
BLIND ESTIMATION OF AUDIO EFFECTS USING AN AUTO-ENCODER APPROACH AND
DIFFERENTIABLE DIGITAL SIGNAL PROCESSING

Côme Peladeau and Geoffroy Peeters

LTCI - Télécom-Paris, Institut Polytechnique de Paris, France

ABSTRACT

Blind Estimation of Audio Effects (BE-AFX) aims at estimating the
audio effects (AFXs) applied to an original, unprocessed audio sam-
ple solely based on the processed audio sample. To train such a
system traditional approaches optimize a loss between ground truth
and estimated AFX parameters. This involves knowing the exact
implementation of the AFXs used for the process. In this work, we
propose an alternative solution that eliminates the requirement for
knowing this implementation. Instead, we introduce an auto-encoder
approach, which optimizes an audio quality metric. We explore, sug-
gest, and compare various implementations of commonly used mas-
tering AFXs, using differential signal processing or neural approx-
imations. Our findings demonstrate that our auto-encoder approach
yields superior estimates of the audio quality produced by a chain of
AFXs, compared to the traditional parameter-based approach, even
if the latter provides a more accurate parameter estimation.

Index Terms— audio effects, differentiable digital signal pro-
cessing, neural proxy, deep learning

1. INTRODUCTION

Audio effects (AFXs) play an essential role in music production.
They are used during mixing to sculpt sounds for artistic purposes or
context requirements (such as when a sound needs to be mixed with
others). They are used during mastering, the final stage of produc-
tion, to improve the clarity of a given mix, adapt it for a given media
(such as vinyl or streaming), or harmonize it with other tracks in the
album. For these reasons, its automatization has been the subject of
several softwares1 which allow learning the mastering EQ of a given
track to apply it to another. In this work, we study the generalization
to other common mastering AFXs.

Blind Estimation of Audio Effects (BE-AFX) aims at estimating
the audio effects (AFXs) applied to an original, unprocessed (dry)
audio sample x solely based on the observation of the processed
(wet) audio sample y. This estimation takes the form of the AFXs
and their parameters p.

1.1. Related works

For long BE-AFX techniques have been based on explicit rules and
assumptions. For example, Ávila et al. [1] proposed to estimate
the curve of a memoryless non-linear distortion by assuming that
the unprocessed signal has the statistics of a Gaussian white noise.
However, nowadays, most BE-AFX approaches rely on training neu-
ral networks. Indeed, following SincNet [2] and DDSP [3], model-
ing audio processes as differential processes has allowed developing

This work was performed under fundings by the ’Hi! PARIS Call for
Collaborative and scientific Projects 2022’ and the ’AQUA-RIUS project
founded by the ANR-22-CE23-0022 program’.

1such as Izotope Ozone 11 or Sonible smart:EQ 4.

differentiable AFXs as specialized neural networks layers with inter-
pretable parameters [4, 5, 6]. Because they are differentiable, they
can be integrated transparently in a neural network. Since then, dif-
ferentiable AFXs have been used for many tasks: automatic mixing
and mastering [7, 8], production style transfer [6] or estimation of
audio effects [9].

In the case of BE-AFX, neural networks are usually trained to
minimize a loss function that aims at reconstructing the AFX chain
and its parameters as did Hinrichs et al. [10] or Lee et al. [11]. How-
ever, while their approach is flexible, its training requires the knowl-
edge of the used AFXs and their parameters. Our approach does not.
Also, as we will highlight in this work, a parameter distance does not
translate well to a perceptual distance between audio effects. This is
why we will propose here the use of an audio distance.

Estimation of audio effects with an audio loss function and dif-
ferentiable audio effects has already been investigated. For example,
Colonel et al. [12] used it for non-linear distortion using a differ-
entiable Wiener-Hammerstein model and also in [9] for a complete
mixing setting. However, in both cases, their approaches require
paired x and y data for the estimation, i.e. they did not perform the
blind estimation. In this work, we perform blind estimation, i.e. we
aim at estimating the AFXs applied to x using only the knowledge
of y.

