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1. Introduction.

Let
(
V (n),A(n),P(n)

f , f ∈ F
)
, n ∈ N∗, be a family of statistical experiments generated by obser-

vation X(n). It means that X(n) is a V (n)-valued random variable defined on some probability

space, and the probability law of X(n) belongs to the family
(
P(n)
f , f ∈ F

)
. Since the probability

space on which X(n) is defined will play no role in the sequel we will just assume its existence.
Furthermore in this paper:

� (D,D, µ) is a measurable space;
� F is a set of functions f : D → R. Typical examples of set F are functional spaces, e.g.,
F = L2(Rd), Cb(Rd), the set of all measurable real functions etc;

� G : F → S, where S is a set endowed with semi-metric ℓ.

The goal is to estimate G(f), f ∈ F, from observation X(n). By an estimator we mean any
X(n)-measurable S-valued mapping. Accuracy of an estimator G̃ is measured by the ℓ-risk

R(ℓ)
n

[
G̃;G(f)

]
=

(
E(n)
f

[
ℓ
(
G̃,G(f)

)]q) 1
q

. (1.1)

Here and later E(n)
f denotes the mathematical expectation with respect to the probability measure

P(n)
f and the number q ≥ 1 is supposed to be fixed. Recall that for any X(n)-measurable map

T : V (n) → R
E(n)
f

[
T
]
=

∫
V (n)

T (v)P(n)
f (dv)

1.1. Examples of models.

In these notes we will consider the following statistical models.

Density Model. LetP(D, µ) denote the set of all probability densities with respect to measure
µ defined on D and let F ⊆ P(D, µ).
Then the statistical experiment is generated by the observation X(n) =

(
X1, . . . , Xn

)
, n ∈ N∗,

where Xi, i ∈ N∗, are i.i.d. random vectors possessing unknown density f ∈ F.

*This work has been carried out in the framework of the Labex Archimède (ANR-11-LABX-0033) and of
the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the ”Investissements d’Avenir” French Government
program managed by the French National Research Agency (ANR).

1



O. V. Lepski/Adaptive estimation 2

White Gaussian Noise Model. Let F = L2

(
D, µ

)
. Put D̃ =

{
B ∈ D : µ(B) <∞

}
and let(

W (B), B ∈ D̃
)
be the white noise with intensity µ.

Consider the statistical model generated by the observation X(n) =
{
Xn(g), g ∈ L2

(
D, µ

)}
where

Xn(g) =

∫
D
f(t)g(t)µ(dt) + n−1/2

∫
D
g(t)W (dt). (1.2)

Recall also that for any g ∈ L2

(
D, µ

)
Xn(g) ∽ N

(
⟨g, f⟩, n−1⟨g, g⟩

)
, (1.3)

where ⟨·, ·⟩ is the inner product of L2

(
D, µ

)
, and N (·, ·) denotes the normal law on R.

1.2. Examples of estimation targets G.

Global estimation G(f) = f . The goal is to estimate the entire function f . Here S = F,
and the accuracy of estimation is usually measured by the Lp-risk on D ⊆ D, i.e. ℓ(g1, g2) =
∥g1 − g2∥p,D, 1 ≤ p ≤ ∞, where

∥g∥pp,D =

∫
D

|g|pµ(dt), p ∈ [1,∞), ∥g∥∞,D = sup
t∈D

|g(t)|.

Pointwise estimation G(f) = f(t0), t0 ∈ D. Here S = R1 and ℓ(a, b) = |a − b|, a, b ∈ R,
and D ⊆ D. We present this estimation problem separately from the discussed below problems
of estimation of functionals because it is often used in order to recover the underlying function
itself.

Estimation of functionals. Here S = R1 and ℓ(a, b) = |a− b|, a, b ∈ R and D ⊆ D.

� Estimation of a derivative at a given point: G(f) = f (k)(t0), t0 ∈ D, k ∈ N∗;
� Estimation of norms: G(f) = ∥f∥p,D, 1 ≤ p ≤ ∞;
� Estimation of extreme points: G(f) = argmax

t∈D
f(t);

� Estimation of regular functionals, for example G(f) =
∫
D
fs(t)dt, s ∈ N∗.

2. Minimax adaptive estimation

Let F be a given subset of F. For any estimator G̃n define its maximal risk on F by

R(ℓ)
n

[
G̃n;F

]
= sup

f∈F
R(ℓ)

n

[
G̃n;G(f)

]
and the minimax risk on F is given by

ϕn(F) := inf
G̃n

R(ℓ)
n

[
G̃n;F

]
, (2.1)

where infimum is always taken over all possible estimators. An estimator whose maximal risk is
proportional to ϕn(F) is called minimax on F.

Let
{
Fϑ, ϑ ∈ Θ

}
be the collection of subsets of F, where ϑ is a nuisance parameter which

may have very complicated structure (see examples below). Without further mentioning we will
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consider only scales of functional classes for which a minimax on Fϑ estimator (usually depending
on ϑ) exists for any ϑ ∈ Θ.

The problem of adaptive estimation can be formulated as follows: is it possible to construct a
single estimator Ĝn which is simultaneously minimax on each class Fϑ, ϑ ∈ Θ, i.e. such that

lim sup
n→∞

ϕ−1
n (Fϑ)R(ℓ)

n

[
Ĝn;Fϑ

]
<∞, ∀ϑ ∈ Θ?

We refer to this question as the problem of minimax adaptive estimation over the scale of classes
{Fϑ, ϑ ∈ Θ}. If such estimator exists we will call it optimally-adaptive or rate-adaptive.

The first adaptive results were obtained in (11). Starting from this pioneering paper a variety
of adaptive methods were proposed in different statistical models such as density and spectral
density estimation, nonparametric regression, deconvolution model, inverse problems and many
others. The interested reader can find a very detailed overview of this topic in (32). Here we only
mention several methods allowing to construct optimally-adaptive estimators.

� Extension of Efroimovich-Pinsker method, (12; 14);
� Lepski method (27) and its extension Goldenshluger-Lepski method (18);
� Unbiased risk minimization, (20; 21);
� Wavelet thresholding, (10);
� Model selection, (1),(2);
� Aggregation of estimators, (37), (23), (43), (42), (3), (15);
� Exponential weights, (36), (9), (40);
� Risk hull method, (8);
� Blockwise Stein method, (4), (7), (39).

We will discuss existence of optimally-adaptive estimators in details later. Now let us provide
some example of scales of functional classes over which the adaptation is studied.

