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STABILITY OF DEGENERATE WAVE EQUATION WITH A SINGULAR POTENTIAL

AND LOCAL DAMPING

MOHAMMAD AKIL1 , GENNI FRAGNELLI2 , IBTISSAM ISSA3

Abstract. In this paper, we investigate the stability of a degenerate/singular wave equation featuring local-

ized singular damping, along with a drift term and a leading operator in non-divergence form. We establish

exponential stability results in this context under suitable conditions on the degeneracy and singularity coeffi-
cients.
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1. Introduction

In recent decades, the study of stability and controllability in nondegenerate hyperbolic/parabolic equations
has garnered significant attention from multiple authors. Building upon pioneering works on controllability
[18, 20], there has been substantial progress in unraveling the controllability properties of non-degenerate par-
abolic equations with variable coefficients. Notably, in [45], researchers employed local Carleman estimates
for elliptic equations to delve into the null controllability for the heat equation on a manifold. Conversely,
the study of degenerate equations historically lacked comprehensive results, despite their relevance to many
real-world applications. However, in recent times, there has been a notable surge in interest in the study of
degenerate parabolic/hyperbolic equations, marking a significant shift in focus.

In various real-world scenarios, such as camouflage (for rendering operators invisible to outside observation)
[35], Lévy noise phenomena [10], meteorology [9] and biology [49], degenerate partial differential equations
(PDEs) give rise to challenging control and inverse problems. The intricate mathematical challenges associated
with degenerate PDEs have been illuminated by the myriad applications they underpin. For instance, in semi-
conductor physics and device engineering, degenerate PDEs are instrumental in understanding and optimizing
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the behavior of modern electronic devices.
These situations frequently involve operators whose diffusion coefficients vary spatially, resulting in a lack of
uniform ellipticity. On the other hand, these operators become uniformly elliptic in localized portions of the
spatial domain that are positive distances from the degenerate areas. Degeneracy can appear inside internal
submanifolds or at the boundary. For degenerate parabolic equations, the authors explore well-posedness and
global null controllability in publications like [15, 16, 17].

This paper is devoted to study a class of degenerate/singular wave equations. These equations are charac-
terized by degeneracy in the non-divergence form, accompanied by a drift term, and also feature local singular
damping. The system is defined as follows

(1.1)


utt − auxx −

λ

d
u− bux + χ(x1,x2)ut = 0, (x, t) ∈ R+

∗ × (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ R+
∗ ,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ (0, 1),

where the damping coefficient is given by χ(x1,x2)(x) with 0 ≤ x1 < x2 ≤ 1 and

(1.2)


a, b, d ∈ C0[0, 1],
a, d > 0 on (0, 1], a(0) = d(0) = 0,
b

a
∈ L1(0, 1).

Hence, if a(x) = xK , K > 0, we can consider b(x) = xm, m > 0, for any m > K − 1. This condition is clearly
satisfied if K < 1.
The degeneracy of a function θ at x = 0 is measured by the parameter Kθ defined by

(1.3) Kθ := sup
x∈(0,1]

x|θ′(x)|
θ(x)

.

In particular, we say that θ is

(1.4)

{
weakly degenerate (WD) if θ ∈ C0[0, 1] ∩ C1(0, 1] and Kθ ∈ (0, 1).
stronlgly degenerate (SD) if θ ∈ C1[0, 1] and Kθ ∈ [1, 2).

Here we assume Ka,Kd < 2 because it is essential in the calculation that will be conducted below. Additionally,
we will introduce the condition Ka + 2Kd ≤ 2 later on.
Before delving into the system addressed in this paper, a literature review on the study of degenerate systems
would be beneficial. It is widely recognized that the standard linear theory for transverse waves in a string of
length L under tension T leads to the classical wave equation:

ρ(x)utt(t, x) =
∂T
∂x

ux(t, x) + T (x, t)uxx(t, x),

where u(t, x) denotes the vertical displacement of the string from the x axis at position x ∈ (0, L) and time t > 0,
ρ(x) is the mass density of the string at position x, while T (t, x) denotes the tension in the string at position
x and time t. Divide by ρ(x), assume T is independent of t, and set a(x) = T (x)ρ−1(x), b(x) = T ′(x)ρ−1(x).
In this way, we obtain

utt(t, x) = a(x)uxx(t, x) + b(x)ux(t, x).

Let’s assume that the density is remarkably high at a particular point, for example, x = 0. In this case, the
previous equation degenerates at x = 0, as we can treat a(0) = 0, and the remaining term becomes a drift
term.
Little is known in the literature about cases where the coefficient a(x) (in the equation utt − a(x)uxx) exhibits
degeneracy, despite the relevance of many applications described by hyperbolic equations that degenerate at
the boundary of the spatial domain (refer to [5]). In [13], the authors consider the following degenerate wave
equation with drift in the presence of a leading operator that is not in divergence form:

utt − a(x)uxx − b(x)ux = 0,

u(t, 0) = 0, u(t, 1) = f(t)
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and study boundary controllability. Regarding the same problem in divergence form, we refer to the pioneering
paper [5], for a general function a(x), and to [36], for the prototype case (a(x) = xα, α ∈ (0, 1)).
In a recent study in [31], the authors examine a one-dimensional degenerate wave equation with drift, featuring
a leading degenerate operator in non-divergence form. They establish uniform exponential decay for the solu-
tions of the system under certain conditions. A similar study is presented in [13]. Moreover, the authors in [3]
explore a one-dimensional degenerate wave equation with degenerate damping, incorporating a drift term and
a leading operator in non-divergence form. Additionally, they consider a system that couples degenerate and
non-degenerate wave equations, interconnected through transmission, and subject to a single dissipation law
at the boundary of the non-degenerate equation. In both scenarios, they derive exponential stability results.
It’s worth noting the work in [2], where the authors explore the stability of a transmission problem involving a
degenerate wave equation and a heat equation under the Coleman-Gurtin heat conduction law or Gurtin-Pipkin
law with memory effect.

In recent years, considerable attention has been directed towards controllability issues for parabolic problems,
not only involving degenerate terms but also singular ones. Indeed, numerous challenges arising in Physics and
Biology (as seen in [6, 43, 52]), Biology (refer to [11, 12, 19, 24, 25, 34]), or Mathematical Finance (as discussed
in [37]) are described by degenerate parabolic equations featuring singular terms.

Demonstrating controllability often involves establishing global Carleman estimates for the adjoint operator,
a common strategy employed in various contexts. Notably, in works such as [4, 16, 17, 27, 48], researchers
successfully demonstrate such properties for systems with regular degenerate coefficients. Similarly, studies like
[12] and [28] extend these results to systems with non-smooth degenerate coefficients. Moreover, investigations
in works such as [22] and [30] delve into controllability issues in systems featuring degenerate and singular co-
efficients. In [46], the stability of an elastic string system with local Kelvin-Voigt damping is considered. Here
the damping coefficient has a singularity at the interface of the damped and undamped regions and behaves
like xα near the interface. In particular, the authors prove that the semigroup corresponding to the system is
polynomially or exponentially stable and the decay rate depends on the parameter α ∈ (0, 1] (see also [38] and
[40] for more recent results). In a recent work [39], the stability of a multidimensional wave equation featuring
localized Kelvin–Voigt damping within a cuboidal domain is considered. Notably, the damping region deviates
from satisfying the geometric control condition (GCC), and the damping coefficient is considered degenerate
near the interface. The authors establish polynomial stability of the system, with the decay rate contingent
upon the degree of degeneration. Remarkably, this decay rate aligns with the optimal rate attained for the
analogous system with a constant damping coefficient, as demonstrated in [53]. Moreover, in [41], the author
studies Euler-Bernoulli beam equation with a local Kelvin-Voigt damping that degenerates near 0. He proves
the stability of the system’s semigroup, whose decay rate is influenced by the degeneracy speed α, and intro-
duces a new method combining local analysis and classical iterative methods.

In [23], the author examines non-smooth general degenerate/singular parabolic equations in non-divergence
form, with degeneracy and singularity occurring within the spatial domain, alongside Dirichlet or Neumann
boundary conditions. She establishes both the well-posedness and Carleman estimates for the associated ad-
joint problem. Furthermore, in [29], the authors address well-posedness and null controllability for operators
with Dirichlet boundary conditions in divergence form, featuring degeneracy and singularity (i.e., λ 6= 0), both
within the domain (see also [26]).
A recent work in [7] tackles the null controllability of wave equations featuring degeneracy and singularity, with
a particular focus on cases involving pure powers. In [32] and [33], the authors present the first results for a
degenerate hyperbolic equation in non-divergence form with drift, where both the degeneracy and singularity
are characterized by more general functions. In particular, in the first paper the authors give a controllability
result considering a boundary control acting on the non degeneracy point; in the second one they study the
stability substituting the boundary control with damping terms acting always at the non degeneracy point.
The presence of both the drift term and singular term necessitates the utilization of different function spaces
compared to prior works such as [7], [13] or [31], leading to the development of novel techniques. In the field of
quantum physics, a single potential refers to a potential that either becomes infinitely large or displays uncon-
ventional behavior at specific points or inside specified regions of space. Potential, in this context, denotes the
energy associated to a force field or a force exerted on a particle as a result of its location in space. The sign of
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the singular potential term in the wave equation can make a significant difference in the physical interpretation
and behavior of the system. In the event of a negative sign, the singular potential acts as a repulsive potential,
causing the wave function to be pushed away from the region where the potential is concentrated. Conversely,
in the case of a positive sign, it functions as an attractive potential.
As far as we know, in the literature there are no previous studies on the stability of the degenerate wave equa-
tion with a singular term and a singular internal damping term. We are interested in analyzing the stability of
a degenerate/singular wave equation in non-divergence form with a drift and a singular damping.

The paper is organized as follows: in Section 2, we reformulate the system (1.1) into an evolution system and
we prove the well-posedness of the system by semigroup approach. In Section 3 we give some technical lemmas
that are crucial for the rest of the paper; in Section 4, we show the strong stability of the system under some
conditions on the damped region. Finally, in Section 5, exponential stability is derived and in the Appendix
we provide some examples that satisfy the conditions considered.

2. Preliminaries, Functional spaces and Well-Posedness

This section is devoted to define the functional spaces that will be used throughout the entire paper and
to establish a very modest assumption to prove the well-posedness of (1.1). We begin with the following
hypothesis.

