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Abstract

Background Forecasts of future demand is foundational for effective resource allocation in emergency
departments (EDs). As ED demand is inherently variable, it is important for forecasts to characterize the
range of possible future demand. However, extant research focuses primarily on producing point forecasts
using a wide variety of prediction algorithms. In this study, our objective is to generate point and interval
predictions that accurately characterize the variability in ED demand using ensemble methods that combine
predictions from multiple base algorithms based on their empirical performance.

Methods Data consisted in daily arrivals and subsequent hospitalizations at 72 emergency departments in
Île-de-France from 2014–2018. Additional explanatory variables were collected including public and school
holidays, meteorological variables, and public health trends. One-day ahead point and 80% interval pre-
dictions of arrivals and hospitalizations were produced by predicting the 10%, 50%, and 90% quantiles of
the forecast distribution. Quantile prediction algorithms included methods such as ARIMAX, variations of
random forests, and generalized additive models. Ensemble predictions were then formed using Exponen-
tially Weighted Averaging, Bernstein Online Aggregation, and Super Learning. Prediction intervals were
post-processed using Adaptive Conformal Inference techniques. Point predictions were evaluated by their
Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE), and 80% interval predictions
by their empirical coverage and mean interval width.

Results For point forecasts, ensemble methods achieved lower average MAE and MAPE than any of the
base algorithms. All of the base algorithms and ensemble methods yielded prediction intervals with near
optimal empirical coverage after conformalization. For hospitalizations, the shortest mean interval widths
were achieved by the ensemble methods.

1



Conclusions Ensemble methods yield joint point and prediction intervals that adapt to individual EDs
and achieve better performance than individual algorithms. Conformal inference techniques improves the
performance of the prediction intervals.

Keywords Emergency department, Time series forecasting, Machine learning, Ensemble learning, Confor-
mal inference

1 Introduction

Demand for emergency department (ED) services has increased in many countries worldwide over the long-
term (Pines et al., 2011; Grall, 2015; Colineaux et al., 2019). ED crowding occurs when demand surpasses
available resources, and has well-established negative effects including worse patient health outcomes and
reduced adherence by practitioners to treatment guidelines (Bond et al., 2007; Hoot and Aronsky, 2008;
Moskop et al., 2009; Gacki-Smith et al., 2009; Morley et al., 2018). Because many patients arriving to EDs
require subsequent hospitalization, increased ED demand may lead to higher demand for hospital beds. If
there are not sufficiently many hospital beds available then patients must wait in the ED until being admitted
(a status referred to as “boarding”). Boarders may not receive the same quality of care as they would after
admission and may experience worse health outcomes (Liu et al., 2011; Roussel et al., 2023). In addition,
inability to admit patients in a timely fashion contributes itself to ED crowding by reducing outflow.

From the point of view of a health system, ED crowding and long boarding times can be ameliorated
by increasing available resources, better managing existing resources, or reducing demand for ED services.
One possible tool for improving resource management and planning is forecasting ED demand (Eitel et al.,
2010). As ED crowding is related both to inflow (patients arriving) and outflow (discharge, hospitalization,
or death), it is useful to have forecasting of both arrivals (inflow) and hospitalizations (outflow). Allocating
resources sufficient for forecasted average ED demand will inevitably lead to bottlenecks during peaks driven
by natural variability in ED arrivals (Higginson et al., 2011). Thus, forecasts that accurately capture the
expected variability in demand are needed for planning.

A challenge faced by practitioners seeking to design an ED demand forecasting system is choosing between
the wide variety of statistical and machine learning algorithms that have been previously applied to the
problem. Algorithms described in the literature are based on classical time series models such as ARIMA
(Choudhury and Urena, 2020), regression models (Marcilio et al., 2013), machine learning algorithms such
as support vector machines (Zlotnik et al., 2015), and neural networks (Zhao et al., 2022), to name only
a few examples. Choosing between the numerous available prediction algorithms is difficult because it is
almost never known a-priori which algorithm will perform best in a new setting. In addition, it is possible
that the best algorithm will vary for different EDs or that the best-performing algorithm will change over
time as data accumulates. As such, ensemble methods that combine predictions from multiple algorithms,
adaptively favoring those that perform the best, are desirable, as they obviate the need to choose and rely
on an algorithm in advance (van der Laan et al., 2007). There has been significant research in statistics
and computer science analyzing the properties of various methods of forming ensembles; in general, under
mild assumptions ensemble are expected to perform as well as the best input algorithms (Cesa-Bianchi
and Lugosi, 2006; Benkeser et al., 2018; Wintenberger, 2017). Empirically, ensembles have been found to
perform well for point forecasts: for example, ensemble methods performed consistently better than relying
on a single method for predicting patient demand at Urgent Care Clinics in New Zealand (Maddigan and
Susnjak, 2022).

The variability inherent to ED demand can be addressed via methods that produce probablistic forecasts,
such as in the form of prediction intervals. Defining quantiles of the predictive distribution of arrivals or
hospitalizations as the statistical parameter of interest is therefore natural: the 50% quantile (median) can
be used as point prediction, and upper and lower quantiles can be used to form prediction intervals. In this
work, we focus on producing 80% prediction intervals formed from estimates of the 10% and 90% conditional
quantiles. This approach draws on the long line of research into conditional quantile estimation, for which
numerous statistical and machine learning approaches have been developed.

Using ensemble methods to predict the quantiles used to form prediction intervals alleviates the need to
choose one particular prediction algorithm for every ED, as we instead adaptively choose the best-performing
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algorithms. However, there is no guarantee that the prediction intervals produced by the ensemble will have
good finite sample properties (similarly, there is no guarantee that any of the base methods taken alone will
yield accurate prediction intervals). For example, we would hope that the 80% prediction intervals produced
by ensemble quantile predictions will indeed include the observed number of arrivals (or hospitalizations)
nearly 80% of the time. In the statistics and machine learning communities there has been a surge of interest
in conformal inference, a family of techniques for forming valid prediction intervals based on the output of
any prediction method (Vovk et al., 2005). Traditional conformal inference techniques hinge primarily on
the assumption of exchangeability of the observed data (Angelopoulos and Bates, 2023). As this assumption
does not typically hold for time series data, recent research has adapted conformal inference techniques this
setting. In particular, Adaptive Conformal Inference (ACI) is a family of algorithms that adjust prediction
intervals in response to the observations (Gibbs and Candès, 2021, 2022; Zaffran et al., 2022). For example,
if the prediction intervals from an ensemble are systematically too small or too large, this will be corrected
using ACI. We investigate the use of ACI to improve the empirical performance of the prediction intervals
in our dataset.