2.1. Scales of functional classes.

2.1.1. Classes of smooth functions.

Let (e1, . . . , ed) denote the canonical basis of Rd, d ∈ N∗. For a function T : Rd → R1 and real
number u ∈ R the first order difference operator with step size u in the direction of the variable
xj is defined by ∆u,jT (x) = T (x + uej) − T (x), j = 1, . . . , d. By induction, the k-th order
difference operator is

∆k
u,jT (x) = ∆u,j∆

k−1
u,j T (x) =

∑k
l=1(−1)l+k

(
k
l

)
∆ul,jT (x).

Definition 1. For given vectors β⃗ = (β1, . . . , βd) ∈ (0,∞)d, r⃗ = (r1, . . . , rd) ∈ [1,∞]d, and

L⃗ = (L1, . . . , Ld) ∈ (0,∞)d a function T : Rd → R1 is said to belong to anisotropic Nikolskii’s

class Nr⃗,d

(
β⃗, L⃗

)
if ∥T∥rj ≤ Lj for all j = 1, . . . , d, and there exist natural numbers kj > βj such

that ∥∥∆kj

u,jT
∥∥
rj

≤ Lj |u|βj , ∀u ∈ R, ∀j = 1, . . . , d.

Let F = ∪d
q≥1Lq(Rd) and

Fϑ = Nr⃗,d

(
β⃗, L⃗

)
, ϑ =

(
β⃗, r⃗, L⃗

)
∈ Θ ⊆ (0,∞)d × [1,∞]d × (0,∞)d,

where Nr⃗,d

(
β⃗, L⃗

)
is anisotropic Nikolskii’s class of functions on Rd, d ≥ 1.
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2.1.2. Functional classes with structure.

Structural models are usually used in estimation of multivariate functions in order to improve
estimation accuracy and to overcome the curse of the dimensionality.

Single index structure. Let F = ∪d
q≥1Lq(Rd) and let Sd−1, d ≥ 2, denote the unit sphere in

Rd. Let also Nr,1

(
β, L

)
, r ≥ 1, β > 0, L > 0 be Nikolskii’s class of functions on R1.

For any S ⊆ Sd−1 and any r ≥ 1, β > 0, L > 0 introduce the following functional class

F single
r (β, L,S) =

{
f : Rd → R1 : f(·) = F

(
ω⊺ ·

)
, F ∈ Nr,1

(
β, L

)
, ω ∈ S

}
.

The adaptive estimation over the collection

Fϑ = F single
r (β, L,S), ϑ =

(
β, r, L,S

)
∈ Θ ⊆ (0,∞)× [1,∞]× (0,∞)× Sd−1

is called the estimation under the single index constraint.

Additive structure. Let as previously F = ∪d
q≥1Lq(Rd), d ≥ 2, and let Nr,1

(
β, L

)
, r ≥ 1, β >

0, L > 0 denote Nikolskii’s class of functions on R1.
For any r ≥ 1, β > 0, L > 0 introduce the following functional class

Fadditive
r (β, L,S) =

{
f : Rd → R1 : f(x) =

d∑
k=1

Fk

(
xk

)
, Fk ∈ Nr,1

(
β, L

)}
.

The adaptive estimation over the collection

Fϑ = Fadditive
r (β, L), ϑ =

(
β, r, L

)
∈ Θ ⊆ (0,∞)× [1,∞]× (0,∞)

is called the estimation under the additive constraint.
The functional classes introduced above are considered in the framework of Gaussian White

Noise Model or more generally in nonparametric regression context.

Hypothesis of independence. The functional classes introduced below are used in the Den-
sity Model. Let D = Rd, d ≥ 2, µ be the Lebesgue measure and recall that F ⊆ P(D, µ). At last,
let Id be the set of all subsets of {1, . . . , d}.
For any I ∈ Id and any x ∈ Rd denote xI = {xi ∈ R, j ∈ I}, Ī = {1, . . . , d} \ I, and set for any
density f ∈ F

fI(xI) =

∫
RĪ

f(x)dxĪ , xI ∈ R|I|.

If we denote the coordinates of the random vector Xi by Xi,1, . . . Xi,d we can assert that fI is
the marginal density of the random vector Xi,I := (Xi,j , j ∈ I) whatever i = 1, . . . , n. The latter
is true because Xi, i = 1, . . . , n, are identically distributed.

Let Π denote the set of all partitions of {1, . . . , d}. The independence hypothesis supposes that
there exists a partition P such that the random vectors X1,I , I ∈ P, are mutually independent
that means that

f(x) =
∏
I∈P

fI(xI), ∀x ∈ Rd.

For given vectors β⃗ = (β1, . . . , βd) ∈ (0,∞)d, r⃗ = (r1, . . . , rd) ∈ [1,∞]d, L⃗ = (L1, . . . , Ld) ∈
(0,∞)d and a given partition P ∈ Π introduce the following functional class

F indep
r⃗

(
β⃗, L⃗,P

)
=

{
f : Rd → R+ : f(x) =

∏
I∈P

fI(xI), fI ∈ NrI ,|I|
(
βI , LI

)
, I ∈ P

}
.
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The adaptive estimation over the collection

Fϑ = F indep
r⃗

(
β⃗, L⃗,P

)
, ϑ =

(
β⃗, r⃗, L⃗

)
∈ Θ ⊆ (0,∞)d × [1,∞]d × (0,∞)d ×Π

is called the estimation under hypothesis of independence.

2.2. Existence of adaptive estimators. Fundamental problem.

It is well-known that optimally-adaptive estimators do not always exist, see (26), (28), (13), (5).
Formally nonexistence of optimally-adaptive estimator means that

lim inf
n→∞

inf
G̃n

sup
ϑ∈{ϑ1,ϑ2}

ϕ−1
n (Fϑ)R(ℓ)

n

[
G̃n;Fϑ

]
= ∞, ∀ϑ1, ϑ2 ∈ Θ. (2.2)

Indeed, since a minimax estimator on Fϑ exists for any ϑ ∈ Θ we can assert that

0 < lim inf
n→∞

inf
G̃n

ϕ−1
n (Fϑ)R(ℓ)

n

[
G̃n;Fϑ

]
<∞, ∀ϑ ∈ Θ.

The latter result means that the optimal (from the minimax point of view) family of normal-
izations {ϕn

(
Fϑ

)
, ϑ ∈ Θ

}
is attainable for each value ϑ, while (2.2) shows that this family is

unattainable by any estimation procedure simultaneously for any couple of elements from Θ.
This, in its turn, implies that optimally-adaptive over the scale {Fϑ, ϑ ∈ Θ

}
does not exist.