Hypothesis 2.1. The assumptions in (1.2) are satisfied. Moreover, a is (WD) or (SD), d is (WD) and such
that Ka + 2Kd ≤ 2 .

Remark 2.1. We notice that, at this stage, b may not degenerate at x = 0. Indeed, if a is (WD) then
1

a
∈ L1(0, 1) and the assumption

b

a
∈ L1(0, 1) is always satisfied. If a is (SD) then

1

a
/∈ L1(0, 1), hence, if we

want
b

a
∈ L1(0, 1) then b has to degenerate at 0. In this case b can be (WD) or (SD).

In order to study the well-posedness of (1.1), let us recall the well-known absolutely continuous weight function

η(x) := exp

{∫ x

1
2

b(s)

a(s)
ds

}
, x ∈ [0, 1]

introduced by Feller in a related context [21] and used later by several authors, see, for example, [14], [23] and
the references therein. Under Hypothesis 2.1, it is clear that the function η : [0, 1]→ R introduced before is well
defined and we immediately find that η ∈ C0[0, 1] ∩ C1(0, 1] is a strictly positive function, which is bounded
above and below by a positive constant. Notice also that η can be extended to a function of class C1[0, 1] when
b degenerates at 0 not slower than a, for instance if a(x) = xK and b(x) = xm with K ≤ m.
Now we set the function σ as

(2.1) σ(x) :=
a(x)

η(x)
,

which is a continuous function in [0, 1], independent of the possible degeneracy of a. Moreover, observe that if

u is a sufficiently smooth function, e.g. u ∈W 2,1
loc (0, 1), then we can write Bu := auxx + bux as

Bu = σ(ηux)x.

Using the definition of σ, the system (1.1) can be rewritten as

(2.2)


utt − σ(ηux)x −

λ

d
ux + χ(x1,x2)ut = 0, (t, x) ∈ R+

∗ × (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ R+
∗ ,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ (0, 1).

We introduce the following Hilbert spaces

L2
1
σ

(0, 1) :=
{
u ∈ L2(0, 1); ‖u‖ 1

σ
<∞

}
, 〈u, v〉 1

σ
:=

∫ 1

0

1

σ
uv̄dx, for every u, v ∈ L2

1
σ

(0, 1),
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H1
1
σ

(0, 1) := L2
1
σ

(0, 1) ∩H1(0, 1), 〈u, v〉1 := 〈u, v〉 1
σ

+

∫ 1

0

ηuxv̄xdx, for every u, v ∈ H1
1
σ

(0, 1),

and

H2
1
σ

(0, 1) :=
{
u ∈ H1

1
σ

(0, 1);Bu ∈ L2
1
σ

(0, 1)
}
, 〈u, v〉2 := 〈u, v〉1 + 〈Bu,Bv〉 1

σ
.

The previous inner products induce the related respective norms given by

‖u‖21
σ

=

∫ 1

0

1

σ
|u|2dx, ‖u‖21 = ‖u‖21

σ
+

∫ 1

0

η|ux|2dx and ‖u‖22 = ‖u‖21 +

∫ 1

0

σ|(ηux)x|2dx.

Also, we consider the following Hilbert spaces

H1
1
σ ,0

(0, 1) = L2
1
σ

(0, 1) ∩H1
0 (0, 1) and H2

1
σ ,0

(0, 1) :=
{
u ∈ H1

1
σ ,0

(0, 1);Bu ∈ L2
1
σ

(0, 1)
}

endowed with the previous inner products and the previous norms. In the following, we will denote by ‖ · ‖ the
usual norm in L2(0, 1), i.e. ‖ · ‖ := ‖ · ‖L2(0,1).

Proposition 2.2. (Hardy-Poincaré Inequality) Assume Hypothesis 2.1. Then, for all u ∈ H1
1
σ ,0

(0, 1)

(HP)

∫ 1

0

|u|2 1

σ(x)d(x)
dx ≤ C ′HP

∫ 1

0

η|ux|2dx

where C ′HP = max
x∈[0,1]

1

η

4 max
x∈[0,1]

η(x)

a(1)d(1)

.

Proof. Take u ∈ H1
1
σ ,0

(0, 1) and using the definition of σ, we get

(2.3)

∫ 1

0

|u|2

σd
dx =

∫ 1

0

η
|u|2

ad
dx ≤ max

x∈[0,1]
η

∫ 1

0

|u|2

ad
dx.

So, it is enough to estimate

∫ 1

0

|u|2

ad
dx. To this aim, thanks to Hypothesis 2.1 and the fact that Ka + Kd <

Ka + 2Kd ≤ 2, we have∫ 1

0

|u|2

a(x)d(x)
dx ≤ 1

a(1)d(1)

∫ 1

0

|u|2

xKa+Kd
dx ≤ 1

a(1)d(1)

∫ 1

0

|u|2

x2
dx.

By the Hardy inequality, we know that

(2.4)

∫ 1

0

|u(x)|2

x2
dx ≤ 4

∫ 1

0

|ux|2dx,

for all u ∈ H1
0 (0, 1), hence∫ 1

0

|u|2

a(x)d(x)
dx ≤ 4

a(1)d(1)

∫ 1

0

|ux|2dx ≤
(

4

a(1)d(1)

)
max
x∈[0,1]

1

η

∫ 1

0

η|ux|2dx,

combining the above inequality with (2.3), we get the desired result (HP). �
We observe that the aforementioned proposition remains valid when d(x) = 1 (see also [3]). Consequently, we
may infer that

(2.5)

∫ 1

0

|u|2

σ
dx ≤ C̃HP

∫ 1

0

η|ux|2dx ∀u ∈ H1
1
σ ,0

(0, 1),

where C̃HP =
4

a(1)
max
x∈[0,1]

1

η
max
x∈[0,1]

η(x). Let CHP and C̄HP be the best constants of (HP) and (2.5), respectively,

such that CHP ≤ C ′HP and C̄HP ≤ C̃HP . Clearly, C̄HP ≤ maxx∈[0,1] d(x)CHP .

Observe that ‖u‖0 :=

∫ 1

0

η|ux|2dx and ‖u‖1 are equivalent in H1
1
σ ,0

(0, 1). Indeed, from (2.5), we can deduce

that
‖u‖0 ≤ ‖u‖1 ≤ (1 + C̄HP )‖u‖0,

for all u ∈ H1
1
σ ,0

(0, 1).

In the rest of the paper we make the following assumption on the parameter λ.

5



Hypothesis 2.2. The constant λ ∈ R satisfies the condition λ <
1

CHP
.

We define on H1
1
σ ,0

(0, 1) the following norm

‖u‖2λ :=

∫ 1

0

η|ux|2dx− λ
∫ 1

0

|u|2

σ(x)d(x)
dx

and we have that the next equivalence holds.

Proposition 2.3. Under Hypotheses 2.1 and 2.2, the two norms ‖ · ‖0 and ‖ · ‖λ are equivalent in H1
1
σ ,0

(0, 1).

Proof. Here we will distinguish two cases according to the value of λ. Take u ∈ H1
1
σ ,0

(0, 1)

• If λ > 0: It is clear that ‖u‖2λ ≤ ‖u‖20. And from Proposition 2.2, we get that

−λ
∫ 1

0

|u|2

σ(x)d(x)
dx ≥ −λCHP

∫ 1

0

η|ux|2dx.

Hypothesis 2.2 yields ∫ 1

0

η|ux|2dx ≤
1

1− λCHP
‖u‖2λ.

Thus,

‖u‖2λ ≤ ‖u‖20 ≤
1

1− λCHP
‖u‖2λ.

• If λ < 0: It is clear that ‖u‖20 ≤ ‖u‖2λ. Now, from Proposition 2.2 and Hypothesis 2.2, we get that

‖u‖2λ ≤ (1− λCHP )

∫ 1

0

η|ux|2dx. Thus,

1

1− λCHP
‖u‖2λ ≤ ‖u‖20 ≤ ‖u‖2λ.

�
Let (u, ut) be a regular solution of (2.2). The energy of the system is given by

(2.6) E(t) =
1

2

∫ 1

0

(
1

σ
|ut|2 + η|ux|2 −

λ

σd
|u|2
)
dx

and we obtain that
d

dt
E(t) = −

∫ 1

0

χ(x1,x2)

σ
|ut|2dx ≤ 0.

Thus, the energy of the system is positive thanks to Hypothesis 2.2 and (2.3) and the system (2.2) is dissipative
in the sense that its energy is a non increasing function with respect to the time variable t.
In the following we will prove that under suitable conditions, (2.2) has regular solutions, so the energy is well
defined.
Now, we define the energy Hilbert space H by

H = H1
1
σ ,0

(0, 1)× L2
1
σ

(0, 1),

equipped with the following inner product〈
U, Ũ

〉
H

=

∫ 1

0

(
ηux ¯̃ux − λ

u¯̃u

σd

)
dx+

∫ 1

0

1

σ
v¯̃vdx

and endowed with the associated norm ‖U‖2H =

∫ 1

0

(
η|ux|2 +

1

σ
|v|2 − λ

σd
|u|2
)
dx, for all U = (u, v)> and

Ũ = (ũ, ṽ)> in H. Moreover, consider the unbounded linear operator A defined by

A(u, v)> =

(
v, σ(ηux)x +

λ

d(x)
u− χ(x1,x2)v

)>
for all U = (u, v) ∈ D(A), where

D(A) := H2
1
σ ,0

(0, 1)×H1
1
σ ,0

(0, 1) ⊂ H.
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Indeed, the inclusion of u ∈ H2
1
σ ,0

(0, 1) in the definition of D(A) can be rationalized as follows: starting with

u ∈ H1
1
σ ,0

we have
u

d
∈ L2

1
σ

(0, 1). Indeed, using the definition of σ, Remark 2.1 and the fact that Ka + 2Kd ≤ 2

(see Hypothesis 2.1), one has

(2.7)

∫ 1

0

|u|2

σd2
dx =

∫ 1

0

η
|u|2

ad2
dx ≤ max

x∈[0,1]
η(x)

∫ 1

0

|u|2

ad2
dx ≤

max
x∈[0,1]

η(x)

a(1)d2(1)

∫ 1

0

1

xKa+2Kd
|u|2dx

≤
max
x∈[0,1]

η(x)

a(1)d2(1)

∫ 1

0

1

x2
|u|2dx ≤

4 max
x∈[0,1]

η(x)

a(1)d2(1)

∫ 1

0

|ux|2dx.

