is an interval. Finally, for two samples D1 and D2, D1 ∪D2

denotes the new sample formed by concatenating the elements of D1 and D2.

2.2. Conformal prediction sets

The classical conformal prediction set for Yn+i is given by

Cα
n+i(p) = {y ∈ Y : p

(y)
i > α}, i ∈ [m], (4)

where p = (p
(y)
i , y ∈ Y, i ∈ [m]) is a collection of conformal p-values satisfying the following

super-uniform guarantee:

P(p(Yn+i)
i ≤ α) ≤ α, i ∈ [m], (5)

where the above probability is computed either in the iid (Yn+i random) or conditional (Yn+i

fixed) model. Super-uniformity (5) implies directly that Cα
n+i(p) in (4) provides 1 − α coverage

for Yn+i, that is,
P(Yn+i ∈ Cα

n+i(p)) ≥ 1− α, i ∈ [m], α ∈ (0, 1), (6)

which is generally referred to as marginal coverage.
The p-value family is built from the calibration and test sample by using non-conformity score

functions Sy : x ∈ Rd 7→ R, y ∈ Y, measuring the inadequacy between y and the prediction at
point x. Importantly, we follow a split/inductive conformal approach, where the score functions
have been computed from an independent training data sample so that they can be considered
as fixed here3 (and all probabilities/expectations are taken conditional on that training sample).

Assumption 1. The score functions Sy(·), y ∈ Y, have been computed from an independent
training sample and the computed scores (SYi

(Xi), i ∈ [n+m]) have no ties almost surely. When
Y = R, the score function is regular in the following sense: for every x ∈ Rd, the function
y ∈ R 7→ Sy(x) ∈ R is right continuous with left limits.

Assumption 1 is a very mild assumption, which is typically satisfied. For instance, for the
regression case, a classical choice is the locally weighted residual function Sy(x) = |y−µ(x)|/σ(x)
where µ(x) ∈ Y is the predicted outcome at point x and σ(x) is the predicted standard deviation
of Y givenX = x (Lei et al., 2018). Another common example is the quantile-based score function
Sy(x) = max(qβ0(x)− y, y − qβ1(x)) where qβ(x) is the predicted β-quantile of Y given X = x,
which corresponds to the so-called conformalized quantile regression (Romano et al., 2019; Sesia
and Romano, 2021) (for some prespecified 0 < β0 < β1 < 1). More generally, we refer the reader
to Gupta et al. (2022) for a general framework giving rise to a large class of score functions. In
the classification case, the typical score is the residual function Sy(x) = 1 − πy(x) where πy(x)
is an estimator of the probability to generate label y at point x.

Formally, the p-value family is given as follows:

3Note that we can relax slightly this assumption: our theory also allows this function to depend on the
calibration plus test samples in an exchangeable way, see Assumption 6.
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• full-calibrated p-values: p = (p
(y)
i , i ∈ [m], y ∈ Y), both for the regression and classification

cases, with

p
(y)
i =

1

n+ 1

(
1 +

n∑
j=1

1{SYj
(Xj) ≥ Sy(Xn+i)}

)
, i ∈ [m], y ∈ Y. (7)

• class-calibrated p-values: p̃ = (p̃
(y)
i , i ∈ [m], y ∈ Y), only for the classification case Y = [K],

with

p̃
(y)
i =

1

|D(y)
cal |+ 1

(
1 +

∑
j∈D(y)

cal

1{Sy(Xj) ≥ Sy(Xn+i)}
)
, i ∈ [m], y ∈ Y, (8)

where D(y)
cal = {j ∈ [n] : Yj = y} corresponds to the elements of the calibration sample

that have label y ∈ Y.

Both p-values p
(y)
i and p̃

(y)
i are computed by examining how extreme the score Sy(Xn+i) is

among the scores of the true labels in the calibration sample. Full-calibrated p-values and class-
calibrated p-values satisfy the super-uniformity (5) in the iid model and class-conditional model,
respectively, by using an exchangeability argument, see Vovk et al. (2005); Romano and Wolf
(2005); Bates et al. (2023). This means that prediction set Cα

n+i(p) in (4) satisfies the marginal
coverage (6) in each context. As a result, the false coverage rate (3) for the full selection S = [m]
is controlled at level α, that is,

E

[∑
i∈[m] 1{Yn+i /∈ Cα

n+i(p)}
m

]
= m−1

∑
i∈[m]

P(Yn+i /∈ Cα
n+i(p)) ≤ α. (9)

Remark 2.1. The prediction set Cα
n+i(p) in (4) can be described as a score level set, with a

threshold depending on the calibration scores. Formally, we have

Cα
n+i(p) = {y ∈ Y : p

(y)
i > α} = {y ∈ Y : Sy(Xn+i) ≤ ŝα} (10)

where the score threshold ŝα is S(⌈(1−α)(ncal+1)⌉) with S(1) ≤ · · · ≤ S(ncal) being the ordered
calibration scores (and with the convention S(ncal+1) = +∞). For full-calibrated p-values, the

ncal = n calibration scores are SYj (Xj), j ∈ [n]. For class-conditional p-values, the ncal = |D(y)
cal |

calibration scores are Sy(Xj), j ∈ D(y)
cal (ŝα depends on y).

2.3. I-adjusted p-values

Our theory relies on the following assumption.

Assumption 2. The subset collection I is monotone in the following sense: for the considered
p-value collection p (either p or p̃), we have

(i) If a prediction set is informative, then all the prediction sets it contains are also informative,
that is, for all C, C′ (subsets of [K] for classification, intervals of R for regression) with
C′ ⊂ C, C ∈ I implies C′ ∈ I.

(ii) Almost surely, the function α ∈ (0, 1] 7→ 1{Cα
n+i(p) ∈ I} ∈ {0, 1} is right-continuous.

(iii) (for regression) For all α ∈ (0, 1), almost surely, Cα
n+i(p) is an interval of R.
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Note that Assumption 2 implies that α ∈ (0, 1] 7→ 1{Cα
n+i(p) ∈ I} ∈ {0, 1} is both right-

continuous and nondecreasing: if α ≤ α′, it follows that Cα′

n+i(p) ⊂ Cα
n+i(p) from (4) and thus

Cα
n+i(p) ∈ I implies that Cα′

n+i(p) ∈ I by Assumption 2 (i) (iii).
As a result, we can define the I-adjusted p-value vector by q = (qi)i∈[m] where

qi = min{α ∈ (0, 1] : Cα
n+i(p) ∈ I}, (11)

with by convention qi = 1 if the set is empty. Assumption 2 can be easily checked for Examples 1.1
and 1.2, with an explicit expression for qi’s (see Section F for the detailed derivations of these
expressions).

Example 2.1 (Example 1.1 continued). For regression (see § 4 for more details): qi = supy∈[a,b] p
(y)
i

for intervals excluding Y0 = [a, b]; qi = (n + 1)−1
(
1 +

∑n
j=1 1{SYj

(Xj) > A}
)

for length-
restricted intervals I (with |I| ≤ 2λ0), where A = λ0/σ(Xn+i) for Sy(x) = |y − µ(x)|/σ(x)
and A = λ0 − (qβ1(Xn+i)− qβ0(Xn+i))/2 for Sy(x) = max(qβ0(x)− y, y − qβ1(x)).

Example 2.2 (Example 1.2 continued). For classification: qi = p
(y0)
i for excluding one-class;

qi = maxy∈Y0
p
(y)
i for excluding several classes; qi = miny∈[K] p

(y)
i for non-trivial classification;

qi = the (K−k0)-th smallest element in the set {p(y)i , y ∈ [K]} for at most k0-sized classification.

Example 2.3 (Combining informative subset collections). Let I1 and I2 be two subset collections
that satisfy Assumption 2 with adjusted p-values given by (q1,i)i∈[m] and (q2,i)i∈[m], respectively.
Then we can easily check that the intersected collection I := {I1 ∩ I2, I1 ∈ I1, I2 ∈ I2} also
satisfies Assumption 2 with adjusted p-values given by qi = max{q1,i, q2,i}, i ∈ [m]. This is useful
to combine the constraints imposed by the informativeness. For instance, in the classification case
(Examples 1.2 and 2.2), we can declare a subset as informative if it excludes a null class while
it is of cardinality at most one (see § B for a concrete application).

From its definition in (11), it follows that qi can be seen as a p-value to test whether Yn+i lies
in an informative set or not, that is, to test

H0,i: “Yn+i /∈ ∪C∈IC” versus H1,i : “Yn+i ∈ ∪C∈IC”. (12)

More specifically, using the p-value qi, H0,i is rejected at level α whenever Cα
n+i(p) ∈ I, and it

satisfies a valid super-uniformity property, see Remark 2.4.
In cases where being informative is linked to particular values in Y, this testing problem takes

an especially meaningful form. In classification, for excluding one class in classification: qi = p
(y0)
i

tests H0,i: “Yn+i = y0” versus H1,i : “Yn+i ̸= y0”. In regression, for excluding Y0 = [a, b]: qi
tests H0,i: “Yn+i ∈ [a, b]” versus H1,i : “Yn+i /∈ [a, b]”. Note that in case where informative
sets are those with small size (e.g., non-trivial classification or length-restricted intervals), we
have ∪C∈IC = Y, so the null hypothesis is always false, and the testing problem (12) is not
interesting.

Remark 2.2. Assumption 2 implies that the I-adjusted p-value vector q is a nondecreasing
function of the p-value collection, see Lemma C.5; Assumption 2 (iii) is always satisfied up to
taking as prediction sets Cα

n+i(p) the convex hull of the set in the right-hand-side of (4). It is
also satisfied without modifying Cα

n+i(p) for any score function such that all the sets {y ∈ R :
Sy(x) ≤ s} are intervals, which is often the case, see Remark 2.1 and § 4.

Remark 2.3. In a context of building online confidence intervals, Weinstein and Ramdas (2020)
have proposed to report only intervals that are “good” in the sense that they “localize” the signal.
Formalizing their proposal in our regression setting and with our notation, this corresponds to
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consider the informative collection I = {I interval of R : I ⊂ Cℓ for one ℓ ∈ [L]}, where Cℓ,
ℓ ∈ [L], are pre-specified disjoint subsets of R. This collection satisfies Assumption 2 and the

corresponding I-adjusted p-values are given by qi = minℓ∈[L] supy/∈Cℓ
p
(y)
i .

Remark 2.4. The following super-uniformity property holds for the I-adjusted p-value qi (11)
and the null H0,i (12):

P (qi ≤ α,H0,i true) ≤ α, for all α ∈ (0, 1).

To see this, note that when H0,i is true, we have Yn+i ∈ ∩C∈IC
c. From the definition, qi ≤ α

means Cα
n+i(p) ∈ I. Therefore, if both qi ≤ α and H0,i is true, we have Yn+i /∈ Cα

n+i(p), i.e., that

p
(Yn+i)
i ≤ α, which occurs with probability at most α by (5).

2.4. Aim: informative selection with FCR guarantees

The general inferential task is to produce prediction sets for examples of interest in the test
sample, that is, after selection. The selection process is driven by the requirement that the
prediction sets be informative, and the requirement of a relevant error control.

A selective prediction set procedure is a function of the observations {(Xj , Yj), j ∈ [n]},
{Xn+i, i ∈ [m]} of the form R = (Cn+i)i∈S where S is the selected subset of [m] for which
prediction sets are constructed, and Cn+i ⊂ Y is the prediction set for Yn+i, i ∈ S.

A selective prediction set procedureR = (Cn+i)i∈S is said to be I-informative (or informative)
if the selection S is a subset of [m] that imposes that Cn+i is informative, that is, ∀i ∈ S, Cn+i ∈ I.

The FCR in the iid model and class-conditional model, respectively, are

FCR(R, PXY ) = E(X,Y )∼PXY
[FCP(R, Y )]; (13)

FCR(R, PX|Y , Y ) = EX∼PX|Y [FCP(R, Y )], (14)

for the FCP in (2). The FCR expression in (14) for quantifying the errors among the selected is
classical in the selective inference literature: since (Yn+i)i∈[m] is fixed, this is the false coverage
rate on the parameters (Benjamini and Yekutieli, 2005; Benjamini and Bogomolov, 2013). On
the other hand, in (13), the false coverage rate is on random outcomes (i.e., (Yn+i)i∈[m] in our
setting) rather than on parameters, which is the usual setting in selective conformal inference
(see references in § 1) and is related to the Bayes FDR criterion in the multiple testing literature,
see, e.g., Efron et al. (2001).

We will focus on finding selective prediction set procedures R = Rα with either of the two
following controls:

sup
PX,Y

{FCR(R, PX,Y )} ≤ α ; (15)

sup
PX|Y ,Y

{FCR(R, PX|Y , Y )} ≤ α . (16)

Obviously, the class-conditional control (16) (considered only for classification) is stronger than
the unconditional control (15) (considered both for classification and regression).

To balance with FCR control, we also consider the resolution adjusted power:

Pow(R) = E

[∑
i∈S

1{Yn+i ∈ Cn+i}
|Cn+i|

]
. (17)
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Hence, for the same selection set, a decision with a smaller covering decision set Cn+i yields
higher power. Our aim is to maximize the resolution adjusted power (i.e., informally, to select as
many examples as possible that are informative, with as narrow as possible a prediction set for
the selected examples), while controlling the FCR at a pre-specified level α.

Finally, considering the multiple testing problem (12), that test if Yn+i lies in an informative set
or not, we can also quantify the error amount of a given selection procedure S (by itself, without
quantifying the non-coverage errors of the attached prediction sets), by letting (Benjamini and
Hochberg, 1995)

FDP(S, Y ) =

∑
i∈S 1{Yn+i /∈ ∪C∈IC}

1 ∨ |S|
. (18)

For instance, when one wants to exclude a given label set Y0 in classification/regression, we have
FDP(S, Y ) = (

∑
i∈S 1{Yn+i ∈ Y0})/(1 ∨ |S|). The false discovery rates in the iid model and

class-conditional model are the corresponding expectations

FDR(S, PXY ) = E(X,Y )∼PXY
[FDP(S, Y )]; (19)

FDR(S, PX|Y , Y ) = EX∼PX|Y [FDP(S, Y )], (20)

respectively. The following lemma holds.

Lemma 2.1. For any selective prediction set procedure R = (Cn+i)i∈S that is I-informative, we
have FDP(S, Y ) ≤ FCP(R, Y ).

It comes directly from the fact that, for i ∈ S, Yn+i ∈ Cn+i implies Yn+i ∈ ∪C∈IC because
Cn+i ∈ I. As a result, producing an informative selective prediction set procedure that controls
the FCR at level α immediately ensures that the attached selection procedure controls the FDR
at level α and thus comes with a relevant interpretation.