However, the question of constructing a single estimator for all values of the nuisance pa-
rameter ϑ ∈ Θ remains relevant. Hence, if (2.2) holds we need to find an attainable family of
normalization and to prove its optimality. The realization of this program dates back to (27)
where the notion of adaptive rate of convergence was introduced. Nowadays there exist several
definitions of adaptive rate of convergence and corresponding to this notion criteria of optimality,
see (27), (41), (25), (38). Here we present the simplest definition of the adaptive rate which is
the following.

Definition 2. A normalization family {ψn(Fϑ), ϑ ∈ Θ
}
is called adaptive rate of convergence

over collection of functional classes {Fϑ, ϑ ∈ Θ
}
} if

lim inf
n→∞

inf
G̃n

sup
ϑ∈{ϑ1,ϑ2}

ψ−1
n (Fϑ)R(ℓ)

n

[
G̃n;Fϑ

]
> 0, ∀ϑ1, ϑ2 ∈ Θ, (2.3)

and there exists an estimator Ĝn such that

lim sup
n→∞

sup
ϑ∈{ϑ1,ϑ2}

ψ−1
n (Fϑ)R(ℓ)

n

[
Ĝn;Fϑ

]
<∞, ∀ϑ1, ϑ2 ∈ Θ. (2.4)

The sequence supϑ∈Θ[ψn(ϑ)
/
φn(ϑ)] is called the price to pay for adaptation and the estimator

Ĝn is called an adaptive estimator.

Note that (2.4) is equivalent to

lim sup
n→∞

ψ−1
n (Fϑ)R(ℓ)

n

[
Ĝn;Fϑ

]
<∞, ∀ϑ ∈ Θ

and, therefore, if (2.4) is fulfilled for any n ∈ N∗ with

ψn(ϑ) = c(ϑ)ϕn(ϑ), c(ϑ) <∞, ∀ϑ ∈ Θ,

then one can assert that Ĝn is an optimally-adaptive estimator.
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Example 1. Consider univariate model (1.2), where D = [0, 1] and µ is the Lebesgue measure.
Let also Fϑ = N∞,1(β, L), ϑ = (β, L), be the collection of Nikolskii’s classes with r = ∞ (Hölder’s
classes). Let b,L > 0 be an arbitrary but a priori chosen numbers, and let Θ = (0, b] × (0,L].
The goal is to estimate G(f) = f(a) where a ∈ (0, 1) is a given point.

The minimax rate of convergence for this problem is given by

ϕn
(
N∞,1(β, L)

)
=

(
L

1
β /n

) β
2β+1 ,

while the adaptive rate of convergence is given, see (26), by

ψn

(
N∞,1(β, L)

)
=

(
L

1
β ln(n)/n

) β
2β+1 .

We conclude that optimally-adaptive estimators do not exist in this estimation problem.

The most challenging problem of the adaptive theory is to understand how the existence/nonexistence
of optimally-adaptive estimators depends on the statistical model, underlying estimation problem
(mapping G), loss functional ℓ, and the collection of considered classes. An attempt to provide
such classification was undertaken in (27)–(28), but the sufficient conditions found there for
both the existence and the nonexistence of optimally-adaptive estimators turned out to be too
restrictive.

PROBLEM: Find necessary and sufficient conditions of the existence of optimally-adaptive esti-
mators, i.e. the existence of an estimator Ĝn satisfying the following property:

lim sup
n→∞

ϕ−1
n

(
Fϑ

)
R(ℓ)

n

[
Ĝn;Fϑ

]
<∞, ∀ϑ ∈ Θ.

This problem stated in (27) thirty years ago remains unsolved.
It is important to realize that answers to the formulated problem may be different even if the

statistical model and the collection of functional classes are the same and estimation problems
have ”similar nature”.

Example 2. Consider univariate model (1.2), where D = [0, 1] and µ is the Lebesgue measure.
Let also Fϑ = N∞,1(β, L), ϑ = (β, L), be the collection of Nikolskii’s classes with r = ∞ (Hölder’s
classes). Let b,L > 0 be an arbitrary but a priory chosen numbers and let Θ = (0, b]× (0,L]. Set

G∞(f) = ∥f∥∞,[0,1], G2(f) = ∥f∥2,[0,1].

The optimally-adaptive estimator of G∞(·), was constructed in (29). On the other hand, there is
no optimally-adaptive estimator for G2(·), see (6).

2.3. Adaptive estimation via oracle approach.

Let G =
{
Ĝh, h ∈ H

}
be a family of estimators built from the observation X(n). The goal is to

propose a data-driven (based on X(n)) selection procedure from the collection G and establish
for it ℓ-oracle inequality.

More precisely we want to construct a H-valued random element ĥ completely determined by
the observation X(n) and to prove that for any n ≥ 1

R(ℓ)
n

[
Ĝĥ;G(f)

]
≤ inf

h∈T
U (ℓ)
n (f, h) + rn, ∀f ∈ F. (2.5)
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We call (2.5) an ℓ-oracle inequality. Here rn → 0, n→ ∞ is a given sequence which may depend

on F and the family of estimators G only. As to the quantity U
(ℓ)
n (·, ·), it is explicitly expressed,

and for some particular problems one can prove the inequality (2.5) with

U (ℓ)
n (f, h) = CR(ℓ)

n

[
Ĝh;G(f)

]
, (2.6)

where C is a constant which may depend on F and the family of estimators G only.

Historically, the inequality (2.5) with U
(ℓ)
n (·, ·) given in (2.6) was called the oracle inequality.

The latter means that the ”oracle” knowing the true parameter f can construct the estimator
Ĝh(f) which provides the minimal over the collection G risk for any f ∈ F, that is

h(f) : R(ℓ)
n

[
Ĝh(f);G(f)

]
= inf

h∈H
R(ℓ)

n

[
Ĝh;G(f)

]
.