Thus, we can rewrite (2.2) as the following evolution equation

(2.8) Ut = AU, U(0) = U0, where U0 = (u0, u1)
>
.

Proposition 2.4. The unbounded linear operator A is m-dissipative in the energy space H.

Proof. For all U = (u, v)> ∈ D(A), we have

(2.9) < (〈AU,U〉H) = −
∫ 1

0

χ(x1,x2)

σ(x)
|v|2dx ≤ 0,

which implies that A is dissipative. Now, let F = (f1, f2)> ∈ H, we need to prove the existence of U =
(u, v)> ∈ D(A) unique solution of the equation

(2.10) −AU = F.

Equivalently, we have the following system

−v = f1 and − σ(ηux)x −
λ

d(x)
u+ χ(x1,x2)v = f2.

Combining the above two equations, we get

−σ(ηux)x −
λ

d(x)
u = f2 + χ(x1,x2)f1.(2.11)

Let ϕ ∈ H1
1
σ ,0

(0, 1). Multiplying (2.11) by
1

σ
ϕ̄ and integrating over (0, 1), we obtain

(2.12) Λ(u, ϕ) = L(ϕ), ∀ϕ ∈ H1
1
σ ,0

(0, 1),

where

Λ(u, ϕ) =

∫ 1

0

ηuxϕ̄xdx−
∫ 1

0

λ

d(x)σ(x)
uϕ̄dx and L(ϕ) =

∫ 1

0

1

σ
f2ϕ̄dx+

∫ 1

0

1

σ
χ(x1,x2)f1ϕ̄dx.

We have that Λ is a sesquilinear, continuous and coercive form on H1
1
σ ,0

(0, 1), and L is a continuous form on

H1
1
σ ,0

(0, 1). Then, using the Lax-Milgram Theorem, we deduce that there exists u ∈ H1
1
σ ,0

(0, 1) unique solution

of the variational problem (2.12). Now, taking v := −f1, we have v ∈ H1
1
σ ,0

(0, 1). It remains to prove that

U ∈ D(A) and solves (2.10). To this aim observe that equation (2.12) holds for every ϕ ∈ C∞c (0, 1), thus we have

−(ηux)x− λ
σdu =

1

σ
(f2+χ(x1,x2)f1) a.e. in (0, 1). This implies that −σ(ηux)x = λ

du+f2+χ(x1,x2)f1 ∈ L2
1
σ

(0, 1),

i.e. Bu ∈ L2
1
σ

(0, 1). Thus, U ∈ D(A); therefore, (u, v) ∈ D(A) is the unique solution of (2.10). Then, A is

an isomorphism and since ρ(A) is an open set of C (see [44, Theorem 6.7 (Chapter III)]), we easily get
R(λI −A) = H for a sufficiently small λ > 0. This, together with the dissipativeness of A, implies that D(A)
is dense in H and A is m-dissipative in H (see [50, Theorems 4.5 and 4.6]). The proof is thus complete. �

According to the Lumer-Phillips Theorem (see [50]), Proposition 2.4 implies that the operator A generates
a C0−semigroup of contractions (T (t))t≥0 = (etA)t≥0 in H which gives the well-posedness of (2.8). Then, we
have the following result
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Theorem 1. For any U0 ∈ H, problem (2.8) admits a unique weak solution satisfying

U(t) ∈ C0(R+;H).

Moreover, if U0 ∈ D(A), (2.8) admits a unique strong solution U satisfying

U(t) ∈ C1(R+,H) ∩ C0(R+, D(A)).

Remark 2.5.

(1) We note that (HP) is valid when Ka +Kd < 2. However, (2.7) holds if Ka + 2Kd ≤ 2. Moreover, the
latter condition imposes a constraint on d to be (WD).

(2) We note that the validity of the Hardy Poincaré inequality in (HP), as well as the well-posedness
and Lemma 3.1, persists even when considering the function a that is not necessarily (WD) or (SD),
provided the following assumption holds: a satisfies a(0) = 0, a > 0 on (0, 1], and there exists γ > 0

such that the function x→ xγ

a(x) is non-decreasing in a right neighborhood of x = 0.

3. Technical Lemmas

This section is dedicated to introduce technical lemmas that will be utilized throughout the paper. It aims to
prevent some repeated calculations that may arise in the sections on strong and exponential stability. Below
are the essential lemmas presented:

Lemma 3.1. (See [31, Lemma 2.2], [33, Lemma 2.1] and [3, Lemma 2.5]) Assume b
a ∈ L

1(0, 1).

(1) If a is (WD) or (SD), then lim
x→0

v(x)ux(x) = 0, for all u ∈ H2
1
σ

(0, 1) and for all v ∈ H1
1
σ ,0

(0, 1).

(2) If a is (WD) or (SD), then xux(ηux)x ∈ L1(0, 1), for all u ∈ H2
1
σ ,0

(0, 1).

(3) If Ka ≤ 1, then lim
x→0

x|ux|2 = 0, for all u ∈ H2
1
σ ,0

(0, 1).

(4) If Ka > 1 and
xb

a
∈ L∞(0, 1), then lim

x→0
x|ux|2 = 0, for all u ∈ H2

1
σ ,0

(0, 1).

(5) If a is (WD) or (SD), then lim
x→0

x

a
|u(x)|2 = 0, for all u ∈ H1

1
σ ,0

(0, 1).

(6) Assume Hypothesis 2.1. If u ∈ H1
1
σ

(0, 1), then lim
x→0

x

σd
|u(x)|2 = 0.

Proof. For the reader’s convenience, we will prove only the last point; we refer to [31, Lemma 2.2], [33, Lemma
2.1] and [3, Lemma 2.5] for the other points.

Take u ∈ H1
1
σ ,0

(0, 1). Then, u(x) =

∫ x

0

uzdz and applying the Cauchy-Schwarz inequality, we have

|u(x)|2 ≤ x‖ux‖2.
Thus, from the above equation we get

(3.1)
x

ad
|u|2 ≤ x2

ad
‖ux‖2.

Combining this inequality with
1

a(x)d(x)
≤ 1

xKa+Kda(1)d(1)
, we obtain

x

ad
|u|2 ≤ x2

xKa+Kda(1)d(1)
‖ux‖2 → 0, as x→ 0,

since Ka +Kd < Ka + 2Kd ≤ 2 and the proof is complete. �
Now, to ensure clarity and avoid repetition, we adhere to the following approach. Let {βn, Un = (un, vn)>}n≥1
⊂ R∗ ×D(A) such that

(3.2) (iβnI −A)Un = Fn := (f1n, f
2
n)→ 0 in H,

as n→ +∞. Detailing (3.2), we get

iβnu
n − vn = f1n in H1

1
σ ,L

(0, 1)(3.3)

and

iβnv
n − σ(ηunx)x −

λ

σd
un + χ(x1,x2)iβnu

n = f2n in L2
1
σ

(0, 1).(3.4)
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Inserting (3.4) into (3.3), we get

(3.5) β2
nu

n + σ(x)(ηunx)x +
λ

d(x)
un − χ(x1,x2)iβnu

n = −
(
f2n + iβnf

1
n + χ(x1,x2)f

1
n

)
.

By equation (3.3) and (2.5), we get

(3.6)

∫ 1

0

1

σ
|βnun|2dx ≤ 2

∫ 1

0

1

σ
|vn|2dx+ 2C̄HP

∫ 1

0

η|(f1x)n|2dx ≤ c1 [‖Un‖H + ‖Fn‖H] ,

where c1 = 2 max
{

1, C̄HP
}

. Thus, 1√
σ
βnu

n is uniformly bounded in L2(0, 1).

Let us define the following function

(3.7) ϕ =

2∑
j=1

(x− j + 1)ϕj , ϕj :=

{
2− j on [0, x1],
j − 1 on [x2, 1],

where ϕj ∈ C1([0, 1]) such that 0 ≤ ϕj ≤ 1.

Clearly, ϕ′ = ϕ1 + ϕ2 + ϕ̂, where ϕ̂ = xϕ′1 + (x− 1)ϕ′2 with supp ϕ̂ = [x1, x2].

Lemma 3.2. Let ϕ ∈ C1([0, 1]) such that ϕ(1) = 0. Then, the solution (un, vn)> ∈ D(A) of (3.3)-(3.4)
satisfies

(3.8)

∫ 1

0

ϕ′

σ
|βnun|2dx+

∫ 1

0

ηϕ′|unx |2dx+

∫ 1

0

λϕ′

σd
|un|2dx =

∫ 1

0

ϕ

σ

(
a′ − b
a

)
|βnun|2dx+

∫ 1

0

ϕ
b

a
η|unx |2dx

−2<
(
i

∫ 1

0

χ(x1,x2)

σ
βnu

nϕunxdx

)
+

∫ 1

0

λϕ

σd

(
a′ − b
a

)
|un|2dx+

∫ 1

0

λϕd′

σd
|un|2dx

+2<
(∫ 1

0

(
f2n + iβnf

1
n + χ(x1,x2)f

1
n

) ϕ
σ
unxdx

)
.

Proof. First, multiplying (3.5) by −2ϕ

σ
unx , integrating over (0, 1) and taking the real part, we get

(3.9)

∫ 1

0

(ϕ
σ

)′
|βnun|2dx+ lim

x→0

ϕ

σ
|βnun|2 − 2<

(∫ 1

0

(ηunx)xϕunxdx

)
+

∫ 1

0

(
λϕ

σd

)′
|un|2dx

+ lim
x→0

λϕ

σd
|un|2 + 2<

(
i

∫ 1

0

χ(x1,x2)

σ
βnu

nϕunxdx

)
= 2<

(∫ 1

0

(
f2 + iβnf

1
n + χ(x1,x2)f

1
n

) ϕ
σ
unxdx

)
.