3. Main results

3.1. Informative selective prediction sets (InfoSP)

In order to have a level α FCR guarantee on the selected examples, it is necessary to correct the
threshold α in Cα

n+i(p) (4). A standard approach in the selective inference literature (Benjamini
and Yekutieli, 2005; Benjamini and Bogomolov, 2013) is to use the reduced level α|S|/m for a
selection set S. In order for the selective prediction set procedure to be I informative, the selection
rule needs to be carefully selected. We shall use the following basic observation: selection by a
thresholding rule on the family q = (qi, i ∈ [m]) given by (11) will result in selected examples
that are I informative for prediction sets that are constructed at a level that is at least at the
selection threshold, since Ct

n+i ∈ I if and only if qi ≤ t for all t ∈ (0, 1] by the definition of qi.
Combining the standard approach for FCR control with this basic observation, leads us to use
the following selection thresholding rule which is necessarily I-informative: all examples with qi
at most

max

t : t ≤ α

(∑m
j=1 1{qj ≤ t}

)
m

 .

This is exactly the BH selection rule (Benjamini and Hochberg, 1995) on the adjusted p-value
vector q = (qi, i ∈ [m]). In practice, let us recall that the BH procedure BH(q) can be obtained
as

BH(q) = {i ∈ [m] : qi ≤ αℓ̂/m}, (21)



Gazin, Heller, Marandon, Roquain/Selecting informative conformal prediction sets 10

where ℓ̂ = |BH(q)| = max{ℓ ∈ [m] : q(ℓ) ≤ αℓ/m} (with ℓ̂ = 0 if the set is empty) and where
q(1) ≤ · · · ≤ q(m) denote the ordered qi’s.

Definition 1. The informative selective prediction set procedure (InfoSP) based on a p-value

family p = (p
(y)
i , y ∈ Y, i ∈ [m]), is defined as RInfoSP

α (p) = (Cα|BH(q)|/m
n+i (p))i∈BH(q), that is, is

given as follows:

1. Apply the BH procedure on the corresponding adjusted vector q = (qi, i ∈ [m]) given by
(11),(21) and select S(p) = BH(q) ⊂ [m];

2. For each i ∈ S(p), consider the prediction set Cα|S(p)|/m
n+i (p) for Yn+i, computed according

to (4).

The key theoretical difficulty in proving that the FCR of InfoSP is at most α, is that the
conformal p-values are dependent, and that the selection step is also p-value-based (by contrast
with Bao et al., 2024). Thus, the error rate in (13) for the iid model and (14) for the class-
conditional model may not be controlled. Bates et al. (2023); Marandon et al. (2024) showed
that, for outlier detection, the special positive dependency between the conformal p-values is
such that the BH procedure remains valid for FDR control. Their results are on a different set of
conformal p-values, but we develop a similar result for our problem, which enables us to establish
the desired error guarantee for various selection rules.

Theorem 3.1. Consider score functions satisfying Assumption 1, an informative subset collec-
tion I satisfying Assumption 2 and a p-value collection p being either p (full-calibrated) or p̃
(class-calibrated), then the I-informative selective prediction set procedure RInfoSP

α (p) (Defini-
tion 1) controls the FCR at level α, respectively in the iid model (p = p) with the control (15)
or the class-conditional model (p = p̃) with the control (16).

A proof is provided in § E.1, which relies on a more general result, see Theorem C.1. The latter
provides FCR guarantee to more general p-value collections (see Assumption 4). For instance,
it is valid for the two p-value collections p and p̃ under less restrictive conditions that those
considered in Theorem 3.1: the independence assumption can be relaxed to an exchangeable
assumption (Propositions C.2 and C.3), while the score function can take a general form that can
provide an extra improvement (Assumption 6). In addition, our result applies beyond informative
selection, to any concordant selection rule (see Assumption 5), as defined in Benjamini and
Yekutieli (2005); Benjamini and Bogomolov (2013). For instance, it applies for any monotone
p-value-based thresholding rule (see Section C.4 for more details). This is in sharp contrast with
the work of Bao et al. (2024) that does not provide finite sample FCR control at the desired level
for p-value-based selection rules, because the selection rule therein should be independent of the
calibration scores.

Let us also mention that an alternative proof of Theorem 3.1 can be obtained by using the
property that a particular p-value based family is PRDS (positive regression dependence on each
one from a subset Benjamini and Yekutieli, 2001), see Section G. This can be seen as an extension
of Lemma 5 (iii) in Jin and Candes (2023) to our general informative setting.

We apply Lemma 2.1 to obtain the following FDR guarantee for InfoSP.

Corollary 3.2. In the setting of Theorem 3.1, the selection rule BH(q) of RInfoSP
α (p) provides

level α FDR control, given either by (19) in the iid model (p = p) or (20) in the class-conditional
model (p = p̃).

Remark 3.1. For InfoSP, we can avoid the computation of q by using that the BH procedure

is the iterative limit of a recursion (Gao et al., 2023). Indeed, since Cαk/m
n+i ∈ I if and only if

qi ≤ αk/m, the selection S = BH(q) can be obtained as follows: Step 1: S1 = {i ∈ [m] : Cα
n+i ∈ I};



Gazin, Heller, Marandon, Roquain/Selecting informative conformal prediction sets 11

Step t ≥ 1: St = {i ∈ St−1 : Cα|St−1|/m
n+i ∈ I}; Consider t0 the first t where St = St−1 and let

S = St0 .

3.2. Informative selective conditional prediction sets (InfoSCOP)

Throughout this section, we consider the iid model. It turns out that InfoSP can be too conser-
vative in some contexts; this is manifest in the true FCR being much smaller than the nominal
α level, see illustrations in § 4 and § 5. To avoid this, we can adapt the conditional approach
of Bao et al. (2024) to our framework and start by selecting test samples and calibration sam-
ples. We would like, following the initial selection, to have as few as possible test samples for
which I-informative prediction sets cannot be constructed. For this purpose, we further split
the calibration sample, which is a classical trick in conformal literature in order to preserve ex-
changeability with calibration samples after the initial selection (see Lemma H.5). Specifically,
we follow the following steps

1. Split the calibration sample ((Xj , Yj), j ∈ [n]) into two samples ((Xj , Yj), j ∈ [r]) and
((Xj , Yj), j ∈ [r + 1, n]) for some r ∈ [n− 1].

2. Apply an initial conformal selection rule S(0) = S(0)((Xj , Yj)j∈[r], (Xj)j∈[r+1,n+m]) ⊂
[r + 1, n + m] that considers as calibration sample ((Xj , Yj), j ∈ [r]) and test sample
((Xj , Yj), j ∈ [r + 1, n+m]).

3. For i + n ∈ S(0) ∩ [n + 1, n + m], compute the conformal p-values using calibration set
{(Xj , Yj), j ∈ S(0)∩ [r+1, n]} (i.e., using the conditional empirical distribution, post initial
selection):

p
(0,y)
i =

1

|S(0) ∩ [r + 1, n]|+ 1

1 +
∑

j∈S(0)∩[r+1,n]

1{SYj
(Xj) ≥ Sy(Xn+i)}

 . (22)

We assume that the initial selection S(0) satisfies the following permutation preserving as-
sumption.

Assumption 3. For any permutation σ of [r + 1, n+m],

S(0)((Xj , Yj)j∈[r]), (Xσ(j))j∈[r+1,n+m]) = σ
(
S(0)((Xj , Yj)j∈[r], (Xj)j∈[r+1,n+m])

)
.

The initial selection S(0) is typically the result of a multiple testing procedure that is applied
to the examples in [r + 1, n + m], that uses p-values computed with ((Xj , Yj), j ∈ [r]) as cali-
bration sample and (Xi, i ∈ [r + 1, n+m]) as covariate test sample, which immediately satisfies
Assumption 3. We can use BH(q) as an initial selection stage (where the qi’s are computed
with the aforementioned sample split) so that selected examples are likely to correspond to Yn+i

where an informative prediction set can be built. For excluding a null range in regression or a
null class in classification, another choice is to use an appropriate BH procedure for testing that
the examples from [r + 1, n+m] are from that null, see examples in § 4.1 and § 5.2.

Definition 2. The informative selective conditional prediction set procedure pre-processed with
the initial selection rule S(0), called InfoSCOP, is defined as the InfoSP procedure of Definition 1
applied with the pre-processed p-value family p0 (22), that is, RInfoSCOP

α (p) = RInfoSP
α (p0) =

(Cα0

n+i(p
0))i∈BH(q0), where α0 = α|BH(q0)|/|S(0) ∩ [n+1, n+m]| and the I-adjusted p-values q0

are computed via (11) from the pre-processed p-values p0.

Theorem 3.3. Consider the iid model (both for regression and classification), score functions
satisfying Assumption 1, an informative subset collection I satisfying Assumption 2 and any
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initial selection rule S(0) ⊂ [r+1, n+m] that satisfies Assumption 3. Then the InfoSCOP procedure
of Definition 2 is such that FCR(RInfoSCOP

α (p)) ≤ α. In addition, the associated selection rule
BH(q0) controls the FDR (19) at level α.

The proof, provided in § E.2, follows directly from the general calibration splitting trick
Lemma H.5.

As we will see in the next sections, while it maintains the FCR guarantee, InfoSCOP can
greatly improve over InfoSP. The main reason is that adjusting for selection is cheaper after the
initial selection step: by reducing the fraction of examples in the test sample for which it is not
possible to construct I-informative prediction sets, the correction term α0 is expected to be close
to α (or not much smaller than α). Another reason is that the selection-conditional p-values p0

will be better in settings where the initial selection step tends to remove the examples from the
calibration set that have large non-conformity scores, see § 4, § I, and § J for such cases.

In general, the way InfoSCOP can improve over InfoSP depends on the context. For instance,
for excluding a null range in classification, a null class in regression or for length restriction in
regression, we show in § 4 and § 5, respectively, the great potential advantage of using the initial
selection. On the other hand, we also show that for non-trivial classification, there may be no
advantage of initial selection (in fact, there can be a slight disadvantage since the calibration
sample after initial selection is smaller, as demonstrated in § 5.3).

4. Application to regression

This section is devoted to the regression case (that is, Y = R), as already introduced in Exam-
ple 1.1. Throughout the section, we work in the iid model. Illustrations for other informative
selections and an application for gene expression prediction from promoter sequences can be
found in § I in the SM.

4.1. Excluding [a, b] from the prediction interval

We focus here on the case where the user wants to build prediction intervals only for outcomes
such that Yn+i < a or Yn+i > b, which corresponds to excluding Y0 = [a, b] from the prediction
interval, where a < b are two benchmark values. This corresponds to common practice where users
are interested only in reporting prediction intervals for individuals with “abnormal” outcomes.
Setting a = −∞ recovers the case where we only want to report prediction intervals for examples
such that Yn+i > b, which is the selection considered in Jin and Candes (2023). We focus on
two-sided prediction intervals here (the case of one-sided prediction intervals is postponed to § I).
The choice of score function defines InfoSP and entails all the desired inferential guarantees. We
formalize this for the locally weighted score function in Corollary 4.1. Using other score functions
is also possible, e.g., the score function that corresponds to conformal quantile regression, see
Remark 4.1.

Corollary 4.1. Consider the iid model in the regression case, the locally weighted score function
Sy(x) = |µ(x) − y|/σ(x) and suppose that Assumption 1 holds. Then the following holds for
InfoSP with informative collection I = {I interval of R : I ∩ [a, b] = ∅} and full-calibrated
p-value collection p (7):

(i) InfoSP selects S = BH(q) with

qi = p
(a)
i 1{µ(Xn+i) < a}+ p

(b)
i 1{µ(Xn+i) > b}+ 1{a ≤ µ(Xn+i) ≤ b}. (23)
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(ii) The selection S of InfoSP controls the FDR at level α in the following sense:

sup
PXY

E(X,Y )∼PXY

[∑
i∈S 1{Yn+i ∈ [a, b]}

1 ∨ |S|

]
≤ α.

(iii) The selected prediction intervals do not intersect [a, b] and are of the form Cn+i = [µ(x)−
S(nα(p))σ(x), µ(x)+S(nα(p))σ(x)], where S(1) ≤ · · · ≤ S(n) are the ordered calibration scores
SYj

(Xj), 1 ≤ j ≤ n (with S(n+1) = +∞), and nα(p) = ⌈(1− α|S(p)|/m)(n+ 1)⌉.
(iv) These prediction intervals control the FCR at level α in the sense of (15).

Proof. Point (i) follows from straightforward computations, see Section F. Point (ii) follows from
Lemma 2.1, (iii) from Remark 2.1 and the fact that qi ≤ α|S(p)|/m iff Cn+i does not intersect
[a, b]. Point (iv) follows from Theorem 3.1.

Hence, our method, in addition to providing an FCR control on the selected ensures that
the obtained prediction intervals are informative in the sense that they do not include bench-
mark values (i.e., values in [a, b]). This ensures that the selection method is meaningful for the
considered aim, which formally entails the FDR control (ii). Obviously, since InfoSCOP is an
InfoSP method for preprocessed p-values (22), a similar result holds for InfoSCOP, for any initial
selection step S(0) ⊂ [r + 1, n+m] that satisfies the permutation preserving Assumption 3.

Corollary 4.1 is illustrated on Figure 2 when S(0) is taken here as BH(q) at level 2α (with
the score Sy(x) = |µ(x) − y|/σ(x)). In the first row, errors are larger further away from [a, b].
Hence, while the marginal prediction intervals control the FCR at level α when selecting all the
covariates (as granted by (9)), the FCR is inflated for a naive selection that selects each example
with a prediction interval at level α not intersecting [a, b] (that is, naive selection is given by S1 in
the recursion of Remark 3.1). To maintain the FCR control at level α = 0.1, InfoSP adjusts the
width of the prediction interval in an accurate way to accommodate the informative constraint.
InfoSCOP is roughly the same as InfoSP in this case, because the largest scores are kept in the
calibration sample after initial selection. This is the most unfavorable setting for InfoSCOP, but
it nevertheless performs similarly to InfoSP. In the second row, errors are smaller further away
from [a, b], which makes the FCR of the naive selection and InfoSP far too conservative. By
contrast, the initial selection of InfoSCOP removes the largest scores of the calibration sample,
resulting in much narrower prediction intervals, and thus in a much larger resolution-adjusted
power (even better than the naive procedure).

Remark 4.1. In Corollary 4.1, we consider the locally weighted score function Sy(x) = |µ(x)−
y|/σ(x) for simplicity of exposition, but we can use any score function satisfying Assumption 1.
For instance, for the quantile-based score function Sy(x) = max(qβ0

(x)−y, y−qβ1
(x)), the corre-

sponding qi have the expression qi = p
(a)
i 1{µ(Xn+i) < a}+p

(b)
i 1{µ(Xn+i) > b}+p

(µ(Xn+i))
i 1{a ≤ µ(Xn+i) ≤ b},

where µ(x) = (qβ0(x) + qβ1(x))/2 and where the p
(y)
i ’s are computed by using this score function

(see the computations in Section F). This leads to the prediction intervals Cn+i = [qβ0
(Xn+i) −

S(nα(p)), qβ1
(Xn+i) + S(nα(p))] (which do not intersect [a, b]), by using the notation of Corol-

lary 4.1.