In this work, we describe an integrated forecasting pipeline for point and prediction intervals of ED
arrivals and subsequent hospitalizations. The pipeline incorporates three major components: in the first
step, a library of base algorithms are trained and used to produce initial quantile predictions. In the second
step, the initial predictions for each quantile are weighted according to their prior empirical performance to
form an ensemble prediction. In the final step, the ensemble prediction intervals are post-processed using
ACI to improve their performance in finite horizons. We apply the pipeline to generate point forecasts and
80% prediction intervals for arrivals and hospitalizations at EDs in a regional health network.

The rest of the paper unfolds as follows. Section 2 introduces the data and a descriptive analysis of
arrivals and hospitalizations. Section 3 formalizes the goal of producing point and prediction intervals as a
conditional quantile estimation task and defines evaluation metrics. Section 4 describes in detail each step
of the integrated forecasting pipeline. Section 5 presents empirical results based on applying the pipeline
to forecast demand in EDs in Île-de-France, France. Section 6 discusses our findings and avenues for future
research.

Prior Work ED demand forecasting has been the subject of significant research. Existing approaches
vary widely in terms of the forecasting goal (such as focusing on daily, weekly, or monthly forecast horizons),
the statistical and machine learning algorithms that are applied, the external covariates used, and how the
results are evaluated. We refer to several systematic reviews for a thorough survey (Wargon et al., 2009; Gul
and Celik, 2020; Jiang et al., 2022). Most papers forecast the number of ED arrivals; relatively fewer papers
attempt to predict in advance the number of hospitalizations originating from an ED, and are typically
applied to a relatively small number of EDs (Jiang et al., 2022). Methodologically, our approach is closely
related to that of Rostami-Tabar et al. (2023), who apply several quantile estimation algorithms to produce
predictions of hourly emergency department arrivals at a large emergency department. Our work can be
thought of as complementary to their approach in that we also focus on probabilistic forecasting via quantile
prediction, but we take the additional step of aggregating predictions from many algorithms using ensemble
methods. We also extend their approach by post-processing the prediction intervals using conformal inference
techniques to improve finite sample performance.

2 Descriptive Analysis

2.1 Data

The network of EDs in the Île-de-France region of France, encompassing the Paris metropolitan area, serves
a population of over 12 million inhabitants. EDs in the network are located within health establishments
(such as hospitals). In some cases, a health establishment may house multiple EDs; for example, a hospital
may separate their pediatric and adult emergency services. All the EDs transmit summary arrival data daily
to a central repository managed by the Regional Health Agency (Agence Régionale de Santé). The raw
dataset for this study is derived from this source and includes visits from 2014-2018.

Each arrival in the raw dataset has metadata indicating the ED, date and time of arrival, date and
time of discharge, mode of discharge, and diagnosis code (ICD-10). The times of arrival and discharge
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have been previously anonymized by the addition of random noise (±2m30s). Arrivals with discharge coded
as hospitalization in the same health establishment or as hospitalization in another establishment were
categorized as hospitalizations. The aggregate number of arrivals and hospitalizations per ED by day of
arrival was then calculated. When no arrivals are reported for an ED during a day, it is impossible to know
whether the ED indeed received no arrivals or if the data transfer failed for that day. We treat any such day
as having missing data for arrivals (missing data will be discussed in the paragraph below). To address the
possibility that EDs exceptionally closed for part of the day, we calculated for each ED the mean number
of hours per day in which there was at least one arrival. Days with less than one-half the mean number of
hours with at least one arrival were flagged as probable days in which the ED was exceptionally closed, and
were removed from the dataset. The analysis dataset was subsequently formed by selecting the emergency
departments that reported at least 200 days of data and at least one hospitalization in each of the years
2014–2018, for a total of 72 EDs.

Data Quality Arrival data may be missing or inaccurate for several reasons. Data related to every arrival
were transmitted once per day from each emergency department to a centralized data repository. Data for
some days are either not available in the analysis dataset or the number of arrivals or hospitalizations is
reported as zero due to technical failures in the transmission process. There may be outliers in the dataset
that arise for administrative reasons. For example, some emergency departments may be exceptionally closed
for a day or part of a day, resulting in a smaller than usual number of arrivals and hospitalizations. Data
that are successfully reported may be inaccurate due to human error in the data collection process. More
accurate data collection would be inherently very difficult in this setting given the exigencies of emergency
medicine. The goal of our work is therefore to predict the observed arrivals and hospitalizations, which we
emphasize is not equivalent to predicting the true number of arrivals and hospitalizations which may have
been different.

Enrichment Several additional variables thought to be possibly related to ED demand were collected.
First, French national holidays and public school vacation periods were obtained (data.gouv.fr, 2023; Augusti,
2023). In addition, an indicator was added for days following a national holiday. An indicator was also
added for any Friday immediately following a national holiday, as they are commonly taken as a vacation
day. Indicators of the dates January 1st, July 14th, December 25th, and December 31st were also included
as covariates to capture any pattern relating to the corresponding holidays. Meteorological variables (daily
minimum and maximum temperature) were gathered from the closest Automated Surface Observing System
location to each ED with data availability covering the study period (Salmon, 2023). Missing daily minimum
or maximum temperatures were imputed with linear interpolation. Daily precipitation data (measured in
tenths of millimeters) were gathered from the nearest monitoring station to each ED in the Global Historical
Climatology Network (Menne et al., 2012). One-day lagged values of the meteorological variables were
included as covariates, representing the information that would be available at the time of prediction. Weekly
incidence of chickenpox, acute diarrhea, and flu-like maladies in the Île-de-France region were sourced the
Sentinelles public health surveillance system (Valleron et al., 1986; Flahault et al., 2006). Weather variables
were lagged by one day and weekly disease incidence lagged by one week, again to ensure predictions are
made based only on covariates available at the time of prediction.

2.2 Descriptive Analysis

To contextualize the goal of point and interval predictions for arrivals and hospitalizations at EDs we per-
formed several descriptive analyses. The emergency departments in the analysis dataset cover a range of
activity levels (Table 1). The average daily arrivals at each emergency department ranged from 27.2 to
248.2 (the overall average number of arrivals each day across all emergency departments was 113.1), and the
average number of hospitalizations each day ranged from 3 to 49.1 (overall average: 17.3). Temporal trends
in arrivals and hospitalizations were heterogeneous across the EDs in the analysis dataset. As an example,
Figure 1 displays a selected ED that exhibits immediately apparent seasonal trends in which arrivals and
hospitalizations are lower in summer, particularly in August which is a common time for vacation in the
region. Some emergency departments exhibited different flows depending on the day of the week; in some
cases, arrivals were lower during the weekend and higher on Monday; however, this pattern was not universal.
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ED summary measure Average across all EDs (range across all EDs)
Most arrivals in one day 193.2 (72.0-474.0)
Average arrivals in one day 113.1 (27.2-248.2)
Fewest arrivals in one day 54.0 (8.0-158.0)
Days of missing arrivals 38.5 (0.0-148.0)

Most hospitalizations in one day 40.5 (10.0-114.0)
Average hospitalizations in one day 17.3 (3.0-49.1)
Fewest hospitalizations in one day 3.5 (0.0-14.0)
Days of missing hospitalizations 38.7 (0.0-148.0)

Table 1: Summary measures of daily arrivals and hospitalizations for EDs in the analysis dataset.
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Figure 1: Illustrative time series of daily arrivals (A) and hospitalizations (B) in one ED selected from the
analysis dataset.

