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Abstract—Single-pixel imaging enables the acquisition of hy-
perspectral data across thousands of spectral channels at a
low cost. After acquisition of the spectrum of scalar products
of the scene with several light patterns, the hypercube of the
scene is reconstructed by solving an inverse problem. Then, the
hypercube can be decomposed into a few material maps and their
corresponding spectral signatures. In this paper, we propose and
discuss alternatives to the straightforward two-step approach. In
particular, we propose a joint approach that recovers the material
maps and spectral signatures directly from the measurements.
The joint problem can be solved by tailoring existing nonnegative
matrix factorization tools to single-pixel imaging. We demonstrate
that the proposed joint method provides more accurate estimation
of the spectra and material maps in simulations at different noise
levels and sparsity levels.

I. INTRODUCTION

A single-pixel camera measures with a single point detector
a sequence of scalar products between a scene and some light
patterns uploaded onto a digital micro-mirror device (DMD)
[1]. The image of the scene can be reconstructed from the
measurements by solving an inverse problem (e.g., based on
L1-minimization [2], [3] or deep learning techniques [4], [5]).
In the case of hyperspectral imaging, the point detector is a
spectrometer that acquires up to a few thousand wavelengths
that can be reconstructed independently [6], [7].

The hyperspectral image often originates from the mixture
of the response of a few materials that are present in the scene.
Several unmixing methods are suggested in the literature [8].
A simple and widely-used method is the linear mixing model.
When the spectral signatures are unknown, nonnegative matrix
factorization (NMF) algorithms are required to estimate both
the spectral signatures and material maps at each pixel [9],
[10].

In this article, we present a family of strategies for estimat-
ing the material maps and spectral signatures. Among them,
two-step methods are considered the most straightforward,
leveraging the availability of standard methodologies in the
field of spectral unmixing and single-pixel image reconstruc-
tion. However, these methods face limitations, which we aim
to pinpoint in this article. In this context, we propose a joint
approach that recovers the material maps and spectral signa-
tures directly from the measurements. This kind of method has
been proposed in other imaging domains, such as in Spectral
CT [11], but not for single-pixel imaging yet, to the best of
our knowledge. Our method relies on existing nonnegative

matrix factorization tools tailored for single-pixel imaging. In
particular, we consider alternating multiplicative updates that
ensures nonnegativity of the solutions. In Section II, we model
hyperspectral single-pixel imaging. In Section III, we discuss
different strategies for the estimation of the material maps and
spectral signatures. In Section IV, we introduce a joint method
that we evaluate in the simulations described in Section V.
Section VI reports our results.

II. HYPERSPECTRAL SINGLE-PIXEL IMAGING MODEL

Let Y ∈ IRΛ×M be the raw single pixel measurements,
where M represents the number of patterns uploaded onto the
DMD and Λ the number of spectral channels provided by the
spectrometer. We model single-pixel hyperspectral acquisition
by

Y ∼ P(αXAT ), (1)

where P represents the Poisson distribution, A ∈ IRM×N is
the measurement matrix where each row represents a DMD
pattern with N pixels, X ∈ IRΛ×N

+ is the flattened hypercube
of the scene and α is its intensity (in photons). Note that
α sets the signal-to-noise ratio of the measurements and a
higher value indicates better quality. Assuming further that
the hypercube results from R distinct components, we have

X = WH, (2)

where W ∈ IRΛ×R
+ represents the spectral signature of each

component and H ∈ IRR×N
+ represents the corresponding

material maps. Finding matrices W and H from Eq. 2
corresponds to the NMF problem with rank R. NMF being
an NP-hard problem [12], it is challenging to find the best
solution efficiently. Moreover, NMF does not have generally a
unique solution, making it an ill-posed problem [10]. Another
challenge in NMF is the choice of the rank R, which remains
an open problem [13], [9]. In the following, we assume that
the rank is known, and we set R such that R < min(Λ, N).

III. OVERVIEW OF THE ESTIMATION STRATEGIES

Our goal is to estimate the material maps H and spectral
signatures W from the single-pixel measurement Y , for which
we identify and describe three main strategies.
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Fig. 1: Overview of the strategies for the estimation of H and W . (i) Joint method. (ii) Reconstruct then unmix (RU). (iii)
Unmix then reconstruct (UR).