4.2. Length-restricted prediction intervals

In this section, we consider the situation where the user only wants to report prediction intervals
that are accurate enough, which corresponds to consider I = {[a, b] ⊂ R : 0 < b− a ≤ 2λ0} as
the informative subset collection, for some size λ0 > 0.
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Fig 2: Informative prediction intervals when excluding [a, b] (homoscedastic Gaussian regression
model with perfect variance prediction), see text. The predictor µ (dotted line) does not approx-
imate well the true µ∗(x) = E[Y |X = x] (solid line) in the selection area (top row) and out of
the selection area (bottom row). The marginal and informative prediction intervals (InfoSP and
InfoSCOP) are depicted in light blue and red, respectively. While the plot corresponds to one
data generation, the FCR and adjusted power computed in the title of each panel are computed
with 100 Monte-Carlo simulations. n = 1000, m = 500, α = 0.1.

Corollary 4.2. Consider the iid model in the regression case, consider the locally weighted score
function Sy(x) = |µ(x)−y|/σ(x) and suppose that Assumption 1 holds. Then the following holds
for InfoSP with informative collection I = {[a, b] ⊂ R : 0 < b − a ≤ 2λ0} and full-calibrated
p-value collection p (7):

(i) InfoSP selects S = BH(q) with qi given by the formula of Example 2.1.
(ii) The selected prediction intervals are of length at most 2λ0 and are of the form Cn+i =

[µ(x)−S(nα(p))σ(x), µ(x)+S(nα(p))σ(x)], where S(1) ≤ · · · ≤ S(n) are the ordered calibration
scores SYj

(Xj), 1 ≤ j ≤ n (with S(n+1) = +∞), and nα(p) = ⌈(1− α|S(p)|/m)(n+ 1)⌉.
(iii) These prediction intervals control the FCR at level α in the sense of (15).

A similar result holds for InfoSCOP. In Corollary 4.2 (ii), the length of the prediction interval
on the selection is always granted to be (at most) of the correct size 2λ0, even if adjusting the
level is necessary to account for selection (which de facto enlarge the prediction interval). Thanks
to the BH(q) selection the size-adjustment is automatic, while maintaining the FCR control.

Proof. The expression of qi follows from straightforward computations, see Section F. This im-
plies that |Cn+i| = 2σ(Xn+i)S(⌈(1−α)(nα(p)+1)⌉) ≤ 2λ0 since qi ≤ α|S(p)|/m.
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Figure 3 displays length-restricted informative prediction intervals in particular settings. In
the first row, errors are more likely to occur on the selection (due to under-estimation of the
variance), while in the second row, errors are less likely to occur on the selection (due to over-
estimation of the variance). Hence, the comment is similar to the previous section: InfoSP and
InfoSCOP are similar in the first situation but InfoSCOP improves InfoSP in the second.

Remark 4.2. Corollary 4.2 easily extends to the case of conformalized quantile regression, by
considering the quantile-based score function Sy(x) = max(qβ0

(x)− y, y − qβ1
(x)). In that case,

the formula of the qi’s are given in Example 2.1 (see Section F for a proof) and the prediction
intervals are Cn+i = [qβ0(Xn+i) − S(nα(p)), qβ1(Xn+i) + S(nα(p))] (of length at most 2λ0), with
the notation of Corollary 4.2.
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Fig 3: Informative prediction intervals when length-restricted (heteroscedastic Gaussian regres-
sion model with perfect mean prediction), see text. The predictor σ under-estimates (top row)
and over-estimates (bottom row) the true σ∗(x) = V1/2[Y |X = x] in the selection area. The
marginal and informative prediction intervals (InfoSP and InfoSCOP) are depicted in light-blue
and red, respectively. While the plot corresponds to one data generation, the FCR and adjusted
power computed in the title of each panel are computed with 100 Monte-Carlo simulations.
n = 1000, m = 500, α = 0.1.

5. Application to classification

We consider the classification case Y = [K], for both the iid model and the class-conditional
model. Importantly, in classification, any selective prediction set procedure R = (Cn+i)i∈S is
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post-processed by setting, for i ∈ S, Cn+i = argmink∈[K]{Sk(Xn+i)} whenever Cn+i = ∅ (that
is, if empty take the smallest non-conformity score). Clearly, this operation can only decrease
the FCP while it can only increase the adjusted power, so it should always be preferred in
the classification case. In this paper, InfoSP and InfoSCOP always refer to the post-processed
procedures in the classification case.

5.1. Choosing the appropriate p-value collection in classification

While the family of full-calibrated p-values are only valid for the iid model, the family of class-
calibrated p-values are valid both in the iid and in the class-conditional model.

Thus, for the iid model, we can in principle use either full-calibrated p-values or class-calibrated
p-values. In the applications we consider next, it appears that using full-calibrated p-values in
InfoSP is best. We support this claim by theory for non-trivial classification in § 5.3, and by
numerical experiments in § 5.2, § 5.3, and § J. We note that for the initial selection step in
InfoSCOP, class-calibrated p-values can be useful, as demonstrated in § 5.2.

For the class-conditional model, there can be a label shift from the calibration to the test
sample. So the full-calibrated p-values are not valid, and class-calibrated p-values must be used.
In § D we consider more generally weighted class-calibrated p-values, where the weights are
functions of estimators of the proportion of labels in each class in the test sample.

5.2. An illustrative example: prediction sets excluding a null class

Suppose the analyst is interested in reporting prediction sets that exclude a null class, say class
y0 = 1 (see first items of Examples 1.2 and 2.2). We consider the following novel procedures, in
addition to the naive procedure using the classic conformal procedure, that reports Cα

n+i only
if Cα

n+i does not intersect the null class: first, InfoSP on full-calibrated p-values, denoted by
RInfoSP

α (p). Second, InfoSCOP on full-calibrated p-values, denoted by RInfoSCOP
α (p), with initial

selection step S(0) ⊂ [r+1, n+m] being the BH procedure applied to the class-calibrated adaptive

p-value family (p̃
(1)
i,adapt

, i ∈ [r + 1, n + m]), given by p̃
(1)
i,adapt = π̂1p̃

(1)
i , i ∈ [r + 1, n + m], using

{(Xj , Yj), j ∈ [r]} and {(Xj , Yj), j ∈ [r+1, n+m]} as calibration and test samples, respectively,
and with calibrated-based estimator π̂1 = (r + 1)−1

(∑r
i=1 1{Yi = 1} + 1

)
. Third, InfoSP on

class-calibrated p-values, denoted by RInfoSP
α (p̃). Note that InfoSCOP above uses class-calibrated

p-values for initial selection (because these are better to detect examples from the non-null class),
and full-calibrated p-values on the selected examples from [r+1, n+m] in the second step (because
these are better p-values for building prediction sets in the iid model).

We consider a Gaussian mixture model with K = 3 components, where each component is
bivariate normal. The centers for the three components are (0,0), (SNR,0), and (SNR,SNR). So
the overlap between components is larger as SNR decreases. We consider the case of balanced
classes in the calibration sample, as well as the case of unbalanced classes where the null class is
much larger than the others. Specifically, the balanced case has class probabilities 0.33, 0.33, and
0.34, and the unbalanced case (depicted in Figure 11 for an SNR value of 3) has class probabilities
0.15, 0.10, and 0.75 (the null class). In the balanced case, we consider the iid setting where the
test sample has the same class probabilities as the calibration sample, as well as class-conditional
setting where the test sample has class probabilities 0.2,0.2, and 0.6 (the null class), so the label
shift is large. We estimate the probability of being in each class with a support vector classifier
implemented by the e1071 R package Meyer et al. (2023).

Figure 4 shows the FCR and resolution-adjusted power of all procedures considered. As ex-
pected, the classic conformal procedure does not control the FCR for any data generating model
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(it uses the full-calibrated and class-calibrated p-values in the iid and class-conditional setting,
respectively). All other procedures control the FCR.

For the iid model (Figure 4 left and middle columns), InfoSCOP on full-calibrated p-values
has better power than the alternatives for prediction sets excluding a null class. Its advantage
over InfoSP is primarily due to the fact that after pre-processing, almost all test examples are
non-null, as illustrated in Figure 11 in the SM for a single data generation. The differences
between the procedures are qualitatively the same, but even greater, when the overlap between
components is larger, see Figure 13 in the SM. This is because when the overlap with the null
class is large, after pre-processing only examples with better scores are considered, as illustrated
in Figure 14 in the SM. For completeness, we also provide InfoSP on class-calibrated p-values
in the iid setting, to demonstrate numerically the potentially large power advantage from using
the full-calibrated p-values over the class-calibrated p-values.

For the class-conditional model (Figure 4 right column), InfoSP has lower power than classic
conformal, but the power is reasonable. In Figure 6 in the SM we compare it to two procedures
that weigh the classes according to their estimated relative frequencies.
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InfoSP full−calibrated
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Fig 4: Selecting prediction sets excluding a null class in a classification setting. FCR (top row),
and resolution-adjusted power (bottom row) versus SNR. The iid setting in columns 1 and 2, with
balanced classes and unbalanced classes, respectively. The class-conditional setting in column 3,
with a large label shift: the class probabilities are equal in the calibration sample and 0.2,0.2,
and 0.6 (the null class) in the test sample. The number of data generations was 2000, 1000 data
points were used for training, and n = m = 500. See details of the data generation in § 5.2.
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5.3. Selecting non-trivial prediction sets

Suppose the analyst is interested in reporting prediction sets that are not equal to [K] (see
first item of Examples 1.2 and 2.2). In that case, we argue that InfoSP has an FCR close to
α in the iid model. Intuitively, this comes from the selection rule S = BH(p) which is such

that 1{Yn+i /∈ Cα|S|/m
n+i (p), i ∈ S} = 1{Yn+i /∈ Cα|S|/m

n+i (p)}. It means that it is not possible to
fail to cover at the adjusted level without being selected (because otherwise the prediction set
is trivial). This is not the case for other selection rules, e.g., excluding a null class, where it is
possible that the true class label is not covered at the adjusted level even if the example is not
selected (thus implying that the adjusted level is conservative, since for FCR control we guard
against non-coverage at the adjusted level for all examples). We formalize fully the argument for
K = 2 in the following result.

Proposition 5.1. In the iid classification model with K = 2, consider the non-trivial infor-
mative subset collection I = {C ⊂ [K] : |C| ≤ 1} and assume that the score functions
satisfy Assumption 1 with

∑
k∈[K] Sk(x) = 1 and Sk(x) ≥ 0. Let p0 be the probability that

SYi
(Xi) is the maximum score max{S1(Xi), S2(Xi)}. Then if (n+1)α/m is an integer, we have

FCR(RInfoSP
α (p), PX,Y ) = α(1− (1− p0)

n+1).

The proof is given in § E.4, which also shows that RInfoSP
α (p) coincides with the procedure of

Zhao and Su (2023) for K = 2. In typical applications (where classes are not very well separated)
the value of (1− (1− p0)

n+1) is close to one, which means that the FCR of our procedure should
be close to α, at least for K = 2.

To complement our theoretical result, we provide numerical results in Figure 12. InfoSP
has the best power, with InfoSCOP a close second, on full-calibrated p-values. InfoSP on class-
calibrated p-values has much lower power in the unbalanced setting. As expected, the classic
conformal procedure does not control the FCR and the level for InfoSP is about 0.05 for a range
of SNR values. All other procedures control the FCR.

6. Informative prediction sets for 3 classes of animals

In this section, we illustrate the performance of our methods on real data. We use the image
dataset CIFAR-10 (https://www.cs.toronto.edu/~kriz/cifar.html), which consists of 60000
32x32 colour images in 10 classes, with 6000 images per class. We restrict the analysis to 3
classes: birds, cats and dogs. The code used for these experiments can be found at https:

//github.com/arianemarandon/infoconf.
We consider 4 scenarios: in the iid setting, non-trivial classification (scenario a) and non-null

classification (scenario b); in the class-conditional setting, non-trivial classification (scenario c)
and non-null classification (scenario d). The null class is the bird class in scenarios b and d. By
default, the classes are in equal proportions. We introduce a label shift between the calibration
sample and test sample for the class-conditional settings, by modifying the classes proportions:
of the calibration sample to 20% for the bird class versus 40% for the cat/dog class in scenario
c; of the test sample to 50% for the bird class versus 25% for the cat/dog class in scenario d. In
each experiment, the test size is m = 1000 and the calibration size is n = 5000.

In the iid settings (scenarios a and b), we evaluate the procedures InfoSP and InfoSCOP with
full-calibrated p-values and in the class-conditional settings (scenarios c) and d)) we evaluate
InfoSP with class-calibrated p-values, each being also compared with classical conformal predic-
tion (denoted by CC). For all procedures the non-conformity score is Sy(x) = 1 − πy(x) where
πy(x) is an estimator of the probability that the class of x is y and is learned using a convolu-
tional neural network (CNN) with 2 convolutional layers, one pooling layer, and 3 fully-connected

https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/arianemarandon/infoconf
https://github.com/arianemarandon/infoconf
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layers, trained for 20 epochs with a learning rate of 0.01 on a sample size of 5000. To assess the
power of the methods, in addition to the resolution-adjusted power, we plot the selection rate
(SR) of the procedures, defined as the average proportion of informative prediction sets returned,
and the average size of the informative prediction sets.

In each setting, the FDR and each power metric for the methods are evaluated by using 100
runs and the results are reported in Figure 5 scenarios a and b and in Figure 15 scenarios c and
d for α = 0.1. The conclusions are qualitatively similar to the experiments of § 5: in all settings,
classical conformal prediction yields an FCR that severely exceeds the marginal level with an
inflation of about 50%. By contrast, our procedures InfoSP and InfoSCOP control the FCR
at the target nominal level, both without and with label shift. In terms of power, concerning
the iid settings, pre-processing is not useful for non-trivial classification as expected and the
performances of InfoSP and InfoSCOP are similar with an FCR close to the nominal level for
both in that case. For the non-null classification task, InfoSP is conservative while InfoSCOP is
more powerful and displays an FCR close to α. When there is label shift, in the case of non-trivial
classification InfoSP displays an FCR close to α. In the non-null classification case, however, the
label shift increases the difficulty of the task in the sense that for a fixed selection, under-covering
the null class in the test sample results in more false informative sets. Hence, the power is low in
that case. Finally, in all scenarios, our procedures InfoSP and InfoSCOP output a lower number
of informative sets compared to CC, but this is necessary in order to control the FCR. The average
size of the prediction sets that are informative is comparable.

a) Non-trivial classification

b) Non-null classification

Fig 5: FCR, average size of the selected, SR, and resolution-adjusted power for the methods, for
α = 0.1.