The raw arrivals dataset includes an ICD-10 diagnosis code which can be used to understand reasons
why patients seek emergency treatment. Due to high levels of missingness (25.3% of arrivals are missing a
diagnosis code), we only use these data to illustrate broad trends. Hospitalizations for acute bronchiolitis,
asthma, and fracture of femur are shown in Figure 2 as an illustrative example. Acute bronchiolitis follows
an obvious seasonal trend, peaking in winter, while femur fractures have no discernable pattern; asthma is
somewhere in between. These examples illustrate how the number of arrivals and hospitalizations can be
seen as the aggregation of many different processes, some of which are more predictable than others. From
this point of view it is clear there is a bound on the possible accuracy of point predictions of the daily number
of arrivals and hospitalizations. For example, it is unlikely that we will be able to predict exactly how many
people will suffer a femur fracture on any particular day. On the other hand, the variability in the number of
femur fractures is consistent over time. This suggests that it is possible to produce high-quality prediction
intervals that accurately characterize the variability in arrivals and hospitalizations.
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Figure 2: Hospitalizations coded with ICD-10 block code J21 (acute bronchiolitis), J45 (asthma), and
S72 (fracture of femur) as percentage of total daily hospitalizations in all EDs in the analysis dataset.
Hospitalizations for these three diagnoses show different seasonality, with bronchiolitis following a strong
seasonal trend, asthma a weak trend, and fracture of the femur no trend visible to the naked eye.

3 Goals and Metrics

Informally, the overall goal is to make one-day-ahead point and 80% interval predictions for daily arrivals
and hospitalizations for each ED in the analysis dataset. First, we formalize this goal statistically as a
conditional quantile estimation task. We then discuss the evaluation metrics used to evaluate the quality of
the forecasts.

3.1 Forecasting Task

Let ∆t indicate whether data for the number of arrivals (or subsequent hospitalizations) is available at an
ED on day t, where ∆t = 1 indicates data are available and ∆t = 0 indicates otherwise. Let yt be the
number of arrivals (or subsequent hospitalizations) at an ED on day t. We seek to predict quantiles of the
predictive distribution of yt conditional on all data available before time day t. Specifically, we define a point
prediction ŷt as the 50% quantile (median) of the predictive distribution. To form a (1−β)×100% prediction
interval, we predict the α1 = β/2-quantile and α2 = (1 − β)/2-quantile of the predictive distribution, with

ℓ̂t the predicted lower quantile and ût the upper quantile. We set β = 0.2 such that (1− β)× 100% = 80%
prediction intervals are targeted using estimates of the α1 = 10% and α2 = 90% quantiles.

3.2 Evaluation Metrics

Evaluating the quality of predictions plays a critical role in our forecasting pipeline. Predictions from a
diverse set of base algorithms are evaluated, and the best-performing ones are given more weight in ensemble
predictions. Both the point and interval predictions are defined in terms of quantiles of the predictive
distribution. As such, we chose to evaluate the estimated quantiles using the quantile loss function (Gneiting,
2011a,b), defined for the α-quantile (α ∈ (0, 1)) as

Lα(ŷ, y) =

{
α|y − ŷ| if y ≥ ŷ,

(1− α)|y − ŷ| if y ≤ ŷ.

where y is the observed value and ŷ is the prediction of the α-quantile. Note that when α = 0.5, the quantile
loss function simplifies to the familiar absolute error loss, which penalizes under- and over-predictions equally.
For estimating other quantiles, the quantile loss function can be thought of as an asymmetric version of the
absolute error loss. For example, when α = 0.1, the loss function penalizes predictions that fall above
the observation more than predictions that fall below the observation, thereby encouraging predictions that
capture the lower tail of the forecast distribution.
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Figure 3: Graphical summary of the forecasting pipeline. In the first step, a set of base algorithms
are applied to produce predictions of the 10%, 50%, and 90% quantiles. The 10% and 90% quantiles are
used to form 80% prediction intervals. In the second step, an ensemble estimate is formed as weighted
combination of the base predictions where well-performing algorithms are given higher weight. In the third
step, the prediction intervals are post-processed using Adaptive Conformal Inference techniques to improve
their empirical coverage. The empirical coverage (EmpCov, with optimal level 80%) and Mean Absolute
Error (MAE, smaller is better) for each method are shown for the ED and time period depicted.
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To evaluate a sequence of predictions, we define an empirical risk as the mean of the quantile loss function
over all days in which data on the outcome are available at horizon T :

Rα(T ) =
1∑T

t=1 ∆t

T∑
t=1

∆tLα(ŷt, yt).

For example, in our evaluations we test the performance of the prediction pipeline for every day in 2018,
and thus T = 365. Importantly, the α-quantile is a minimizer of the α-quantile empirical risk; we therefore
say that the quantile loss function is consistent for the α-quantile parameter. This is an important property
for a loss function to have because it encourages honest forecasts (Gneiting, 2011a).

As a summary measure for the point predictions ŷt, defined as the median of the forecast distribution,
we report the Mean Absolute Error (MAE) at time T :

MAE(T ) = 2R0.5(T ) =
1∑T

t=1 ∆t

n∑
t=1

∆t|yt − ŷt|. (1)

The MAE is twice the empirical risk of the quantile loss when α = 50%, and therefore the MAE is consistent
for the 50% quantile (median) parameter. As a secondary metric we report the Mean Absolute Percentage
Error (MAPE), defined at time T as

MAPE(T ) =
1∑T

t=1 ∆t

T∑
t=1

∆t|yt − ŷt|
max{yt, 1}

. (2)

The MAPE is a commonly used metric in ED demand forecasting studies; however, it has well-documented
drawbacks as an error metric for point predictions (Armstrong and Collopy, 1992; Makridakis, 1993; McKen-
zie, 2011). Specifically, it is non-symmetric: overpredictions and underpredictions incur different penalties
under the MAPE. While asymmetry is desirable if we wish to estimate a lower or upper quantile, for ex-
ample, it leads to unintended consequences when used as an error metric of a point prediction intended to
capture the central tendency of a forecast distribution. In particular, minimizing the MAPE will encourage
predictions that systematically underestimate the observations. As such, from a statistical point of view
we do not recommend using the MAPE, but we report it to facilitate comparisons with other published
approaches.

