
HAL Id: hal-04539439
https://hal.science/hal-04539439

Preprint submitted on 9 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Kolmogorov time hierarchy and novelty games
Ulysse Léchine, Thomas Seiller

To cite this version:

Ulysse Léchine, Thomas Seiller. Kolmogorov time hierarchy and novelty games. 2024. �hal-04539439�

https://hal.science/hal-04539439
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Kolmogorov time hierarchy and novelty games

Ulysse Léchine
LIPN, IRIF

lechine@lipn.univ-paris13.fr

Thomas Seiller
CNRS

thomas.seiller@cnrs.fr

Abstract

In this paper we improve on the state-of-the-art time hierarchy for
time-bounded Kolmogorov complexity. More precisely, we prove that
there are infinitely many n ∈ N such that there are strings of size n
which are the output of programs of size f = o(log n) running in o(2fT)
steps but are not the output of any program of size f running in T steps.
The previous gap was exponential in 2f . This result is established by
studying a new problem in combinatorics: a list E of pk numbers in
[1;N] is shared evenly between p players, who each get to output an
answer depending on their share of E. The players must establish
a communication-free strategy ensuring that one of them outputs a
number not belonging to E.

1 Introduction

The Kolmogorov complexity of a word w ∈ {0; 1}∗ is the size of the smallest
program p which prints w and stops. This gives rise to a natural encoding
of words: a word can be encoded/described by a program which prints it.
To "decode" a program one just runs it until it stops, obtaining in this way
the original word. But decoding those, i.e. running the programs, may take
some time. We thus may consider time-bounded Kolmogorov complexity,
where one restricts to programs of size f(n) running in time T (n).

It is known that allowing programs to have a larger size leads to encod-
ing strictly more words, meaning that for all f there exists words having a
description of size f + 10 but no description of size f . Can this result be
extended when considering bounded time? For arbitrary T , are there words
which can be printed by programs running in 2T steps but not by programs
running in T steps? Stated otherwise: if we denote by [f, T](n) the set of
strings of length n outputted by a program of length f(n) running in time
T (n) 1, how do [f, T1](n) and [f, T2](n) compare? More specifically: given
α > 0, is [f, αT](n) strictly bigger than [f, T](n)? A first remark is that we
have to restrict our considerations to words of a given size, smaller than the

1Actually running in T (n) steps when simulated through a universal Turing Machine;
this is detailed and discussed later.

1

allotted time bound. Indeed, the question becomes trivial otherwise: with
2000 time steps one can write the string 11900, but this is not possible in
1800 time steps. We therefore fix a size for our outputs and only consider
time bounds larger than this size.

This open question, quoted in [6], is a very natural question to ask when
it comes to time bounded Kolmogorov complexity. It is similar to the time
hierarchy theorem, a standard result in complexity theory which states that
one can solve strictly more decision problems if one allows Turing machines
to run for longer. It would seem at first glance that one could use the time
hierarchy theorem to solve the problem of the "Kolmogorov time hierarchy",
but that line of reasoning has not proven successful.

In his thesis [8], Luc Longpré proves that2

∃∞n, [f, T](n) ⊊ [f, c2fT](n),

where ⊊ means “is included but not equal to”, and ∃∞n means that this is
true for an infinite number of values of n. This result establishes that with
exponentially more time in the size of the programs one can prove that it is
possible to output new strings. Whether one can lower that 2f(n) exponential
factor has been an open question since Longpré’s result. In this paper, we
provide a (partial) positive answer.

Longpré proves his result using a standard diagonalization technique,
considering a program running all programs of size f (there are 2f of them)
for T steps each, hence the 2fT time factor, and outputting a string which is
not the output of one of those programs. In order to improve on the result,
we exploit the following idea: we want to consider several programs each
running a fraction of those 2f programs. These programs will therefore run
for less long, allowing us to get a better bound in the theorem. Of course
the problem now is that each of the program will only see a fraction of the
possible outputs of programs of size f . How can one ensure that they can
still output a new string?

We first notice that only one of those program has to output a new
string. The question can then be expressed as a new combinatorics problem
presented in section 4, called novelty games, describing how they can coor-
dinate to achieve that. We then establish a solution to this combinatorics
problem which we then use to get a better Kolmogorov time hierarchy the-
orem than Longpré for size functions f = o(log(n)). The factor o(log(n))
is directly related to bounds on the solution we obtain for novelty games.
Better bounds for novelty games would thus translate (modulo some techni-
calities) into a better bounded time hierarchy theorem. We call this method

2Longpré are also establishes variants of this theorem using space, which we do not
mention in this paper.

2

"parallel diagonalization with advice": the epithet "parallel" is self explana-
tory, while "with advice" refers to the fact that we can give some additional
information to the programs. We believe this technique may have implica-
tions elsewhere in complexity theory. The analysis of novelty games may
also be of independent interest to researchers in combinatorics.

Kolmogorov time bounded complexity has been studied these recent years
and used for breakthrough results in meta complexity [5] [7] [4], but not only
[3] [9].

1.1 Outline

Here is a succinct outline of the paper. In section 2, we establish notations
and provide some background on time-bounded kolmogorov complexity. Sec-
tion 3 then provides a high level view of the paper and of our technique. The
remaining sections then contain the technical material. We define the new
combinatorial problem – which we call novelty games – in Section 4. We also
prove general results and give winning strategies for these games on specific
cases. In Section, 5 we formally define the program in [f, c2fT](n) but not
in [f, T](n) assuming the existence of a general winning strategy for novelty
games. We then present such a strategy in Section 6. The results are then
combined in Section 7 to establish the main theorem of the paper. Lastly,
Section 8 sketches some directions for future work.

2 Definitions

2.1 Notations and useful facts

We will use N to denote the set of integers. Intervals {N,N + 1, . . .M} will
be denoted by [N ;M], and we will abusively write [N] for [1;N]. We will
write

([N]
k

)
to denote the set of multisets of size at most k included in [1, N].

For a given set {0; 1}, we write {0; 1}∗ the set of strings, i.e. finite
sequences of elements of oi. Given x and y in {0; 1}∗, |x| will denote the
length of the string x, and we will write xy the concatenation of the strings
x and y.

We will abusively speak of Turing machine as programs and vice versa.
In the following we interchangeably view integers, programs and bitstrings
as the same thing, meaning a bitstring represents an integer and a program
and vice versa.

Time bounds will be written as T , while α and f are reasonable functions
of NN (see definition below). Functions g and h are reasonable slow growing
functions (see definition below). We will often abusively write T , f , and α
instead of T (n) f(n) and α(n).

3

As already mentioned, we write ∀∞n,A(n) to express that A(n) is true
for all but finitely many n. We will also write ∃∞n,A(n) to express that
there are infinitely many n such that A(n).

Let E1(x) = 1|x|0x. Let E2(x) = E1(|x|)x. The proof of the following
result can be found in [6].

Theorem 1. E2 is a prefix code and |E2(x)| = x+ 2log(|x|) + 1. E2 being
a prefix code means that ∀x, y ∈ ({0; 1}∗)2 one can uniquely retrieve x and
y from the string E2(x)y.

We will consider that our encoding of programs is such that if a string is
outputted by a program of size f it is also outputted by a program of size
f + c for c a universal constant.

We define CT (x) for x a string in the same way as in Li and Vitanyi
[6] i.e. it is the length of the smallest description p such that when p is
interpreted by U a universal Turing machine fixed in advance, U prints x in
less that T steps.