A. Reconstruct then unmix (RU)

A straightforward method is to reconstruct the hypercube
from the raw data first, and then to unmix the obtained
hypercube. This allows to reuse the standard tools in the
field of spectral unmixing and single-pixel image reconstruc-
tion. For image reconstruction, a common approach involves
maximizing the likelihood of a Poisson distribution, which is
equivalent to minimizing the Kullback-Leibler divergence

X∗ := argmin
X∈IRΛ×N

+

DKL(Y, αXAT ), (3a)

where DKL is the Kullback-Leibler divergence applied
element-wise. This is a well-known optimization problem
for which various algorithms are available [14]. For spectral
unmixing, one possibility is to consider NMF with the L2
norm

W ∗, H∗ := argmin
W∈IRΛ×R

+ , H∈IRR×N
+

∥X∗ −WH∥2F . (3b)

While other cost functions can be considered, choosing the
L2 norm allows to benefit from efficient algorithms such
as the Hierarchical Alternating Least Squares (HALS) [15].
However, it is not clear whether this choice is optimal, which
constitutes the first limitation of the RU method. Another
limitation is that the unmixing step is performed on X∗.
Matrix X∗ is typically full rank, and computed to solve a
different problem than the maximum likelihood estimator (3a),
so the final cost value after spectral unmixing is likely to be
suboptimal and not all the information is leveraged.

B. Unmix then reconstruct (UR)

By noticing that Eq. 1 and Eq. 2 are equivalent to Y ∼
P(αWG) with G = HAT , one can first unmixing the spectra
W and materials maps in the transformed domain G from

the raw measurements Y , before reconstructing H from G.
Again, standard tool can be considered for both the unmixing
and reconstruction problems.

In the absence of noise (i.e., α = ∞), the unmixing step
consists in finding W ∈ IRΛ×R

+ and G ∈ IRR×M
+ such that

Y = WG. This problem can be geometrically expressed
as finding R vectors in the nonnegative orthant, such that
the cone generated by these vectors contains the columns
of Y . To be able to identify a solution, it is preferable that
the hyperspectral data are sufficiently scattered over the unit
simplex [10]. The so-called Sufficiently Scattered Conditions
(SSC) are illustrated in Fig. 2 in the simple case R = N = 3
when A corresponds to the Hadamard patterns defined in
Section V-A. It show that even if the hypercube satisfies the
SSC in the image domain, it may no longer satisfies the SSC
in the Hadamard domain. Therefore, one cannot expect NMF
to be unique in the Hadamard domain and the UR strategy is
not suitable.

C. Joint method

To overcome the limitations associated with the two-step
methods, the material maps and spectral signatures can be
recovered directly from the measurements by solving

min
W∈IRΛ×R

+ , H∈IRR×N
+

DKL(Y, αWHAT ). (4)

This problem can be seen as a generalization of NMF. Note
that the RU strategy given by Eq. 3 differs from the joint
strategy of Eq. 4. In particular, the latter formulation guaran-
tees that the likelihood of the measurements resulting from the
decomposed W and H is maximised. As far as the RU strategy
is concerned, the reconstructed hypercube X maximises the
likelihood of the measurements but in general it is not low-
rank and therefore does not minimize Eq. 4.
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Fig. 2: Sufficiently scattered conditions (SSC). In blue: hyper-
cube X in the image domain which is simulated as the product
of two matrices W and H , following a uniform distribution
and normalized by the L1 norm. In yellow: hypercube after
Hadamard transformation XAT . In red: columns of W . This
shows that data in the Hadamard domain is concentrated,
resulting in non-unique NMF decomposition as there exists
an infinity of cones containing the yellow data and included
in the nonnegative orthant. Even if the hypercube satisfies the
SSC in the image domain, it may no longer satisfies the SSC
in the Hadamard domain.