To evaluate the quality of a sequence of prediction intervals we report the empirical coverage, defined at
time T as:

EmpCov(T ) =
1∑T

t=1 ∆t

T∑
t=1

∆tI[ℓ̂t < yt < ût]. (3)

The empirical coverage is the proportion of observations (arrivals or hospitalizations) that fell within their
respective prediction intervals. In addition, we also report the mean width of the prediction intervals, defined
at time T as

MeanWidth(T ) =
1∑T

t=1 ∆t

T∑
t=1

∆t(ût − ℓ̂t). (4)

In general, we seek sharp prediction intervals that have small mean width while maintaining optimal empirical
coverage.

4 Forecasting Pipeline

In this section we describe an integrated forecasting pipeline for point and interval predictions of daily
arrivals and hospitalizations. The pipeline begins by training a set of base algorithms (Step 1) which are
then weighted according to their empirical performance and combined into ensemble predictions (Step 2).
The resulting prediction intervals are then post-processed using conformal inference techniques to improve
their finite-sample performance (Step 3). The pipeline is summarized visually in Figure 3.
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Algorithm R package Citations
ARIMA, ARIMAX forecast Hyndman and Khandakar (2008); Hyndman et al. (2023)
Quantile Forests grf Athey et al. (2019)

Distributional Random Forests drf Ćevid et al. (2022)
Gradient Boosted Machine gbm Greenwell et al. (2022)
Quantile Generalized Additive Models qgam Fasiolo et al. (2020, 2021a)
Quantile Regression quantreg Koenker (2005); Koenker et al. (2017)

Table 2: Base algorithms used for point and prediction interval estimation.

4.1 Step 1: train base algorithms

The first step in the forecasting pipeline is to apply a variety of algorithms to predict one-day ahead ED
arrivals and hospitalizations. We build a diverse library of algorithms encompassing a variety of approaches,
as we do not know a-priori which algorithms will perform best. The library we used included classical
statistical time-series models (ARIMA, ARIMAX), regression approaches (quantile regression, quantile gen-
eralized additive models) as well as machine learning algorithms (quantile forests, distributional random
forests, generalized boosted regression models). All analyses were conducted using R version 4.2 (R Core
Team, 2022). A summary of the base algorithms is given in Table 2. An overview of the base algorithms
and implementation details, including choices of tuning parameters, is available in the appendix.

As point prediction benchmarks we used two naive algorithms based on predicting previous observed
values. First, we predict that the outcome will be equal to the outcome on the previous day (formallly,
ŷt = yt−1). To capture the possibility of day of the week effects, we also tested a naive algorithm that
predicts the outcome from one week before (ŷt = yt−7).

As an alternate benchmark we adapted an algorithm used by French hospitals to predict minimal hospital
bed requirements, referred to as Besoin Journalier Minimal en Lits, (BJML; Daily Minimal Bed Require-
ment). The BJML forecast for day a t falling in week w ∈ {1, . . . , 52} is defined as the empirical 25% quantile
of historical hospitalizations in an ED for days falling in the same week w. BJML is thus designed to capture
basic seasonal patterns in hospitalizations. We use a straightforward generalization of the BJML to forecast
any α-quantile of ED arrivals and subsequent hospitalizations.

4.2 Step 2: form ensemble predictions

In the second step of the pipeline we combine the predictions from each of the base algorithms as a weighted
average according to the algorithm’s past performance. More formally, suppose we have k = 1, . . . ,K base
algorithms, each yielding a prediction ŷαt,k of the α-quantile of the outcome on day t. We will consider
ensembles formed as a weighted combination of the predictions from each of the base algorithms:

ŷt =

K∑
k=1

wt,kŷt,k,

where wt,k > 0 for k ∈ 1, . . . ,K and
∑K

k=1 wt,k = 1 (that is, wt = {wt,1, . . . , wt,K} is in K-dimensional
simplex, denoted W). The goal is to choose weights that yield an ensemble prediction that performs well
in terms of empirical risk. There has been a vast amount of research on the subject with many different
algorithms for choosing the weights proposed (Cesa-Bianchi and Lugosi, 2006). We compared three different
common approaches, described briefly below. In each case, the ensemble algorithm is applied separately to
form estimates of the 10%, 50%, and 90% quantiles of the forecast distribution of the outcome (arrivals or
hospitalizations). The 10% and 90% quantile estimates are then used to form 80% prediction intervals.

Super Learning In the Super Learning approach (van der Laan et al., 2007; Benkeser et al., 2018; Ecoto
et al., 2021), the weights are chosen to minimize the empirical risk of the ensemble in hindsight: at any time
t < T ,

wt+1 = argmin
w∈W

Rα(t)
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This approach is intuitive: each day, we use the weights that would have yielded the best performance had
they been used in every previous day. This algorithm is also known as Follow the leader in computer science
as the best-performing base algorithm receives the highest weight (Cesa-Bianchi and Lugosi, 2006). A benefit
of Super Learning is that it requires no tuning parameters. However, finding the weights requires solving an
optimization problem, which can be computationally demanding.

Exponentially Weighted Average The Exponentially Weighted Average (EWA) algorithm (Cesa-Bianchi
and Lugosi, 2006) updates the weights assigned to each of the candidate algorithms at time t according to
the rule

wk,t+1 =
wk,t exp (−γLα(ŷk,t, yt))∑K
j=1 wj,t exp (−γLα(ŷj,t, yt))

,

where γ > 0 is a learning rate parameter that controls how quickly the weights can change as new information
is accumulated about the performance of the candidate algorithms. We use the implementation of EWA in
the opera R package that aggregates over a grid of learning rates based on their performance (Gaillard et al.,
2023). The weights at the first timestep can be chosen arbitrarily.

Bernstein Online Aggregation The Bernstein Online Aggregation (BOA) algorithm is similar to EWA,
but features stronger theoretical guarantees (Wintenberger, 2017). BOA updates the weights at time t
according to the modified rule

wk,t+1 =
wk,t exp(−γLα(ŷk,t, yt)(1 + γLα(ŷk,t, yt))))∑K
j=1 wk,t exp(−γLα(ŷk,t, yt)(1 + γLα(ŷk,t, yt)))

,

where γ > 0 is again learning rate parameter. We use a version of BOA as implemented in the opera package
that calibrates the learning rate automatically (Wintenberger, 2017; Gaillard et al., 2023).

4.3 Step 3: conformalize prediction intervals

Our approach so far for forming (1 − β) × 100% prediction intervals hinges on being able to well estimate
lower (β/2) and upper (1− β/2) quantiles. We would expect the prediction intervals formed from estimates
of these quantiles to include the observed data nearly (1−β)% of the time. However, in practice it is possible
for the prediction intervals to fail to achieve optimal coverage. As such, we turn to recent developments in
conformal inference techniques to post-process the prediction intervals. In general, the goal of conformal
inference methods is to produce prediction intervals that provably achieve the optimal level of coverage
without making any distributional assumptions on the underlying data generating process and using the
predictions of any algorithm as input (Shafer and Vovk, 2008; Angelopoulos and Bates, 2023). We will
draw on a recent line of research on ACI methods which were developed specifically for generating online
prediction intervals for time series (Gibbs and Candès, 2021, 2022; Zaffran et al., 2022). The idea of these
methods is to adaptively adjust the prediction intervals generated by a prediction method in response to the
observed data. In a nutshell, if the estimated prediction intervals are too narrow and are not covering the
observed data then they are adjusted to be slightly wider, and vice versa if the intervals are too wide.