7. Conclusion and discussion

In this paper, we have introduced new methods for providing conformal prediction sets after
selection with controlled FCR, that impose a user-specific constraint on the produced prediction
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sets, corresponding to a collection of so-called informative subsets I. In contrast with previous
literature in the field, the selection and prediction stages are intertwined, which results in a BH-
type selection procedure on adjusted p-values (the qi’s) that can further be explicitly derived in
specific settings and that by definition produces prediction sets satisfying the desired constraint
of belonging to I.

Our methods are very general, and they are relevant to applications in classification and
regression. We showed examples in § 4-§ 6 for informative subsets of interest. We used common
scores for the examples, but many other scores from the literature can be used with our suggested
procedures InfoSP and InfoSCOP as long as Assumption 1 is satisfied. In addition, transfer
learning scores can also be handled by our theory (see Assumption 6 in SM). This is known
to greatly improve the conformal inference when there is a domain shift between the learning
sample and the calibration+test samples (Courty et al., 2017; Gazin et al., 2024) and developing
specific application cases for the latter is of interest for future investigations.

For the iid model, InfoSCOP improves over InfoSP in all considered examples, except when
selecting non-trivial prediction subsets in classification (Example 1.2 item 2), for which we estab-
lish that InfoSP almost exhausts the FCR level (see Proposition 5.1for K = 2). The procedure
InfoSCOP splits the calibration sample in order to apply an efficient initial selection step on
part of the calibration sample and the test sample. There are many ways to perform the initial
selection. The choice is important because it defines the pre-processed p-values (22) that can
be seen as p-values “conditionally on being selected”. Different ways of choosing S(0) have been
investigated: trying to rule out all the examples in null class (§ 5.2) or trying to mimic the BH(q)
selection that will be applied at the second stage to reduce the selection effect (§ 4). Finding an
optimal way of calibrating S(0) is an interesting avenue for future research.

For non-trivial prediction subsets in classification, InfoSP is optimal when K = 2 for oracle
scores, i.e., Sk(Xj) = P(Yj ̸= k | Xj), k ∈ [K], j ∈ [n + m]. Specifically, Zhao and Su (2023)
showed that their classification procedure, which coincides with InfoSP for K = 2, is optimal for
controlling the expected number of non-covering prediction sets divided by the expected number
of selected examples, denoted by mFSR in their paper. An open question is whether InfoSP for
K > 2 is optimal when the scores are oracle scores for the resolution adjusted power objective
or a variant thereof. More generally, developing an optimality theory for selective informative
prediction sets (for non-trivial prediction sets as well as for other notions informativeness) is of
great interest.

We provided a class-conditional variant of InfoSP, with class-conditional guarantees. We
proved that our strategy can be followed in the case where the classes of the calibration and
test samples are arbitrary fixed, even when the class proportions in the calibration are very
different than in the test. The main point is that working with the class-calibrated p-value
collection allows to maintain the FCR control in this strong sense. In § D we suggest additionally
weighted procedures, that incorporate the estimated class proportions. These procedures are
not necessarily more powerful than InfoSP, and further research is needed in order to make
recommendations about when to use the weighted procedures, and about weight adaptation to
the specifics of the data.
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Appendix A: Connections to existing works

For the class-conditional model, we can view (Yn+i)i∈[m] as fixed. Thus, informative prediction
sets can be viewed as informative confidence sets for parameters. This has been considered in a
particular setting by Weinstein and Yekutieli (2020). They considered building confidence inter-
vals only for the selected parameters that will be sign determining. They showed that if the test
statistics are independent and the confidence intervals satisfy some monotonicity properties, then
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the FCR can be controlled. Their theoretical framework is different than the one we consider,
but their approach of selecting only sign-determining confidence intervals is very similar to ours,
of selecting only informative prediction sets when informativeness is defined by sign determina-
tion. Moreover, this approach has been considered in Weinstein and Ramdas (2020) with the
broader scope of only reporting confidence intervals if they are “localizing” appropriately the
true parameter in the sense that the confidence interval is entirely contained in one element of
a pre-specified partition of the Y space. They investigate this task in the online setting where
the sequence of unknown parameters is fixed, and at each time step an independent observation
is observed for the corresponding parameter, which is substantially different than our batch set-
ting where the conformal p-values are dependent and the outcome may be random. We show in
Remark 2.3 that our informativeness theory covers their localizing notion in our setting. Next,
we discuss inspiring works connected to ours that assume the iid model.

Zhao and Su (2023) suggested procedures for average error control in multi-class classification,
so Cn+i are singletons. Since their procedure only reports a single class for each selected example,
ambiguous examples will not be selected. However, in most classification tasks, there are examples
whose true class is difficult to determine, yet it is possible to narrow down the possible set of
classes (Sadinle et al., 2019). We suggest procedures that produce Cn+i that are not necessarily
singletons for K > 2. For K = 2, their procedure coincides with an instance in our framework,
see details in § 5.3. However, for K > 2, while our suggestion as well as their suggestion provides
level α FCR control, we select more examples, and although the prediction sets may be at a
coarser resolution than singletons, they are still informative since they narrow down the possible
set of classes. We note that for K > 2, we can recover their procedure if we define as informative
only prediction sets of size one, since then their procedure coincides with InfoSP for the iid
model.

Jin and Candes (2023) addressed the problem of discovering outcomes with values above a
threshold. So Cn+i is of the form (ci,∞) for predefined (ci)i∈[m]. They cast the problem as that
of testing the family of null hypotheses {Yn+i ≤ ci, i ∈ [m]}. In § I.2, it is demonstrated that by
defining Yn+i ≤ ci as uninformative, we can complement the discoveries of Jin and Candes (2023)
with one-sided prediction intervals, while providing the same false discovery rate guarantee on
the selected. Moreover, we show how to obtain two-sided prediction intervals for the informative
examples in § 4.1.

Bao et al. (2024) considered the regression framework. Their first result (Proposition 1 therein)
is to prove that for selection rules that do not depend on the calibration sample, classic conformal
prediction intervals at level α|S|/m for the S selected examples (i.e., the correction factor |S|/m
for selection suggested in Benjamini and Yekutieli, 2005), provide level α FCR control. For our
purpose of informative selection, this result is not useful because informative selection involves
all conformal p-values and therefore involves the calibration sample in a specific way. We need a
different set of assumptions that are detailed in our novel Theorem C.1.

Bao et al. (2024) further argue that the resulting prediction intervals,
(
Cα|S|/m
n+i

)
i∈S are too

wide. They suggest a novel approach that performs selection on both the calibration set and test
set, and then constructs α level conformal prediction intervals for the selected test candidates
using the conditional empirical distribution obtained by the post-calibration set. For exchange-
able selection rules, they show that the FCR is controlled at level α. Their selection process
cannot guarantee that all the constructed prediction intervals are of interest to the analyst. For
example, for predicting the affinity of drug-target pairs, the analyst may not be interested in
pairs with affinity below, say, y0 (the case in item 1 of Example 1.1). Using the novel approach
of Bao et al. (2024), prediction intervals will be constructed following the selection of calibration
and test examples for which the predicted affinity from the machine learning algorithm is above
a selection threshold. They require that the selection procedure be a thresholding procedure of
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the scores SYj (Xj) with a threshold τ that is either independent of the calibration sample (their
Proposition 1), or exchangeable with respect to both calibration and test samples (their Theorem
1). Some of these prediction intervals may include y0, and thus be useless for the analyst (an
illustration is given in § I.4 in SM, see Figure 10 therein). However, it is not possible to addi-
tionally select only the examples with prediction intervals above y0, since after performing this
additional selection, the prediction intervals of Bao et al. (2024) on the selected no longer have
an α level FCR guarantee. Our procedures for regression thus complement the work of Bao et al.
(2024) when the focus is that all the prediction intervals eventually constructed are informative.

In a very recent work4, Jin and Ren (2024) generalize the work of Bao et al. (2024), by
considering more general selection rules for finite-sample exact coverage conditional on the unit
being selected. Their conditional guarantee is achieved by a careful swapping argument which
identifies for each selection rule, the appropriate subset of the calibration examples for each
example from the test sample. Their conditional error guarantee implies FCR control under
some conditions. The control is valid for any selection rule that is exchangeable within the
calibration sample, which is a weaker assumption than concordance. Hence, their selection may
be based on some notion of informativeness. However, since the prediction sets should be inflated
after applying the selection, the latter are not necessary informative according to our definition.
For example, after selecting by a multiple testing procedure on the family of null hypotheses
{Yn+i ≤ ci, i ∈ [m]} in the setting of Jin and Candes (2023), their prediction sets may include
the ci’s for some of the discoveries. We suggest procedures where selection and construction of
prediction sets are inseparable, since we require that each selected prediction set be informative
(along with the requirement that FCR ≤ α).

Appendix B: Application to directional FDR control

Consider for this section that we have (Xi, Zi)i∈[n+m] with real-valued outcomes Zi ∈ R, and we
aim at excluding Zn+i ∈ [a, b], as well as at deciding whether Zn+i < a or Zn+i > b (without
producing prediction intervals for the Zn+i), for two benchmark values a ≤ b. More formally,

we want to build a selection S ⊂ [m] and a (point-wise) decision Ŷ ∈ {1, 3} from the observed
samples such that

FDRdir(S, Ŷ ) := sup
PX|Y ,Y

EX∼PX|Y

[∑
i∈S 1{Yn+i ̸= Ŷn+i}

1 ∨ |S|

]
≤ α, (24)

where Yj = 1{Zj < a}+21{Zj ∈ [a, b]}+31{Zj > b}, j ∈ [n+m]. Our theory yields the following
result.

Corollary B.1. Consider the class-conditional (classification) model on (Xi, Yi)i∈[n+m] with
K = 3 classes. Consider any score function satisfying Assumption 1 (in this classification model).
Consider the procedure that selects S = BH(q) with

qi = max(p̃
(2)
i ,min(p̃

(1)
i , p̃

(3)
i )), i ∈ [m],

where p̃
(y)
i are the class-conditional p-values computed as in (8), and with the decision

Ŷn+i = 1{S1(Xn+i) ≥ S3(Xn+i)}+ 31{S3(Xn+i) > S1(Xn+i)}, i ∈ S.

Then this procedure controls the directional FDR at level α in the sense of (24).

4This work appeared when we were in the final stage of writing, our work has been done independently.
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Proof. We consider I = {C ⊂ [K] : y0 /∈ C, |C| ≤ 1} for y0 = 2 (see Example 2.3) in the
classification setting based on the sample (Xj , Yj)’s (K = 3), and we note that the FCR coincides
with the directional FDR in that case. Hence, the result comes directly from Theorem 3.1 (note
that InfoSP is post-processed here, see § 5).

Remark B.1. For b = a and continuous outcomes (with, say, p̃
(2)
i = 0), there are almost surely

only two classes, Zi = 1 corresponding to Yi < a and Zi = 3 corresponding to Yi > a. The proce-
dure is thus InfoSP for non-trivial classification, with class-calibrated p-values for K = 2. This
procedure coincides with the directional FDR procedure in Guo and Romano (2015) applied to
conformal p-values for the parameters Yn+1, . . . , Yn+m. The proof of validity in Guo and Romano
(2015) assumes that the test statistics for the m hypotheses are independent. Interestingly, with
the dependence induced by the conformal p-values, the same procedure is still valid, as formalized
in Corollary B.1.

Remark B.2. If one wants to obtain prediction intervals in addition to the directional FDR
control, it turns out that in the setting of Corollary 4.1, not only the FDR control (ii) holds but
also the directional FDR control

FDRdir(R) := sup
PX,Y

E(X,Y )∼PX,Y

[∑
i∈S 1{Di = 1, Yn+i > a}+ 1{Di = 3, Yn+i < b}

1 ∨ |S|

]
≤ α,

for the procedure R = (Cn+i)i∈S defined therein with the directional rule Di = 1{Cn+i ⊂ (−∞, a)}+
31{Cn+i ⊂ (b,+∞)} for i ∈ S. It can be slightly less powerful than the directional FDR controlling
procedure of Corollary B.1 (because the latter uses classification scores), but provides additional
information.

Appendix C: FCR control for concordant selection rules

In this section, we present a general approach for FCR control (§ C.1), which relies on the
following:

• a general class of p-values, including both full-calibrated and class-calibrated conformal
p-values (§ C.3);

• the class of concordant selection rules (Benjamini and Yekutieli, 2005; Benjamini and Bo-
gomolov, 2013), including informative selection rules (§ C.4).

C.1. General statement

Let m ≥ 1, Y ⊂ R and consider a family p = (p
(y)
i , i ∈ [m], y ∈ Y) of random variables taking

values in [0, 1] and a vector Y = (Yn+i, i ∈ [m]) taking values in Y. We make use of the notation

p−i := (p
(y)
j )j ̸=i,y∈Y for all i ∈ [m].

First, we introduce the following assumption on p and Y :

Assumption 4. There exists a vector W = (Wi, i ∈ [m]) of multivariate random variables with

(i) for all i ∈ [m], the random vector p−i = (p
(y)
j )j ̸=i,y∈Y can be almost surely written as

Ψi(p
(Yn+i)
i ,Wi) where u ∈ [0, 1] 7→ Ψi(u,Wi) ∈ R[m−1]×Y is a nondecreasing function (in a

coordinate-wise sense for the image space).
(ii) for all i ∈ [m], the following super-uniformity property holds

P(p(Yn+i)
i ≤ t |Wi) ≤ t, t ∈ [0, 1]. (25)



Gazin, Heller, Marandon, Roquain/Selecting informative conformal prediction sets 26

Second, for any selection rule S ⊂ [m], that is, any measurable function of p valued in the
subsets of [m], we introduce the following quantity (Benjamini and Yekutieli, 2005; Bao et al.,
2024):

smin
i (p−i) = min

z∈A(p−i)
|S(z,p−i)| , i ∈ [m], (26)

where A(p−i) = {z ∈ [0, 1]Y : i ∈ S(z,p−i)} (and by convention smin
i (p−i) = 0 if A(p−i)

is empty). The following assumption corresponds to the concordance assumption of Benjamini
and Bogomolov (2013) (itself extending the former concordance assumption of Benjamini and
Yekutieli, 2005 to a collection of p-value families).

Assumption 5. For all i ∈ [m], smin
i (p−i) is a coordinate-wise nonincreasing function of p−i.

As we show in Section C.4, I-informative selection rules are concordant. Other examples
include monotone p-value-based thresholding rules. However, top-k type selections are concordant
only if we use a tie-breaker in the conformal p-value definitions (that is, if we use randomized
conformal p-values Vovk et al., 2005; Bates et al., 2023; Jin and Candes, 2023). More formal
details are provided in Section C.4.

Theorem C.1. Let us consider a p-value family p and a label/outcome vector Y satisfying
Assumption 4, for a selection rule S ⊂ [m] with smin

i = smin
i (p−i) (26) satisfying Assumption 5.