Let g, f be two integer functions we write g = Õ(f) to mean g =
O(f ∗ polylog(f))

When we call a function f reasonable we mean it in an informal way: "any
function not designed to explicitly break our theorem". A formal definition
most of the time looks like this: given a time bound T a function f is
reasonable if there exists c ∈ R computing f(n) in less than cT (n) steps
(equivalently f ∈ DTIME(T)). Example of reasonable functions are: usual
functions, composition of reasonable functions, log∗(n) (where log∗ is the
iterated logarithm).

When we call a function slow-growing we informally mean that it tends
towards infinity and it does so really slowly (if g is called slow growing one
may think g =

√
log∗).

2.2 Kolmogorov related notions

We define Time-space bounded Kolmogorov complexity as it is usually de-
fined, for instance in the book of Li and Vitanyi [6, section 7.1.2], or in
Longpré [8].

Definition 2.1 (Time-space bounded Kolmogorov complexity). Let ϕ be a
computable function from strings to strings. Let T ∈ N, x ∈ {0; 1}∗. We
define CT

ϕ (x) = min{|p|;ϕ(p) outputs x and stops in T steps or less }

Theorem 2. There exists a recursive function ϕ0 such that for every other
recursive function ϕ, there is a constant c such that C

ctlog(t)
ϕ0

(x) ≤ Ct
ϕ(x) for

all x. The constant c depends on ϕ only.

4

Proof. You may find the proof in [6]

The log factor in this theorem comes from the time overhead of the best
known simulation by universal Turing machines.

Definition 2.2 (Universal efficient Turing machine). For any Turing ma-
chine M , #M ∈ {0; 1}∗ denotes a reasonable encoding of M . Let U be a
Turing machine. We say that U is a universal efficient Turing machine if:

• the function ϕ0 defined by U respects the condition of theorem 2, and

• for all Turing machines M and strings x, U(< #M,x >) = M(x)
where < #M,x >= E2(#M)x.

In the following we fix U to be a universal efficient Turing machine. We
will abusively treat U as a program when necessary.

Definition 2.3 (Universal time-space bounded Kolmogorov complexity).
Let T ∈ N2, w ∈ {0; 1}∗. We define CT (w) as

min{|p| | U(p) =t w},

where U(p) =t w means that U computes w on input p in at most t steps.

Remark 1. Note that here p is treated as the encoding of a pair consisting
of a machine and its input. The size of a program is actually the size of the
encoding of the program and its input.
Remark 2. For a string w, CT is less than f if there is a program p of
size less than f whose running time when simulated by U is less than T .
This should be opposed to: a program p of size less than f whose "real"
running time is less than T . As a consequence, the log factor caused by
the simulation is already taken into account when considering the time-
Kolmogorov complexity of a string. In section 1 and 3 we abusively did not
make that difference, but this will become important when we formalize the
proof in section 7. In a first reading this difference may be ignored.

For a second reading, let us add some details. When we simulate α
distinct programs for T steps in section 5 and 7, we need to simulate them
for T steps and not T log T . Because of the tightness of our result, the
small speeding factor we achieve would be overshadowed by this log T factor
if it were not already built in the definition of time-bounded Kolmogorov
complexity. Let us note that this is not a specifity of our approach, as
Longpré result also uses this fact.

Definition 2.4 (Class of time-space bounded Kolmogorov complexity with
fixed size). Let T, f be functions from N to N, and n ∈ N. We define

[f, T](n) = {w; |w| = n ∧ CT (n)(w) ≤ f(n)}.

Longpré denotes this class by [f(n), T (n)] instead.

5

In this paper we sometimes consider slow growing functions, the slower
they grow the better, but we need those functions to exceed KT (n)(n) for
infinitely many n. We prove in the next theorem that for T (n) = 2n and for
infinitely many n, K2n(n) is less than log∗ log∗(n). Thus most reasonable
slow growing functions exceed KT (n)(n) infinitely many times.

Theorem 3. ∀c ∈ N,∃∞n ∈ N , K2n(n) + c ≤ log∗(log∗(n)) .

Proof. Taking c = 0 the proof being similar for any c: consider the sequence
n0 = 2, nk = 2nk−1 . nk = (log∗)−1(k). nk is of size nk−1 and can be printed
in time 2nk−1 by a program of size k = log∗(n). So we have a small and fast
program to print nk = (log∗)−1(k) by composing the program twice we can
print n′

k = (log∗)−1(log∗)−1(k) in time 2n′
k with a program of size k.

3 Goal and general strategy

High level description of the paper. Our goal is to study the question

∃∞n, [f(n), T (n)] ⊊ [f(n), αT (n)]?

Longpré has shown

∃∞n, [f(n), T (n)] ⊊ [f(n), c2f(n)T (n)].

The proof of Longpré follows a standard diagonalization argument. One
considers a program p(n) which runs all programs of size f(n) for T (n) steps
(this takes time 2fT), and then outputs a string of length n which was not
the ouput of any of the 2f enumerated programs. Intuitively, the program p
is of size KT (n)(n) +O(1) since we just gave its description (the term O(1))
and instead of giving n as an input we can give it a representation of n
decodable in T (n) steps (the term KT (n)(n)). As a consequence the stronger
result we obtain is in fact

∃∞[f(n), T (n)] ⊊ [KT (n)(n) +O(1), c2f(n)T (n)],

since KT (n)(n) + O(1) is significantly lower than f(n) for any reasonable
functions f and T , and infinitely many n. When f is bigger than log(n)+ c,
one can change the quantifier ∃∞ to ∀∞, since KT (n)(n) < log n+ c for some
c ∈ N.

One try variant. Our idea to prove

[f(n), T (n)] ⊊ [f(n), αT (n)]

is to do the following: instead of running every program of size f for T
steps (which takes time 2fT), we only run α of them for T steps. First we

6

divide the set of 2f programs of size f into chunks of size α, these chunks
are called Ci for i ∈ [0, 2f/α]. We then consider 2f/α programs (pi)i∈[2f/α].
Program pi will run all the programs of chunk Ci for T steps: some of those
may stop before T steps and we remember their outputs (there are at most
α such outputs). Call those outputs c1i , c

2
i Then each program pi will

look at these outputs and produce a new string which hopefully is not the
output by any program of size f (not only the ones of chunk Ci). Now
of course this is where the difficulty of the approach lies: each program pi
only knows a fraction of the possible outputs of programs of size f , and
there is no reason to think that it can output something new. However, we
only need one of those programs to output something new. To that effect,
the programs will play a collective game ensuring that at least one of them
outputs a "new" string. The second task of our programs, after computing
the values cji , is thus to apply a strategy ensuring that one of them succeeds
in outputting a new string. Note that this might be possible because the
programs collectively know all the outputs of programs of size f running for
T steps.

In this paper, instead of considering multiple programs pi we will have
one global program 3 p taking as input n and i, n tells it which size we are
currently looking at and i tells it to run the i-th chunk of size α programs of
size f(n). These programs are of approximate size log n+ log(2

f

α) ≈ log n+
f−α. This has to be smaller than f in order to be of any use. To reduce the
size we also apply a trick and give a description of n decodable in T (n) steps
noted #Tn: the programs are then of approximate size KT (n)(n) + f − α.
For any reasonable increasing function α growing to infinity, this is smaller
than f for an infinite number of n, that is because lim infKT (n)(n) grows
incredibly slowly as shown in theorem 3. We even have a bit of leeway
which allows us to cram in some additional information which we’ll use in
the multiple tries variants.