More formally, suppose we have a prediction interval with lower and upper bounds ℓ̂t and ût for an ED
on day t. We adjust the size of the prediction interval according to a parameter θt ∈ R: that is, the adjusted
prediction interval has lower bound ℓ̂t − θt and upper bound ût + θt. In the original ACI algorithm of Gibbs
and Candès (2021), after each day we set the parameter value θt+1 for the following day according to a
simple rule, depending on whether number of arrivals (hospitalizations) on day t was inside or outside of the
prediction interval:

• If the observed number of arrivals (hospitalizations) on day t fell within the prediction interval, then
the interval on the next day is made shorter: θt+1 = θt − γα.

• If the observed number of arrivals (hospitalizations) fell outside the prediction interval on day t, then
the interval on the next day is made larger: θt+1 = θt + γ(1− α).
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While the simplicity of this approach is appealing, in practice it is difficult to use because it is not clear
how to set the learning rate parameter γ. To solve this problem, the Aggregated ACI (AgACI) method builds
an ensemble of base ACI algorithms, each using a different learning rate (Zaffran et al., 2022). The lower and
upper bounds of the resulting prediction intervals are then combined using an overarching online aggregation
of experts algorithm. Following Zaffran et al. (2022) we use Bernstein Online Aggregation (Wintenberger,
2017) as the aggregation method. Although there have been several other ACI algorithms proposed, in
practical settings they have been found to yield similar prediction intervals; therefore we consider only
AgACI in this work for simplicity Susmann et al. (2023). We used the implementation of AgACI available
in the ConformalInference R package Susmann et al. (2023).

5 Results

We performed a temporal cross-validation exercise to investigate the performance of our methods. The
forecasting pipeline was used to predict arrivals and hospitalizations for each ED and each day in the
analysis dataset covering 2018. The base algorithms were trained separately on each ED in the analysis
dataset, and were retrained after each month in 2018. After each day, the ensemble weights and conformal
prediction intervals were updated using the true number of arrivals and hospitalizations observed on that
day. For the point forecasts we report the Mean Absolute Error (1) and Mean Absolute Percentage Error
(2) over days in 2018. For prediction intervals we report the empirical coverage (3) and mean interval width
(4) over 2018. Illustrative point and interval predictions for one ED from May to October 2018 are shown
in Figure 3. Additional illustrative predictions based on Bernstein Online Aggregation for one ED in the
analysis dataset for all of 2018 are shown in Appendix Figure 6.

5.1 Point forecasts

The performance of the point forecasts for arrivals and hospitalizations from each of the benchmarks, base
algorithms and ensemble methods, averaged across all the EDs in the analysis dataset, is shown in Table
3. The benchmark methods, which include BJML (the median of arrivals or hospitalizations from the same
week in previous years) and predicting with the number of arrivals or hospitalizations observed one day or
seven days before the target date (referred to as ŷt−1 and ŷt−7, respectively), had higher MAE and MAPE
than any of the base algorithms. Among the base algorithms, quantile regression achieved the lowest average
MAE for arrivals and tied for the lowest average MAE for hospitalizations (10.1 and 3.5, respectively). The
ensemble methods constructed using Exponentially Weighted Averaging, Super Learning, and Bernstein
Online Aggregation generally exhibited as good or better performance than the base algorithms. For arrivals
the forecasts constructed using Bernstein Online Aggregation achieved the lowest average MAE (10.0), and
for hospitalizations Bernstein Online Aggregation, Exponentially Weighted Averaging, and Super Learner
tied for the lowest average MAE (3.4). While the ensemble methods were not constructed to minimize the
average MAPE, Bernstein Online Aggregation had the lowest (or tied for lowest) average MAPE of all the
algorithms considered.

The best-performing base algorithm depended on the ED and on whether arrivals or hospitalizations
were the forecast target. Table 4 shows the percentage of EDs for which each of the base algorithms
achieved the lowest MAE or MAPE for arrivals and hospitalizations. For arrivals, quantile regression was
the best-performing algorithm in 69.4% of EDs in terms of MAE, followed by Quantile Generalized Additive
Model (best MAE in 19.4% of EDs) and Gradient Boosted Machine (best MAE in 6.9% of EDs). For
hospitalizations, Quantile Regression a Quantile Generalized Additive Model were tied, each having the best
MAE in 25.0% of EDs, followed by Gradient Boosted Machines, Distributinoal Random Forest, and ARIMA
(best MAE in 8.3% of EDs). The best-performing methods were similar in terms of the MAPE. That none
of the base algorithms dominated across all EDs for either arrivals or hospitalizations suggests that the use
of ensemble methods, which adaptively upweight the best-performing method adaptively, is warranted.

To further illustrate the variability of algorithm performance across EDs, Figure 4 shows the MAE
for arrivals and hospitalizations by ED for Bernstein Online Aggregation, Gradient Boosted Machine, and
Quantile Regression. As suggested previously in Table 4, there was not a consistent trend across EDs in
terms of Gradient Boosted Machine or Quantile Regression having lower MAE. The ensemble Bernstein
Online Aggregation method tended to match or outperform the performance of the base algorithms. This
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Arrivals Hospitalizations
Algorithm MAE MAPE MAE MAPE
Benchmark
BJML 15.2 13.1% 4.1 40.9%
Yt−1 15.1 14.1% 4.9 43.2%
Yt−7 14.5 13.8% 4.7 41.9%
Base Algorithms
ARIMA 11.8 11.2% 3.6 34.3%
ARIMAX 11.7 11.1% 3.7 34.6%
Distributional Random Forest 11.6 10.6% 3.6 31.8%
Generalized Random Forest 11.3 10.5% 3.5 31.6%
Gradient Boosted Machine 10.5 10.0% 3.5 32.6%
Quantile Generalized Additive Model 10.3 9.9% 3.5 33.0%
Quantile Regression 10.1 9.7% 3.5 32.2%
Ensemble Methods
Bernstein Online Aggregation 10.0 9.6% 3.4 31.2%
Exponentially Weighted Average 10.1 9.6% 3.4 31.7%
Super Learner 10.1 9.7% 3.4 31.4%

Table 3: Performance of point predictions from each of the base algorithms and ensemble methods for
arrivals and hospitalizations in terms of Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) averaged over all EDs in the analysis dataset. The best-performing algorithm(s) in terms of each
metric are bolded.

suggests that the ensemble was able to detect which methods perform better in a particular ED and give
their predictions more weight in the combined prediction.