For the first term in the above equation, we have that
(ϕ
σ

)′
=

ϕ′

σ
− ϕ

σ

(
a′ − b
a

)
, η′ =

b

a
η and

( ϕ
σd

)′
=

ϕ′

σd
− ϕ

σd

(
a′ − b
a

)
− ϕd′

σd2
; thus we obtain

∫ 1

0

(ϕ
σ

)′
|βnun|2dx =

∫ 1

0

ϕ′

σ
|βnun|2dx−

∫ 1

0

ϕ

σ

(
a′ − b
a

)
|βnun|2dx,

−2<
(∫ 1

0

(ηunx)xϕunxdx

)
= 2<

(∫ 1

0

ηunx(ϕunx)xdx

)
+ 2 lim

x→0
ηϕ|unx |2 = 2

∫ 1

0

ηϕ′|unx |2dx,

−
∫ 1

0

(ηϕ)′|unx |2dx+ lim
x→0

ηϕ|unx |2 =

∫ 1

0

ηϕ′|unx |2dx−
∫ 1

0

ϕ
b

a
η|unx |2dx+ lim

x→0
ηϕ|unx |2

and ∫ 1

0

(
λϕ

σd

)′
|un|2dx =

∫ 1

0

λϕ′

σd
|un|2dx−

∫ 1

0

λϕ

σd

(
a′ − b
a

)
|un|2dx−

∫ 1

0

λϕd′

σd
|un|2dx.

By Lemma 3.1 and the definition of ϕ, we obtain

(3.10) lim
x→0

ηϕ|unx |2 = 0, β2 lim
x→0

ϕ(x)

σ(x)
|un(x)| = 0 and lim

x→0

λϕ

σd
|un(x)|2 = 0.

Substituting the above three equations into (3.9) and using the limits above, we get (3.8). �
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Lemma 3.3. The solution (un, vn)> ∈ D(A) of (3.3)-(3.4) satisfies

(3.11)

(
1 +

Ka

2

)∫ 1

0

1

σ
|βnun|2dx+

(
1− Ka

2

)∫ 1

0

η|unx |2dx+

(
1 +

Ka

2

)∫ 1

0

λ

σd
|un|2dx

≤ (M0 +M1)

∫ 1

0

1

σ
|βnun|2dx+ (N0 +N1)

∫ 1

0

b

a
η|unx |2dx

+(M0 +M1 +D0 +D1)

∫ 1

0

|λ|
σd
|un|2dx+ |C(n)|+ |D(n)|,

where

(3.12)

C(n) = 2<
(
i

∫ 1

0

χ(x1,x2)

σ
βnu

nϕunxdx

)
+ 2<

(∫ 1

0

(
f2n + iβnf

1
n + χ(x1,x2)f

1
n

) ϕ
σ
unxdx

)
+

∫ x2

x1

ϕ1 + ϕ2

σ
|βnun|2dx+

∫ x2

x1

(ϕ1 + ϕ2)η|unx |2dx+

∫ x2

x1

λ(ϕ1 + ϕ2)

σd
|un|2dx

+

∫ 1

0

ϕ̂

σ
|βnun|2dx+

∫ 1

0

ϕ̂η|unx |2dx+

∫ 1

0

λϕ̂

σd
|un|2dx+

∫ x2

x1

1

σ
|βnun|2dx

+

∫ x2

x1

η|unx |2dx+

∫ x2

x1

λ

σd
|un|2dx+

∫ x2

x1

ϕ

σ

(
a′ − b
a

)
|βnun|2dx+

∫ x2

x1

ϕ
b

a
η|unx |2dx

+

∫ x2

x1

λϕ

σd

(
a′ − b
a

)
|un|2dx+

∫ x2

x1

λϕd′

σd2
|un|2dx

and

(3.13)
D(n) =

Ka

2
<
(∫ 1

0

χ(x1,x2)

σ
iβn|un|2dx

)
− Ka

2
<
(∫ 1

0

1

σ
f2nu

ndx

)
− Ka

2
<
(
i

∫ 1

0

1

σ
f1nβnu

ndx

)
−Ka

2
<
(∫ 1

0

1

σ
χ(x1,x2)f

1
nu

ndx

)
.

Proof. The proof will be divided into two steps.
Step 1: We have that (3.8) holds true. Thus, the terms in the right hand side of (3.8) become∫ 1

0

ϕ′

σ
|βnun|2dx+

∫ 1

0

ηϕ′|unx |2dx+

∫ 1

0

λϕ′

σd
|un|2dx =

∫ x1

0

1

σ
|βnun|2dx+

∫ 1

x2

1

σ
|βnun|2dx+

∫ 1

x2

η|unx |2dx

+

∫ x1

0

η|unx |2dx+

∫ x1

0

λ

σd
|un|2dx+

∫ 1

x2

λ

σd
|un|2dx+

∫ x2

x1

ϕ1 + ϕ2

σ
|βnun|2dx+

∫ x2

x1

(ϕ1 + ϕ2)η|unx |2dx

+

∫ x2

x1

λ(ϕ1 + ϕ2)

σd
|un|2dx+

∫ 1

0

ϕ̂

σ
|βnun|2dx+

∫ 1

0

ϕ̂η|unx |2dx+

∫ 1

0

λϕ̂

σd
|un|2dx.

Substituting the above equation into (3.8) and using the definition of ϕ, we get

(3.14)

∫ 1

0

1

σ
|βnun|2dx+

∫ 1

0

η|unx |2dx+

∫ 1

0

λ

σd
|un|2dx ≤ (M0 +M1)

∫ 1

0

1

σ
|βnun|2dx

+(N0 +N1)

∫ 1

0

b

a
η|unx |2dx+ (M0 +M1 +D0 +D1)

∫ 1

0

|λ|
σd
|un|2dx+ |C(n)|.

where C(n) is defined as in (3.12). �

Step 2: Now, multiplying (3.5) by
Ka

2σ
un, integrating over (0, 1), taking the real part and using Lemma 3.1,

we get

(3.15)
Ka

2

∫ 1

0

1

σ
|βnun|2dx−

Ka

2

∫ 1

0

η|unx |2dx+
Ka

2

∫ 1

0

λ

σd
|un|2dx ≤ |D(n)|,

where D(n) is defined as in (3.13). Adding (3.14) and (3.15), we obtain (3.11).
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4. Strong Stability

In this section we prove the strong stability of the system (1.1) when a is (WD) or (SD). First, for convenience,
we introduce the following constants

(4.1)



M0 :=

∥∥∥∥xa′ − ba

∥∥∥∥
L∞(0,x1)

, M1 :=

∥∥∥∥(x− 1)
a′ − b
a

∥∥∥∥
L∞(x2,1)

,

N0 :=

∥∥∥∥x ba
∥∥∥∥
L∞(0,x1)

, N1 :=

∥∥∥∥(x− 1)
b

a

∥∥∥∥
L∞(x2,1)

,

D0 :=

∥∥∥∥xd′d
∥∥∥∥
L∞(0,x1)

and D1 :=

∥∥∥∥(x− 1)
d′

d

∥∥∥∥
L∞(x2,1)

.

Hypothesis 4.1. Assume Hypotheses 2.1 and 2.2. Moreover, suppose that

(4.2)



If λ > 0 :


N0 +N1 < 1− Ka

2

M0 +M1 +

∥∥∥∥d′d
∥∥∥∥
L∞(x2,1)

+ 2Kd < 1 +
Ka

2
.

If λ ≤ 0 :


M0 +M1 < 1 +

Ka

2

N0 +N1 < 1− Ka

2
+

(
4 +

∥∥∥∥d′d
∥∥∥∥
L∞(x2,1)

)
λCHP .

Remark 4.1. We remark that the choice of the functions a and b gives reliance on the length of the damped
interval; i.e. the choice of x1 and x2 depends on the choice of the functions a and b. Also, we provide some
examples that satisfy the conditions in Hypothesis 4.1, see Appendix A.

Theorem 4.2. Assume Hypothesis 4.1. Then, the C0-semigroup of contractions (etA)t≥0 is strongly stable in
H, i.e., for all U0 ∈ H, the solution of (2.8) satisfies E(t) −−−→

t→∞
0.

According to Theorem of Arendt-Batty [8], to prove Theorem 4.2, we need to prove that the operator A has
no pure imaginary eigenvalues and σ(A)∩ iR is countable. The proof of Theorem 4.2 is based on the following
proposition.

Proposition 4.3. Assume Hypothesis 4.1. Then,

(4.3) iR ⊆ ρ(A).

We will prove Proposition 4.3 by a contradiction argument. Remark that, it has been proved in Proposition
2.4 that 0 ∈ ρ(A). Now, suppose that (4.3) is false, then there exists ω ∈ R∗ such that iω /∈ ρ(A). According
to Remark A.3 in [1] and page 25 in [47], there exists {βn, Un = (un, vn, yn, γn)>}n≥1 ⊂ R∗×D(A), such that

(4.4) βn → ω as n→∞ and |βn| < |ω|,

(4.5) ‖Un‖H = ‖(un, vn)>‖H = 1

(4.6) and (iβnI −A)Un = Fn := (f1n, f
2
n)→ 0 in H, as n→∞.

Detailing as in (3.3)-(3.5), we have that (3.5) and (3.6) hold here. We will prove condition (4.3) finding a
contradiction with (4.5) such as ‖Un‖H → 0. The proof of this fact will rely on the following Lemmas.

Lemma 4.4. Assume Hypothesis 4.1. Then, the solution (un, vn)> ∈ D(A) of (3.3)-(3.4) satisfies

(4.7)

∫ x2

x1

1

σ
|vn|2dx −−−−→

n→∞
0 and

∫ x2

x1

1

σ
|βnun|2dx −−−−→

n→∞
0.

Proof. Taking the inner product of (4.6) with Un in H and using the fact that ‖Fn‖H → 0 and ‖Un‖H = 1 ,
we obtain ∫ 1

0

χ(x1,x2)

σ
|vn|2dx = −<(〈AUn, Un〉H) ≤ ‖Fn‖H‖Un‖H −−−−→

n→∞
0.
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By (3.3), the above equation and by (2.5) we have
∫ x2

x1

1
σ |f

1
n|2dx ≤ C̄HP

∫ 1

0
η|(f1n)x|2dx ≤ ‖Fn‖H → 0; this

implies ∫ x2

x1

1

σ
|βnun|2dx ≤ 2

∫ x2

x1

1

σ
|vn|2dx+ 2

∫ x2

x1

1

σ
|f1n|2dx −−−−→

n→∞
0

and the thesis follows. �

Lemma 4.5. Assume Hypothesis 4.1. Then, the solution (un, vn)> ∈ D(A) of (3.3)-(3.4) satisfies

(4.8)

∫ x2

x1

η|unx |2dx −−−−→
n→∞

0 and

∫ x2

x1

η|unx |2dx−
∫ x2

x1

λ

σd
|unx |2dx −−−−→

n→∞
0.