Since h(f) depends on unknown f the estimator Ĝh(f), called oracle estimator, is not an estimator

in usual sense and, therefore, cannot be used. The goal is to construct the estimator Ĝĥ which
”mimics” the oracle one.
It is worth noting that the ℓ-oracle inequality with U

(ℓ)
n (·, ·) given in (2.6) is not always available,

and this is the reason why we deal with more general definition given by (2.5).
The important remark is that inequality (2.5) provides a very simple criterion allowing to

assert that the selected estimator Ĝĥ is optimally-adaptive or adaptive with respect to the scale

of functional classes
{
Fϑ, ϑ ∈ Θ

}
. Indeed, let us assume that

(i) rn ≤ C infϑ∈Θ ϕn
(
Fϑ

)
for some C > 0 (verified for all known problems);

(ii) ∃ϑ 7→ h(ϑ) and c(ϑ) > 0 such that

sup
f∈Fϑ

U (ℓ)
n

(
f, h(ϑ)

)
≤ c(ϑ)ϕn

(
Fϑ

)
, ∀ϑ ∈ Θ.

Hence we deduce from (2.5) for any ϑ ∈ Θ

sup
f∈Fϑ

R(ℓ)
n

[
Ĝĥ;G(f)

]
≤ sup

f∈Fϑ

U (ℓ)
n

(
f, h(ϑ)

)
+ rn ≤

(
c(θ) + C

)
ϕn

(
Fϑ

)
,

and, therefore, we can assert that Ĝĥ is optimally-adaptive. If (i) and (ii) hold with ψn

(
Fϑ

)
instead of ϕn

(
Fϑ

)
, where ψn

(
Fϑ

)
is the adaptive rate of convergence, we can state that Ĝĥ is an

adaptive estimator.

3. Universal selection rule and ℓ-oracle inequality.

Our objective now is to propose a data-driven selection rule from family of estimators satisfying
few very general assumptions and to establish for it ℓ-oracle inequality (2.5). It is important to

emphasize that we provide an explicit expression of the functional U
(ℓ)
n (·, ·) that allows us to

derive various adaptive results from the unique oracle inequality. The proposed approach can
be viewed as a generalization of several estimation procedures developed by the author and his
collaborators during last twenty years, see (30), (24), (22), (16), (17), (18), (31), (19), and (32).

3.1. Assumptions.

Let Hn, n ∈ N∗, be a sequence of countable subsets of H. Let {Ĝh, h ∈ H} and {Ĝh,η, h, η ∈ H} be
the families of X(n)-measurable S-valued mappings possessing the properties formulated below.
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Both Ĝh and Ĝh,η depend usually on n but we will omit this dependence for the sake of simplicity
of notations.

Let εn → 0, n→ ∞, and δn, n→ ∞, be two given sequences. Suppose there exist collections
of S-valued functionals {Λh(f), h ∈ H}, {Λh,η(f), h, η ∈ H} and a collection of positive X(n)-
measurable random variables Ψn = {Ψn(h), h ∈ H} for which the following conditions hold. (The
functionals Λh and Λh,η may depend on n (not necessarily) but we will omit this dependence in
the notations.)

Apermute. For any f ∈ F and n ≥ 1

either (i) Ĝh,η(f) = Ĝη,h(f), ∀η, h ∈ H;

or (ii) sup
h,η∈Hn

ℓ
(
Λh,η(f),Λη,h(f)

)
≤ δn.

Aupper. For any f ∈ F and n ≥ 1

(i) E(n)
f

(
sup
h∈Hn

[
ℓ
(
Ĝh,Λh(f)

)
−Ψn(h)

]q
+

)
≤ εqn;

(ii) E(n)
f

(
sup

h,η∈Hn

[
ℓ
(
Ĝh,η,Λh,η(f)

)
−

{
Ψn(h) ∧Ψn(η)

}]q
+

)
≤ εqn.

Some remarks are in order.
1) The assumption Apermute(i) was called in (18) commutativity property. The selection rule

presented in the next section was proposed in (34) and ℓ-oracle inequality was established under
assumptions Aupper(i) and Apermute. However, it turned out that for some estimator collections
the assumption Apermute(i) is not verified. So our main objective is to prove the same (up to
absolute constants) ℓ-oracle inequality under assumptions Apermute(ii) and Aupper.

2) For many statistical models and problems

Λh(f) = E(n)
f

(
Ĝh

)
, Λh,η(f) = E(n)

f

(
Ĝh,η

)
.

In this case ℓ
(
Ĝh,Λh(f)

)
and ℓ

(
Ĝh,η,Λh,η(f)

)
can be viewed as stochastic errors related to the

estimators Ĝh and Ĝh,η respectively. Hence, following the terminology used in (33) we can say
that {Ψn(h), h ∈ H} and {Ψn(h) ∧ Ψn(η), h, η ∈ H} are upper functions of level εn for the
collection of corresponding stochastic errors. Often the collection {Ψn(h), h ∈ H} is not random.
This is typically the case when a statistical problem is studied in the framework of white gaussian
noise or regression model.

3) We consider countable Hn in order not to discuss of the measurability of the supremum
inside the mathematical expectation appearing in the assumption Aupper. The developed in the
next section theory remains valid for any parameter set over which the corresponding supremum
is X(n)-measurable.

3.2. Universal selection rule and corresponding ℓ-oracle inequality.

Our objective is to propose the selection rule from an arbitrary collection G(Hn) = {Ĝh, h ∈ Hn}
satisfying hypotheses Apermute and Aupper, and establish for it the ℓ-oracle inequality (2.5).
Define for any h ∈ Hn

R̂n(h) = sup
η∈Hn

[
ℓ
(
Ĝη, Ĝh,η

)
− 2Ψn(η)

]
+
.
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Let ĥ(n) ∈ Hn be an arbitrary X(n) −measurable random element satisfying

R̂n

(
ĥ(n)

)
+ 2Ψn

(
ĥ(n)

)
≤ inf

h∈Hn

{
R̂n(h) + 2Ψn(h)

}
+ εn.

Our final estimator is Ĝĥ(n) . In order to bound from above its risk introduce the following
notation: for any f ∈ F, h ∈ Hn and n ≥ 1

B(n)(f, h) = ℓ
(
Λh(f), G(f)

)
+ 2 sup

η∈Hn

ℓ
(
Λh,η(f),Λη(f)

)
, ψn(f, h) =

[
E(n)
f

{
Ψq

n(h)
}] 1

q

.

Theorem ((34)). Let Apermute(i) and Aupper be fulfilled. Then, for any f ∈ F and n ≥ 1

R(ℓ)
n

[
Ĝĥ(n) ;G(f)

]
≤ inf

h∈Hn

{
B(n)(f, h) + 5ψn(f, h)

}
+ 6εn.

Thus, ℓ-oracle inequality is established with rn = 6εn and

U (ℓ)
n (f, h) = B(n)(f, h) + 5ψn(f, h).