IV. PROPOSED JOINT METHOD

In this section, we present an algorithm to compute solutions
to the joint estimation problem (4). This problem is not convex
in W and H simultaneously but it is with respect to W when
H is fixed and reciprocally. A workhorse class of solvers
for such bi-convex problems is alternating minimization al-
gorithms, that estimate alternately each matrix W and H until
convergence, while ensuring the nonnegativity constraints are
satisfied. When H is fixed, a widely-used update for matrix W
is given by the Multiplicative Update (MU) rule [16], which is
easily adapted to handle the Hadamard measurement matrix,

W ←− max

(
W ◦

Y
WHAT AHT

α1MAHT
, ϵ

)
, (5)

where ◦ denotes the element-wise product and 1M is a vector
of size M composed of 1. When W is fixed, the following
MU updates for H have been proposed in the literature [17],

H ←− max

(
H ◦

WT Y
WHAT A

αWT 1Λ×MA
, ϵ

)
, (6)

where 1Λ×M is a matrix of size Λ ×M with all entries set
to 1. Note that a projection with a small ϵ is performed to
ensure convergence of the MU updates [10], [18], [19]. In
practice, we iterate the update of each factor several times
before switching to the update of the other factor.

V. EXPERIMENTS

This section presents a series of experiments aimed at
evaluating the performance of the following algorithms :

RU : This algorithm follows the RU method explained in
Section III-A. It consists of one reconstruction step computed
by MU and one unmixing step performed by HALS.

Joint : This algorithm is based on the MU outlined in
Section IV.

The purpose of these experiments is to study the influence of
noise level and sparsity on the estimation of W and H . To this
end, the simulation is conducted for different noise levels and
varying sparsity percentages on H . We conduct a comparison
between the RU and joint methods to assess whether the
proposed approach provides more accurate estimations as
expected.

A. Choice of patterns

An efficient choice for A is to consider the Hadamard matrix
of order N denoted as HN , which satisfies HNHT

N = NIN
where IN is the identity matrix of size N . Opting for the
Hadamard matrix allows reducing the variance of an image by
a factor of

√
N , compared to the case where the matrix A is the

identity matrix, making it an optimal choice [20]. Each pattern
loaded onto the DMD corresponds to a row of this matrix. The
Hadamard matrix has negative entries, but a DMD can only
load nonnegative patterns. To overcome this challenge, one
possibility is to split the patterns into two sets of matrices with
nonnegative entries, representing the nonnegative and negative
components of the Hadamard basis [21]. Matrix containing the
patterns is denoted A ∈ IR2N−1×N such that

A =

(
H+

N

H−
N

)
, (7)

where H+
N and H−

N are respectively the positive and negative
parts of the Hadamard matrix. In practice, the first row of the
negative part is removed because it is entirely composed of
zeros.

B. Simulation description

We propose to simulate a hypercube X of rank R = 3
that is the product of two matrices W and H containing
respectively the spectra and the material maps. We simulate
R spectra of size Λ = 50 as Gaussian distributions. To
avoid spectra being too correlated, we sample the Gaussian
means uniformly between five and forty-five with a minimum
separation of seven. The standard deviations are sampled from
a uniform distribution ranging between zero and four. To
simulate material maps, we choose R different images of size
N = 16 × 16 from the STL-10 database. Additionally, we
impose a sparsity constraint on H to enhance the likelihood
of having a unique NMF [22], [23]. We set β% of the smallest
pixels of each image to zero. We introduce Poisson noise to
the simulated hypercube as described in Eq. 1. We adjust
the parameters α and β to capture various levels of noise
and sparsity. This simulation is conducted on one hundred
hypercubes for each parameter combination of α and β.
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Fig. 3: Boxplot of the distribution of different metrics on the estimation of spectra and material maps using the RU and joint
methods with different combination of values (α, β). On the left: the Relative Error on the estimation of the hypercube X .
On the middle: the PSNR on the estimation of the material maps H . On the right: the Factor Match Score for the estimation
of the spectra and material maps pair (W,H).

C. Choice of hyperparameters

To initialize the algorithms, we use the least squares solution
X̃ = Y A†, where A† represents the pseudo-inverse of A.
To acquire the initializations of W and H , we compute a
truncated Singular Value Decomposition (SVD) with a rank
of R on X̃ and apply element-wise absolute values to ensure
nonnegativity.