1.2. Proposal

To solve the BE-AFX problem, we propose an auto-encoder ap-
proach which is illustrated in Figure 1. In the left part, we construct
synthetic processed mixes by applying a set of (synthesis) audio ef-
fects {es} with known parameters p to an unprocessed mix x. The
results are our ground-truth processed mixes y. Using only y, an
analysis network fa then estimates the set of parameters p̂ to be
used to process x with (analysis) audio effects {ea} to produce an
estimated audio sample ŷ. The analysis network fa is trained to
minimize an audio loss function between ŷ and y so that ŷ ≈ y. It
therefore closely matches the formulation of an auto-encoder.

Doing so, when {ea}={es}, fa implicitly learns to replicate the
parameters p given only y. When {ea} ̸= {es}, fa learns param-
eters to be used for {ea} such that the effect of the analysis chain
sounds similar to the synthesis chain.

1.3. Paper organization

To be able to estimate p using this auto-encoder, we should be able
to “differentiate” the audio effects {ea} (i.e. compute the derivative
of their outputs ŷ w.r.t. their inputs p̂). We therefore discuss various
implementations of the audio effects in part 2.1. To be able to esti-
mate p we should define an architecture for the analysis network fa.
We therefore discuss various possible architectures in part 2.2. Dur-
ing evaluation (part 3), we first decide for each type of effect what

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

Analysis
network

Analysis
audio effects

Synthesis
audio effects

Loss
function

Audio
dataset

Audio signals FX parameters Gradients

Training data

Fig. 1. Proposed auto-encoder approach for Blind Estimation of Audio Effects (BE-AFX).

is the best implementation ea (among those of 2.1) and architecture
of fa (among those of 2.2) to reconstruct y. We then compare our
proposed approach (audio reconstruction ŷ ≈ y) to the previously
proposed approach (parameter reconstruction p̂ ≈ p). Finally, we
evaluate the joint estimation of the whole AFX chain defined as the
succession of an equalizer, a dynamic range compressor (DRC), and
a clipper. We conclude in part 4 and propose future directions.

We provide the code of this study to ensure replicability as well
as audio examples.2

2. PROPOSAL

2.1. Audio effects

In this work, we only consider the 3 following AFXs commonly used
for mastering [13]: - an equalizer (a cascade of linear filters which
modifies the level of different frequency bands), - a dynamic range
compressor (which reduces the signal level when it is too loud, leav-
ing it untouched otherwise), and - a soft clipper (which clips the
signal peaks producing harmonic distortion). We distinguish their
implementation for synthesis {es} and for analysis {ea}.

{es} is the implementation of the effects that have been used to
create the observed master y. In a real scenario, it is unknown.

{ea} is the implementation we use in our model to (1) predict
the parameters p̂ of the effects or (2) replicate the resulting process
of the mastering. To perform (1) (comparing the estimated p̂ to the
ground-truth p) the implementation of the effect in {es} and {ea}
should be similar. To perform (1) and (2), the implementation in
{ea} should be differentiable (to estimate the parameters) or, if not,
we will have to use neural networks to approximate the effects.

We now detail the implementation of the three AFXs for synthe-
sis and analysis and list them in Table 1. The audio is normalized to
0 dBFS before each effect

Table 1. Considered audio effects and their implementations.

Effect Implementation Synthesis Analysis

Equalizer Parametric
√ √

Graphic
√

Compressor DSP
√

Simplified DSP
√

NP
√

Hybdrid NP
√

Clipper Parametric
√ √

Taylor
√

Chebyshev
√

2https://peladeaucome.github.io/ICASSP-2024-BEAFX-using-DDSP/

2.1.1. Equalizer

For synthesis, we use a 5-band parametric equalizer: 1 low-shelf, 3
peak, 1 high-shelf.

For analysis, we use either this parametric equalizer or a 10-
band graphic equalizer. Each band of the graphic equalizer has a
bandwidth of 2 octaves [14].

Each parametric band has 3 parameters: center frequency, gain,
and quality factor. Each band of the graphic equalizer has only 1
parameter: its gain.

Frequencies of parametric bands are logarithmic parameters,
gains (in dB) and quality factors are linear. Differentiable filters
are implemented in the frequency domain [4] as we find the time-
aliasing error small enough for training a neural network.