5.2 Prediction intervals

The performance of the predictions intervals before and after conformalization for arrivals and hospitaliza-
tions is shown in Table 5. The benchmark method BJML, which forms interval predictions by using empirical
quantiles of arrivals and hospitalizations in the same week of previous years, had empirical coverage farthest
from the optimal 80% level before conformalization. Among the base algorithms, empirical coverage varied
widely. The classical time-series methods ARIMA and ARIMAX (ARIMA with covariates) had near-optimal
empirical coverage for both arrivals and hospitalizations before conformalization, although their mean inter-
val widths were larger than other methods. Finally, the ensemble methods yielded prediction intervals that
slightly undercovered, although the intervals from Bernstein Online Aggregation had near optimal 79.3%
empirical coverage for arrivals and hospitalizations, respectively, before conformalization.

After conformalization, prediction intervals from the benchmark BJML method, the base algorithms,
and the ensemble methods all achieved near optimal empirical coverage ranging from 79.6% to 80.5% for
arrivals and 80.3% to 81.4% for hospitalizations. The mean interval widths varied by algorithm even after
conformalization, illustrating that even though all methods achieved near optimal empirical coverage, the
sharpness of the intervals varied across methods. For hospitalizations, the ensemble methods had lower
mean interval widths than any of the base algorithms, and specifically Bernstein Online Aggregation had
the smallest mean interval widths (11.7).

To understand how performance of the intervals from the ensemble methods varied across EDs, Figure 5
shows the empirical coverage and mean interval widths for every ED before and after conformalization,
illustrating the ameliorative effect of conformalization. In general, the original prediction intervals from
the ensemble methods tended to systematically undercover, which was corrected by conformalization. Even
for Bernstein Online Aggregation, which yielded intervals with near optimal empirical coverage before con-
formalization in aggregate across all EDs, conformalization improves the performance of the intervals by
correcting EDs with intervals that tended to under- or over-cover. Appendix Figures 7 and 8 show similar
results for the MAPE.
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Figure 4: Mean absolute error of point predictions for (A) arrivals and (B) hospitalizations from Bernstein
Online Aggregation, Gradient Boosted Machine, and Quantile Regression. Each point shows the performance
of an algorithm in one ED, and points from the same ED are connected by a line. The x-axis is the mean daily
arrivals and hospitalizations across all days in the analysis dataset. Between Gradient Boosted Machines
and Quantile Regression, the better performing method depends on the ED. The ensemble method Bernstein
Online Aggregation tended to achieve the lowest MAE across all EDs.
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Figure 5: Mean interval width and empirical coverage of ensemble prediction intervals for each ED in
the analysis dataset before and after conformalization. For each of the ensemble algorithms, the empirical
coverage is closer to the optimal 80% level after conformalization.
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Base Algorithm Achieved best MAE in
X% of EDs

Achieved best MAPE
in X% of EDs

Arrivals
ARIMA 0.0% 0.0%
ARIMAX 2.8% 0.0%
Distributional Random Forest 1.4% 2.8%
Gradient Boosted Machine 6.9% 13.9%
Generalized Random Forest 0.0% 2.8%
Quantile Generalized Additive Model 19.4% 13.9%
Quantile Regression 69.4% 66.7%

Hospitalizations
ARIMA 8.3% 5.6%
ARIMAX 1.4% 2.8%
Distributional Random Forest 8.3% 15.3%
Gradient Boosted Machine 8.3% 9.7%
Generalized Random Forest 25.0% 23.6%
Quantile Generalized Additive Model 23.6% 19.4%
Quantile Regression 25.0% 23.6%

Table 4: Percentage of EDs for which each of the base algorithms achieved the lowest Mean Absolute Error
(MAE) or Mean Absolute Percentage Error (MAPE) among all of the base algorithms. The base algorithms
that performed best in terms of MAE and MAPE in the highest percentage of EDs is bolded. No single base
algorithm dominated the others in terms of having the lowest MAE or MAPE across all EDs.

6 Discussion

A core challenge in ED forecasting is due to the inherent variability in demand for ED services. The descrip-
tive analyses suggest that ED demand can be decomposed into many sources (such as acute bronchiolitis,
asthma, or femur fractures, among many others). While some of these sources are in some sense predictable,
due to following seasonal trends or being related to a measurable external factor, others are less so. For
example, it is unlikely that there exists an external covariate that could help predict with precision how many
people will suffer a femur fracture on any given day. Thus, there is a bound on how accurate point forecasts
of ED demand can be arising from the irreducible randomness of the underlying processes that generate
demand. In this work, our approach acknowledges the variability inherent to ED demand by augmenting
point forecasts with prediction intervals. Empirically, we found that the 80% prediction intervals generated
by the forecasting pipeline achieve near optimal performance, in that the observed number of arrivals and
hospitalizations are included within the corresponding prediction interval nearly 80% of the time. This result
shows that while ED demand is variable, making very precise point predictions difficult, the variability in
ED demand itself is predictable, which makes it possible to generate well-performing prediction intervals.

A fundamental component of our forecasting pipeline is combining predictions from multiple base algo-
rithms based on their empirical performance into an ensemble prediction. We found that for both point and
interval forecasts, predictions based on ensembles performed better than the input predictions from each of
the base algorithms. Although the performance of the three ensemble methods we investigated was compara-
ble, Bernstein Online Aggregation was slightly more performant. In addition, the lightweight computational
requirements of Bernstein Online Aggregation make it an attractive choice.

To the best of our knowledge, this is the first paper to apply conformal prediction techniques to forecasts
of ED demand. We found that post-processing interval forecasts using AgACI (Zaffran et al., 2022) yielded
updated intervals that achieved near optimal empirical coverage, regardless of the original algorithm used
to produce the intervals. In cases where the original intervals already had good coverage, applying AgACI
did not make their performance worse. Due to the simplicity and low computational burden of AgACI, this
suggests that there is little downside to conformalizing intervals.

Although the final predictions from our forecasting pipeline perform well, it is notable that some of the
base algorithms yield predictions that are of high quality on their own. For example, quantile regression
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(A) Arrivals
Coverage Interval width

Algorithm Original Conformal Original Conformal
Benchmark
BJML 68.2% 79.6% 36.7 44.7
Base Algorithms
ARIMA 77.8% 80.1% 35.6 38.5
ARIMAX 78.3% 80.1% 35.7 38.3
Distributional Random Forest 82.9% 80.5% 37.7 37.3
Generalized Random Forest 82.8% 80.4% 37.3 37.1
Gradient Boosted Machine 73.4% 79.6% 29.9 34.8
Quantile Generalized Additive Model 78.4% 80.2% 31.8 33.7
Quantile Regression 76.3% 80.0% 29.9 33.1
Ensemble Methods
Bernstein Online Aggregation 79.3% 80.4% 32.2 33.8
Exponentially Weighted Average 77.0% 80.2% 30.8 34.0
Super Learner 76.1% 80.1% 30.1 33.5