As for the running time, simulating α programs for T steps takes αT
steps in total. We then have to apply our strategy on the α inputs. The
strategy needs to be described, which adds some extra size to program p.
When the strategies are uniform this only adds 0(1) bits of size. Running
this strategy also adds some extra running time which depends on the precise
strategy we implement. In general, this extra time could be greater than αT
and forbid us to conclude. However, in practice, it turns out that this is not
the limiting factor.

Regardless of size and time constraint, it is not clear at all at this stage that
a strategy allowing this proof technique even exists. We will first rephrase

3Actually this adds some uniformity to the programs which is not formally needed and
might hinder the approach. Without uniformity, one may give additional advice to the
programs, for instance information about the inputs of the other programs (hence the
terminology of parallel diagonalization with advice).

7

the expected outcome of the strategy as a purely combinatorics problem. We
start from an initial list E ⊂ [1;N], where N is to be thought of as all the
possible strings of size n, therefore N = 2n. Here E should be understood
as the set of outputs of size n of all the programs of size f running for less
than T steps, and therefore4 |E| = 2f . Then we divide this list E into
chunks of size k and give those to p players. Here k is to be thought of as α
(k = α), and p as the number of different programs (one per chunk), hence
p = |E|

α = 2f

α . Each of the p players may produce an answer depending
only on their k inputs. Their answer must be an element of [N]. The players
collectively win if at least one of the answers given by the players is not in E.
The question is, for the game GN (p, k) with p player having k numbers each
answering in [N], is there a strategy the players can apply which will work
no matter the initial list E. Note here that each player has its own strategy,
and no communications are allowed between players during the process.

Remark 3. The combinatorial approach disregards any restriction on the
number of bits necessary to describe the strategy and the running time of
the strategy. As a consequence, once we will have a winning strategy, we will
need to take care of these aspects in order to use it for proving our result
about time-bounded Kolmogorov complexity classes.

Remark 4. At this point it is not clear that a strategy even exists. Also,
achieving a winning strategy for any list E is more than what is needed for
our specific problem. Indeed, for the intended application for time-bounded
Kolmogorov complexity, we only need a winning strategy when the initial
list is composed of the outputs of the programs of size f(n) running for T (n)
steps.

Remark 5. The bound [N] is really important. Our programs must answer
a bitstring of size n (recall the definition of [f, T](n)) i.e. a integer in [N].
We are given f(n) and α(n) which determine the number p(n) of players and
the number k(n) of inputs. Now it may be that the game GN (p(n), k(n))
has a solution when N is very large but not when N is small 5. But for our
purpose we need N to be less than 2n. This leads us to an analysis in section
4 of the bound B(p, k) which is the smallest N for which game GN (p, k) has
a solution. This bound B(p, k) proves to be the crux and the limiting factor
of our results.

Multiple tries variant. Up until this point we have considered that
the i-th chunk of α programs was attributed to program p(n, i) of size ≈
KT (n)+f−α. As mentioned earlier, we have some leeway on the size of our
programs, so we can relax the setting to provide some extra information to

4To be more precise, this should be an inequality since there may be repeats or programs
that do not stop. But we just consider the worst case here.

5We will establish later in the paper that the game is indeed easier when N gets large.

8

our programs. We present here one way of using this extra information. We
will now consider replacing p(n, i) by a program p(#Tn, i, j). This program
is the j-th program attributed to the i-th chunk of α programs. It has
an additional input j in [1; 2α/g], where g is any reasonable slow growing
function. The size of p(#Tn, i, j) is therefore approximately KT (n) + f −
α + α − log(g) ≈ KT (n) + f − log(g), which is smaller than f for infinitely
many n. As for the one-try variant, the program p(#Tn, i, j) runs the i-th
chunk of programs of size f(n) for T (n) steps but can then give an answer
which depends on j.

Expressed using our combinatorics problem, each player can now propose
m answers instead of giving out a unique answer. The players collectively
win the game if one of the answers of one of the players is not in the initial
list E. This game is denoted by GN (p, k,m).

For the moment, we have not been able to use the ability to use multiple
tries to improve on our solution for the one try variant, and we only came
up with basic theorems. We nevertheless mention it since it is a natural
extension of the underlying combinatorics problem. It may also be a way
forward to lower the bound B(p, k,m) presented in section 4.

4 Novelty games

In this section, we introduce the combinatorial game behind our technique,
under the name of Novelty games.

We remind the reader that
([N]

k

)
denotes the set of all multisets included

in [1, N] of size at most k.

4.1 Definition

Definition 4.1. We now define the game GN (p, k,m).

• There are p players.

• Player i receives a multiset Ai ∈
([N]

k

)
; elements of Ai are called inputs.

• Each player has m tries.

• On each try a player answers an element of [1;N]

An occurrence of the game GN (p, k,m) is a specific family (Ai)
p
i=1.

A strategy SN (p, k,m) for GN (p, k,m) is a family of functions (si)i=1,...,p

where
si :

(
[N]

k

)
× [m]→ [N].

The players collectively win the occurrence (Ai)
p
i=1 of GN (p, k,m) if there

exists a pair (i, j) ∈ [p]× [m] such that si(Ai, j) ̸∈ ∪pi=1Ai.

9

A winning strategy for GN (p, k,m) is a strategy such that all occurrences
of the game are won.

Notations 1. When m = 1, we may write GN (p, k) instead of GN (p, k, 1).
We may sometimes drop the superscript and subscript altogether when they
are not relevant or clear from the context.

When all players have the same strategy, i.e. when S = (si)
p
i=1 is such

that there exists a function s with si = s for all i = 1, . . . , p, we say that
SM (p, k,m) is oblivious.

Definition 4.2. We define B(p, k,m) as the smallest integer N such that
there exists a winning strategy for the game GM (p, k,m).

We note that B(p, k,m) is well defined, as proven in section 6.2. Estab-
lishing an estimate of B(p, k,m) in general remains an open question.

4.2 General remarks about Novelty games

Sets. The first remark is that one may only consider sets of size exactly k
instead of multisets of size at most k. This is because the hardest case for the
strategy is when each player has k different numbers. Indeed, suppose there
exists a strategy S winning in all occurrences of the game for which players
have a set of size k (or, equivalently, a multiset of size k without repetitions).
Then one can easily construct a winning strategy for all multisets: when the
considered multiset have less than k distinct numbers, it suffices to change
repeated occurrences by arbitrary new ones and if you still don’t have k
values you can add arbitrary numbers to reach k. One can can apply the
strategy S on the resulting set. A routine check suffices to show that this
strategy is winning.

In the following, we will therefore always assume that inputs are pairwise
distinct, and that we may add arbitrary new inputs so that sets have size
exactly k.

We also note that inputs are not ordered, since we work with sets and
not tuples. But we may suppose, if need be, that they are by chosing an
arbitrary order relation.

The next theorem states that the existence of strategy for inputs in [1;N]
implies the existence of a strategy for inputs in [1;M] for all M ⩾ N . This
motivates the definition of B.

Theorem 4. Let M,N ∈ N such that M ⩾ N . If GN (p, k,m) has a winning
strategy then so does GM (p, k,m)

Proof. We treat the case M = N+1 and then we can conclude by induction.
Let S be a winning strategy for GN (p, k,m). We define a strategy S′ for
the game GM (p, k,m) as follows. If M is not an input of strategy S′, then

10

each player simply runs S. Otherwise, the player replaces M by N and runs
the strategy S on the resulting set. One easily checks that S′ is a winning
strategy for GM (p, k,m) since the output of S′ is in [N] ⊂ [M].