Our goal now is to prove the following result.

Theorem. Let Apermute(ii) and Aupper be fulfilled. Then, for any f ∈ F and n ≥ 1

R(ℓ)
n

[
Ĝĥ(n) ;G(f)

]
≤ inf

h∈Hn

{
B(n)(f, h) + 9ψn(f, h)

}
+ 10εn + δn.

Thus, ℓ-oracle inequality is established with rn = 10εn + δn and

U (ℓ)
n (f, h) = B(n)(f, h) + 9ψn(f, h).

Proof. We break the proof into three short steps and for the simplicity of notations we will write
ĥ instead of ĥ(n). Set

ξ1 = sup
η∈Hn

[
ℓ
(
Ĝη,Λη

)
−Ψn(η)

]
+
, ξ2 = sup

h,η∈Hn

[
ℓ
(
Ĝh,η,Λh,η

)
−
{
Ψn(h) ∧Ψn(η)

}]
+
.

1) Our first goal is to prove that for any h, η ∈ Hn

ℓ
(
Ĝh, Ĝh,η

)
≤ R̂n(η) + 6Ψn(h) + 2ξ1 + 2ξ2 + δn. (3.1)

Indeed, the following chain od inequalities is obtained from the triangle inequality

ℓ
(
Ĝh, Ĝh,η

)
≤ ℓ

(
Ĝh,Λh

)
+ ℓ

(
Λh, Ĝh,η

)
≤ ℓ

(
Ĝh,Λh

)
+ ℓ

(
Λh,Λh,η

)
+ ℓ

(
Ĝh,η,Λh,η

)
≤ ℓ

(
Λh,Λh,η

)
+ 2Ψn(h) + ξ1 + ξ2. (3.2)

Similarly, taking into account Apermute(ii) we get

ℓ
(
Λh,Λh,η

)
≤ ℓ

(
Λh,Λη,h

)
+ δn

≤ ℓ
(
Ĝh,Λh

)
+ ℓ

(
Ĝh, Ĝη,h

)
+ ℓ

(
Ĝη,h,Λη,h

)
+ δn

≤ ℓ
(
Ĝh, Ĝη,h

)
+ 2Ψn(h) + ξ1 + ξ2 + δn. (3.3)
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It remains to note that in view of the definition of R̂n(·)

ℓ
(
Ĝh, Ĝη,h

)
≤ 2Ψn(h) +

[
ℓ
(
Ĝh, Ĝη,h

)
− 2Ψn(h)

]
+
≤ 2Ψn(h) + R̂n(η).

This together with (3.2) and (3.3) implies (3.1).

2) Let h ∈ Hn be fixed. We have in view of the definition of R̂n(·)

ℓ
(
Ĝĥ, Ĝh,ĥ

)
≤ 2Ψn(ĥ) +

[
ℓ
(
Ĝĥ, Ĝh,ĥ

)
− 2Ψn(ĥ)

]
+
≤ 2Ψn(ĥ) + R̂n(h). (3.4)

Here we have also used that ĥ ∈ Hn by its definition.
Applying (3.1) with η = ĥ we obtain

ℓ
(
Ĝh, Ĝh,ĥ

)
≤ R̂n

(
ĥ
)
+ 6Ψn(h) + 2ξ1 + 2ξ2 + δn. (3.5)

We get from (3.4), (3.5) and the definition of ĥ

ℓ
(
Ĝĥ, Ĝh,ĥ

)
+ ℓ

(
Ĝh, Ĝh,ĥ

)
≤ R̂n(ĥ) + 2Ψn(ĥ) + R̂n(h) + 6Ψn(h) + 2ξ1 + 2ξ2 + δn

≤ 2R̂n(h) + 8Ψn(h) + 2ξ1 + 2ξ2 + εn + δn. (3.6)

3) We have in view of the triangle inequality for any h ∈ Hn

R̂n(h) ≤ sup
η∈Hn

ℓ
(
Λh,η(f),Λη(f)

)
+ ξ1 + ξ2. (3.7)

Thus, we obtain from (3.6) and (3.7) for any h ∈ Hn

ℓ
(
Ĝĥ, Ĝh,ĥ

)
+ ℓ

(
Ĝh, Ĝh,ĥ

)
≤ 2 sup

η∈Hn

ℓ
(
Λh,η(f),Λη(f)

)
+ 8Ψn(h) + 4ξ1 + 4ξ2 + εn + δn. (3.8)

Obviously for any h ∈ Hn

ℓ
(
Ĝh, G(f)

)
≤ ℓ

(
Λh(f), G(f)

)
+Ψn(h) + ξ1.

By the triangle inequality it yields together with (3.8) for any h ∈ Hn

ℓ
(
Ĝĥ, G(f)

)
≤ B(n)(f, h) + 9Ψn(h) + 5ξ1 + 4ξ2 + εn + δn, ∀f ∈ F.

Taking into account the hypothesis Aupper we get for any h ∈ Hn and any f ∈ F{
E(n)
f

[
ℓ
(
Ĝĥ, G(f)

)]q} 1
q

≤ B(n)(f, h) + 9ψn(f, h) + 10εn + δn.

Noting that the left hand side of the obtained inequality is independent of h we come to the
assertion of the theorem.

We finish this section with simple but very useful (in minimax and minimax adaptive estima-
tion) consequence of Theorems 3.2–3.2.
Set for any F ⊆ F

γn(F) = inf
h∈H

sup
f∈F

[
B(n)(f, h) + ψn(f, h)

]
.

The quantity γn(F) is often called bias-variance tradeoff.

Corollary 1. Let Aupper be fulfilled. Assume also that either Apermute(i) holds or Apermute(ii)
is verified with δn = εn. Then, for any F ⊆ F and n ≥ 1

R(ℓ)
n

[
Ĝĥ(n) ;F

]
≤ 9γn(F) + 11εn.

The proof of the corollary is elementary and can be omitted.
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4. Examples of estimator collections satisfying assumption Apermute.