Then, the procedure Rα =
(
Cα(1∨smin

i )/m
n+i (p)

)
i∈S , for which the prediction set is defined as in

(4) with level α(1 ∨ smin
i )/m, satisfies E(FCP(Rα, Y )) ≤ α, for which the expectation E is taken

w.r.t. the same probability as the one of (25) in Assumption 4 (ii).

The inequality E(FCP(Rα, Y )) ≤ α in Theorem C.1 will be used both in the cases where Yn+i

is fixed (conditional model) or not (iid model). The proof is provided in § C.2. Note that the
considered assumptions make the proof particularly simple. Assumptions 4 and 5 are studied in
§ C.3 and § C.4, respectively.

C.2. Proof of Theorem C.1

By definition (2), we have

FCP(Rα, Y ) =

∑
i∈S 1{Yn+i /∈ Cα(1∨smin

i )/m
n+i (p)}

1 ∨ |S|
=
∑
i∈[m]

1{i ∈ S, p(Yn+i)
i ≤ α(1 ∨ smin

i )/m}
1 ∨ |S|

≤
∑
i∈[m]

1{i ∈ S, p(Yn+i)
i ≤ α(1 ∨ smin

i )/m}
1 ∨ smin

i

≤
∑
i∈[m]

1{p(Yn+i)
i ≤ α(1 ∨ smin

i )/m}
1 ∨ smin

i

,

where the first inequality follows from definition (26) and the second inequality follows from
ignoring the fact that i ∈ S. This entails

E (FCP(Rα, Y )) ≤
∑
i∈[m]

E

(
1{p(Yn+i)

i ≤ α(1 ∨ smin
i )/m}

1 ∨ smin
i

)

=
∑
i∈[m]

E

(
E

[
1{p(Yn+i)

i ≤ α(1 ∨ smin
i (p−i))/m}

1 ∨ smin
i (p−i)

∣∣∣∣∣Wi

])
,

by using the random vector W = (Wi, i ∈ [m]) defined in Assumption 4. Now, combining
Assumption 4 (i) with Assumption 5, we have that

1 ∨ smin
i (p−i) = 1 ∨ smin

i (Ψi(p
(Yn+i)
i ,Wi))
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is a nonincreasing function of p
(Yn+i)
i . By Assumption 4 (ii) and applying Lemma H.1 (condi-

tionally on Wi), we obtain

E

[
1{p(Yn+i)

i ≤ α(1 ∨ smin
i (p−i))/m}

1 ∨ smin
i (p−i)

∣∣∣∣∣Wi

]
≤ α

m
,

Putting this back into the FCR bound implies the result.

C.3. Examining Assumption 4

We show here that the full-calibrated and class-calibrated p-value families satisfy Assumption 4
in the iid and conditional models, respectively. For this, it is interesting to relax Assumption 1
by assuming that the score functions can use the covariates of the calibration+test samples in an
exchangeable way, as suggested in Marandon et al. (2024); Gazin et al. (2024). This is useful for
instance when the learning sample and the calibration+test samples are not based on the same
distribution, so that the scores may be improved by using transfer learning; we refer to Gazin
et al. (2024) for more details on this.

Assumption 6. For any y ∈ Y; Sy(·) is of the form Sy

(
· ; Dtrain, (Xi)i∈[n+m]

)
for an independent

training data sample Dtrain and is invariant by permutation of the elements of (Xi)i∈[n+m]. In
addition, the scores have no ties and the score function is regular in the sense of Assumption 1.

p-value family p The p-value family p given by (7) satisfies Assumption 4 in the iid model.

Proposition C.2. Let us consider a model where the variables (Xi, Yi), i ∈ [n + m], are ex-
changeable conditionally on Dtrain and score functions satisfying Assumptions 6. Then the p-value
family p given by (7) satisfies Assumption 4.

Proof. Let us first establish Assumption 4 (i) by following an argument similar to the one of
Bates et al. (2023); Marandon et al. (2024). By Assumption 6, we can work on an event where
the elements of the sets Ai = {SYk

(Xk), k ∈ [n]}∪{SYn+i(Xn+i)} are all distinct. For any i ∈ [m],
we have by (7) that for all j ∈ [m]\{i} and y ∈ Y,

p
(y)
j =

1

n+ 1

(
1 +

n∑
k=1

1{SYk
(Xk) ≥ Sy(Xn+j)}

)
=

1

n+ 1

(
1{SYn+i

(Xn+i) < Sy(Xn+j)}+
∑
s∈Ai

1{s ≥ Sy(Xn+j)}
)
.

Denoting Ai = {ai,(1), . . . , ai,(n+1)} with ai,(1) > · · · > ai,(n+1), and noting that SYn+i
(Xn+i) =

ai,(ℓ) with p
(y)
i = ℓ/(n+ 1), we may write

p−i := (p
(y)
j )j∈[m]\{i},y∈Y = Ψ(p

(Yn+i)
i ,W i),

by letting for u ∈ (0, 1],

W i := (Ai, (Sy(Xn+j))j∈[m]\{i},y∈Y)

Ψ(u,W i) :=

(
1

n+ 1

(
1{ai,(⌈u(n+1)⌉) < Sy(Xn+j)}+

∑
s∈Ai

1{s ≥ Sy(Xn+j)}
))

j∈[m]\{i},y∈Y

.
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Clearly, each of the elements inside Ψ(u,W i) is nondecreasing in u, which gives Assumption 4
(i) (note that Ψ does not depend on i in this context).

Next, we establish Assumption 4 (ii). Since the variables (Xi, Yi), i ∈ [n+m], are exchange-
able and since the scores functions, the set Ai, and (Sy(Xn+j))j∈[m]\{i},y∈Y are invariant by
permutations of (X1, Y1), . . . , (Xn, Yn), (Xn+i, Yn+i) (by using Assumptions 6), we have that the
random vector (SY1(X1), . . . , SYn(Xn), SYn+i(Xn+i)) is exchangeable conditionally on W i. Since

there are no ties in the vector, it follows that (n + 1)p
(Yn+i)
i (i.e., the rank of SYn+i

(Xn+i) in

Ai) is uniformly distributed in [n + 1] conditionally on W i. Thus Assumption 4 (ii) is satis-
fied (note that the conditional probability is well defined thanks to the regularity condition in
Assumption 6).

p-value family p̃ The p-value family p̃ given by (8) satisfies Assumption 4 in the conditional
model.

Proposition C.3. In the case Y = [K], let us consider score functions satisfying Assumptions 6
and a model for the variables (Xi, Yi), i ∈ [n+m], for which (Yi, i ∈ [n+m]) is a deterministic
vector and, for each y ∈ Y, the variables (Xi)i∈[n+m]:Yi=y, are exchangeable. Then the p-value
family p̃ given by (8) satisfies Assumption 4.

The proof is similar to the proof of Proposition C.2. We provide it below for completeness.

Proof. For any i ∈ [m], we have by (8) that for all j ∈ [m]\{i} and y ∈ Y,

p̃
(y)
j =

1

|D(y)
cal |+ 1

(
1 +

∑
k∈D(y)

cal

1{Sy(Xk) ≥ Sy(Xn+j)}
)

=
1

n
(y)
i

(
1{Sy(Xn+i) < Sy(Xn+j)}+

∑
s∈A

(y)
i

1{s ≥ Sy(Xn+j)}
)
,

by letting n
(y)
i = |A(y)

i | and A
(y)
i = {Sy(Xk), k ∈ D(y)

cal } ∪ {Sy(Xn+i)} whose elements can be
assumed to be all distinct by Assumptions 6 (strictly, this is only true for labels y ∈ Y that
appears at least once in the fixed sample (Yi, i ∈ [n + m]), but the labels y not appearing in
(Yi, i ∈ [n + m]) can be trivially handled because they correspond to p-values all equal to 1).

Denoting A
(y)
i = {a(y)i,(1), . . . , a

(y)

i,(n
(y)
i )

} with a
(y)
i,(1) > · · · > a

(y)

i,(n
(y)
i )

, and noting that Sy(Xn+i) =

a
(y)

i,(n
(y)
i p̃

(y)
i )

, we may write

p̃−i := (p̃
(y)
j )j∈[m]\{i},y∈Y = Ψi(p̃

(Yn+i)
i , W̃i),

by letting

W̃i :=
(
(A

(Yn+i)
i , (SYn+i

(Xn+j))j∈[m]\{i}); (Xj , Yj)j∈[n+m]:Yj ̸=Yn+i

)
(27)

and for u ∈ (0, 1], Ψi(u, W̃i) := (Ψ
(y)
i (u, W̃i))y∈Y where

Ψ
(y)
i (u, W̃i)

:=


(

1

n
(y)
i

(
1{a

i,(⌈un(y)
i ⌉) < Sy(Xn+j)}+

∑
s∈A

(y)
i

1{s ≥ Sy(Xn+j)}
))

j∈[m]\{i}
if y = Yn+i;

(p̃
(y)
j )j∈[m]\{i} if y ̸= Yn+i.
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Clearly, the elements inside Ψi(u, W̃i) are nondecreasing in u which gives Assumption 4 (i).
Next, to establish Assumption 4 (ii), we use that by assumption the vector

(SYn+i(Xn+i), SYn+i(Xk), k ∈ D(Yn+i)
cal )

is exchangeable conditionally on W̃i (by permutation invariance of W̃i, which also comes from

Assumptions 6). Since there are no ties in the vector, it follows that n
(Yn+i)
i p̃

(Yn+i)
i (i.e., the

rank of SYn+i(Xn+i) in A
(Yn+i)
i ) is uniformly distributed in [n

(Yn+i)
i ] conditionally on W̃i. Thus

Assumption 4 (ii) is satisfied.

C.4. Concordant selection rules

Proposition C.4. Assumption 5 holds for the informative selection rule S(p) = BH(q) with
smin
i (p−i) = |S(p)| whenever i ∈ S(p).

Proof. First, a classical property of BH procedure is the following leave-one-out property: for
all i ∈ [m], i ∈ BH(q) if and only if BH(q) = BH(q0,i) where q0,i is the vector q where the
i-th coordinate has been replaced by 0, see for instance Ferreira and Zwinderman (2006); Sarkar
(2008); Roquain and Villers (2011); Ramdas et al. (2019). This implies

smin
i (p−i) = min

z∈[0,1]Y :i∈S(z,p−i)
|S(z,p−i)| = |BH(q0,i)|.

Hence, the result is proved as soon as q is proved to be coordinate-wise nondecreasing in each
p-value trajectory. This holds by Lemma C.5.

Lemma C.5. Suppose Assumption 2, then for each i ∈ [m], almost surely, qi defined by (11) is

a nondecreasing function of each p
(y)
i , y ∈ Y.

Proof. First note that each Cα
n+i(p) only depends on the collection p = (p

(y)
i , y ∈ Y, j ∈ [m])

through (p
(y)
i , y ∈ Y), see (10), hence qi is only a function of (p

(y)
i , y ∈ Y). Also, this allows to

denote Cα
n+i(p) simply by Cα

n+i(p
(y)
i , y ∈ Y). Let (p

(y)
i , y ∈ Y) and (p

′(y)
i , y ∈ Y) be two p-value

collections with p
(y)
i ≤ p

′(y)
i , for all y ∈ Y, with corresponding values qi and q′i. By definition,

Cq′i
n+i(p

′(y)
i , y ∈ Y) ∈ I and Cq′i

n+i(p
(y)
i , y ∈ Y) ⊂ Cq′i

n+i(p
′(y)
i , y ∈ Y). By Assumption 2 (i) (iii), we

have Cq′i
n+i(p

(y)
i , y ∈ Y) ∈ I, which in turn implies qi ≤ q′i by definition of qi.

Let us now discuss the concordance assumption for other, non-informative, selection rules.
First note that Assumption 5 is true for any selection rule of the type S(p) = {i ∈ [m] : qi ≤ t}
for some deterministic threshold t. More generally, let us consider the monotone p-value-based
thresholding selection rule

S(p) = {i ∈ [m] : f(p
(y)
i , y ∈ Y) ≤ t},

where f : [0, 1]Y 7→ R is some measurable coordinate-wise nondecreasing function. This selection
rule satisfies Assumption 5. Indeed, we easily check in this case A(p−i) = {z ∈ [0, 1]Y : f(z) ≤ t}
(which does not depend on p−i) and thus

smin
i (p−i) =

(
1 +

∑
j ̸=i

1{f(p(y)j , y ∈ Y) ≤ t}
)
1{∃z ∈ [0, 1]Y : f(z) ≤ t},
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which is clearly nonincreasing in each p-value. For instance, examples include f(p
(y)
i , y ∈ Y) =∑

y∈Y log(p
(y)
i ) (Fisher’s combination) in the classification case and f(p

(y)
i , y ∈ Y) =

∫
y∈R p

(y)
i e−y2

dy
in the regression case.

Finally, we mention that Assumption 5 is not satisfied in our context for top-k type selection
rules because of ties. Indeed, let us consider the simple case where S(p) selects the 2-smallest

p-values among the p-values pi := p
(y0)
i , i ∈ [m], for some pre-specified y0 ∈ Y and m = 3. When

the p-values are at the minimum value 1/(n+1), the selection rule should make a unique choice
and let us say that it selects {1, 2} when (p1, p2, p3) = (1/(n+1), 1/(n+1), 1/(n+1)). Then, for
i = 3, we easily obtain smin

i (1/(n+ 1), 1/(n+ 1), 1/(n+ 1)) = 0 (because i = 3 is not selected),
while smin

i (1/(n + 1), 2/(n + 1), 1/(n + 1)) = 2 (because i = 3 is selected). This contradicts the
concordance assumption.

Nevertheless, by using a classical randomization trick for the conformal p-values Vovk et al.
(2005); Bates et al. (2023); Jin and Candes (2023) the p-value family has almost surely distinct
values and top-k type selection rules are concordant (under light additional assumptions), which
concurs with the observation made in Benjamini and Bogomolov (2013). More specifically, for

k ∈ [m], assume S(p) selects the k-smallest fi = f(p
(y)
i , y ∈ Y) where f : (0, 1)Y 7→ (0, 1)

is some measurable coordinate-wise nondecreasing surjective function and that the fi’s have
almost surely no ties. Then A(p−i) = {z ∈ [0, 1]Y : i ∈ S(z,p−i)} is not empty, because z such
that f(z) < minj∈[m] fj always belong to it. Hence, by definition smin

i (p−i) = k for all values of
p−i, which establishes concordance. For instance, the concordance holds when using randomized

conformal p-values and selecting the k-smallest I-adjusted p-values, with f(p
(y)
i , y ∈ Y) = qi

being equal to p
(y0)
i (excluding y0), maxy∈[a,b] p

(y)
i (excluding [a, b]) or mink∈[K] p

(k)
i (non-trivial

classification).