Proof. We will divide the proof of this Lemma into three steps.
Step 1. Multiplying (3.5) by 1

σu
n and integrating over (x1, x2), we obtain

(4.9)

∫ x2

x1

η|unx |2dx = <
(
[ηunxu

n]
x2

x1

)
+ A(n),

where

(4.10) A(n) =

∫ x2

x1

1

σ
|βnun|2dx+

∫ x2

x1

λ

σd
|un|2dx+ <

(∫ x2

x1

(f2n + iβnf
1
n + χ(x1,x2)f

1
n)

1

σ
undx

)
.

Step 2. In order to get estimation on the interval (x1, x2), we define a function g such that g(x) =

1
x2−x1

[2x− (x1 + x2)]. Now, multiplying (3.5) by
2g

σ
unx , integrating over (x1, x2) and taking the real part,

one has

(4.11)

−
∫ x2

x1

( g
σ

)′
|βnun|2dx+

[ g
σ
|βnun|2

]x2

x1

− 2<
(∫ x2

x1

ηunx(gunx)xdx

)
+ 2<

[
ηg|unx |2

]x2

x1

+2λ<
(∫ x2

x1

g

σd
ununxdx

)
− 2<

(
i

∫ x2

x1

βng

σ
ununxdx

)
= −2<

(∫ x2

x1

1

σ
(f2n + iβnf

1
n + χ(x1,x2)f

1
n)gunxdx

)
.

Integrating by parts the third term in the above equation and using that fact that η′ = b
aη, we get

2∑
i=1

(
1

σ(xi)
|βnun(xi)|2 + η(xi)|unx(xi)|2

)
=

∫ x2

x1

η(g′ − b

a
g)|unx |2dx+ B(n),

where

B(n) =

∫ x2

x1

( g
σ

)′
|βnun|2dx+ 2<

(∫ x2

x1

g

σ
(iβn −

λ

d
)ununxdx

)
− 2<

(∫ x2

x1

1

σ
(f2n + iβnf

1
n + χ(x1,x2)f

1
n)gunxdx

)
.

Thus, we have

(4.12)

2∑
i=1

(
1

σ(xi)
|βnun(xi)|2 + η(xi)|unx(xi)|2

)
≤ T

∫ x2

x1

η|unx |2dx+ |B(n)|,

where T = 2
x2−x1

+ ‖ ba‖L∞(x1,x2).

Step 3. The goal of this step is to show that |A(n)| −−−−→
n→∞

0 and |B(n)| −−−−→
n→∞

0. Starting with A(n), using

the second limit in (4.7) and the fact that βn → ω, we get∣∣∣∣∫ x2

x1

λ

σd
|un|2dx

∣∣∣∣ ≤ |λ| max
x∈[x1,x2]

(
1

d(x)

)∫ x2

x1

1

σ
|un|2dx −−−−→

n→∞
0.

Using again the second limit in (4.7), (2.5) and the fact that ‖Fn‖H → 0, n→ 0, we obtain∣∣∣∣∫ x2

x1

1

σ
f2nu

ndx

∣∣∣∣ ≤ (∫ x2

x1

1

σ
|f2n|2dx

) 1
2
(∫ x2

x1

1

σ
|un|2dx

) 1
2

−−−−→
n→∞

0,

∣∣∣∣∫ x2

x1

χ(x1,x2)

σ
f1nu

ndx

∣∣∣∣ ≤√C̄HP (∫ 1

0

η|(f1n)x|2dx
) 1

2
(∫ x2

x1

1

σ
|un|2dx

) 1
2

−−−−→
n→∞

0,
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and ∣∣∣∣<(iβn ∫ x2

x1

1

σ
f1nu

ndx

)∣∣∣∣ ≤ |ω|√C̄HP (∫ 1

0

η|(f1n)x|2dx
) 1

2
(∫ x2

x1

1

σ
|un|2dx

) 1
2

−−−−→
n→∞

0.

Thus, using the above limits and the second limit in (4.7), we obtain |A(n)| −−−−→
n→∞

0.

Now, for B(n), we will estimate each term in B(n) separately. Recalling that σ = a
η and that η′ = b

aη, we have

σ′ =
a′η − aη′

η2
=
a′ − b
η

and
( g
σ

)′
=
g′

σ
− g σ

′

σ2
=
g′

σ
− g

σ

(
a′ − b
a

)
, where g′ =

2

x2 − x1
.

Using the above equation, the second limit in (4.7) and the fact that βn → ω, we get∫ x2

x1

( g
σ

)′
|βnun|2dx ≤

(
2

x2 − x1
+

∥∥∥∥a′ − ba

∥∥∥∥
L∞(x1,x2)

)∫ x2

x1

1

σ
|βnun|2dx −−−−→

n→∞
0.

Using again the second limit in (4.7), the Cauchy-Schwarz inequality and the fact that ‖Un‖ = 1, ‖Fn‖H → 0,
as n→ 0, we obtain∣∣∣∣<(∫ x2

x1

g

σ
(iβn −

λ

d
)ununxdx

)∣∣∣∣ ≤ (|ω|+ |λ| max
[x1,x2]

1

d

)
max
[x1,x2]

1√
a(x)

(∫ x2

x1

1

σ
|un|2dx

) 1
2
(∫ x2

x1

η|unx |2dx
) 1

2

→ 0,

∣∣∣∣<(∫ x2

x1

1

σ
f2ngu

n
xdx

)∣∣∣∣ ≤ max
x∈[x1,x2]

(
1√
a(x)

)(∫ x2

x1

1

σ
|f2n|2dx

) 1
2
(∫ x2

x1

η|unx |2dx
) 1

2

→ 0

and ∣∣∣∣<(∫ x2

x1

1

σ
βnf

1
ngu

n
xdx

)∣∣∣∣ ≤ |ω|√C̃HP max
x∈[x1,x2]

(
1√
a(x)

)(∫ 1

0

η|(f1n)x|2dx
) 1

2
(∫ x2

x1

η|unx |2dx
) 1

2

→ 0,

as n→∞ and, similarly, we can get∣∣∣∣<(∫ x2

x1

χ(x1,x2)
1

σ
f1ngu

n
xdx

)∣∣∣∣ −−−−→n→∞
0,

as n→∞. Thus, using the above limits we conclude that B(n) −−−−→
n→∞

0.

Step 4. The aim of this step is to prove (4.8). From Step 1 and applying Young’s inequality, we get

(4.13)

∫ x2

x1

η|unx |2dx ≤
2∑
i=1

(
η(xi)

4T
|unx(xi)|2 + Tη(xi)|un(xi)|2

)
+ |A(n)|.

From (4.12), we have that

η(x1)|unx(x1)|2 ≤ T

∫ x2

x1

η|unx |2dx+ |B(n)| and η(x2)|unx(x2)|2 ≤ T

∫ x2

x1

η|unx |2dx+ |B(n)|.

Inserting the above inequalities into (4.13), we obtain

(4.14)
1

2

∫ x2

x1

η|unx |2dx ≤ Tη(x2)|un(x2)|2 + Tη(x1)|un(x1)|2 +
1

2T
|B(n)|+ |A(n)|.

Applying the Gagliardo-Nirenberg inequality, one has

|un(ξ)| ≤ ‖un‖
1
2

L2(x1,x2)
‖unx‖

1
2

L2(x1,x2)
+ ‖un‖L2(x1,x2)

≤
(

max
x∈[x1,x2]

σ

∫ x2

x1

1

σ
|un|2dx

) 1
2
(

max
x∈[x1,x2]

1

η

∫ x2

x1

η|unx |2dx
) 1

2

+ max
x∈[x1,x2]

σ

∫ x2

x1

1

σ
|un|2dx,

where ξ = x1, x2. From the above inequality, the second limit in (4.7) and using the fact that ‖Un‖H = 1, we
deduce that |un(ξ)| −−−−→

n→∞
0, where ξ = x1, x2. Therefore, using this limit and passing to the limit in (4.14),

we obtain the first limit in (4.8). Using the equivalence between the norms given in Proposition 2.3, we deduce
that the second limit in (4.8) holds. �
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Lemma 4.6. Assume Hypothesis 4.1. Then, the solution (un, vn)> ∈ D(A) of (3.3)-(3.4) satisfies

(4.15)

∫ 1

0

1

σ
|βnun|2dx −−−−→

n→∞
0 and

∫ 1

0

η|unx |2dx−
∫ 1

0

λ

σd
|un|2dx −−−−→

n→∞
0.

Proof. From Lemma 3.3, we have that (3.11) holds. Firstly, we need to prove that

(4.16) |C(n)| −−−−→
n→∞

0 and |D(n)| −−−−→
n→∞

0.

To this aim, firstly we will estimate each term in C(n) and D(n), where C(n) and D(n) are defined in (3.12)
and (3.13), respectively. Starting with C(n), using the Cauchy Schwarz inequality and the Hardy Poincaré
inequality in (2.5), the fact that βn → ω, ‖Un‖H = 1 and the second limit in (4.7) , we obtain

(4.17)

∣∣∣∣<(i ∫ 1

0

χ(x1,x2)

σ
βnu

nϕunxdx

)∣∣∣∣ ≤ |ω| max
x∈[x1,x2]

1√
a

(∫ x2

x1

1

σ
|un|2dx

) 1
2
(∫ x2

x1

η|unx |2dx
) 1

2

−−−−→
n→∞

0

and

(4.18)

∣∣∣∣<(∫ 1

0

χ(x1,x2)f
1
n

ϕ

σ
unxdx

)∣∣∣∣ ≤ max
x∈[x1,x2]

1√
a

√
C̃HP

(∫ 1

0

η|(f1n)x|2dx
) 1

2
(∫ x2

x1

η|unx |2dx
) 1

2

−−−−→
n→∞

0.

Now, consider the term 2<
(∫ 1

0

f2n
ϕ

σ
unxdx

)
. From the definition of ϕ, we have

(4.19) 2<
(∫ 1

0

f2n
ϕ

σ
unxdx

)
= 2<

(∫ 1

0

xϕ1

σ
f2nu

n
xdx

)
+ 2<

(∫ 1

0

(x− 1)ϕ2

σ
f2nu

n
xdx

)
.