4.1. Estimator collections in Density model.

First example. Let D = Rd, d ≥ 1 and µ be the Lebesgue measure. Let K : Rd → R be a
function from L1

(
Rd

)
, and

∫
RK = 1. Let H ⊆ (0, 1]d, and define for any h = (h1, . . . , hd) ∈ H

Kh(t) = V −1
h K

(
t1/h1, . . . , td/hd

)
, t ∈ Rd, Vh =

d∏
j=1

hj . (4.1)

Introduce the following estimator collection

G =

{
Ĝh(x) = n−1

n∑
i=1

Kh

(
Xi − x

)
, x ∈ Rd, h ∈ H

}
. (4.2)

The estimator Ĝh(·) is called the kernel estimator with bandwidth h. Kernel estimators are
used in estimating the underlying density at a given point as well as in estimating of entire f .
Also, they are used as a building block for constructing estimators of many functionals of density
mentioned in Section 1.2. Selection from the family G, usually referred to as bandwidth selection,
is one of the central problems in nonparametric density estimation.

Set for any h ∈ H

Λh(f, ·) = E(n)
f

[
Ĝh(·)

]
=

∫
D
Kh(t− ·)f(t)dt

and consider two possible constructions of the collection Ĝh,η(·), h, η ∈ H.

Construction based on the convolution product. Define Kh,η : Rd → R by

Kh,η(·) =
∫
Rd

Kη(· − t)Kh(t)dt =:
[
Kh ∗Kη

]
(·).

and set

Ĝh,η(·) = n−1
n∑

i=1

Kh,η

(
Xi − ·

)
, Λh,η(f, ·) = E(n)

f

[
Ĝh,η(·)

]
.

Since obviously Kh,η ≡ Kη,h we can assert that Ĝh,η ≡ Ĝη,h and, therefore the assumptions
Apermute(i) and Apermute(ii) are both fulfilled.

Construction based on the coordinatewise maximum. Define Kh,η : Rd → R by

Kh,η(·) = Kh∨η(·), h ∨ η =
(
h1 ∨ η1, . . . , hd ∨ ηd

)
,

and set

Ĝh,η(·) = n−1
n∑

i=1

Kh,η

(
Xi − ·

)
, Λh,η(f, ·) = E(n)

f

[
Ĝh,η(·)

]
.

Since obviously Kh,η ≡ Kη,h we can assert that Ĝh,η ≡ Ĝη,h and, therefore the assumptions
Apermute(i) and Apermute(ii) are both fulfilled.

Second example. Consider now the estimator collection related to the density estimation under
hypothesis of independence presented in Section 2.1.2.
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Here is previously D = Rd, d ≥ 2, µ is the Lebesgue measure. Recall that F ⊆ P(D, µ), Id is
the set of all subsets of {1, . . . , d} and Π denotes the set of all partitions of {1, . . . , d}.

Let K : R1 → R1 be a univariate kernel, that is K ∈ L1(R1) and
∫
R1 K = 1.

For any h = (0, 1]d and any I ∈ Id set

KhI
(u) = V −1

hI

∏
j∈I

K
(
uj/hj

)
, VhI

=
∏
j∈I

hj .

Since the independence hypothesis assumes that there exists a partition P such that

f(x) =
∏
I∈P

fI(xI), ∀x ∈ Rd,

the idea is to estimate each marginal density by kernel method and to use the product of these
estimators as the final one. Thus, define for any x ∈ Rd, h ∈ H and any I ∈ Id

f̂hI
(xI) = n−1

n∑
i=1

KhI

(
XI,i − xI

)
and introduce the following family of estimators

G =

{
Ĝh(x) =

∏
I∈P

f̂hI
(xI), x ∈ RD, h = (h,P) ∈ [0, 1]d ×Π =: H

}
.

Let ∗ denote the convolution operator on R. Set for any x ∈ Rd, h, h′ ∈ (0, 1]d and any I ∈ Id[
KhI

⋆ Kh′
I

]
=

∏
j∈I

[
Khj ∗Kh′

j

]
and introduce

f̂hI ,h′
I

(
xI

)
= n−1

n∑
i=1

[
KhI

⋆ Kh′
I

](
XI,i − xI

)
,

Let us endow the set Π with the operation ”⋄” putting for any P,P ′ ∈ Π

P ⋄ P ′ = {I ∩ I ′ ̸= ∅, I ∈ P, I ′ ∈ P ′} ∈ Π.

Introduce for any h, η ∈ H the estimator

Ĝh,η(x) =
∏

I∈P⋄P′

f̂hI ,h′
I

(
xI

)
, x ∈ Rd.

Obviously Ĝh,η ≡ Ĝη,h and, therefore the assumptions Apermute(i) is fulfilled. On the other hand,
see (31), functionals Λh and Λh,η are so complicated that the verification of Apermute(ii) is not
seemed possible. We are not even sure that it holds with sufficiently small δn.

Third example. Let us now consider the family of estimators which appears in adaptive es-
timation under following structural assumption Let D = R2 and µ is the Lebesgue measure.
Let Q denote the set of all 2 × 2 rotational matrices and Psym

1 denote the set of all symmetric
probability densities on R1. Set

A =
{
a : R2 → R1 : a(·, ·) = a1(·)a2(·), a1, a2 ∈ Psym

1

}
,
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and assume that there exist a ∈ A and M ∈ Q such that f(·) = a(MT ·).
The latter means that

Xi =Mξi, i = 1, . . . , n,

where ξi, i = 1, . . . , n, are i.i.d. random vectors with common density a.
If M is known then ξi = MTXi, . . . , ξn = MTXn are observable i.i.d. random vectors with

independent coordinates. Indeed, the density of ξ1 is a1(·)a2(·). Hence the estimation of a is the
estimation under hypothesis of independence, which as it was mentioned above allows to improve
the accuracy of estimation of the density a, and, therefore, of the density f as well. However, if
M is unknown, the sequence ξi = MTXi, . . . , ξn = MTXn is not observable anymore and the
estimation of f can be viewed as the problem of adaptation to unknown rotation of coordinate
system.

Let the kernel K : R1 → R1 be the same as in previous example and set Kh(·) = h−1K(·/h),
h ∈ (0, 1]. Later on Q ∈ Q will be presented as

Q = (q, q⊥) =

(
q1 −q2
q2 q1

)
,

where q, q⊥ ∈ S1. Set for any h := (h,Q) ∈ [0, 1]×Q and x ∈ R2

Ĝh(x) =
[
n−1

n∑
k=1

Kh

(
qT (Xk − x)

)][
n−1

n∑
k=1

Kh

(
qT⊥(Xk − x)

)]
.

and introduce the following family of estimators.

G =
{
Ĝh(x), x ∈ R2, h ∈ H ⊆ [0, 1]×Q

}
.

In order to construct estimator Ĝh,η(·), h, η ∈ H we will need the following notation.
Set for any Q,D ∈ Q

p(D,Q) = qT d⊥, π(D,Q) = qT d.