2.1.2. Dynamic range compressor (DRC)

For synthesis, we use the DSP compressor proposed in [15]. It has
5 parameters: threshold, ratio, attack time, release time, and knee
width.

For analysis, we either use a simplified DSP compressor or a
Neural Proxy (NP). The simplified DSP compressor is the DSP
compressor of [15] but with the attack and release time linked, as
proposed by [6] to reduce the computation time. The NP compres-
sor [16] is trained to approximate a DSP compressor3. It uses a
Temporal Convolution Network (TCN) conditioned with FiLM [17]
layers. In [16] the NP directly outputs ŷ. In our case, we use the
same TCN architecture but propose to replace its output activation
with a sigmoid such that it provides the compressor gain factor g to
be applied over time n: ŷ[n] = g[n] · x[n]. 4

Once trained, the NP compressor, being differentiable, can be
inserted in the analysis chain {ea} to train the analysis network fa

and obtain its compressor parameters p̂. We can of course use p̂ to
process x with the NP compressor but also use p̂ to process x with
the DSP compressor. We name the latter “hybrid NP compressor”.
Since it is not differentiable, we only use it during validation and
testing (not during training). It has already been used in [6].

The compressors’ ratio and time parameters are logarithmic
while their threshold and knee (both in dB) are linear.

3To train it, we first process a set of x with the DSP compressor using
known parameters p. The output provides ground-truths y. We then train the
parameters θ of the NP compressor conditioned with the same parameters p
such that its output ŷ = fθ(x;p) ≈ y.

4We found by experiment that this modification allows to largely reduce
the number of parameters (number of TCN channels) with equivalent per-
formances. With 8 channels, our causal model with a receptive field of 3 s
duration has a test mean average error (MAE) of 0.0060 while the TCN from
[16] has a test MAE of 0.050.

2

https://peladeaucome.github.io/ICASSP-2024-BEAFX-using-DDSP/

2.1.3. Clipper

We propose 3 implementations of the clipper: parametric (both for
synthesis and analysis), Taylor, and Chebyshev (only for analysis).

The parametric clipper is defined by the function f defined in
eq. (1) with hardness parameter h blending between tanh, cubic, and
hard clipping:

f(x, h) =

{
(1− h) tanh(x) + hfcubic(x), h ∈ [0; 1],

(2− h)fcubic(x) + (h− 1)fhard(x), h ∈ (1; 2].

(1)
with :

fhard(x) = max(−1,min(1, x))

fcubic(x) =

{
x+ 4x3/27, x ∈ [− 2

3
; 2
3
],

sign(x), |x| > 2
3
.

(2)

The effect used for synthesis is constructed with the following pa-
rameters: gain g (in dB), offset o, and hardness h.

y[n] = (f(g · x[n] + o, h)− f(o, h)) /g. (3)

We also use two other memory-less models. Both have been pro-
posed for memory-less distortion identification. The Taylor clipper
is inspired by Taylor series expansions [1]:

y[n] =

H−1∑
h=0

ghx[n]
h. (4)

The Chebyshev clipper is inspired by Chebyshev’s polynomials.
It has been used for non-linear audio effect identification [18]:

y[n] =

H−1∑
h=0

ghTh(y[n]). (5)

with gh ∈ [−1; 1] being the effect’s parameters and Tn:

Tn(x) = 2xTn−1(x)− Tn−2(x), ∀n ≥ 2,

T0(x) = 1, T1(x) = x.
(6)

In both cases, the parameters to be estimated are the {gh} and we
set H = 24. All clipper parameters are linear.

2.1.4. Parameter ranges

All AFX parameters, pc/p̂c ∈ [pc,min; pc,max], are derived from “nor-
malized” AFX parameters, qc/q̂c ∈ [0; 1]. Linear parameters (see
above) are derived from qc/q̂c using an affine transformation:

pc = (pc,max − pc,min)qc + pc,min. (7)

Logarithmic parameters (see above) are derived from qc/q̂c us-
ing an exponential transformation:

pc = e(log(pc,max)−log(pc,min))qcpc,min. (8)

2.2. Analysis network fa

The analysis network is divided into two parts:

1. An encoder; which outputs a time invariant embedding. We
describe and compare below 3 architectures for this encoder.

2. A MLP with 4 layers of size 2048, 1024, 512, and C where
C is the total number of parameters p̂ of the effect chain
{ea}. Each hidden layer is followed by a Batchnorm-1D and
a PReLU. The output layer, which estimates normalized pa-
rameters q̂, is followed by a sigmoid.