Appendix D: Procedures using weighted class-calibrated p-values

Procedure InfoSP does not take into account the proportion of labels in each class in the test
sample. However, in the classification case, these proportions are estimable from the data, and
the estimates can aid inference.

Let πk =
∑m

i=1 1{Yn+i = k}/m the true proportion of examples with label k in the test sample,
k ∈ [K], and consider the following possible estimates:

• Calibration-based estimator: π̂cal

k = (|D(k)
cal |+ 1)/(n+ 1) = (1 +

∑
j∈[n] 1{Yj = k})/(n+ 1),

k ∈ [K];

• Storey-λ estimator: π̂Storey

k =
(
1 +

∑m
i=1 1{p

(k)
i > λ}

)
/(m(1 − λ)), k ∈ [K]. It is similar

to the classical estimator of true null hypotheses proportion in multiple testing (Storey,
2002).

Given the class-calibrated p-value family p̃ and one of the estimators π̂k ∈ {π̂cal

k , π̂Storey

k }, we define
the corresponding adaptive (weighted) p-value collection p̃adapt = (p̃

(k)
i,adapt, k ∈ [K], i ∈ [m]} by

p̃
(k)
i,adapt

=
π̂k

wk
p̃
(k)
i , k ∈ [K], i ∈ [m], (28)

where (wk, k ∈ [K]) are deterministic nonnegative weights such that
∑

k∈[K] wk = 1. The ratio-

nale behind (28) is that the term π̂k balances the false coverage errors between classes by trying
to decrease p-values related to labels which do not appear much in the test sample. The weights
wk are additional parameter that add flexibility, but they have to sum to one. If we use equal
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weights than the class-calibrated p-value is multiplied by K× π̂k which will be less than one only
if π̂k < 1/K.

Applying InfoSP with these adaptive p-values gives rise to a new procedure RInfoSP
α (p̃adapt)

that we denote by Adapt-InfoSP.

Proposition D.1. Consider an informative subset collection I satisfying Assumption 2, score

functions satisfying Assumption 1 and the p-value collection p̃adapt-cal = (p̃
(k)
i,adapt-cal, k ∈ [K], i ∈ [m]}

defined as in (28) with the calibration-based estimator π̂cal

k = (|D(k)
cal |+ 1)/(n+ 1), k ∈ [K]. Then

the corresponding Adapt-InfoSP procedure RInfoSP
α (p̃adapt-cal) satisfies the following:

(i) in the class-conditional model,

sup
PX|Y ,Y

FCR(RInfoSP
α (p̃adapt-cal), PX|Y , Y ) ≤ α

∑
y∈[K]

wy
n+ 1

m

∑
i∈[m] 1{Yn+i = y}∑
j∈[n] 1{Yj = y}+ 1

. (29)

(ii) in the iid model, supPX,Y
FCR(RInfoSP

α (p̃adapt-cal), PX,Y ) ≤ α, that is, Adapt-InfoSP satisfies
the FCR control (15).

Proposition D.1 is proved in § E.3. The bound (29) is only sharp when the labels are generated
in the same way in the calibration and test sample (which implies the correct control in (ii)),
so Adapt-InfoSP should not be used if the label proportions are expected to be (very) different
between calibration and test samples.

We illustrate in Figure 6 the performance of the adaptive procedures for nonnull selection
and non-trivial selection, respectively, in the set-up of unbalanced classes described in § 5.2. For
the adaptive versions, wk = 1/K for all k ∈ [K], and λ = 1/2. We consider two settings for
the class-conditional model: the test sample has class probabilities 0.1,0.1, 0.8 (i.e., a small label
shift), and class probabilities 0.4,0.4,0.2 (i.e., a large label shift).

The only procedure with a theoretical class-conditional FCR guarantee is InfoSP on class
calibrated p-values. The adaptive procedure with π̂cal

k , k ∈ [K] violates FCR control only when
the label-shift is large for non-trivial selection. Interestingly, this procedure has excellent power
when the label shift is small. The adaptive procedure with π̂Storey

k , k ∈ [K] is a close second in
this case, but when the label shift is large it is no better than InfoSP in the settings considered.
The fact that the adaptive procedure with π̂cal

k , k ∈ [K] tends to control the FCR (or inflate it
only by a little), suggests (arguably) that for power purposes it may be reasonable to use it if
the label shift is small.

In the simulations we carried out for the iid settings, Adapt-InfoSP on class-conditional p-
values had worse power than InfoSCOP (omitted for brevity).

Appendix E: Proofs

E.1. Proof of Theorem 3.1

The proof is straightforward from the theory developed in § C. Namely, we apply Theorem C.1
by checking the two required assumptions: Assumption 4 holds for the two considered p-value
collections (§ C.3); Assumption 5 holds for the considered BH(q) selection (§ C.4). The result
thus follows from the fact that by Proposition C.4 we have

Rα =
(
Cα(1∨smin

i )/m
n+i (p)

)
i∈S =

(
Cα|BH(q)|/m
n+i (p)

)
i∈BH(q)

= RInfoSP
α (p).
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Fig 6: Selecting informative prediction sets in the class-conditional setting. FCR (left column),
resolution-adjusted power (middle column), and the expected fraction of covering prediction sets
(right column) versus SNR in a classification setting where prediction sets excluding a null class
are of interest (top two rows) and when prediction sets excluding a trivial class are of interest
(bottom two rows). The class probabilities in the calibration sample are 0.15, 0.1, and 0.75; in
the test sample, we have a small label shift (rows 1 and 3) and a large label shift (rows 2 and 4).
The number of data generations was 2000, and n = m = 500.
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E.2. Proof of Theorem 3.3

The proof is a consequence of Lemma H.5 applied with the FCR criterion: condition (i) in
Lemma H.5 is satisfied from Theorem 3.1 (which is true more broadly in the case of exchangeable
samples, see Theorem C.1 and Proposition C.2); condition (ii) in Lemma H.5 follows from the
assumed permutation preserving property of S(0). Hence, the conclusion of Lemma H.5 applies
which gives the FCR control of InfoSCOP.

Finally, the FDR control is a consequence of the FCR control by applying Lemma 2.1.

E.3. Proof of Proposition D.1

Let us first prove (i) by considering the class-conditional model. We follow the proof of Theo-
rem C.1 (see § C.2) and we use that the p-value collection p̃ satisfies Assumption 4 (see Proposi-
tion C.3), where the probability in the super-uniform property (25) holds in the class-conditional

model with W̃i, i ∈ [m] given by (27). We also use that the informative selection rule S(·) sat-
isfies Assumption 5 (see Proposition C.4). Hence, following the same approach as in § C.2, and

denoting p̃cal := p̃adapt-cal and p̃−i,cal := (p̃
(y)
j,cal)j ̸=i,y∈Y , we obtain

FCR(RInfoSP
α (p̃cal), PX|Y , Y ) ≤

∑
i∈[m]

EPX|Y

(
E

[
1{p̃(Yn+i)

i,cal ≤ αsmin
i (p̃−i,cal)/m}

smin
i (p̃−i,cal)

∣∣∣∣∣ W̃i

])

=
∑
i∈[m]

EPX|Y

(
E

[
1{p̃(Yn+i)

i ≤ αsmin
i (p̃−i,cal)wYn+i/(mπ̂cal

Yn+i
)}

smin
i (p̃−i,cal)

∣∣∣∣∣ W̃i

])
.

Using now the super-uniform property (25), the fact that p̃−i,cal = ( π̂k

wk
p̃
(k)
j )k ̸=i,y∈Y = Φ(Y, p̃−i),

with Φ(Y, ·) coordinate-wise nondecreasing, and Assumption 4 (i) entail

smin
i (p̃−i,cal) = smin

i (p̃−i) = smin
i (Φ(Y,Ψi(p

(Yn+i)
i ,Wi))).

Hence, smin
i (p̃−i,cal) can be written as a function g(p

(Yn+i)
i ), with g : u 7→ smin

i (Φ(Y,Ψi(u,Wi)))
nonincreasing and only depending on Y and Wi. Applying Lemma H.1 for c = wYn+i

/(mπ̂cal

Yn+i
),

we obtain

EPX|Y

[
1{p̃(Yn+i)

i ≤ αsmin
i (p̃−i,cal)wYn+i/(mπ̂cal

Yn+i
)}

smin
i (p̃−i,cal)

∣∣∣∣∣ W̃i

]
≤ α

wYn+i

mπ̂cal

Yn+i

.

As a consequence, we derive

FCR(RInfoSP
α (p̃cal), PX|Y , Y ) ≤ α

∑
k∈[K]

wk

(∑
i∈[m] 1{Yn+i = k}

m

1

π̂cal

k

)
,
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which proves (i). We deduce (ii) by a simple integration:

FCR(RInfoSP
α (p̃cal), PX,Y ) ≤ α

∑
k∈[K]

wkE

( ∑
i∈[m] 1{Yn+i = k}

1 +
∑

j∈[m] 1{Yj = k}
n+ 1

m

)

= α
∑

k∈[K]

wk(n+ 1)P(Y1 = k)E

(
1

1 +
∑

j∈[m] 1{Yj = k}

)

≤ α
∑

k∈[K]

wk(n+ 1)P(Y1 = k)
1

(n+ 1)P(Y1 = k)
= α

∑
k∈[K]

wk = α,

by using Lemma H.3 for the last inequality.

E.4. Proof of Proposition 5.1

First define Rj the rank of SYj
(Xj) in {Sk(Xj), k ∈ [K]} (ordered in increasing order) for

j ∈ [n+m], and consider the slightly smaller conformal p-values

p̆
(k)
i =

1

n+ 1

1 +

n∑
j=1

1{Rj > 1}1{SYj
(Xj) ≥ Sk(Xn+i)}

 ≤ p
(k)
i , i ∈ [m], k ∈ [K], (30)

which means that the calibration is only made with examples having a label not minimizing

the score function. The rationale behind using this p-value rather than p
(k)
i is that, due to the

post-processing, the elements Xn+i of the test sample cannot produce an error provided that
Rn+i = 1 so that we can restrict the test sample to those with Rn+i > 1 when computing the
FCR.

Assume K = 2. We first prove that RInfoSP
α (p) = RInfoSP

α (p̆). It is enough to prove that the
adjusted p-values qi obtained from p and p̆ are the same for this non-trivial selection (since for
the selected i, the procedure always chooses argmink∈[K] Sk(Xn+i) due to the post-processing).
Letting Smin(x) = mink∈[K] Sk(x), Smax(x) = maxk∈[K] Sk(x), this comes from

min
k∈[K]

{p̆(k)i } =
1

n+ 1

1 +

n∑
j=1

1{Rj > 1}1{SYj (Xj) ≥ Smax(Xn+i)}


=

1

n+ 1

1 +

n∑
j=1

1{SYj
(Xj) ≥ Smax(Xn+i)}

 = min
k∈[K]

{p(k)i },

where the second equality holds because SYj (Xj) ≥ Smax(Xn+i) is impossible for Rj = 1, that
is, when SYj

(Xj) is a minimum (Smin(Xj) < 1/2 < Smax(Xj) almost surely by the assumptions
on the score function).

Now prove Proposition 5.1, by showing the equality for RInfoSP
α (p̆) and by carefully modifying

the proof of Theorem C.1 (§ C.2) in order to get only equalities, by using that we consider the

case of the non-trivial selection, that is, S = BH(q), with qi = mink∈[K] p̆
(k)
i . By definition of the

FCP (2), we have (remember also that the prediction set always includes argmink∈[K] Sk(Xn+i)
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due to the post-processing)

FCP(RInfoSP
α (p̆), Y ) =

∑
i∈S 1{Yn+i /∈ Cα|S|/m

n+i (p̆)}
1 ∨ |S|

=
∑
i∈[m]

1{Rn+i > 1}1{i ∈ S, p̆(Yn+i)
i ≤ α|S|/m}
1 ∨ |S|

,

because no error can occur whenRn+i = 1. Now, since S = BH(q) and qi ≤ p̆
(Yn+i)
i , 1{i ∈ S, p̆(Yn+i)

i ≤ α|S|/m} =

1{p̆(Yn+i)
i ≤ α|S|/m}. This entails

FCP(RInfoSP
α (p̆), Y ) =

∑
i∈[m]

1{Rn+i > 1}1{p̆
(Yn+i)
i ≤ α|S|/m}

1 ∨ |S|
.

Let ξ = (1{Rj > 1})j∈[n+m] and now prove

E[FCP(RInfoSP
α (p̆), Y ) | ξ] =

∑
i∈[m]

1{Rn+i > 1}E
[⌊(n+ 1)αKi/m⌋/(n′ + 1)

Ki

∣∣∣ ξ], (31)

with n′ =
∑

j∈[n] 1{Rj > 1} for some random variables Ki ≥ 1, i ∈ [m]. This implies the result
because the last display is at most

α
(n+ 1)

∑
i∈[m] 1{Rn+i > 1}

m(
∑

j∈[n] 1{Rj > 1}+ 1)

(with equality if (n+1)α/m is an integer). By Lemma H.3, the expectation of the latter is equal
to α(1− (1− P(R1 > 1))n+1).

Let us now prove (31). For this, fix i ∈ [m] with Rn+i > 1 and note that for all j ∈ [m], j ̸= i,

qj =
1

n+ 1

(
1 +

n∑
k=1

1{Rk > 1}1{SYk
(Xk) ≥ Smax(Xn+j)}

)

=
1

n+ 1

(
1{SYn+i

(Xn+i) < Smax(Xn+j)}+
∑
s∈Ai

1{s ≥ Smax(Xn+j)}
)

=
1

n+ 1

(
1{Smax(Xn+i) < Smax(Xn+j)}+

∑
s∈Ai

1{s ≥ Smax(Xn+j)}
)

≥ 1

n+ 1

∑
s∈Ai

1{s ≥ Smax(Xn+j)} =: q′j ,

by letting Ai = {SYk
(Xj), j ∈ [n] : Rk > 1}∪{SYn+i

(Xn+i)} (all distinct almost surely). The third
equality above is true because K = 2 and Rn+i > 1 and thus SYn+i

(Xn+i) = Smax(Xn+i). We
apply now Lemma H.4 because q = (qj , 1 ≤ j ≤ m) and q′ = (q′j , 1 ≤ j ≤ m) (defined as above
and with q′i = 1/(n+1)) satisfy (32). Indeed, if qj > qi for j ̸= i, then Smax(Xn+j) ≤ Smax(Xn+i)
and qj = q′j . Hence, we obtain, by letting Ki = |BH(q′)| (note that q′ depends on i)

{qi ≤ α|BH(q)|/m} = {qi ≤ αKi/m} ⊂ {|BH(q)| = Ki}.

In addition, q′ = (q′j , 1 ≤ j ≤ m) is a vector measurable w.r.t. the variableWi = (Ai, (Smax(Xn+j))j∈[m]\{i}).
Now, we use that by exchangeability of the elements of Ai conditionally on ξ, Wi, and Rn+i > 1)
(with no ties),

P(p̆(Yn+i)
i ≤ t |Wi, ξ, Rn+i > 1) =

⌊(n+ 1)t⌋
n′ + 1

.
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Applying this with t = αKi/m entails (31).