Set also Kh(t) = Kh(t1)Kh(t2), t ∈ R2, h ∈ (0, 1], and let

Γ =

(
1 0
0 −1

)
, Ω =

(
0 1
1 0

)
,

Define, see (35), for any h = (h,Q) ∈ H and η = (κ, D) ∈ H

Ĝh,η(x) =
1

n(n− 1)

n∑
k,l=1,k ̸=l

Kh∨κ
(
p(D,Q)ΩΓXk + π(D,Q)Xl − ΩΓQDΩx

)
and let

Λh,η(f, ·) = E(n)
f

[
Ĝh,η(·)

]
.

Note that for any D,Q ∈ Q

p(D,Q) = −p(Q,D), π(D,Q) = π(Q,D), DQ = QD. (4.3)

Obviously Ĝh,η(·) ̸= Ĝη,h(·) and, therefore, the assumption Apermute(i) is not verified.
On the other hand

Λh,η(f, ·) =
∫
R2

∫
R2

Kh∨κ
(
p(D,Q)ΩΓu+ π(D,Q)v − ΩΓQDΩx

)
f(u)f(v)dudv.
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Since f(·) = a(MT ·) and a is symmetric, f is symmetric function as well and we have

Λh,η(f, ·) =
∫
R2

∫
R2

Kh∨κ
(
− p(D,Q)ΩΓu+ π(D,Q)v − ΩΓQDΩx

)
f(u)f(v)dudv

=

∫
R2

∫
R2

Kh∨κ
(
p(Q,D)ΩΓu+ π(Q,D)v − ΩΓDQΩx

)
f(u)f(v)dudv

= Λη,h(f, ·).

To get the penultimate equality we have used (4.3). We conclude that the assumptionApermute(ii)
holds with any δn whatever the semi-metric ℓ is considered.

4.2. Estimator collections in White Gaussian Noise Model.

First example. Let D be a set endowed with the Borel measure µ and µ(D) <∞. Recall that
the observation X(n) = {Xn(g), g ∈ L2(D, µ)} is given in (1.2).
Let {ψk,k ∈ M} be an orthonormal basis in L2

(
D, µ

)
and let H =

{
h =

(
hk,k ∈ M

)}
be a given

subset of l2. Introduce for any t, x ∈ D

Kh(t, x) =
∑
k∈M

hkψk(t)ψk(x), h ∈ H,

and consider the following estimation collection

G =
{
Ĝh(x) = Xn

(
K(·, x)

)
, x ∈ D, h ∈ H

}
.

The estimator Ĝh(·) is used in estimation of unknown f under L2-loss, that is S = F, G(f) = f
and ℓ(f, g) = ∥f − g∥2,D, f, g ∈ F ⊂ L2(D, µ). Let

Λh(f, ·) = E(n)
f

[
Ĝh(·)

]
=

∫
D
Kh(t, ·)f(t)µ(dt) =

∑
k∈M

hkψk(·)
∫
D
ψk(t)f(t)µ(dt).

Denoting k-th Fourier coefficient of f by fk we get

Λh(f, ·) =
∑
k∈M

hkfkψk(·).

In particular, in view of Parseval’s identity∥∥Λh(f)− f
∥∥
2,D =

∑
k∈M

(
hk − 1)2f2k.

Set for any h, η ∈ H

Kh,η(t, x) =

∫
D
Kh(t, y)Kη(y, x)µ(dy), t, x ∈ D

and put for any x ∈ D
Ĝh,η(x) = Xn

(
Kh,η(·, x)

)
.

Noting that that for any t, x ∈ D

Kh,η(t, x) =
∑
k∈M

∑
j∈M

hkηjψk(t)ψj(x)

∫
D
ψk(y)ψj(y)µ(dt) =

∑
k∈M

hkηmψk(t)ψm(x)
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we can assert that Kh,η ≡ Kη,h. It implies Ĝh,η ≡ Ĝη,h and, therefore

Λh,η := E(n)
f

[
Ĝh,η

]
≡ E(n)

f

[
Ĝη,h

]
=: Λη,h.

Hence, the assumptions Apermute(i) and Apermute(ii) are both fulfilled.

Second example. Here and later D = Rd, d ≥ 1, µ is the Lebesgue measure and X(n) =
{Xn(g), g ∈ L2(Rd, µ)} is given in (1.2).
Let b > 0 be given and denote by H(b) the set of all Borel functions h : (−b, b)d → (0, 1]d.
As previously let K : Rd → R, K ∈ L1(Rd) be a function satisfying

∫
K = 1.

With any h ∈ H(b) we associate the function

Kh(x)(t, x) = V −1
h (x)K

(
t− x

h(x)

)
, t ∈ Rd, x ∈ (−b, b)d,

where Vh(x) =
∏d

i=1 hi(x) and h(·) = (h1(·), . . . , hd(·)).
Consider the family of estimators

G =
{
Ĝh(x)(x) = Xn

(
Kh(x)(·, x)

)
, h ∈ H(b), x ∈ (−b, b)d

}
. (4.4)

The estimators from this collection are called kernel estimators with varying bandwidth. Let

Λh(·)(f, ·) = E(n)
f

[
Ĝh(·)(·)

]
=

∫
Rd

Kh(·)(t, ·)f(t)µ(dt).

For any h, η ∈ H(b) set

Ĝh(x)∨η(x)(x) = Xn

(
Kh(x)∨η(x)(·, x)

)
, x ∈ (−b, b)d,

where as previously h(·) ∨ η(·) =
(
h1(·) ∨ η1(·), . . . , hd(·) ∨ ηd(·)

)
. Let also

Ĝh(·)∨η(·)(·) = E(n)
f

[
Ĝh(·)

]
=

∫
Rd

Kh(·)(t, ·)f(t)µ(dt).

Since obviouslyKh∨η ≡ Kη∨h for any h, η ∈ H(b) we can assert that both assumptionsApermute(i)
and Apermute(ii) are fulfilled whatever the semi-metric ℓ is considered.

5. One example of estimator collection satisfying assumption Aupper.

In this section we continue to consider the estimator family given in (4.4). Our objective here is
to find Hn ⊂ H(b) and {Ψn(h), h ∈ Hn} for which assumption Aupper can be checked in the case,
where ℓ is Lp-norm on (−b, b)d, 1 ≤ p <∞.