RU: For the reconstruction, we perform 2000 iterations of
the MU algorithm until convergence. To address the unmixing,
the maximal number of iterations for HALS is set to 50 and
the number of inner iterations is fixed to 20, after which
convergence is typically observed in our setting.

Joint: We fix 2000 iterations and 10 inner iterations.
In both cases the parameter ϵ, employed to guarantee

updates convergence, is expected to be small. Therefore, we
set ϵ to a value of 10−9.

D. Evaluation metrics

The Relative Error (RE) quantifies the accuracy of the
hypercube X estimation and can be defined as

RE(X, X̂) =
∥X − X̂∥2
∥X∥2

,

where X̂ is the estimated hypercube.
The reconstruction quality of the material maps H is

measured, for each row of H , by the Peak Signal-to-Noise
Ratio (PSNR). The PSNR between the original image h and
the estimated image ĥ is defined by

PSNR(h, ĥ) = 20 log10

(
1

∥h− ĥ∥2

)
.

The Factor Match Score (FMS) is used to measure the sim-
ilarity between the couples of matrices (W,H) and (Ŵ , Ĥ),

FMS
(
(W,H), (Ŵ , Ĥ)

)
=

1

R

R∑
r=1

wT
r ŵr

∥wT
r ∥∥ŵr∥

hT
r ĥr

∥hT
r ∥∥ĥr∥

,

where Ŵ and Ĥ are respectively W and H estimates. Note
that the ordering may differ between the true and the estimated

components. To resolve this indeterminacy, we use a linear
sum assignment solver to compute the optimal permutation.

VI. RESULTS

A. Statistical results

Simulation results are presented in Figure 3, illustrating
different metrics (RE, FMS, PSNR) for different pairs of α
and β values.

We observe that as the noise level increases (smaller α), the
discrepancy in the results becomes significant, favoring the
joint method. This is especially noticeable when examining
the FMS for α = 10, where the RU method yields very low
FMS values (around 0.5), while the joint method provides
an improvement of approximately 0.3 to 0.4 in FMS. The
difference in terms of PSNR and RE is less significant, but
the joint method consistently provides improvements in most
cases.

Sparsity does not seem to have a substantial impact on the
results obtained with RU. Indeed, the PSNR, RE, and FMS
results are similar regardless of the β value for the RU method.
Sparsity has a noticeable effect on the joint method, especially
when examining the FMS. For example, with α = 10, there is
an increase of approximately 0.15 in FMS, when comparing
β = 10 and β = 30.

B. Qualitative results

The simulation results are illustrated in Fig. 4 in the case
where α = 25 and β = 30. Fig. 4a displays spectra decom-
position using the RU and joint algorithms. We observe that
the spectra estimated by the joint method better fit the original
spectra compared to the RU method, especially where spectra
overlap. In this example, a component has not been found by
the RU method, which may explain the significant variability
in FMS and poor values in certain cases. Fig. 4b illustrates
the material maps reconstructed by the two methods. The
difference is less significant in the images than in the spectra,
but it can still be observed that the joint method slightly
improves the reconstruction of material maps compared to the
RU method.
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(a) Decomposed spectra using the RU and joint methods. The RU
method fails to detect the yellow component.

(b) Decomposed material maps. Top row: ground truth material map.
Middle row: decomposition using the RU method. Bottom row: de-
composition using the joint method.

Fig. 4: Spectral decomposition for R = 3 components. We
consider N = 32× 32 pixels, α = 25 photons and β = 30%
of the pixels of each material map is zero.

VII. CONCLUSION

This paper provides an overview of the strategies for the
estimation of material maps and spectral signatures in the
context of hyperspectral single-pixel imaging. We demonstrate
through simulations that the joint method generally provides
a better estimation of material maps and spectral signatures
compared to the two-step method, especially in scenarios with
high noise and sparsity. One limitation of this work is that
it does not investigate the case where the spectra are highly
correlated, making the decomposition problem more challeng-
ing. In future work, we plan to incorporate regularization in

the optimization problem to achieve finer control over both
material maps and spectral signatures.
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