Appendix F: Computing I-adjusted p-values

We gather here details for computing the qi’s (11) for different informative set collection I. In
the regression case, recall that p

(y)
i necessarily corresponds to the full-calibrated p-values (7).

Regression and excluding Y0 ⊂ Y. The informative set collection is given by I = {I interval of R :
I ∩ Y0 = ∅}.

• The general expression is qi = supy∈Y0
p
(y)
i . Indeed, by definition, Cα

n+i(p) ∈ I iff Cα
n+i(p)∩

Y0 = ∅ iff ∀y ∈ Y0, p
(y)
i ≤ α, which means supy∈Y0

p
(y)
i ≤ α.

• Another expression for the latter is given as follows:

qi =
1

n+ 1
sup
y∈Y0

(
1 +

n∑
j=1

1{SYj
(Xj) ≥ Sy(Xn+i)}

)
=

1

n+ 1

(
1 +

n∑
j=1

1{SYj (Xj) ≥ inf
y∈Y0

Sy(Xn+i)}
)
.

• If Y0 = [a, b] and Sy(x) = |y − µ(x)|/σ(x) the above expression gives

qi = p
(a)
i 1{µ(Xn+i) < a}+ p

(b)
i 1{µ(Xn+i) > b}+ 1{a ≤ µ(Xn+i) ≤ b}.

This is because infy∈[a,b] Sy(x) is 0 if µ(x) ∈ [a, b], Sa(x) if µ(x) < a, and Sb(x) if µ(x) > b.
• If Y0 = [a, b] and Sy(x) = max(qβ0

(x)− y, y − qβ1
(x)), we have

qi = p
(a)
i 1{µ(Xn+i) < a}+ p

(b)
i 1{µ(Xn+i) > b}+ p

(µ(Xn+i))
i 1{a ≤ µ(Xn+i) ≤ b},

where µ(x) = (qβ0
(x)+qβ1

(x))/2. This is because infy∈[a,b] Sy(x) is Sµ(x)(x) if µ(x) ∈ [a, b],
Sa(x) if µ(x) < a, and Sb(x) if µ(x) > b.

Regression and length-restriction. The informative set collection is given by I = {I interval of R :
|I| ≤ 2λ0}, λ0 > 0.

• By definition, Cα
n+i(p) ∈ I iff |{y ∈ R : p

(y)
i > α}| ≤ 2λ0, that is, |{y ∈ R : Sy(Xn+i) ≤

S(⌈(1−α)(n+1)⌉)}| ≤ 2λ0. We then obtain the expression of qi by inverting the condition
Sy(Xn+i) ≤ S(⌈(1−α)(n+1)⌉) with respect to y. This expression depends on the considered
score function.

• For Sy(x) = |y − µ(x)|/σ(x), we have Sy(Xn+i) ≤ S(⌈(1−α)(n+1)⌉) iff |y − µ(Xn+i)| ≤
σ(Xn+i)S(⌈(1−α)(n+1)⌉) which gives qi ≤ α iff σ(Xn+i)S(⌈(1−α)(n+1)⌉) ≤ λ0 (see Remark 2.1).
Inverting the latter with respect to α gives

qi = (n+ 1)−1
(
1 +

n∑
j=1

1{SYj (Xj) > λ0/σ(Xn+i)}
)
.

• For Sy(x) = max(qβ0(x) − y, y − qβ1(x)), we have Sy(Xn+i) ≤ S(⌈(1−α)(n+1)⌉) iff qβ0(x) −
S(⌈(1−α)(n+1)⌉) ≤ y ≤ S(⌈(1−α)(n+1)⌉)+qβ1

(x). Hence, qi ≤ α iff S(⌈(1−α)(n+1)⌉)+(qβ1
(Xn+i)−

qβ0
(Xn+i))/2 ≤ λ0, which gives

qi = (n+ 1)−1
(
1 +

n∑
j=1

1{SYj
(Xj) > λ0 − (qβ1

(Xn+i)− qβ0
(Xn+i))/2}

)
.
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Classification. The following informative collections are considered:

• For excluding Y0 ⊂ [K], I = {C ⊂ [K] : C ∩ Y0 = ∅}. The general expression is

qi = maxy∈Y0
p
(y)
i , with the same reasoning as in the regression case.

• For non-trivial classification, I = {C ⊂ [K] : |C| ≤ K− 1} and qi = miny∈[K] p
(y)
i . Indeed,

Cα
n+i(p) ∈ I iff |{y ∈ [K] : p

(y)
i > α}| ≤ K − 1 iff there exists y ∈ [K] such that p

(y)
i ≤ α,

that is, miny∈[K] p
(y)
i ≤ α.

• For at most k0-sized classification, I = {C ⊂ [K] : |C| ≤ k0}. A similar reasoning leads to

qi being the (K − k0)-th smallest element in the set {p(y)i , y ∈ [K]}.

Appendix G: Alternative proof of Theorem 3.1 using PRDS

Proving Theorem 3.1 does not go through the PRDS property (Benjamini and Yekutieli, 2001)
but rather uses the monotonicity introduced in Assumption 4, see Section E.1. We propose in
this section an alternative proof that explicitly relies on the PRDS property, and which shares
similarities with the techniques developed in Jin and Candes (2023).

G.1. Identifying a PRDS property

Recall that a random variable family (Ti)i∈[m] (valued in [0, 1]) is said to be PRDS on H ⊂ [m]
if for any measurable nondecreasing5 set D ⊂ [0, 1]m, for all i ∈ H, the function u ∈ [0, 1] 7→
P((Tj)j∈[m] ∈ D | Ti = u) is nondecreasing.

The following results can be seen as an extension of Lemma 5 in Jin and Candes (2023) to
our I-informative context.

Theorem G.1. Consider the setting and assumptions of Theorem 3.1 and (qi)i∈[m] the I-
adjusted p-value vector defined by (11). Then the family (q1, . . . , qi−1, p

(Yn+i)
i , qi+1, . . . , qm) is

PRDS on {i} for any i ∈ [m].

Proof. Let us denote p−i = (p
(y)
j )j ̸=i,y∈Y and q−i := (qj)j ̸=i. By Section C.3, Assumption 4

is satisfied with a random variable Wi which is independent of p
(Yn+i)
i . In particular, p−i =

Ψi(p
(Yn+i)
i ,Wi) where u ∈ [0, 1] 7→ Ψi(u,Wi) ∈ R[m−1]×Y is a nondecreasing function. In addition,

by Section C.4, q−i is a coordinate-wise nondecreasing function of p−i. Combining these facts,
we obtain that

q−i = ϕi(p
(Yn+i)
i ,Wi),

where u ∈ [0, 1] 7→ ϕi(u,Wi) ∈ R[m−1] is a nondecreasing function. As a result, for any measurable
nondecreasing set D ⊂ [0, 1]m,

P((p(Yn+i)
i ,q−i) ∈ D | p(Yn+i)

i = u) = P((p(Yn+i)
i , ϕi(p

(Yn+i)
i ,Wi)) ∈ D | p(Yn+i)

i = u)

= P((u, ϕi(u,Wi)) ∈ D),

where we denoted (p
(Yn+i)
i ,q−i) = (q1, . . . , qi−1, p

(Yn+i)
i , qi+1, . . . , qm) with some notation abuse

and where we used independence betweenWi and p
(Yn+i)
i . Since for a fixedWi, u 7→ 1{(u, ϕi(u,Wi)) ∈ D}

is nondecreasing (since D is nondecreasing), the last display is nondecreasing in u.

5A subset D ⊂ [0, 1]m is said to be nondecreasing if for all (xi)i∈[m] ∈ D and all (yi)i∈[m] ∈ [0, 1]m,
(∀i ∈ [m], xi ≤ yi) implies (yi)i∈[m] ∈ D.
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G.2. Alternative proof of Theorem 3.1

By Definition 1, we have

FCP(RInfoSP
α (p), Y ) =

∑
i∈BH(q) 1{Yn+i /∈ Cα|BH(q)|/m

n+i (p)}
1 ∨ |BH(q)|

=

∑
i∈BH(q) 1{Yn+i /∈ Cα|BH(q0,i)|/m

n+i (p)}
1 ∨ |BH(q0,i)|

≤
∑
i∈[m]

1{p(Yn+i)
i ≤ α|BH(q0,i)|/m}

1 ∨ |BH(q0,i)|
,

where the second equality follows from BH(q0,i) = BH(q) when i ∈ BH(q), by denoting q0,i the
vector q where the i-th coordinate has been replaced by 0, see for instance Ramdas et al. (2019).
This entails

E
(
FCP(RInfoSP

α (p), Y )
)
≤
∑
i∈[m]

E

(
1{p(Yn+i)

i ≤ α|BH(q0,i)|/m}
1 ∨ |BH(q0,i)|

)
.

Now, by Theorem G.1, for any r > 0, the function u 7→ P(|BH(q0,i)| < r | p(Yn+i)
i = u) is

nondecreasing and thus so is u 7→ P(|BH(q0,i)| < r | p(Yn+i)
i ≤ u). Applying Lemma H.2 gives the

result.

Appendix H: Auxiliary results

Lemma H.1 (Lemma 3.2 (i) in Blanchard and Roquain (2008)). Let g : [0, 1] → (0,∞) be a
nonincreasing function and U be a random variable which is super-uniform, that is, ∀u ∈ [0, 1],
P(U ≤ u) ≤ u. Then, for any c > 0, we have

E
[
1{U ≤ cg(U)}

g(U)

]
≤ c.

Lemma H.2 (Lemma 3.2 (ii) in Blanchard and Roquain (2008)). Let U, V be nonnegative
random variables such that U is super-uniform, that is, ∀u ∈ [0, 1], P(U ≤ u) ≤ u and V is such
that for any r > 0, the function u 7→ P(V < r | U ≤ u) is nondecreasing. Then, for any c > 0,
we have

E
[
1{U ≤ cV }

V

]
≤ c.

Lemma H.3 (Lemma 1 of Benjamini et al. (2006)). If T is a Binomial variable with parameter
N − 1 ≥ 0 and t ∈ (0, 1], we have

E[1/(T + 1)] = (1− (1− t)N )/(Nt) ≤ 1/(Nt).

Lemma H.4 (Lemma D.6 of Marandon et al. (2024)). Write ℓ̂ = ℓ̂(q) = |BH(q)| for the number
of rejections of BH(q) (21). Fix any i ∈ {1, . . . ,m} and consider two collections q = (qj , 1 ≤ j ≤
m) and q′ = (q′j , 1 ≤ j ≤ m) which satisfy almost surely that

∀j ∈ {1, . . . ,m},
{

q′j ≤ qj if qj ≤ qi;
q′j = qj if qj > qi.

(32)

Then {qi ≤ αℓ̂(q)/m} = {qi ≤ αℓ̂(q′)/m} ⊂ {ℓ̂(q) = ℓ̂(q′)}.
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The calibration splitting trick can be seen as a way to obtain statistical guarantees in conformal
inference when making a data-driven choice regarding the inference . In Marandon et al. (2024);
Gazin et al. (2024), the choices are about adaptive score functions. The next lemma presents this
trick in the case that the choice is about which examples to select for (potentially more efficient
and powerful) further inference 6.

Lemma H.5 (Calibration splitting trick for selective conformal prediction sets). Assume that
for any training sample Dtrain, calibration sample Dcal = ((Xj , Yj))j∈[ncal] and test sample Dtest =
(Xj , Yj)j∈[ncal+1,ncal+ntest], such that (Dtrain,Dcal,Dtest) has some distribution Q, the procedure (that
is, a prediction set collection on a selection) and initial selection rule are as follows:

(i) the procedure R = (Cncal+i)i∈S , Cncal+i ⊂ Y, S ⊂ [ntest], with R = R(Dcal,DX
test;Dtrain)

built upon Dtrain,Dcal and DX
test := (Xj)j∈[ncal+1,ncal+ntest] such that it controls a criterion

EQ(E(R, Y )) ≤ α if the entries of Dcal ∪ Dtest are exchangeable conditionally on Dtrain;
(ii) an initial selection rule S(0) = S(0)(Dcal,DX

test;Dtrain) ⊂ [ncal+1, ncal+ntest] built upon Dtrain,Dcal

and DX
test which is permutation preserving in the latter, that is, for any permutation σ of

[ncal + 1, ncal + ntest], we have σ(S(0)(Dcal,DX
test;Dtrain)) = S(0)(Dcal, σ(DX

test);Dtrain).

Let us consider samples (Dtrain,Dcal,Dtest) as above such that the entries of Dcal∪Dtest are exchange-

able conditionally on Dtrain and split the calibration set Dcal into two samples D(1)
cal and D(2)

cal of

respective sizes n
(1)
cal and n

(2)
cal . Let D(2),X

cal = (Xj)j∈[n
(1)
cal +1,ncal]

. Then for S(0) = S(0)(D(1)
cal ,D(2),X

cal ∪

DX
test;Dtrain) ⊂ [n

(1)
cal + 1, ncal + ntest], the procedure Rsplit = R((D(2)

cal )S(0) , (DX
test)S(0) ;Dtrain) is a pro-

cedure achieving EQ(E(Rsplit, Y ) | S(0)) ≤ α and thus also EQ(E(Rsplit, Y )) ≤ α.

For instance, Lemma H.5 can be used for the criterion E(R, Y ) = FCP(R, Y ) in which case
it provides FCR control. For instance, since classical marginal prediction intervals always satisfy
(i) with S = [m] and the FCR criterion, Lemma H.5 shows that sample splitting can offer FCR
control for any (permutation preserving) selection rule. This is an alternative method to the
swapping approach of Jin and Ren (2024).

Proof. For convenience, let us write Dcal ∪ Dtest = ((Xj , Yj))j∈[ncal+ntest] = (Zj)j∈[ncal+ntest]. By

(i), it is enough to prove that the entries of (Zj)j∈S are exchangeable conditionally on S(0) = S,

D(1)
cal and Dtrain, for any possible realisation S of S(0). For any σ permutation of [n

(1)
cal +1, ncal+ntest]

which only affects the indexes of S, we have

D((Zσ(j))j∈S,j≥n
(1)
cal+1

| S(0) = S,D(1)
cal ,Dtrain)

= D((Zσ(j))j∈S,j≥n
(1)
cal+1

| S(D(1)
cal ,D(2),X

cal ∪ DX
test;Dtrain) = S,D(1)

cal ,Dtrain)

= D((Zσ(j))j∈S,j≥n
(1)
cal+1

| S(D(1)
cal , (Zσ(j))j∈[n

(1)
cal+1,ncal+ntest]

;Dtrain) = S,D(1)
cal ,Dtrain),

by using the permutation preserving property (ii) and because σ(S) = S by definition of σ. Now
using that the distribution of (Zσ(j))j∈[n

(1)
cal+1,ncal+ntest]

is the same as (Zj)j∈[n
(1)
cal+1,ncal+ntest]

conditionally on Dtrain and D(1)
cal = (Zj)j∈[n

(1)
cal ]

, the last display is equal to

D((Zj)j∈S,j≥n
(1)
cal+1

| S(0) = S,D(1)
cal ,Dtrain),

which provides the desired exchangeability for valid inference on (DX
test)S(0) using (D(2)

cal )S(0) .