Set for any h ∈ H(b)

ξh(x)(x) =

∫
Rd

Kh(x)(t, x)W (dt), x ∈ (−b, b)d

and note that in view of (1.2)

ℓ
(
Ĝh,Λh(f)

)
= n−

1
2

∥∥ξh∥∥p,(−b,b)d
.
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We remark that ξh(·)(·) is independent of f and n. Hence, assumption Aupper will be checked if
we find Hn and non random {Ψ∗

n(h), h ∈ Hn} such that

E
(

sup
h∈Hn

[∥∥ξh∥∥p,(−b,b)d
−Ψ∗

n(h)
]q
+

)
≤ εqnn

q
2 ; (5.1)

E
(

sup
h,η∈Hn

[∥∥ξh∨η

∥∥
p,(−b,b)d

−
{
Ψ∗

n(h) ∧Ψ∗
n(η)

}]q
+

)
≤ εqnn

q
2 . (5.2)

Here and later E denotes the mathematical expectation with respect to the law of W . Also,
furthermore, we will assume that

K(x) =

d∏
i=1

K(xi), ∀x ∈ Rd,

where K : R1 → R1 such that
∫
K = 1, supp(K) ⊂ [−1, 1] and for some M > 0

|K(s)−K(t)| ≤M |s− t|, ∀s, t ∈ R.

5.1. Functional classes of bandwidths

Let αn → 0, n→ ∞, be given sequence and let

ωn = e−
√

| ln(αn)|, Ωn = eln
2(αn).

Set Hn = {hs = e−s, s ∈ N} ∩ (0, ωn] and denote by H1,n the set of all measurable functions
defined on (−b, b)d and taking values in Hd

n. Obviously H1,n ⊂ H(b).
Put for any h ∈ H1,n and any s = (s1, . . . , sd) ∈ Nd

Υs

[
h
]
= ∩d

j=1Υsj

[
hj
]
, Υsj

[
hj
]
=

{
x ∈ (−b, b)d : hj(x) = hsj

}
.

Let τ ∈ (0, 1) and L > 0 be given constants. Define

Hn(τ, L) =

{
h ∈ H1,n :

∑
s∈Nd

µτ
(
Υs[h]

)
≤ L

}
.

Set Np =
{
⌊p⌋+ 1, ⌊p⌋+ 2, . . .

}
and introduce

H2,n =
⋃

r∈Np

Hn(r), Hn(r) =

{
h ∈ H1,n :

∥∥∥V − 1
2

h

∥∥∥
rp

r−p ,(−b,b)d
≤ Ωn

}
.

We will establish (5.1) and (5.2) with Hn = H∗
n(τ, L) := H2,n ∩ Hn(τ, L).

5.2. Verification of (5.1).

For any h ∈ H2,n define

Np,n(h) = Np ∩
[
rn(h),∞

)
, rn(h) = inf

{
r ∈ Np : h ∈ Hn(r)

}
.
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Obviously rn(h) <∞ for any h ∈ H2,n. For any h ∈ H2,n define

Ψn(h) = inf
r∈Np,n(h)

C(r, τ, L)
∥∥∥V − 1

2

h

∥∥∥
rp

r−p ,(−b,b)d
,

where C(r, τ, L), τ ∈ (0, 1), L > 0, can be found in (33), Section 3.2.2. Here we only mention
that C(r, τ, L) is finite for any given r, τ, L but limr→∞ C(r, τ, L) = ∞.
Note also that the condition h ∈ H2,n guarantees that Ψn(h) <∞.

Theorem ((33), Corollary 1.). For any τ ∈ (0, 1) and any q ≥ 1 one can find n(τ, q) such that
for any n ≥ n(τ, q)

E
{

sup
h∈H∗

n(τ,L)

[∥∥ξh∥∥p,(−b,b)d
−Ψn(h)

]
+

}q

≤
(
cαn

)q
,

where c depends on K, p, q, b and d only.

Choosing αn = c−1εn
√
n we can assert that is (5.1) is verified with any Ψ ∗n (·) ≥ Ψn(·).

5.3. Verification of (5.2).

The verification of (5.2) is mostly based on two facts.
First, the following result has been proved in (32), Lemma 1.

Lemma 1. For any d ≥ 1, τ ∈ (0, 1/d), L > 0 there exist n(τ, d, L) such that for all n ≥ n(τ, L, d)

h ∨ η ∈ Hn

(
dτ, (2L)d

)
, ∀ h, η ∈ Hn(τ, L).

Hence, setting

Ψ∗
n(h) = inf

r∈Np,n(h)
C∗(r, τ, L)

∥∥∥V − 1
2

h

∥∥∥
rp

r−p ,(−b,b)d
,

where C∗(r, τ, L) = C(r, τ, L) ∨ C
(
r, dτ, (2L)d

)
, we can assert that statement of Theorem 5.2

remains true for Ψ∗
n(·) as well if τ > 1/d. It follows from the the fact that Ψ∗

n(·) ≥ Ψn(·).
Moreover, in view of Theorem 5.2 for all n large enough

E
{

sup
h∈H∗

n(dτ,(2L)d)

[∥∥ξh∥∥p,(−b,b)d
−Ψ∗

n(h)
]
+

}q

≤
(
cαn

)q
. (5.3)

Since in view Lemma 1 if τ > 1/d

sup
h,η∈H∗

n(τ,L)

[∥∥ξh∨η

∥∥
p,(−b,b)d

−Ψ∗
n(h ∨ η)

]
+
≤ sup

ρ∈H∗
n(dτ,(2L)d)

[∥∥ξρ∥∥p,(−b,b)d
−Ψ∗

n(ρ)
]
+

we deduce from (5.3)

E
{

sup
h,η∈H∗

n(τ,L)

[∥∥ξh∨η

∥∥
p,(−b,b)d

−Ψ∗
n(h ∨ η)

]
+

}q

≤
(
cαn

)q
, (5.4)

It remains to note that for any 1 ≤ t <∞ and any h ∈ H∥∥∥V − 1
2

h∨η

∥∥∥
t,(−b,b)d

≤
∥∥∥V − 1

2

h

∥∥∥
t,(−b,b)d

∧∥∥∥V − 1
2

η

∥∥∥
t,(−b,b)d

,

that implies
Ψ∗

n(h ∨ η) ≤ Ψ∗
n(h) ∧Ψ∗

n(η), ∀h, η ∈ H. (5.5)

The inequality (5.2) follows now from (5.4) and (5.5) if one chooses αn = c−1εn
√
n.

The author is grateful to A. Goldenshluger who read the manuscript and made useful com-
ments.
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