For the first term in the right hand side of the above equation, using the Cauchy-Schwarz inequality, the fact

that a doesn’t vanish on the interval (x1, x2),
x√
a

is non-decreasing in the neighborhood of 0 if a is (WD) or

(SD) and the fact that Ka < 2, we obtain∣∣∣∣<(∫ 1

0

xϕ1

σ
f2nu

n
xdx

)∣∣∣∣ =

∣∣∣∣<(∫ x2

0

xϕ1

σ
f2nu

n
xdx

)∣∣∣∣ ≤ x2√
a(x2)

(∫ x2

0

1

σ
|f2n|2dx

) 1
2
(∫ x2

0

η|unx |2dx
) 1

2

−−−−→
n→∞

0.

Now, for the second term in (4.19) we can use a similar argument as above, obtaining∣∣∣∣2<(∫ 1

0

(x− 1)ϕ2

σ
f2nu

n
xdx

)∣∣∣∣ ≤ 2(1− x1)

(∫ 1

x1

1

σ
|f2n|2dx

) 1
2
(∫ 1

x1

η|unx |2dx
) 1

2

−−−−→
n→∞

0.

Thus, using the above two limits in (4.19), we get

(4.20)

∣∣∣∣2<(∫ 1

0

f2n
ϕ

σ
unxdx

)∣∣∣∣ −−−−→n→∞
0.

We can deduce in a similar way and using the fact that βn −−−−→
n→∞

ω that

(4.21)

∣∣∣∣2<(∫ 1

0

iβnf
1
n

ϕ

σ
unxdx

)∣∣∣∣ −−−−→n→∞
0.

Using the second limit in (4.7) and (4.8), the fact that βn → ω, supp ϕ̂ = [x1, x2], we get

(4.22)

∫ x2

x1

ϕ1 + ϕ2

σ
|βnun|2dx+

∫ x2

x1

(ϕ1 + ϕ2)η|unx |2dx+

∫ x2

x1

λ(ϕ1 + ϕ2)

σd
|un|2dx

+

∫ 1

0

ϕ̂

σ
|βnun|2dx+

∫ 1

0

ϕ̂η|unx |2dx+

∫ 1

0

λϕ̂

σd
|un|2dx+

∫ x2

x1

1

σ
|βnun|2dx

+

∫ x2

x1

η|unx |2dx+

∫ x2

x1

λ

σd
|un|2dx −−−−→

n→∞
0.

For the last four terms of C(n), using again the second limit in (4.7), (4.8) and the fact that βn −−−−→
n→∞

ω, we

have

(4.23)

∫ x2

x1

ϕ

σ

(
a′ − b
a

)
|βnun|2dx ≤

∥∥∥∥(a′ − ba

)∥∥∥∥
L∞(x1,x2)

∫ x2

x1

1

σ
|βnun|2dx −−−−→

n→∞
0

14



and similarly

(4.24)

∫ x2

x1

ϕ
b

a
η|unx |2dx+

∫ x2

x1

λϕ

σd

(
a′ − b
a

)
|un|2dx+

∫ x2

x1

λϕd′

σd2
|un|2dx −−−−→

n→∞
0.

Thus, from (4.17), (4.18), (4.20)-(4.24), we obtain that |C(n)| → 0, as n → ∞. Now, for D(n), using the
second limit in (4.7) and the Hardy Poincaré inequality in (2.5), we can deduce that

(4.25)
Ka

2
<
(∫ 1

0

χ(x1,x2)

σ
iβn|un|2dx

)
−−−−→
n→∞

0 and
Ka

2
<
(∫ 1

0

1

σ
χ(x1,x2)f

1
nu

ndx

)
−−−−→
n→∞

0.

Using (3.6), we obtain

(4.26)

∣∣∣∣Ka

2
<
(∫ 1

0

1

σ
f2nu

ndx

)∣∣∣∣ ≤ Ka

2

(∫ 1

0

1

σ
|f2n|2dx

) 1
2
(∫ 1

0

1

σ
|un|2dx

) 1
2

−−−−→
n→∞

0

and

(4.27)

∣∣∣∣Ka

2
<
(
i

∫ 1

0

1

σ
f1nβnu

ndx

)∣∣∣∣ ≤ Ka

√
C̃HP

2

(∫ 1

0

η|(f1n)x|2dx
) 1

2
(∫ 1

0

1

σ
|βnun|2dx

) 1
2

−−−−→
n→∞

0.

Thus, from (4.25)-(4.27) we get that |D(n)| −−−−→
n→∞

0, as n→∞.

Secondly, in order to prove (4.15), we will distinguish two cases according to the values of λ.
Case 1. If λ > 0:
Inequality (3.11) yields that(

1 +
Ka

2
−M0 −M1

)∫ 1

0

1

σ
|βnun|2dx+

(
1− Ka

2
−N0 −N1

)∫ 1

0

η|unx |2dx+(
1 +

Ka

2
−M0 −M1 −D0 −D1

)∫ 1

0

λ

σd
|un|2dx ≤ |C(n)|+ |D(n)|.

By Hypothesis 4.1, we obtain

1 +
Ka

2
−M0 −M1 −D0 −D1 ≥ 1 +

Ka

2
−M0 −M1 − 2Kd −

∥∥∥∥d′d
∥∥∥∥
L∞(x2,1)

> 0.

Thus, from the above inequality, (4.16) and by Hypothesis 4.1, we conclude that∫ 1

0

1

σ
|βun|2dx −−−−→

n→∞
0,

∫ 1

0

η|unx |2dx −−−−→
n→∞

0 and

∫ 1

0

λ

σd
|un|2dx −−−−→

n→∞
0.

Case 2. If λ ≤ 0:
From (3.11) we have that

(4.28)

(
1 +

Ka

2
−M0 −M1

)∫ 1

0

1

σ
|βnun|2dx+

(
1− Ka

2
−N0 −N1

)∫ 1

0

η|unx |2dx+(
1 +

Ka

2
+M0 +M1 +D0 +D1

)∫ 1

0

λ

σd
|un|2dx ≤ |C(n)|+ |D(n)|.

By the Hardy-Poincaré inequality in Proposition 2.2 and the fact that λ < 0, we get∫ 1

0

λ

σd
|un|2dx ≥ λCHP

∫ 1

0

η|unx |2dx.

Using the above inequality, the fact that Ka + 2Kd ≤ 2 and Hypothesis 4.1, we get(
1 +

Ka

2
+

1∑
i=0

(Mi +Di)

)∫ 1

0

λ

σd
|un|2dx ≥

(
1 +

Ka

2
+M0 +M1 + 2Kd +

∥∥∥∥d′d
∥∥∥∥
L∞(x2,1)

)∫ 1

0

λ

σd
|un|2dx

≥

(
4 +

∥∥∥∥d′d
∥∥∥∥
L∞(x2,1)

)
λCHP

∫ 1

0

η|unx |2dx.
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Thus, combining the above inequality with (4.28), we have(
1 +

Ka

2
−M0 −M1

)∫ 1

0

1

σ
|βnun|2dx+

(
1− Ka

2
−N0 −N1 +

(
4 +

∥∥∥∥d′d
∥∥∥∥
L∞(x2,1)

)
λCHP

)∫ 1

0

η|unx |2dx

≤ |C(n)|+ |D(n)|.

Therefore, by Hypothesis 4.1 in the case λ ≤ 0 and the limits in (4.16), we can deduce that∫ 1

0

1

σ
|βnun|2dx −−−−→

n→∞
0 and

∫ 1

0

η|unx |2dx −−−−→
n→∞

0.

From the equivalence between the norms in Proposition 4.3, we obtain that the second limit in (4.15) holds.
�

Thus, we obtain that ‖Un‖H → 0 as n → 0, which contradicts that ‖Un‖H = 1 in (4.5). Thus, (4.3) holds
true and the proof of Proposition 4.3 is complete.

Proof.[Proof of Theorem 4.2] By Proposition 4.3, we have iR ⊆ ρ(A) and consequently σ(A) ∩ iR = ∅.
Therefore, according to Arendt-Batty’s Theorem, we get that the C0-semigroup (etA)t≥0 of contractions is
strongly stable and the proof is complete. �

5. Exponential Stability

In this section we will study the exponential stability for (1.1) . The following theorem gives the main result
of this section.

Theorem 5.1. Assume Hypothesis 4.1. Then, the C0−semigroup of contractions
(
etA
)
t≥0 is exponentially

stable, i.e. there exist constants C ≥ 1 and τ > 0 independent of U0 such that∥∥etAU0

∥∥
H ≤ Ce

−τt‖U0‖H, t ≥ 0.

According to Huang [42] and Prüss [51], we have to check the following conditions:

(E) iR ⊆ ρ (A) and sup
λ∈R
‖ (iλI −A)

−1 ‖L(H) = O(1).

The first condition in (E) is already proved in Proposition 2.2. We will prove the second condition in (E)
using a contradiction argument. To this aim, suppose it is false, then there exists {βn, Un = (un, vn)>}n≥1 ⊂
R∗ ×D(A), such that βn → +∞, as n→∞, ‖Un‖H = ‖(un, vn)>‖H = 1 and

(5.1) (iβnI −A)Un = Fn := (f1n, f
2
n)→ 0 in H, as n→ +∞.

Detailing the above equation as in (3.3)-(3.5), we observe that (3.5) and (3.6) still hold here. Now, we proceed
to verify the second condition in (E) by seeking a contradiction with ‖Un‖ = 1 such as ‖Un‖ = o(1). To ensure
clarity, we divide the proof into several lemmas.

Lemma 5.2. Assume Hypothesis 4.1 . Then, the solution (un, vn)> ∈ D(A) of (3.3)-(3.4) satisfies

(5.2)

∫ x2

x1

1

σ
|vn|2dx = o(1) and

∫ x2

x1

1

σ
|βnun|2dx = o(1).

Proof. Taking the inner product of (5.1) with Un in H, taking the real part and using the fact that ‖Fn‖H =
o(1) and ‖Un‖H = 1, we obtain∫ 1

0

χ(x1,x2)

σ
|vn|2dx = −<(〈AUn, Un〉H) ≤ ‖Fn‖H‖Un‖H = o(1).

By (3.3), using the above equation and the fact that

∫ x2

x1

1

σ
|f1n|2dx ≤ C̄HP

∫ 1

0

η|(f1n)x|2dx ≤ ‖Fn‖H = o(1),

we get ∫ x2

x1

1

σ
|βnun|2dx ≤ 2

∫ x2

x1

1

σ
|vn|2dx+ 2

∫ x2

x1

1

σ
|f1n|2dx = o(1).