Theorem 5. For all p, k, m in N, and all a, b, c, d in [0, 1]3,

B(p− a, k − b,m+ c) ≤ B(p, k,m).

Proof. This is proven by noticing that a strategy for the game GM (p, k,m)
is also a strategy for GM (p − a, k − b,m + c): it suffices to add b random
inputs, apply the strategy on those (since there are less players, the strategy
determines a map for each player – and the maps si for i = p− a+ 1, . . . , p
are unused), and guess c arbitrary additional outputs.

We believe establishing recurrent relations between values of B is hard
when varying the number of players, numbers, tries or the size of the set of
inputs. For instance, it is not even clear how the inequality of theorem 5 can
be made strict.

We now start by proving a simple lower bound on B.

Theorem 6. For all p, k,m ∈ N, B(p, k,m) ≥ pk + 1.

Proof. It is easy to realise that there are no winning strategy if N = pk: if
for all i ∈ [1; p], player i has as inputs [(i − 1)k + 1; ik], then the set of all
inputs is equal to [1; pk] and no player may output a new number.

Another easy result to establish is that if one allows for enough tries, the
value of B can be determined (and is low).

Theorem 7. For all p, k ∈ N, B(p, k, k) = pk + 1.

Proof. Let N = pk + 1. Each player calls its inputs i1, . . . , ik. On its j-th
try each player does this: if ij +1 ≤ N it answers ij +1 otherwise it outputs
1. It’s routine to check that this is a winning strategy.

The study of multiple tries has proven to be hard. Apart from quite
obvious results, we have not found ways to improve on the results we obtain
in the one-try variant. We therefore leave the following question for future
work.

Question 1. Can one find a better bound for B(p, k, k − 1) than B(p, k, 1)?

We summarise the results of this paper in fig. 1. The proof are scattered
in the paper.

11

Game (p, k, 1) (p, k, i) (p, k, k)

Upper bound (kp)k
p

(kp)k
p

pk + 1

Reference section 6.2 section 6.2 section 4.2

(a) Bounds for general values p, k

Game (2, 2, 1) (1, k, 1) (p, 1, 1)

Upper bound 9 k + 1 p+ 1

Reference section 4.4 section 4.2 section 4.2

(b) Bounds for specific values

Figure 1: Results of the paper

4.3 Novelty games for Kolmogorov complexity

If we want to prove that [f, αT](n) ⊈ [f, T](n), We are interested in studying
game GN (p, k,m) where:

• p = 2f/α;

• k = α;

• m = k/g where g is any reasonable slow growing function;

• N = 2n.

Our bound B(p, k,m) should be less than N because a program must answer
a string of size n (i.e. an integer of [N]). This gets us to analyze when:

B(p, k,m) < N ⇔ ∃g : N→ N, ∀n,B

(
2f(n)

α(n)
, α(n),

α(n)

g(n)

)
≤ 2n.

Reminding the reader that f , T and α are all functions of n, we are thus
particularly interested in analysis of the bound B(p(n), k(n),m(n)) in which
p(n), k(n), and m(n) are functions going to infinity and m(n) = k(n)/g(n)
where g(n) is a very slowly growing function. p(n) must go to infinity as
there is one player per chunk of programs to be simulated and the number
of chunks grows with n. We have no formal argument establishing that k(n)
should go to infinity: each player could have a constant number of inputs as
n grows, but this would require to refine the size analysis of our programs,
at the very least. Likewise - with no size analysis refinements - g(n) has to
grow towards infinity, however the slower g grows the more tries for each
player.

Remark 6. This subsection was meant to give precise links between our
Kolmogorov problem and values for novelty games. But we believe analysing
novelty game BN (p, k,m) for any p, k,m is the right way forward.

12

4.4 Resolution of G(2, 2) case

This partial solution was chronologically the first to be proposed, by Corentin
Henriet. We chose to present it since the strategy is different from the ones
presented in the next sections and it provides interesting bounds.

This strategy is oblivious. We will thus define the single map s used
by both players. The strategy is winning as long as N ≥ 9, showing that
B(2, 2, 1) ≤ 9 (much better than the general bound obtained in section 5,
which gives 216). In this specific case, we can also prove that B(2, 2, 1) > 5
(to be compared to 4 – the general lower bound obtained in theorem 6).

Definition 4.3 (Strategy s). We intuitively understand our inputs as being
on a "clock" from 1 to N , i.e. the successor of N is 1. Let (x, y) be our inputs
ordered such that the distance between x and y is less than the distance from
y to x when read in the clockwise direction. If y = x+ 1 or y = x+ 2, then
s(x, y) = x− 2, otherwise we define s(x, y) = x+ 1.

Theorem 8. B(2, 2, 1) ≤ 9.

Proof. The proof consists in verifying that s is a winning strategy. This is
done by checking every possible scenario.

Theorem 9. B(2, 2, 1) > 5.

Proof. This is easily checked by pen and paper search.

While this strategy provides good bounds, we have not found a way to
generalise it to more players or larger sets. The next section presents a
general strategy for the 2-players case.

4.5 Graph strategies

This line of reasoning, and the corresponding winning strategy for G(2, k, 1)
was first obtained by Dmitriy Kunisky.

We first recall the definition of colored graphs and establish some useful
notations.

Definition 4.4 (Colored graphs). Let p ∈ N. A p-colored graph is a triple
(V,E,C) where V is a set of vertices, E ⊆ {(x, y) ∈ V 2 | x ̸= y} is a set of
edges, and C : E → [p] a coloring function mapping every edge to a color
(an element of [1; p]).

The graph is said to be complete when E = {(x, y) ∈ V 2 | x ̸= y}. We
will moreover write Gi = (V,Ei) the graph induced by selecting the edges of
a given color i, i.e. w ∈ Ei ⇔ w ∈ E ∧ C(w) = i. Given u, v ∈ V , we write
u ∼ v when {u; v} ∈ E; in this case we say that u and v are neighbors. We
moreover write u

i∼ v when u ∼ v and C({u; v}) = i.

13

We will now define a property of colored graphs which will be used later
to define a winning strategy.

Definition 4.5 ((p, k)-set property). Let p, k ∈ N. A p-colored graph G =
(V,E,C) is said to have the (p, k)-set property if for every subset of vertex
A ⊆ V of size k and every color i ∈ [1; p], the vertices in A have a mutual
neighbor v in Gi, i.e. such that for all a ∈ A, a i∼ v.

We will now explain how the (p, k)-set property ensures that one can
define a strategy for p players and sets of size k from a p-colored graph.
The intuition is the following: each input will correspond to a vertex, each
player will correspond to a color, and a player will use the (p, k)-set property
instantiated on its color to produce an output.

We now recall the notion of polychromatic cycle that will be useful to
discuss winning strategies.

Definition 4.6 (Polychromatic cycles). Let p ∈ N and G = (V,E,C) be a
p-colored graph. A cycle c of G is said to be polychromatic if edges in c have
pairwise different colors.

Note that a polychromatic cycle does not necessarily use all colors. The
non-existence of polychromatic cycles will ensure that the strategy will be
winning (i.e that no all player’s answer are an input of another one). For
the interested reader, graphs with no polychromatic cycles have been studied
here [2, 1].

Definition 4.7 (Good graphs). Let p, k ∈ N, and let G be a p-colored
graph. We say that G is (p, k)-good if it has the (p, k)-set property and has
no polychromatic cycles.