For the encoder, we compare three popular architectures com-
monly used in the Music Information Retrieval field:
MEE the Music Effects Encoder proposed by [19]. It consists of a

cascade of residual 1D convolutional layers,
TE a Timbre Encoder inspired by [20]. It consists of a single 2D

convolution layer with multiple sizes of filters. The conv-2D
is applied on the CQT [21] of the signal as implemented in
[22],

TFE a Time+Frequency Encoder inspired by [23]. It consists of two
2D convolutional nets, one focusing on highlighting temporal
motifs, and the second on frequency motifs. The network’s
input is the CQT of the signal.

MEE has 88M parameters, TE 2.8M, and TFE 3.4M.

3. EVALUATION

3.1. Dataset

For evaluation, we use the mix files of the MUSDB18 [24] dataset.
From those, we extract randomly clips of 10 s duration. Those are
then converted to mono and peak-normalized to 0 dBFS. For each,
we randomly pick the normalized parameters q ∼ U(0, 1), convert
them to p and apply them to the clip. We use the training, validation,
and testing splits proposed by MUSDB18 [24].

3.2. Training

In the following, we compare 2 approaches for training fa:
Audio reconstruction ŷ ≈ y (our proposal): we minimize the ℓ1

norm between the log-magnitude Mel-spectrograms of y and
ŷ as implemented in [25] 5 :

LMel
ŷ,y = ∥log {Mel(|ŷ|)} − log {Mel(|y|)}∥1 . (9)

Parameter reconstruction q̂ ≈ q (previously proposed ap-
proach): we minimize the ℓ2 norm between q̂ and q:

MSEq̂,q =
1

C

C−1∑
c=0

(q̂c − qc)
2. (10)

Training details: Each model fa is trained using the ADAM
algorithm with a learning rate of 10−4 and a batch size of 16 during
a maximum of 400 epochs, where a single epoch is defined as 430
training examples (5 from each song of the training subset). The
learning rate is scheduled to decrease by a factor of 10 when the best
validation score has not been improved for 30 epochs. Training stops
after 150 epochs without improvement. To ensure the reliability of
computed scores the validation is run 5 times and the test 10 times.

3.3. Performance metrics.

For evaluation, we compute the following metrics:
• MSEŷ,y: the MSE between ŷ and y

• LMel
ŷ,yas defined above

• MSEq̂,q: the MSE between q̂ and q

To make audio loss and metrics invariant to sound level, we nor-
malize y and ŷ by their respective RMS values6.

5We consider this metric as a surrogate for “audio quality” and are aware
that it does not cover the whole extent of audio quality. Note that this loss
has been previously used, for example in [26].

6Note that this normalization is applied as a static gain on the whole signal
and therefore does not interfere with the dynamic gain of the DRC.

3

3.4. Results

3.4.1. Single effect estimation.

For each type of effect we first decide what is the best implementa-
tion (among those of 2.1) and architecture (among those of 2.2) to
reconstruct y. For each, we also indicate: - Random q̂: the results
obtained with a random choice of q̂ (rather than the estimated one),
- L(x,y): the value of the loss when comparing the input x to the
output y.

For the equalizer (Table 2), Parametric and Graphic provide
similar results. Since LMel

ŷ,y indicates the difference between spectras,
it is more suited to measure the performances of an EQ than MSEŷ,y.
We therefore focus on LMel

ŷ,y and conclude that the best (0.32) con-
figuration is to use the Parametric implementation for {ea} and TFE
for fa.