(B) Hospitalizations
Coverage Interval width

Algorithm Original Conformal Original Conformal
Benchmarks
BJML 76.9% 80.3% 11.9 13.5
Base Algorithms
ARIMAX 80.4% 81.0% 12.1 12.7
ARIMA 80.4% 81.2% 11.8 12.4
Quantile Generalized Additive Model 79.2% 81.4% 11.3 12.1
Gradient Boosted Machine 74.1% 80.5% 10.2 12.1
Distributional Random Forest 85.0% 80.8% 11.6 11.9
Quantile Regression 76.4% 80.7% 10.6 11.9
Generalized Random Forest 85.2% 80.7% 11.5 11.9
Ensemble Methods
Bernstein Online Aggregation 79.3% 81.4% 10.9 11.7
Exponentially Weighted Average 76.4% 80.9% 10.3 11.8
Super Learner 76.4% 80.9% 10.2 11.8

Table 5: Performance of prediction intervals in terms of empirical coverage (with optimal level 80%) and
mean interval width before and after conformalization (Step 3 of the forecasting pipeline) from each of the
base algorithms and ensemble methods for (A) arrivals and (B) hospitalizations in terms of empirical coverage
and mean interval width averaged over all EDs in the analysis dataset. The best-performing algorithm(s) in
terms of each metric are bolded. All methods had near optimal empirical coverage after conformalization.
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achieved average MAE of 9.6 and 3.4 for arrivals and hospitalizations, respectively, versus 9.3 and 3.3 for
Bernstein Online Aggregation. After conformalization, quantile regression based prediction intervals had
near optimal empirical coverage and interval widths comparable to the best-performing ensemble. Given
these results, one may wonder why the additional step of training multiple base algorithms and applying
ensembles is warranted. Indeed, depending on the context the improved performance of ensemble methods
may not be worth their added computational and logistical overhead. However, in settings like ours, we note
that ensemble methods allow the predictions to adapt to the possibly heterogenous trends in ED demand
experienced across many EDs in a network. Indeed, we found that the best-performing base algorithm varied
across EDs, and the ensemble methods generally performed as well or better than the best base algorithm.
In addition, ensembles are flexible in that new prediction methods can be integrated into the system as they
become available: for example, if a new forecasting method is invented, it can be added to the library of
base algorithms and will only start to influence forecasts if it performs well empirically.

Our work suggests multiple directions for future research. First, going beyond the retrospective valida-
tions presented here, the forecasting pipeline could also be applied in a prospective study design to better
understand its performance in real-world scenarios. Second, we focused on producing 80% prediction inter-
vals of arrivals and hospitalizations. The forecasting pipeline could be extended to produce more than one
prediction interval (for example, a collection of 80%, 90%, and 95% intervals.)

Summary points

What was already known on the topic • Machine learning and time-series prediction for emergency
departments can help improve quality of care.

• A number of related covariates, such as calendar and weather variables, may be relevant to making
emergency department predictions.

What this study added to our knowledge • Ensemble methods that combine predictions from mul-
tiple prediction algorithms yield good results for emergency department prediction tasks.

• Quantile regression methods combined with conformal inference can accurately characterize un-
certainty in emergency department arrivals and hospitalizations.
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(Ministère de la Santé). This research is partially supported by the Agence Nationale de la Recherche as
part of the “Investissements d’avenir” program (reference ANR-19-P3IA-0001; PRAIRIE 3IA Institute).

Authors’ contributions HS conducted the data analysis and drafted the manuscript. HS, AC, JJ,
MW, and EB conceived the study design. PA contributed to the initiation of the study and corresponding
methodology.

References

Anastasios N. Angelopoulos and Stephen Bates. Conformal prediction: A gentle introduction. Foundations
and Trends® in Machine Learning, 16(4):494–591, 2023. ISSN 1935-8237. doi: 10.1561/2200000101. URL
http://dx.doi.org/10.1561/2200000101.

J. Scott Armstrong and Fred Collopy. Error measures for generalizing about forecasting methods: Empir-
ical comparisons. International Journal of Forecasting, 8(1):69–80, 1992. ISSN 0169-2070. doi: https:
//doi.org/10.1016/0169-2070(92)90008-W. URL https://www.sciencedirect.com/science/article/

pii/016920709290008W.

Susan Athey, Julie Tibshirani, and Stefan Wager. Generalized random forests. The Annals of Statistics, 47
(2):1148 – 1178, 2019. doi: 10.1214/18-AOS1709. URL https://doi.org/10.1214/18-AOS1709.

Antoine Augusti. Vacances scolaires par zones. Technical Report 5aeb1610c751df5402613fae, data.gouv.fr,
2023. URL https://www.data.gouv.fr/fr/datasets/vacances-scolaires-par-zones.

David Benkeser, Cheng Ju, Sam Lendle, and Mark van der Laan. Online cross-validation-based ensemble
learning. Statistics in Medicine, 37(2):249–260, 2018. doi: https://doi.org/10.1002/sim.7320. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/sim.7320.

Kenneth Bond, Maria B. Ospina, Sandra Blitz, Marc Afilalo, Sam G. Campbell, Michael Bullard, Grant
Innes, Brian Holroyd, Gil Curry, Michael Schull, and Brian H. Rowe. Frequency, determinants and impact
of overcrowding in emergency departments in canada: A national survey. Healthcare Quarterly, 10(4):
32–40, Sep 2007. ISSN 1710-2774. URL https://www.longwoods.com/product/19312.

Kenneth P. Burnham and David Raymond Anderson. Model selection and multimodel inference : a prac-
tical information-theoretic approach. Springer, New York, 2nd ed edition, 2002. ISBN 0387953647;
9780387953649.

Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge University Press,
2006. doi: 10.1017/CBO9780511546921.

Avishek Choudhury and Estefania Urena. Forecasting hourly emergency department arrival using time series
analysis. British Journal of Healthcare Management, 26(1):34–43, 2020. doi: 10.12968/bjhc.2019.0067.
URL https://doi.org/10.12968/bjhc.2019.0067.

Helene Colineaux, Fanny Pelissier, Laure Pourcel, Thierry Lang, Michelle Kelly-Irving, Olivier Azema, San-
drine Charpentier, and Sebastien Lamy. Why are people increasingly attending the emergency depart-
ment? a study of the French healthcare system. Emergency Medicine Journal, 36(9):548–553, 2019. ISSN
1472-0205. doi: 10.1136/emermed-2018-208333. URL https://emj.bmj.com/content/36/9/548.

data.gouv.fr. Jours fériés en France. Technical Report 5b3cc551c751df4822526c1c, data.gouv.fr, 2023. URL
https://www.data.gouv.fr/fr/datasets/jours-feries-en-france.
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7 Appendix

7.1 Covariates

Let yt be the outcome (arrivals or hospitalizations) in an ED on day t. The following covariates are used for
predicting yt (one-day lag refers to day t− 1):

• yt−1: one-day lagged outcome.

• yt−7: one-day lagged outcome.