We now formally describe the strategy induced by a (p, k)-good graph
G = (V,E,C) with V = [1;N]. The map sGi :

([N]
k

)
7→ [N] defining the

strategy of the i-th player is defined as sGi (A) = y where y is any vertex
(for instance, the smallest) such that ∀x ∈ A, x

i∼ y. Such a y always exists
thanks to the (p, k)-set property. We can then establish that the absence of
polychromatic cycles implies that this strategy is winning.

Theorem 10. Let p, k ∈ N and let G be a p-colored graph with N vertices.
If G is (p, k)-good, the strategy S = (sGi (A))i∈[1;p] is winning for the game
GN (p, k, 1).

Proof. Suppose the strategy is not winning. Then there exists an occurence
A1, . . . , Ap of the game for which the strategy fails (here Ai denotes the set of
inputs of player i). Consider a graph H where the vertices are players P1 to
Pp, with a directed edge from Pi to Pj if the answer of player i, i.e. sGi (Ai),
belongs to the set of inputs Aj of player j. By assumption, there exists a

14

cycle in this graph (otherwise the strategy is winning on this occurence).
But one can check that a cycle in H implies the existence of a polychromatic
cycle in G, leading to a contradiction.

The last step is now to show that (2, k)-good graphs exist. We will then
discuss, in subsection 4.5.2, the unlikely existence of (p, k)-good graphs for
p > 2 and k ≥ 2.

4.5.1 Graph strategies for (2, k)

Theorem 11. For any k ∈ N, there exists a (2, k)-good graph.

Proof. We will prove that there exists an undirected uncolored graph G =
(V,E) such that for every A ∈

([N]
k

)
:

• ∃a,∀x ∈ A, x ∼ a;

• ∃b,∀x ∈ A, x ≁ b.

This is sufficient to prove the existence of a (2, k)-good graph by converting
every edge to a 1-colored edge and adding a 2-colored edge for every pair of
vertices x ̸= y such that x ≁ y. Note that this graph has no polychromatic
cycles of size 2 since two vertices cannot be simultaneously neighbors and
non-neighbors.

We now prove the existence of such graphs using the probabilistic method.
Let G be an Erdős-Rényi graph with edge probability 1

2 on the vertex set
[1;N]. Then, the probability P[G is k-good] goes to 1 as N goes to ∞:

P[G is not k-good]
≤ P[some i1, . . . , ik ∈ [N] have no mutual neighbor]

+ P[some i1, . . . , ik ∈ [N] have no mutual non-neighbor]
≤ 2 · P[some i1, . . . , ik ∈ [N] have no mutual neighbor]

≤ 2

(
N

k

)
P[1, . . . , k have no mutual neighbor]

≤ 2

(
N

k

)(
1− 1

2k

)N−k

≤ 2 exp

(
k logN − N − k

2k

)
Note we used symmetry to deduce the second inequality.

For large values of k, we have that 2 exp
(
k logN − N−k

2k

)
is less than 1

when N = O(k32k). The general bound of section 6 gives a worse bound
O(2k

2 log k).

15

Size and running time of the graph strategy. If we want to use a
strategy based on graphs in the programs of section 5 to show [f, αT] ⊊ [f, T],
we need a succinct description of such graphs. Indeed, the program needs
to be of size less than f . Note however that we have only demonstrated
the existence of a (2, k)-good graph thanks to the probabilistic method. The
best we can naively do is then to hardcode those graphs in the strategy. This
would make the strategy really large in terms of bits (close to N2 = 22n),
but our programs can never be bigger than f < n bits. Another approach
is to let the programs find those graphs by itself: every program p(#T , i)
enumerates and tests graphs in ascending lexicographic order until it finds a
good graph, and then use it for its strategy. While this strategy takes O(1)
bits to describe, it takes at least 2n steps to run implying that one could
only establish bounds for T > 2n.

We also hint (but not formally prove) at a method of constructing (2, k)-
good graphs without using probability theory. We briefly describe such a
potential graph using the notion of pseudorandom Paley graph from number
theory. A Paley graph is a graph G on a prime number p =≡ 1 mod 4 of
vertices. Vertices of G are identified with integers modulo p, and there exists
an edge i ∼ j if and only if i − j is congruent to a square modulo p, i.e. if
and only if ∃k, i− j = k2 mod p. The condition p ≡ 1 mod 4 ensures that
the relation ∼ is symmetric.

Finding a mutual neighbor of x1, . . . , xk then amounts to solving the sys-
tem of equations {y − xi = z2i } in variables y, z1, . . . , zk. One may check,
using character sum estimates, that many integers y satisfying these equa-
tions exist, for any choice of z1, . . . , zk, as long as p is sufficiently large.

4.5.2 Graph Strategies for (p, k)

In the previous section, we established the existence of winning strategies for
the games GN (2, k, 1), defined from colored graphs. Can we generalise the
approach to obtain winning strategies for all games GN (p, k, 1)? If we were to
follow the same method, we would need the existence of (p, k)-good graphs.
Unfortunately, we have not been able to prove or disprove the existence of
such graphs for p > 2. However, we can establish that their are no complete
(p, k)-good graphs (note that the (2, k)-good graphs we came up with are
complete).

Definition 4.8. A p-colored graph G is said to be connected for color i if
there is a i-colored path between any two vertices in G

Theorem 12. (Proven in [2]) Let G be a complete p-colored graph. If G
has no polychromatic cycles, then G is connected for at most 2 colors.

Theorem 13. There are no complete (p, k)-good graphs for p > 2 and k ≥ 2.

16

Proof. Let G = (V,E,C) be a complete (p, k)-good graph. Then for any
color i and any two vertices u, v ∈ V , there exists w ∈ V such that u i∼ w and
v

i∼ w. This implies that u and v are connected for every color. Whenever
there are p ≥ 3 colors, this contradicts Theorem 12

Can graph strategies be salvaged? Graph strategies are an interesting
approach, and they provide – in the case p = 2 –, better bounds that the
general strategy defined below. However it is unclear if (p, k)-good graphs
exist. An approach would be to get rid of them altogether and try to under-
stand what kind of graphs we could be used for the multiple tries setting.
Surely, such graphs would have less stringent requirements (but which re-
quirements this is remains unclear at the moment). Another approach would
be to consider uncolored but directed graphs instead of colored undirected
graphs, requiring the following properties:

• there exists no cycles of length less than p;

• for any set i1, . . . ik there exists a vertex b such that ∀j ∈ [1; k], ij → b
(i.e. there exists a directed edge of source ij and target b).

If we could prove the existence of such graphs, it could be used to define a
winning strategy for the game G(p, k, 1). Indeed, every player would answer
a common “directed” neighbor of its k−inputs using the second property.
The fact that the strategy is winning would then directly follow from the
first property. However, the existence of such graphs also remains an open
question at the moment.

5 Formal description and analysis of the programs

Recall that we want in the end to show that [f, αT] ⊈ [f, T]. The functions
f(n), α(n) and T (n) are all supposed to be in DTIME(T (n)), i.e. there is a
program which computes them in O(T (n)) steps and which can be hardcoded
into any program for a cost of 0(1) bits. We also suppose that α is less than
KT (n)(n) for infinitely many n; as established by theorem 3, this is not a
stringent condition.

In the following, we will often drop the arguments of the functions and
write, for instance, f instead of f(n). We also suppose w.l.o.g. that T (n) > n
and f < n. Indeed, if T (n) < n, then it is not possible to write any string of
length n in the allocated time, and if f ≥ n then all inputs have a description
of size bounded by f and there are no gap in the hierarchy. We also assume
for simplicity that 2f is divisible by α.