�
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Lemma 5.3. Assume Hypothesis 4.1. Then, the solution (un, vn)> ∈ D(A) of (3.3)-(3.4) satisfies

(5.3)

∫ x2

x1

η|unx |2dx = o(1) and

∫ x2

x1

η|unx |2dx−
∫ x2

x1

λ

σd
|unx |2dx = o(1).

Proof. For the proof of this Lemma we will use similar techniques used in Lemma 4.5. To this aim, we will
divide the proof into several steps.
Step 1. Proceeding as in Step 1 in Lemma 4.5, we can get that

(5.4)

∫ x2

x1

η|unx |2dx = <
(
[ηunxu

n]
x2

x1

)
+ A(n),

where A(n) is defined in (4.10).
Step 2. The aim of this step is to show that the solution (un, vn)> ∈ D(A) of (3.3)-(3.4) satisfies

(5.5)

2∑
i=1

(
1

2σ(xi)
|βnun(xi)|2 + η(xi)|ux(xi)|2

)
≤ T

∫ x2

x1

η|unx |2dx+

2∑
i=1

2

σ(xi)
|f1n(xi)|2 + |G(n)|,

where T is the same as in (4.12) and G(n) is to be determined such that |G(n)| = o(1).

Multiplying (3.5) by
2g

σ
unx , where g is the same function defined in Lemma 4.5, integrating over (x1, x2), and

taking the real part we obtain

(5.6)

1

σ(x2)
|βnun(x2)|2 +

1

σ(x1)
|βnun(x1)|2 + η(x2)|unx(x2)|2 + η(x1)|unx(x1)|2 =

∫ x2

x1

η(g′ − b

a
g)|unx |2dx

+

∫ x2

x1

( g
σ

)′
|βnun|2dx− 2λ<

(∫ x2

x1

g

σd
ununxdx

)
+ 2<

(
i

∫ x2

x1

βng

σ
ununxdx

)
− 2<

(∫ x2

x1

1

σ
f2ngu

n
xdx

)
+2<

(
i

∫ x2

x1

( g
σ

)′
f1nβnu

ndx

)
+ 2<

(
i

∫ x2

x1

g

σ
(f1n)xβnundx

)
− 2<

(∫ x2

x1

1

σ
χ(x1,x2)f

1
ngu

n
xdx

)
−2<

(
if1n(x2)

1

σ(x2)
βnu

n(x2)

)
+ 2<

(
if1n(x1)

1

σ(x1)
βnu

n(x1)

)
.

For the first and the last two terms on the right hand side of the above equation, we have∣∣∣∣2<(if1n(xi)
1

σ(xi)
βnu

n(xi)

)∣∣∣∣ ≤ 1

2σ(xi)
|βnun(xi)|2 +

2

σ(xi)
|f1n(xi)|2, i = 1, 2,

and ∣∣∣∣∫ x2

x1

η(g′ − b

a
g)|unx |2dx

∣∣∣∣ ≤ T

∫ x2

x1

η|unx |2dx.

Using the above estimations in (5.6), we get (5.5) with

G(n) =

∫ x2

x1

( g
σ

)′
|βnun|2dx− 2λ<

(∫ x2

x1

g

σd
ununxdx

)
+ 2<

(
i

∫ x2

x1

βng

σ
ununxdx

)
− 2<

(∫ x2

x1

1

σ
f2ngu

n
xdx

)
+2<

(
i

∫ x2

x1

( g
σ

)′
f1nβnu

ndx

)
+ 2<

(
i

∫ x2

x1

g

σ
(f1n)xβnundx

)
− 2<

(∫ x2

x1

1

σ
χ(x1,x2)f

1
ngu

n
xdx

)
.

Step 3. The aim of this step is to show that |A(n)| = o(1)| and

2∑
i=1

2

σ(xi)
|f1n(xi)|2 + |G(n)| = o(1). For

A(n), following similar arguments as in Step 2 of Lemma 4.5, we have that |A(n)| = o(1). Moreover, since
‖Fn‖H = o(1), we have

|f1n(xi)| ≤
√

1− xi
(∫ 1

xi

|(f1n)x|2dx
) 1

2

≤
√

1− xi max
x∈[x1,1]

1
√
η

(∫ 1

xi

η|(f1n)x|2dx
) 1

2

= o(1), i = 1, 2.

Thus, we obtain

(5.7)

2∑
i=1

2

σ(xi)
|f1n(xi)|2 = o(1).

Now, turning to G(n), we will omit the detailed calculations since they are similar to the ones in Step 2 of
Lemma 4.5, thus we can deduce that |G(n)| = o(1).
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Step 4. The aim of this step is to prove the estimations in (5.3). From the first step and applying Young’s
inequality, we have

(5.8)

∫ x2

x1

η|unx |2dx ≤
2∑
i=1

(
η(xi)

2T
|unx(xi)|2 +

T

2
η(xi)|un(xi)|2

)
+ o(1).

From (5.5) and the definition of σ, it follows
2∑
i=1

η(xi)|unx(xi)|2 ≤ T

∫ x2

x1

η|unx |2dx+ o(1),

2∑
i=1

η(xi)|un(xi)|2 ≤
2 max(a(x1), a(x2))

β2
n

T

∫ x2

x1

η|unx |2dx+
o(1)

β2
n

.

Inserting the above inequalities into (5.8), using the fact that βn tends to infinity and ‖Un‖H = 1, one has

1

2

∫ x2

x1

η|unx |2dx ≤
max(a(x1), a(x2))

β2
n

T2
∫ x2

x1

η|unx |2dx+ o(1) = o(1).

Now, for the second estimation in (5.3), we use the equivalence between the norms given in Proposition 2.3
and the thesis follows. �

Lemma 5.4. Assume Hypothesis 4.1. Then, the solution (u, v)> ∈ D(A) of (3.3)-(3.4) satisfies

(5.9)

∫ 1

0

1

σ
|βnun|2dx = o(1) and

∫ 1

0

η|unx |2dx−
∫ 1

0

λ

σd
|un|2dx = o(1).

Proof. By Lemma 3.2, we have that (3.11) holds when βn →∞, as n→∞. Firstly, we need to prove that

(5.10) |C(n)| = o(1) and |D(n)| = o(1).

Starting with C(n), using similar arguments and calculations as in Lemma 4.6, taking into account that here
βn → ∞, using the Cauchy Schwarz and the Hardy Poincaré inequalities, ‖Un‖H = 1, ‖Fn‖H = o(1) and the
second limit in (5.2), we obtain

(5.11)

∣∣∣∣<(i∫ 1

0

χ(x1,x2)

σ
βnu

nϕunxdx

)∣∣∣∣ ≤ max
x∈[x1,x2]

1√
a

(∫ x2

x1

1

σ
|βnun|2dx

) 1
2
(∫ x2

x1

η|unx |2dx
) 1

2

= o(1),

and

(5.12)

∣∣∣∣<(∫ 1

0

χ(x1,x2)f
1
n

ϕ

σ
unxdx

)∣∣∣∣ ≤ max
x∈[x1,x2]

1√
a

√
C̃HP

(∫ x2

x1

η|(f1n)x|2dx
) 1

2
(∫ x2

x1

η|unx |2dx
) 1

2

= o(1).

Employing analogous computations to the ones in Lemma 4.6 and considering the definition of ϕ, we obtain

(5.13)

∣∣∣∣2<(∫ 1

0

f2
ϕ

σ
unxdx

)∣∣∣∣ = o(1).

Now, consider the term 2<
(∫ 1

0

iβnf
1
n

ϕ

σ
unxdx

)
. Integrating by parts and using the definition of ϕ we obtain

(5.14)
2<
(∫ 1

0

iβnf
1
n

ϕ

σ
unxdx

)
= −2<

(
i

∫ x2

0

x

σ
ϕ1(f1n)xβnundx+ i

∫ 1

x1

(x− 1)

σ
ϕ2(f1n)xβnundx

)
−2<

(
i

∫ 1

0

ϕ′

σ
f1nβnu

ndx− i
∫ 1

0

ϕ

σ

(
a′ − b
a

)
f1nβnu

ndx

)
− 2βn lim

x→0
<
[
i
f1nϕ

σ
un
]
.

Consider the first two terms in the right hand side of the above equation; using the monotonicity of
x√
a

and

(3.6), we can estimate them as∣∣∣∣<(i ∫ x2

0

x

σ
ϕ1(f1n)xβnundx+ i

∫ 1

x1

(x− 1)

σ
ϕ2(f1n)xβnundx

)∣∣∣∣ ≤ κ1(∫ 1

0

η|(f1n)x|2dx
) 1

2
(∫ 1

0

1

σ
|βnun|2dx

) 1
2

= o(1),
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where κ1 = max

{
x2√
a(x2)

, (1− x1) max
x∈[x1,1]

1√
a

}
. For the third and the fourth terms in the right hand side of

(5.14), using (3.6), the definition of ϕ and Hypothesis 4.1, we have∣∣∣∣<(i ∫ 1

0

ϕ′

σ
f1nβnu

ndx− i
∫ 1

0

ϕ

σ

(
a′ − b
a

)
f1nβnu

ndx

)∣∣∣∣ ≤ κ2(∫ 1

0

η|(f1n)x|2dx
) 1

2
(∫ 1

0

1

σ
|βnun|2dx

) 1
2

= o(1),

where κ2 = max

{
‖ϕ′‖∞

√
C̃HP ,

√
C̃HP

(
1 + Ka

2 +
∥∥∥xa′−ba ∥∥∥

L∞(x1,x2)
+
∥∥∥(x− 1)a

′−b
a

∥∥∥
L∞(x1,x2)

)}
.

To establish the last limit term in (5.14), thanks to the definition of ϕ, it is sufficient to show that lim
x→0
<
[
i
xϕ1f

1
n

σ
un
]

=

0. Thus, thanks to the fifth term of Lemma 3.1 and Young’s inequality, we obtain

(5.15) lim
x→0

∣∣∣∣< [ixϕ1f
1
n

σ
un
]∣∣∣∣ ≤ lim

x→0
ηϕ1

x|un|2

2a
+ lim
x→0

ηϕ1
x|f1n|2

2a
= 0.