6This idea was sketched in version 3 of the arXiv version Bao et al. (2024) of the work Bao et al. (2024)
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Appendix I: Additional illustrations in the regression case

I.1. Excluding a null value y0 ∈ R

We consider here I = {I interval of R : y0 /∈ I}, which is useful in situation where the value y0
corresponds to some “normal” value and the user wants to report only prediction intervals for
“abnormal” individuals, that is, when the outcome value deviates from this reference value. The
score considered here is Sy(x) = |y − µ(x)|/σ(x), where µ, σ are predictors of the conditional
mean and variance, respectively.

An illustration is provided in Figure 7 in the non-parametric regression Gaussian model for
different situations: Rows 1,2 correspond to an homoscedastic model with perfect prediction of
the variance and a mean predictor with various accuracy (less accurate in the middle for row
1, more accuracy in the middle for row 2). Rows 3,4 correspond to an heteroscedastic model
with perfect prediction of the mean and a the variance predictor under-estimating the variance
in the middle for row 3, and over-estimating the variance in the middle for row 4). The marginal
prediction interval (no selection) is displayed in light blue while the prediction interval after
selection is displayed in dark red. The quantities reported at the top of each panel are the
FCR and adjusted power averaged over 1000 repetitions (while each panel only displays the last
experiment as a typical realisation of the sample).

First, as expected, the naive classical conformal selection does not provide FCR control in all
cases, while InfoSP and InfoSCOP do control the FCR in any case. Second, InfoSCOP always
improves InfoSP in terms of power, and the range of improvement depends on where non-covering
errors are likely to happen: when errors are more likely to arise on the selection (rows 1,3), the
behavior of InfoSP and InfoSCOP are similar; when errors are less likely to arise on the selection
(rows 2,4), InfoSCOP improves over InfoSP in a striking manner (and is even better than classical
conformal). This is both because of the reduction of the selection effect and because the pre-
processed p-values are calibrated with much lower residuals and thus are much more efficient
than the original p-values.

I.2. Prediction intervals for Jin and Candes (2023) selection

We focus here on the case where the user wants to build prediction sets only for outcomes
Yn+i > y0, which corresponds to excluding the set Y0 = (−∞, y0] and is related to the selection
proposed in Jin and Candes (2023).

We consider here the aim of finding one-sided prediction intervals on the selected. Let us
assume that the score function is monotone in the following sense (Jin and Candes, 2023): for
all x ∈ Rd, for y ≤ y′, Sy(x) ≥ Sy′(x). A classical example of monotonic score function is given
by Sy(x) = (µ(x)− y)/σ(x). The following result summarizes our finding in this case.

Corollary I.1. Consider the iid model in the regression case and assume that the score function
is monotone (see above) and such that Assumption 2 (ii) (iii) and Assumption 1 hold. Then the
following holds for InfoSP with informative collection I = {I interval of R : I ∩ (−∞, y0] = ∅}
and p-value collection p (7):

(i) InfoSP selects S = BH(q) the rejected set of BH procedure at level α applied with the
p-values

qi = p
(y0)
i =

1

n+ 1

(
1 +

n∑
j=1

1{SYj
(Xj) ≥ Sy0

(Xn+i)}
)
,

which coincides with the rejection set of the procedure proposed in Jin and Candes (2023).
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Fig 7: Informative selection by excluding the null value y0 in the (homoscedastic or heteroscedas-
tic) regression case, see § I.1.
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(ii) The selection S = BH(q) of InfoSP controls the FDR at level α in the following sense:

sup
PXY

E(X,Y )∼PXY

[∑
i∈S 1{Yn+i ≤ y0}

1 ∨ |S|

]
≤ α.

(iii) The prediction intervals are of the form Cn+i = {y > y0 : Sy(Xn+i) ≤ S(nα)}, i ∈ S,
where S(1) ≤ · · · ≤ S(n) are the ordered calibration scores SYj

(Xj), 1 ≤ j ≤ n (with
S(n+1) = +∞), and nα = ⌈(1− α|S(p)|/m)(n+ 1)⌉.

(iv) These prediction intervals control the FCR at level α in the sense of (15).

In other words, the above result complements the multiple testing procedure of Jin and Candes
(2023), by providing in addition FCR controlling informative prediction sets on the selected
outcomes.

Proof. The proof is direct with Example 2.1 and monotonicity (for (i)), Lemma 2.1 (for (ii)),
Remark 2.1 (for (iii)), Theorem 3.1 (for (iv)).

Obviously, a similar result holds for InfoSCOP, for any initial selection step S(0) ⊂ [r+1, n+m]
that satisfies the permutation preserving Assumption 3. Corollary I.1 is illustrated on Figure 8
when S(0) is taken here has BH(q) at level 2α with the score Sy(x) = (µ(x) − y)/σ(x). The
comments are qualitatively similar to those of Figure 7: when covering errors are less likely on
the selection, the improvement of InfoSCOP over InfoSP is substantial.
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Fig 8: Same as Figure 7 with Jin and Candes (2023) type selection and one-sided prediction
intervals, see § I.2.
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CC InfoSP InfoSCOP

FCR 0.150 0.030 0.081
Power 16.9 12.6 15.8

Res-adjusted Power 2.81 1.73 2.37
Table 1

The FCR, power, and resolution-adjusted power, for the three procedures considered for the yeast application
(see text). The resolution adjusted power is the expected number of discoveries divided by the length of the

prediction interval (since the length is fixed in this analysis). Based on B = 10000 repetitions.

I.3. Predicting gene expression from promoter sequences

Vaishnav et al. (2022) fit a convolutional neural network model on tens of millions of random
promoter sequences with the goal of predicting the expression level of a particular gene induced
by a promoter sequence. They then used the model’s predictions to study the effects of promoters.
They evaluated the performance on 61150 labeled sequences that were not used in training the
model. The 61150 pairs of predicted and measured expressions will be used as a basis for a
simulation to evaluate the performance of classic conformal, InfoSP, and InfoSCOP.

Suppose an analyst considers m = 50 new random promoter sequences. From these, the
analyst is interested in the prediction intervals for promoter sequences that are under-expressed.
Importantly, the range of plausible values (i.e., a two-sided prediction interval) are of interest
to the analyst, since it is not enough to establish with confidence that the expression is below
a certain value, but also to know that the expression is above zero and evaluate the plausible
extent to which it exceeds zero.

Suppose the analyst has access to the expression and predicted expression of n = 200 random
promoter sequences. These examples will serve as the calibration sample.

We consider the score function Sy(x) = |µ(x) − y|, where µ(x) is the predicted expression
(more sophisticated score functions, such as the locally weighted or quantile based functions
discussed in § 4, cannot be used since we only have access to µ(x) from the prediction machine).
We define an example as informative if its prediction interval is entirely below the threshold
a = 9. Therefore, the p-value for testing the (random) null hypothesis that the example is not
informative is

qi = max
y≥a

p
(y)
i = p

(a)
i × 1{µ(Xn+i) < a}+ 1{µ(Xn+i) ≥ a},

see Corollary 4.1 with b = +∞.
In order to assess our methods using the 61150 labeled native yeast promoter sequences,

we randomly sample labeled and unlabeled data sets as follows. For each of B = 10000 trials,
we randomly sample n + m promoters, out of which n points serve as the labeled calibration
data set and m points as the unlabeled test data set. The results are summarized in Table 1.
Due to selection of informative examples, the classic conformal procedure that constructs each
prediction interval at level 1 − α = 0.9 fails to control the FCR at the α = 0.1 nominal level.
InfoSP provides the required control, but at the cost of some non-negligible power loss. InfoSCOP
applies an initial selection step in which examples from the test sample and the second half the
calibration sample are forwarded to InfoSP, only if their conformal p-value, computed using the
first half of the calibration sample, for testing the (random) null hypothesis that the example
is not informative, is at most α. InfoSCOP controls the FCR at level α and has only slightly
reduced power compared to classic conformal.

Figure 9 shows the prediction intervals for a single data generation. InfoSCOP selects almost
the same number of informative examples as classic conformal, but all prediction intervals con-
structed with InfoSCOP cover the true value. Moreover, the lower bounds are all above zero.
In practice, following such an analysis, the analyst can use the list of prediction intervals from
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InfoSCOP to the next stage: knowing with confidence the prediction intervals for informative
promoters for this set can help the future design of n+m examples with even lower expressions
(see Vaishnav et al. (2022) for uses for the design of promoters for low gene expression). There
will be a lab cost of culturing the yeast of n examples to actually measure the expression level
for n promoters to serve as the calibration data, but m can be quite large.
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Fig 9: The observed versus predicted values for yeast expression, as well as the classic conformal
prediction intervals upper and lower bounds (red lines), and the InfoSCOP prediction intervals
(purple vertical lines), for a single data generation (see text in § I.3 for details). The false cov-
erage proportion for classic conformal is 0.176 and 0 for InfoSCOP. Classic conformal reports 17
informative examples, but three examples are not covered by their prediction interval. InfoSCOP
reports 16 informative examples (a subset of the 17 reported by classic conformal, including the
three examples with non-covering classic conformal prediction intervals).

Remark I.1. The selection in the above analysis fits within the Jin and Candes (2023) selection
framework outlined in the previous section, but with a different score function than the scores sug-
gested Jin and Candes (2023), since our score function is selected to provide two-sided prediction
intervals.

I.4. Comparison with existing selective prediction sets

Figure 10 is useful to visualize the difference between the selection proposed by Bao et al. (2024)
and our informative selection. We display selective prediction intervals for two FCR controlling
selections proposed in Bao et al. (2024): SCOPa uses a thresholding rule S = {i ∈ [m] : µ(Xn+i) ≥
y0}, while SCOPb selects the largest µ(Xn+i)’s. Each time, a suitable conditional conformal pre-
diction set is built in Bao et al. (2024) and reported in Figure 10 in green and purple. As one can
see, either the selection is too conservative, or the prediction interval could include the nominal
y0. This is not the case of InfoSCOP which always exclude y0 by essence.
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Fig 10: Comparison to previous conformal selective inferences in the regression case: new in-
formative prediction intervals (InfoSCOP) versus non-informative prediction intervals (SCOPab)
(left: homoscedastic Gaussian regression with perfect variance prediction and errors in the mean
prediction; right: heteroscedastic Gaussian regression with perfect mean prediction and errors in
the variance prediction). Informative means here prediction intervals that does not contain y0
(dashed line), see § I.4.

Appendix J: Additional illustrations in the classification case

J.1. Three classes, each bivariate normal

For the iid model, as described in § 5.2, we demonstrate the initial selection step in infoSCOP

for excluding a null class in one realization of the data generation in Figure 11.
For non-trivial classification, as described in § 5.3, we provide numerical results in Figure 12.

J.2. Three classes, each a mixture of bivariate normals

For the iid model, as in § 5.2, we consider the balanced and unbalanced cases of 3 classes. However,
here we consider that each class comes from a mixture of two bivariate normals, where one
component of the mixture is identical in all three classes, and given the class there is probability
half of coming from that common mixture component. Thus the overlap between the classes is
much greater than in the settings considered in § 5.2.

In Figure 13 we show that the qualitative conclusions with regard to the respective procedures
are as in § 5.2. Interestingly, in the hardest setting at the bottom row we see that the power of
InfoSCOP is even larger than classic conformal. This is because the initial selection step not only
prevents paying too much for selection, but it can also improve the calibration set for computing
the conformal p-values after selection. In this hard setting, there is a large improvement of the
tail probability that matters for inference. We demonstrate this in one realization of the data
generation in Figure 14, where we can see that the 0.95 quantile of the original calibration set is
much larger than the 0.95 quantile of examples that remain in the calibration set after the initial
selection step. This is because the data generation is such that examples in the central cloud tend
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Fig 11: The test sample in a single data generation for selecting informative prediction sets that
exclude a null class. The setting is that of unbalanced classes, and the SNR is 3. The data points
from the test sample of each of the three classes, where the null group is in blue: left panel for the
entire test sample, right panel the remaining examples from the test set after the initial selection
step.

to have larger nonconformity scores SYi(Xi) than the examples that are not in the central cloud,
and most of the examples from the central cloud were eliminated from the calibration sample
with the initial selection step. So the remaining nonconformity scores after the initial selection
step tend to be smaller. Since the nonconformity scores of the examples from the test sample are
unchanged, the improved calibration set after the initial selection step results in p-values that
tend to be smaller when testing the null group, and in particular there are many more p-values
that are below the 0.05 level.

J.3. Three classes of animals

For the class-conditional model with label shift described in § 6, Figure 15 provides the resulting
FCR and power measures.
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Fig 12: Selecting non-trivial prediction sets in the classification iid model, in the case of balanced
classes (top row) and unbalanced classes (bottom row), for the Gaussian mixture model with
K = 3 classes described in § 5.2. FCR (first column), resolution-adjusted power (second column)
and the expected fraction of covering prediction sets (third column) versus SNR. The number of
data generations was 2000, 1000 data points were used for training, and n = m = 500.
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Fig 13: Selecting informative prediction sets in the iid setting with a large overlap between
three classes. FCR (left column), resolution-adjusted power (middle column) and the expected
fraction of covering prediction sets (right column) versus SNR for: balanced classes for minimally
informative prediction sets (first row) and for prediction sets excluding a null class (second row);
unbalanced classes for minimally informative prediction sets (third row) and for prediction sets
excluding the largest class (fourth row). Each class is a mixture of a common component and a
unique component, see § J.2 for details. Based on 2000 data generations, 1000 data points were
used for training, and n = m = 500.
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Fig 14: The setting is that of unbalanced classes, with each class having probability half of being
in the same mixture component, and the SNR is 8. In the first row, the data points from each
of the three classes, where the null group is in blue: top left panel for the entire test sample, top
right panel the remaining examples after the initial selection step. In the second row, left panel,
their p-values using the entire calibration set (black circles) and using the examples from the
calibration set remaining after the initial selection step (blue triangles). In the second row, right
panel, the empirical CDF of the nonconformity scores for true classes in the entire calibration
set (gray) and using the examples from the calibration set remaining after the initial selection
step for the of the (blue).
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c) Non-trivial classification with label shift

d) Non-null classification with label shift

Fig 15: For the class-conditional model, the FCR, average size of the selected, SR, and resolution-
adjusted power for the methods, for α = 0.1.
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