We will in the end only be interested in values of n for which there exists
a program #Tn outputting n in T steps or less, and such that α(n) > KT (n).
A careful reading of the proof of theorem 3 ensures the existence of infinitely
many such n.

17

For the moment, we will assume that for all p, k,m,N ∈ N, we have a
strategy (not necessarily winning) SN (p, k,m) = (σN

i (p, k,m))i∈[p] for the
game GN (p, k,m), where σN

i is the map defining the strategy for player i.
The following definition of programs does not depend on the specific strategy
considered, but it should be clear that their analysis will be dependent on
this choice.

5.1 One try variant

We formally define the program which is intended to output a string in
[f, αT](n) and not in [f, T](n) when the strategy SN (p, k, 1) is winning. We
then proceed with the size and running time analyses.

Definition of the program p The program p takes as input two strings
of {0; 1}∗:

• #Tn is taken to be the smallest program outputting n in T (n) steps
or less;

• i which is the number of the chunk of programs to be run: it ranges
between 1 and 2f/α.

The program p(#nT , i) then performs the following computations:

1. It runs the program #Tn until it stops. We call n its output.

2. It computes f(n), T (n), and α(n).

3. It creates an empty list l which will be used to store the outputs.

4. For j ranging from 0 to α − 1, it simulates the program number (i −
1)2

f

α + j running for T (n) simulation steps6: if this program outputs
a value before stopping, it adds the output to the list l.

5. It runs the strategy σN
i (2

f(n)

α(n) , α(n), 1), where N = 2n and m is the size
of list l, on inputs l[0], l[1], . . . , l[m− 1], and outputs the result.

Size analysis. We now analyze the size of p(#Tn, i):

• #Tn is of size KT (n) (by definition);

• i is an integer in [1; 2f/α], hence it is of size f − log(α).

• (#Tn, i) can be uniquely described by a string of size KT (n)+log(KT (n))+
f − log(α) from theorem 1;

6On the universal Turing machine used to define our Kolmogorov complexity

18

• the program p is of size O(1).

We conclude that p(#Tn, i) is of size KT (n) + f − log(α) + O(1). This is
strictly less than f(n) for infinitely many values of n (for any reasonable
function α see theorem3).

Running time analysis. The steps 1 to 4 take time αT to compute. The
running time of step 5 depends on the specific strategy SN (2f/α, α) we
choose to implement. Hopefully this running time can be kept in O(αT),
otherwise we cannot (directly) conclude.

Correctness analysis. Suppose that the strategy S2n(2
f(n)

α(n) , α(n)) used

in the program is a winning strategy for the game G2n(2f(n)

α(n) , α(n)). Let #n

be a program outputting n. Then, by construction, there exists i ∈ [1, 2f/α]
such that p(#n, i) outputs a number of size n which is not the output of any
program of size f in less than T steps.

Conclusion Size and running time analysis are meant to prove that the
output of p(#Tn, i) is in [f, αT](n). Correctness analysis shows that for at
least one i, p(#Tn, i) is not in [f, T](n). Thus showing [f, T](n) ⊊ [f, αT](n).

5.2 Multiple tries variant

Let g be a very slow-growing reasonable function computable in T (n) steps,
such as g =

√
log∗). The multiple tries setting is quite similar to the one try

setting, except that we will have an additional input j indicating which try
is computed. We formally define the program which is intended to output
a string in [f, αT](n) and not in [f, T](n) when the strategy SN (p, k,m) is
winning.

Definition of the program p. The program p now takes as input three
strings of {0; 1}∗:

• #tn as in the one-try case;

• i as in the one-try case;

• an integer j ranging in [1;α/g].

The program p(#n, i) then performs the following computations.

1. It follows the steps 1, 2, 3, and 4 of the program defined for the one
try variant.

2. It runs the strategy σN
i (2

f(n)

α(n) , α(n), j), where N = 2n and m is the size
of list l, on inputs l[0], l[1], . . . , l[m− 1], and output the j-th answer.

19

Size analysis. We analyze the size of p(#Tn, i):

• #Tn can be chosen to be of size KT (n) (by definition);

• i is of size f − log(α);

• j is of size log(α)− log(g);

• (#Tn, i) can be uniquely described by a string of size O(KT (n))+ f −
logα;

• the program p is of size O(1).

As a consequence, p(#Tn, i) is of size O(KT (n)) + f − log(α) +O(1).

Running time and correctness. The analysis is similar to the one try
case.

6 General Strategy for (p, k)

We will now exhibit a general strategy. This is an oblivious7 strategy: the
same function is used by all players. Intuitively, we will be using the remain-
der of arguments modulo some large enough number m to ensure disjoint-
ness. The strategy however remains involved as it requires to keep track of
the remainders modulo m of antecedents.

We will start by detailing the (3, 2) case before generalising to any pair
(p, k).

6.1 Strategy for (3,2)

The function M2 → M behind the strategy can be explained informally
as follows. Given two arguments x, y, we will suppose their digits when
written in base m correspond to the remainders modulo m of their an-
tecedents through F . Here m will be chosen to be equal to 15, as ex-
plained below. Since we need to ensure that no cycles of size ⩽ 3 appear,
we will need to keep track of the values of such remainder up to depth-2
antecedents (i.e. antecedents of antecedents). For instance, x will be written
as x = x7x6x5x4x3x2x1 in base m, and we understand:

• x2, x3 as the remainders of the antecedents of x through F ,

• x4, x5 as the remainders of the antecedents of x2 through F ,

• x6, x7 as the remainders of the antecedents of x3 through F .
7We chose not to use the term uniform as to not create confusion with the uniformity

of computability theory

20

Similarly, we suppose the writing of y = y7y6y5y4y3y2y1 to keep track of the
remainders modulo m of the antecedents of y.

The function F(3,2) then just implements this notion of keeping track of
the antecedents, while producing a fresh value modulo m. More precisely,
given x = x7x6x5x4x3x2x1 and y = y7y6y5y4y3y2y1, the function F will pick
a value ν ̸∈ {x1, . . . , x7, y1, . . . , y7}. Since there are 14 values in the latter
set, choosing m = 15 ensures that this is always possible. The function is
then defined as

F(3,2)(x7x6x5x4x3x2x1, y7y6y5y4y3y2y1) = x3x2y3y2x1y1ν.

The following illustration should clarify the definition of F(3,2).

ν

x1

x2

x3

x4

x5

x6

x7

y1

y2

y3

y4

y5

y6

y7

x

y

F
(x
,y

)

Definition 6.1. The function F(3,2) is defined on [0, 157] as follows:

F(3,2)(x, y) = x3.15
6 + x2.15

5 + y3.15
4 + y2.15

3 + x1.15
2 + y1.15 + ν,

where x =
∑6

i=0 xi+1.15
i, y =

∑6
i=0 yi+1.15

i, and ν ∈ {0, . . . , 14} does not
belong to {xi | i = 1, . . . , 7} ∪ {yi | i = 1, . . . , 7}.

Note that by definition F(3,2)(x, y) is necessarily different from x and y.

Theorem 14. The function F(3,2) provides a uniform winning strategy for
3 players with 2 numbers.

21

Proof. We will denote by a, b the numbers given to player 1, by c, d the
numbers given to player 2, and by e, f the numbers given to player 3. The
goal is to show that if each player applies the function F(3,2) then they always
collectively win the game.

As in the definition above, we write a = a6a5a4a3a2a1a0 the base 15
representation of a, b = b6b5b4b3b2b1b0 the base 15 representation of b, etc.