• yt−1 − yt−2: difference in previous two outcomes.

• Indicator of national holiday. National holidays are January 1, Easter Monday, May 1st, May 8th, As-
cension Day, Whit Monday, July 14th, Assumption Day, All Saints Day, November 11th, and December
25th.

• Indicator of day following a national holiday.

• Indicator of a Friday following a national holiday.

• Separate indicators for January 1st, July 14th, December 25th, December 31st.

• Indicator of school vacation.

• One-week lagged incidence in Île-de-France of flu-like maladies, diarrhea, and chickenpox.

• One-day lagged values of maximum observed temperature, minimum observed temperature, and ob-
served precipitation.
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7.2 Overview of base algorithms

Time-series models The Autoregressive integrated moving average (ARIMA) model is widely used for
time-series forecasting. An ARIMA model is defined by the number of lags p, order of differencing d, and
order of moving differences q, where each parameter is a positive integer. Formally, an ARIMA(p, d, q)
process is characterized by

ϕ(B)(1−Bd)yt = c+ θ(B)εt,

where B is the backshift operator (that is, Bayt = yt−a), ϕ and θ are polynomials of order p and q, and
(εt) is an independent and identically distributed (iid) white noise process with mean 0 and variance σ2.
The parameter values were chosen in a model selection procedure based on unit-root tests and minimizing
the corrected AIC of the considered models (Burnham and Anderson, 2002; Hyndman and Khandakar,
2008). Prediction intervals were defined using the estimated variance of the ARIMA process in the form
[ŷt − q0.1σ̂, ŷt + q0.9σ̂], where ŷt is the ARIMA point estimate, qα is the α-quantile of the standard normal
distribution, and σ̂ is the estimated ARIMA variance. We also used ARIMA with covariates (referred to as
ARIMAX) as a candidate algorithm, with holidays, school vacation, weather, and public health surveillance
covariates as described previously (Section 7.1).

Regression approach Following a typical regression setup, quantile regression assumes a linear relation-
ship between a vector of covariates xt and the outcome yt. Rather than minimizing the mean squared error of
the predictions, as in standard linear regression, in quantile regression the mean quantile loss is minimized.
All variables described in Section 7.1 were used as covariates. In addition, one-day and one-week lagged
values of the outcome were included as additional covariates to capture temporal autocorrelation, as well
as the difference in the prior two days outcomes (designed to capture whether the outcome is increasing or
decreasing). Formally, we assume the linear relationship

yt = α0 + α1yt−1 + α2yt−7 + α3(yt−1 − yt−2) + β⊤Xt + ϵt

where yt is the outcome (arrivals or hospitalizations) on day t, Xt is a vector of covariates with associated
coefficients β, and ϵt is a residual.

A potential shortcoming of quantile regression is that it assumes a linear relationship between covariates
and outcome. However, it is not clear a-priori that this linearity assumption is warranted in our setting. For
example, we might expect maximum daily temperature to have a non-linear relationship with emergency
department arrivals. Generalized Additive Models (GAMs) allow for non-linear relationships between covari-
ates and outcome as modeled by smooth functions, such as splines (Hastie and Tibshirani, 1986). The GAM
framework has been extended to quantile estimation, with fast computational procedures available (Fasiolo
et al., 2021b,a). For our application, we used the same covariates as for quantile regression. Spline-based
smoothers were used to model the relationship between the continuous covariates and the outcome.

Machine learning approach Several machine learning approaches were also included in the library of
base algorithms, focusing particularly on flexible tree-based approaches. Generalized Random Forest (GRF)
framework is one such method method for growing forests of decision trees that can be used for estimating
diverse statistical functionals (Athey et al., 2019). We use a version of GRF, Quantile Random Forests
(QRF), tailored to estimating conditional quantiles. Distributional Random Forests (DRF) are a further
generalization of the Random Forest algorithm that yields estimates of the full conditional distribution
of an outcome from which any statistical summary measure, such as quantiles, can be calculated (Ćevid
et al., 2022). As a final machine learning approach we considered Gradient boosting, a general technique for
combining many weak learners (such as decision trees) into an ensemble estimator (Friedman, 2001). The
underlying idea is to iteratively improve an estimator by training a new learner on the errors of the current
model. We apply gradient boosting with the quantile loss function, thus estimating conditional quantiles of
the forecast distribution.

7.3 Base algorithm implementation details

Base algorithm details:
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• ARIMA and ARIMAX: We used the auto.arima model selection procedure for ARIMA, which
chooses the ARIMA specification based on unit root tests and corrected AIC (see Burnham and An-
derson (2002); the model selection algorithm is described in Hyndman and Khandakar (2008)). No
seasonality was allowed in the model selection procedure. For ARIMAX, all covariates except the
lagged outcomes (yt−1, yt−7) and differenced outcomes (yt−1 − yt−2)) were included.

• Quantile Regression: default parameters from the quantreg package were used. All covariates were
included.

• Quantile Generalized Additive Models: default parameters from the qgam package were used.
All covariates were included. Spline smoothers were applied to all variables that were not indicators.

• Generalized Random Forest: default tuning parameters from the grf package were used. All
covariates were included.

• Directional Random Forest: default tuning parameters from the drf package were used. All
covariates were included.

• Gradient Boosted Machine: default tuning parameters from the gbm package were used. All
covariates were included.

7.4 Additional results

24



30

60

90

Jan 2018 Apr 2018 Jul 2018 Oct 2018 Jan 2019
Date

A
rr

iv
al

s

(A) Arrivals

0

10

20

30

Jan 2018 Apr 2018 Jul 2018 Oct 2018 Jan 2019
Date

H
os

pi
ta

liz
at

io
ns

(B) Hospitalizations

Figure 6: One-day ahead point predictions (black line) and 80% prediction intervals (gray lines) based on
Bernstein Online Aggregation for arrivals (A) and hospitalizations (B) for one ED in the analysis dataset.
Observed number of arrivals and hospitalizations are shown as blue points.
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Figure 7: Mean absolute percentage error (MAPE) of point predictions for (A) arrivals and (B) hospitaliza-
tions from Bernstein Online Aggregation, Gradient Boosted Machine, and Quantile Regression. Each point
shows the performance of an algorithm in one ED, and points from the same ED are connected by a line.
The x-axis is the mean daily arrivals and hospitalizations across all days in the analysis dataset.
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Figure 8: Mean absolute percentage error (MAPE) of point predictions for (A) arrivals and (B) hospitaliza-
tions from Bernstein Online Aggregation, Gradient Boosted Machine, and Quantile Regression. In (A) only
EDs with mean daily arrivals greater than 100 are shown, and in (B) only EDs with mean daily hospitaliza-
tions greater than 10 are shown. Each point shows the performance of an algorithm in one ED, and points
from the same ED are connected by a line. The x-axis is the mean daily arrivals and hospitalizations across
all days in the analysis dataset.
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