Hence, coming back to (5.14), we get

(5.16)

∣∣∣∣2<(∫ 1

0

iβnf
1
n

ϕ

σ
unxdx

)∣∣∣∣ = o(1).

Using again the second limit in (5.2) and (5.3), the fact that βn →∞ and supp ϕ̂ = [x1, x2], we get

(5.17)

∫ x2

x1

ϕ1 + ϕ2

σ
|βnun|2dx+

∫ x2

x1

(ϕ1 + ϕ2)η|unx |2dx+

∫ x2

x1

λ(ϕ1 + ϕ2)

σd
|un|2dx

+

∫ 1

0

ϕ̂

σ
|βnun|2dx+

∫ 1

0

ϕ̂η|unx |2dx+

∫ 1

0

λϕ̂

σd
|un|2dx+

∫ x2

x1

1

σ
|βnun|2dx

+

∫ x2

x1

η|unx |2dx+

∫ x2

x1

λ

σd
|un|2dx = o(1).

For the last four terms of C(n), using the second limit in (5.2) and (5.3), we have

(5.18)

∫ x2

x1

ϕ

σ

(
a′ − b
a

)
|βnun|2dx ≤

∥∥∥∥a′ − ba

∥∥∥∥
L∞(x1,x2)

∫ x2

x1

1

σ
|βnun|2dx = o(1)

and, similarly, we can get

(5.19)

∫ x2

x1

ϕ
b

a
η|unx |2dx+

∫ x2

x1

λϕ

σd

(
a′ − b
a

)
|un|2dx+

∫ x2

x1

λϕd′

σd
|un|2dx = o(1).

Thus, from (5.11)-(5.13), (5.16)-(5.19) we obtain that |C(n)| = o(1). Now, for D(n), employing analogous
computations to the ones used for C(n), along with the findings from Lemmas 4.4 and 4.5, ‖Un‖H = 1, and
‖Fn‖H → 0, we conclude that |D(n)| = o(1). Finally, to prove (4.15), we will distinguish two cases according
to the values of λ.
Case 1. If λ > 0:
By (3.11) we deduce that(

1 +
Ka

2
−M0 −M1

)∫ 1

0

1

σ
|βnun|2dx+

(
1− Ka

2
−N0 −N1

)∫ 1

0

η|unx |2dx

+

(
1 +

Ka

2
−M0 −M1 −D0 −D1

)∫ 1

0

λ

σd
|un|2dx = o(1).

Moreover, by Hypothesis 4.1 and using similar arguments as in Lemma 4.6 for the case when λ > 0, we can
conclude that ∫ 1

0

1

σ
|βnun|2dx = o(1), and

∫ 1

0

η|unx |2dx = o(1).
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Case 2. If λ ≤ 0:
By (3.11) we have that

(5.20)

(
1 +

Ka

2
−M0 −M1

)∫ 1

0

1

σ
|βnun|2dx+

(
1− Ka

2
−N0 −N1

)∫ 1

0

η|unx |2dx+(
1 +

Ka

2
+M0 +M1 +D0 +D1

)∫ 1

0

λ

σd
|un|2dx = o(1).

Moreover, by the Hardy-Poincaré inequality given in Proposition 2.2, by Hypothesis 4.1, the fact that λ < 0
and Ka + 2Kd ≤ 2 and proceeding as in Lemma 4.6 for the case λ < 0, we obtain that(

1 +
Ka

2
−M0 −M1

)∫ 1

0

1

σ
|βnun|2dx+

(
1− Ka

2
−N0 −N1 +

(
4 +

∥∥∥∥d′d
∥∥∥∥
L∞(x2,1)

)
λCHP

)∫ 1

0

η|unx |2dx = o(1).

Therefore, by Hypothesis (4.1), we conclude that∫ 1

0

1

σ
|βnun|2dx = o(1) and

∫ 1

0

η|unx |2dx = o(1)

Using the equivalence between the norms given in Proposition 4.3, we obtain the last estimation in (5.9). �
Proof. [Proof of Theorem 5.1.] Thanks to Lemma 5.4, we deduce that ‖U‖H = o(1), which contradicts
‖U‖H = 1. Consequently, the second condition in (E) holds and the proof is thus complete. �

Appendix A. Examples

Here, we provide some examples of functions a, b, and d that satisfy the conditions required in Hypothesis 4.1.
It’s worth noting that exploring these examples imposes certain constraints on the selection of x1 and x2.

Example A.1
When a is (WD) and λ > 0: (see Figure 1)

Consider a(x) = 2
√
x, b(x) = 1 and d(x) =

1

4
x

1
8 . In order to have that the functions a and b fulfill Hypothesis

4.1, it is necessary that the following conditions

h1(x) :=
4(1− x2)(1−√x2) + 1

x2
− 4 < 0 and x1 <

(
3

2
− 1− x2√

x2

)2

are satisfied. Let α1 :=

−√7 cos

(
arctan(9

√
271)

3

)
3 + 2

3 +

√
7
√
3 sin

(
arctan(9

√
271)

3

)
3

2

≈ 0.43917. Thus, it is sufficient

to take α1 < x2 < 1 and x1 < x2 so that the above inequalities are satisfied.

Example A.2
When a is (SD) and λ > 0: (see Figure 2)

Consider a(x) = x
√
x, b(x) = 1

8x and d(x) =
1

8
x

1
16 . In order to have that the functions a and b fulfill Hypothesis

4.1, it is necessary that the following conditions

h2(x) := (1− x2)

(
3

2x2
− 1

8
√
x2

)
+

1

16x2
− 1

8
< 0 and x1 <

(
2− 1− x2√

x2

)2

are satisfied. Taking α2 :=

− 2
√
43 cos

 arctan

(
3
√

1304751
8347

)
3


3 + 13

3 +

2
√
3
√
43 sin

 arctan

(
3
√

1304751
8347

)
3


3


2

≈ 0.958, we

can choose α2 < x2 < 1, x1 < x2, so that the above inequalities are satisfied.
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Figure 1. a is (WD) and λ > 0 Figure 2. a is (SD) and λ > 0

Example A.3
When a is (WD) and λ < 0: (see Figure 3)

Consider a(x) =
√
x, b(x) = 1, d can be chosen as any (WD) function such that Ka + 2Kd ≤ 2 and

λ = − 1

4(4+‖ d′d ‖L∞(x2,1))CHP
. If we want that a and b fulfill Hypothesis 4.1, it is necessary that the follow-

ing conditions

h3(x) :=
(1− x2)|1− 2

√
x2|

2x2
− 3

4
< 0 and x1 <

(
1

2
− 1− x2√

x2

)2

are satisfied. Let α3 :=


√
73 cos

 arctan

(
36

√
298

53

)
3


12 + 5

12 +

√
3
√
73 sin

 arctan

(
36

√
298

53

)
3


12


2

≈ 0.14159. Then, it is

sufficient to consider α3 < x2 < 1 and x1 < x2 so that the above inequalities are satisfied.

Example A.4
When a is (SD) and λ < 0: (see Figure 4)

Consider a(x) = x
√
x, b(x) = 1

8x , d can be chosen as any (WD) function such that Ka + 2Kd ≤ 2 and

λ = − 1

32(4+‖ d′d ‖L∞(x2,1))CHP
. If we require that the functions a and b fulfill Hypothesis 4.1, it is necessary that

the following conditions

h4(x) := (1− x2)

(
3

2x2
− 1

8
√
x2

)
− 1

4
< 0 and x1 <

(
7

4
− (1− x2)
√
x2

)2

are satisfied. Taking α4 :=

−
√
199 cos

 arctan

(
3
√

98286
2645

)
3


3 + 14

3 +

√
3
√
199 sin

 arctan

(
3
√

98286
2645

)
3


3


2

≈ 0.8467, it is

sufficient to consider α4 < x2 < 1 and x1 < x2 so that the above inequalities are satisfied.
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Figure 3. a is (WD) and λ < 0 Figure 4. a is (SD) and λ < 0
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Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica
(INdAM).

This paper is partially written during the stay of M. Akil at the University of Tuscia and at the University
of Bari Aldo Moro as visiting professor supported by GNAMPA and by the Project STEPs-STEerability and
controllability of PDEs in Physical and Agricultural models, respectively.

Declaration

Competing interest: The authors have not disclosed any competing interests.

References

[1] M. Akil. Stability of piezoelectric beam with magnetic effect under (coleman or pipkin)–gurtin thermal law. Zeitschrift für
angewandte Mathematik und Physik, 73(6):236, 2022.

[2] M. Akil, G. Fragnelli, and I. Issa. Energy decay rate of a transmission system governed by degenerate wave equation with
drift and under heat conduction with memory effect, 2023, https://arxiv.org/abs/2311.16296.

[3] M. Akil, G. Fragnelli, and I. Issa. Stability for degenerate wave equations with drift under simultaneous degenerate damping,
2023, https://arxiv.org/abs/2308.08645.

[4] F. Alabau-Boussouira, P. Cannarsa, and G. Fragnelli. Carleman estimates for degenerate parabolic operators with applications
to null controllability. Journal of Evolution Equations, 6(2):161–204, May 2006.

[5] F. Alabau-Boussouira, P. Cannarsa, and G. Leugering. Control and stabilization of degenerate wave equations. SIAM Journal
on Control and Optimization, 55(3):2052–2087, 2017. Paper submitted on may 8 2015, preprint version deposit on arXiv on

may 21 2015.
[6] B. Allal, A. Hajjaj, J. Salhi, and A. Sbai. Boundary controllability for a coupled system of degenerate/singular parabolic

equations. Evolution Equations and Control Theory, 11(5):1579–1604, 2022.

22



[7] B. Allal, A. Moumni, and J. Salhi. Boundary controllability for a degenerate and singular wave equation. Mathematical
Methods in the Applied Sciences, 45(17):11526–11544, June 2022.

[8] W. Arendt and C. J. K. Batty. Tauberian theorems and stability of one-parameter semigroups. Transactions of the American

Mathematical Society, 306(2):837–852, 1988.
[9] M. Badii and J. Dı́az. Time periodic solutions for a diffusive energy balance model in climatology. Journal of Mathematical

Analysis and Applications, 233(2):713–729, 1999.

[10] I. H. Biswas, A. K. Majee, and G. Vallet. On the cauchy problem of a degenerate parabolic-hyperbolic pde with Lévy noise.
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