If F(3,2)(a, b) is different from c, d, e, f , the players have won the game.
Suppose now that we are in the case where F(3,2)(a, b) ∈ {c, d, e, f}. Without
loss of generality, we can suppose that F(3,2)(a, b) = c. In particular: c0 ̸= ai
for all i ∈ [0, 6], c0 ̸= bi for all i ∈ [0, 6] c2 = a0, c5 = a1, and c6 = a2.
We now consider the result produced by player 2, that is F(3,2)(c, d). Once
again, if this value is different from a, b, e, f then the game is won. If this is
not the case, there are two cases.

The first case is F(3,2)(c, d) ∈ {a, b}. We now show that this is impossible.
By definition, F(3,2)(c, d) is different modulo 15 from all ci (i ∈ [0, 6]), but
c1 is the remainder modulo 15 of b and and c2 is the remainder modulo 15
of a. Hence the value of F(3,2)(c, d) modulo 15 is different from the values of
a, b modulo 15.

The second case is F(3,2)(c, d) ∈ {e, f}. Without loss of generality,
we suppose F(3,2)(c, d) = e. We will now have to show that F(3,2)(c, d) ̸∈
{a, b, c, d}. Let us write z = z6z5z4z3z2z1z0 the representation of F(3,2)(c, d)
in base 15. By definition of F(3,2), z0 ̸= ei for all i ∈ [0, 6]. But since
F(3,2)(c, d) = e and F(3,2)(a, b) = c, one has the following properties: e1 = d0,
e2 = c0, e5 = c1 = b0, e6 = c2 = a0. Thus z0 is different from a0, b0, c0, and
d0. This proves that F(3,2)(e, f) ̸= a, b, c, d, and therefore the game is won.

6.2 General strategy for (p,k)

We now expose the general strategy. The construction follows the (3, 2) case
just described. In that case, the main insight of the strategy was to book-keep
the remainders modulo m of the potential antecedents up to depth 2. For
general (p, k), we will therefore keep track of the potential antecedents up to
depth p−1. This means that for each of the k arguments, we will need values
modulo m of the potential 1+k+k2+k3+· · ·+kp−1 antecedents. Since there
are k arguments, this means that we will be manipulating k(1+k+k2+k3+
· · · + kp−1) values modulo m, and produce a fresh value. This implies that
m should be greater or equal to 1+k(1+k+k2+k3+ · · ·+kp−1) = kp+1−1

k−1 .
Now, since we need to book-keep 1 + k + k2 + k3 + · · · + kp−1 = kp−1

k−1
antecedents, we will require that:

M ⩾

(
kp+1 − 1

k − 1

) kp−1
k−1

.

22

We will here suppose that M is minimal, i.e. the above inequality is in
fact an equality. We introduce the notation k(d) = kd−1

k−1 ; by convention, we
define k(0) = 0. Suppose given arguments xi ∈ [0,M]. We write those in
base m = kp+1−1

k−1 as follows:

xi =

p−1∑
d=0

kd−1∑
c=0

xi(d, c)m
k(d)+c.

The definition of F(p,k) then simply generalises the definition of F (3, 2) given
above.

Definition 6.2. For any p, k we define the function F(p,k) as follows:

F(p,k)(x0, . . . , xk−1) = µ+

p−1∑
d=1

k−1∑
i=0

kd−1−1∑
c=0

xi(d− 1, c)mi.k(d−1)+c,

where µ is a value different from all xi(d, c) (say the smallest one for a
deterministic function).

Following the proof of Theorem 14, one can establish that the strategy
is winning, leading to the following result.

Theorem 15. B(p, k, 1) ≤
(
kp+1−1
k−1

) kp−1
k−1 .

Corollary 1. For large values of p and k, B(p, k, 1) ≤ (kp)k
p

.

7 Results

We now combine the program of section 5 and the general strategy described
in section 6.2 for the game GN (p, k, 1) with N = (kp)(k

p). We obtain in
this way the following result which improves on the result by Longpré that
∃∞n[f, 2fT](n) ⊈ [f, T](n).

Theorem 16. Let T and f be functions of N 7→ N in DTIME(T (n)) such
that T (n) ≥ n and f(n) = o(log(n)). Let α = f2f

logn . Then:

∃c ∈ R, ∃∞n, [f, cαT](n) ⊈ [f, T](n).

Proof. The proof consists of two parts. First, we analyze the bound B(p, k)
which will give us the restrictions on f and α. We will then check that there
are programs implementing the general strategy and having the proper size
and running time.

Let us recall that that we need B(p, k) = (kp)(k
p) to be bounded above

by 2n. Here we have:

23

• p = 2f/α

• k = α

• pk = 2f

• We need (kp)k
p ≤ 2n

We can then compute:

(kp)k
p ≤ 2n ⇔ (1)

kpp log(k) ≤ n ⇔ (2)

α2f/α2f/α log(α) ≤ n ⇔ (3)

2f/α logα+ f − logα+ log logα ≤ log n ⇔ (4)

This implies that f(n) must be in o(log n). Under this assumption, taking
any α ≥ f2f

logn makes the inequality hold . We thus set α = f2f

logn
8. Note that

α = o(2f) which is necessary to improve on the result of Longpré.
Now, consider the programs p(#Tn, i) from section 5 implementing the

one-try strategy from section 6.2, with f = o(log(n)) and α = f2f

logn . We recall
that i ranges in [1; 2f/α] and that #Tn is the smallest program outputting n
in T (n) steps. The infinite sequence of (nj)j∈N we consider are all the values
of n such that KT (n)(n) < log log n) in ascending order. This is indeed an
infinite sequence by Theorem 3. We now claim that:

1. ∀j ∈ N , p(#Tnj , i) is of size ≤ f(nj);

2. with a proper implementation of the strategy of section 4.5.2,p(#Tnj , i)
runs in cαT (nj) for all j ∈ N;

3. for all j ∈ N, there exists i ∈ [2f(nj)/α(nj)], such that no program of
size f(nj) running for T (nj) steps outputs a string equal to the output
of p(#Tnj , i); moreover the output of p(#Tnj , i) is of size nj .

Once those 3 points are established, the theorem will be proven.
8Actually in all generality we should just take α = o(2f), because when f grows too

slowly for instance f = log logn, α as defined here takes non sensical value. The “issue” is
that that we have to take a specific function α in order to perform size and running time
analysis, so we picked one which worked for “most”f = o(log(n)). For slower growing f
we could just adjust the α.

24

Size of the program. We first check that our program is of size less than
f(ni) for all ni.

It has the same structure as the program described in section 5 and the
strategy of section 6.2 may be described in c bits. Therefore the size of p is

KT (n) + f − log(α) + c = KT (n) + log(f)− log log n+ c,

which is less than f(n) for infinitely many values of n.

Running time of the program. We check that our program runs in time
less than cαT (n) for all ni. In particular this involves checking that one can
implement the strategy of section 6.2 in time O(αT).

• Retrieving nj from #Tnj is done in T (nj) for all nj by definition.

• computing f(nj), T (nj) is done in cT (nj) steps by supposition. One
can check that it is also possible to compute α(nj) in cT (nj) steps.

• Simulating the execution of the i-th chunk of size α of programs of
size f i.e. getting the α inputs for our strategy takes a time αT as
explained in section 5.

• Lastly, we describe an efficient implementation of the strategy de-
scribed in 6.2. First we must convert every input in base m = kp =
o(n). Notice that the strategy works if we take base m← 2⌈logm⌉, and
converting a binary number to a base 2k can be done "for free".

Computing our answer is then done in two steps. First, we compute
all digits (in base m) of our answer except for the last one by looking
at the digits of the inputs in base m. This takes time O(αn) = O(αT)
because T > n. Second, we compute the last digit of the output by
keeping track of every digits of the α inputs in a table of size m = o(n)
(there are m possible values for the last digit). This takes time αn
which is o(αT). Thus the whole program is computed in time less
than O(αT).

Correctness. We follow the same outline as in paragraph correctness
of section 5. Call ei,j the output of p(#Tnj , i). ei,j is an integer of
[Nj] = [2nj] by definition of program p , i.e. a bitstring of size nj . We
proved in section 6.2 that SNj (2

f

α , α, 1) is winning, by construction this
entails that there exists an i ∈ [2f/α] such that ei,j is not the output
of any program of size f running for T steps.

25

8 Additional details and musings for future work

We now sketch a promising way to reason about winning strategies for nov-
elty games. This could be used either to construct new ones, or establish
better lower bounds for B(p, k,m). The idea is to study the smallest number
of antecedents any element y in the image of f :

([N]
k

)
→ [N] may have.

Notations 2. Given a sequence (xi) ∈ Nk, an element x ∈ N and some
j ∈ [1; k], we will denote by (x̂ji (x)) the sequence such that x̂ji (x) = x if
i = j and x̂ji (x) = xi otherwise.

Definition 8.1 (Antecedents). Let f be a function,
([N]

k

)
→ [N]. We define

Af (y) as the set

Af (y) = {x | ∃(xi) ∈ [N]k, ∃j ∈ [1; k], f(x̂j1(x), . . . , x̂
j
k(x))) = y}.

The set Af (y) contains all values of x such that there is a way to com-
plete x with other numbers in order to produce y by the function f . Said
differently: Af (y) =

⋃
B∈f−1(y)B.

We naturally extend the definition to apply to sets of number. Let B ⊂
[N], then Af (B) =

⋃
y∈B Af (y). Thus we can write Ai

f (B) = Ai−1
f (Af (B)).

Definition 8.2 (Non self-hitting (NSH) functions). Let f be a function([N]
k

)
→ [N]. We say that f is non self-hitting if ∀B ∈

([N]
k

)
, f(B) ̸∈ B.

It is easy to prove that we need only consider strategies which are non
self hitting.

Theorem 17. If there is a winning strategy for the game G(p, k,m), then
there is a strategy with no self hitting functions winning for game G(p, k,m).

As a consequence, all considered functions from now on will be supposed
to be non-self hitting.

Theorem 18 (Equivalence theorem for (2, k)). Let f be an NSH function([N]
k

)
→ [N]. Then there exists g such that (f, g) is a valid strategy for the

game G(2, k, 1) if and only if

∀x1, . . . , xk ∈ [N]k,
n⋃

i=0

Af (xi) ̸= [N].

Proof. For the right to left implication, it is clear that if the property is
satisfied then there exists a function g such that

∀x1, . . . , xk, g({x1, . . . , xk}) ∈ [N] \
n⋃

i=0

Af (xi).

26

To prove the the converse implication, suppose there exists x1, . . . , xk such
that

⋃n
i=0Af (xi) = [N], and call a = g({x1, . . . , xk}). We know a belongs

to
⋃n

i=0Af (xi) and we can w.l.o.g. that it belongs to Af (x1). Then there
exists a set B of size k such that a ∈ B and f(B) = x1. Therefore, the
strategy fails on (B, {x1, . . . , xk}), leading to a contradiction.

Corollary 2. Let f be an NSH function
([N]

k

)
→ [N]. If

∀x1, . . . , xk ∈ [N]k,
n⋃

i=0

|Af (xi)| <
N

k
,

then there exists g such that (f, g) is a valid strategy for the game G(2, k, 1).

Following this line of thought, our idea to establish lower bounds for B
is to study a subclass of strategies on which it is easier to reason and then
claim that any winning strategy can be reduced to a function of this subclass
(in the case where we want to prove lower bounds).

We have just seen that only NSH functions need to be considered. If we
restrict to oblivious strategies, the analysis should be easier. Lastly we can
only consider strategies having many symmetries. The strategy we described
for the game G(2, 2, 1) and for G(p, k, 1) are functions with lots of symmetries.
One way to encapsulate this notion of symmetry was the notion of balanced
functions, although it is clear that the notion may be too lenient. Indeed,
the winning strategies we have found so far do much more than just being
balanced. As such for future work we expect that an analysis of oblivious-
NSH-balanced strategies could lead to progress, whether for establishing new
strategies or lower bounds on B

Definition 8.3 (Balanced functions). A function f :
([N]

k

)
→ [N] is balanced

if
∀y ∈ [N],

∣∣∣|Af (y)| −
1

N

(
N

k

)∣∣∣ ≤ 1.

A strategy is said to be balanced if the functions for players are all balanced
functions.

Musings Here are some additional thoughts and results we expect to hold,
but have not yet formally established.

• When f is not time-constructible in T , the result may still stand with
adjustements. For instance, we can indicate the value f(n) to p for a
cost of log f(n) bits.

• We believe we can show that B(2, k) ≥ 3k + 1.

• Our results hold under oracles.

27

• We believe theorem 2 can be formulated in the case of the game
G(p, k, 1) as follows. Let f be an NSH function

([N]
k

)
→ [N]. If

∀x1, . . . , xk ∈ [N]k,

n⋃
i=0

|Af (xi)| <
N

kp
,

then there are functions g1, . . . , gp−1, such that S = (g1, . . . , gp−1, f)
is a winning strategy.

• We believe the best upper bound for B(p, k, 1) is of the order kp.

• It should be methodically checked if the technique of parallel diagonal-
ization with advice can lead to class separation in complexity theory

References

[1] Atif Abueida, James Lefevre, and Mary Waterhouse. Equitable edge
colored steiner triple systems. The Australasian Journal of Combinatorics
[electronic only], 50, 06 2011.

[2] N. G. Bate. Complete graphs without polychromatic circuits. Discret.
Math., 46(1):1–8, 1983.

[3] Lijie Chen, Zhenjian Lu, Igor C. Oliveira, Hanlin Ren, and Rahul San-
thanam. Polynomial-time pseudodeterministic construction of primes.
In 64th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 1261–
1270. IEEE, 2023.

[4] Shuichi Hirahara. Non-black-box worst-case to average-case reductions
within np. In 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pages 247–258, 2018.

[5] Shuichi Hirahara, Rahul Ilango, Zhenjian Lu, Mikito Nanashima, and
Igor C. Oliveira. A duality between one-way functions and average-case
symmetry of information. In Barna Saha and Rocco A. Servedio, editors,
Proceedings of the 55th Annual ACM Symposium on Theory of Comput-
ing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1039–1050.
ACM, 2023.

[6] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Com-
plexity and Its Applications, 4th Edition. Texts in Computer Science.
Springer, 2019.

[7] Yanyi Liu and Rafael Pass. On one-way functions and kolmogorov com-
plexity, 2020.

28

[8] Luc Longpré. Resource Bounded Kolmogorov Complexity, A Link between
Computational Complexity & Information Theory. PhD thesis, Cornell
University, USA, 1986.

[9] Zhenjian Lu and Igor C. Oliveira. Theory and applications of probabilis-
tic kolmogorov complexity. Bull. EATCS, 137, 2022.

29