For the compressor (Table 3), the best (0.011, 0.076) configu-
ration is to use the Hybrid NP for {ea} and use MEE for fa. As a
reminder, the Hybrid NP compressor uses the NP compressor to esti-
mate p̂ but the DSP compressor (the same used for synthesis) to get
ŷ. This works better than using the NP compressor (0.014, 0.098)
or the simplified DSP compressor (0.041, 0.16) This is because the
latter links the attack and release time parameters which might be
too restrictive. The fact that the Hybrid NP works better indicates
that our proxy performs well enough for the task of estimating pa-
rameters usable with the DSP Compressor.

For the clipping (Table 4), the best configuration is to use the
Parametric clipper (the same used for synthesis) for {ea} and use
MEE for fa.

It should be noted that in all three cases, the best results are
obtained when {ea} = {es}.

3.4.2. Training method comparison.

We now compare our proposed training method (based on audio re-
construction ŷ ≈ y) to the previously proposed one (based on pa-
rameter reconstruction q̂ ≈ q). Results are indicated in Table 5.
For each single effect, we use the best configuration found above:
fa=TFE for equalizer, MEE for compression and clipping.

For equalization, in terms of audio quality (LMel
ŷ,y), the network

trained to minimize LMel
ŷ,y outperforms (0.32) the one that minimizes

MSEq̂,q (0.40). But in terms of parameter estimation (MSEq̂,q) min-
imizing directly MSEq̂,q leads to better results (0.072).

For compression and clipping, training by minimizing the pa-
rameter distance (MSEq̂,q) leads to better results both in terms
of audio quality (LMel

ŷ,y=0.069, 0.064) and parameter estimation
(MSEq̂,q=0.069, 0.028).

3.4.3. Effects chain estimation

We finally evaluate the estimation of the whole chain of effect
(equalizer→compressor→clipper). In this case, we use fa=TFE
for all. As for audio quality, we see (row “Chain” in Table 5)
that our approach (minimizing LMel

ŷ,y) leads to the best results:
MSEŷ,y=0.31 and LMel

ŷ,y=0.40. However, as can be predicted, mini-
mizing directly MSEq̂,q leads to better estimation of the parameters:
MSEq̂,q=0.072. These contrasting outcomes underscore that achiev-
ing accurate parameter estimation (p̂ ≈ p) does not guarantee high
audio quality (ŷ ≈ y). While our approach may not yield the best
parameter estimation, it does yield the best audio transform estima-
tion.

Table 2. Results by implementation of {ea} and encoder fa for
equalisation. The best results are indicated in bold.

Equalizer Parametric Graphic

Metrics MSEŷ,y LMel
ŷ,y MSEŷ,y LMel

ŷ,y

MEE 0.35 0.41 0.38 0.41
TE 0.35 0.46 0.39 0.48
TFE 0.28 0.32 0.25 0.34

Random q̂ 0.86 0.89 1.1 1.1
L(x,y) 0.48 0.64 0.48 0.63

Table 3. Same for dynamic range compression.
Comp. NP Hybrid NP Simpl. DSP

Metrics MSEŷ,y LMel
ŷ,y MSEŷ,y LMel

ŷ,y MSEŷ,y LMel
ŷ,y

MEE 0.014 0.098 0.011 0.076 0.041 0.16
TE 0.020 0.12 0.019 0.11 0.042 0.17
TFE 0.015 0.11 0.012 0.086 0.042 0.17

Random q̂ 0.038 0.16 0.036 0.15 0.13 0.66
L(x,y) 0.041 0.16 0.041 0.16 0.040 0.16

Table 4. Same for clipping
Clipper Parametric Taylor Chebyshev

Metrics MSEŷ,y LMel
ŷ,y MSEŷ,y LMel

ŷ,y MSEŷ,y LMel
ŷ,y

MEE 0.0045 0.072 3.4 0.15 0.65 0.17
TE 0.011 0.090 2.9 0.21 3.2 0.15
TFE 0.0067 0.075 2.1 0.16 1.34 0.12

Random q̂ 0.078 0.29 1.9 0.39 2.0 1.1
L(x,y) 0.078 0.34 0.079 0.34 0.079 0.34

Table 5. Comparison between training using LMel
ŷ,y and MSEq̂,q for

single effects and whole FX chain.
Loss LMel

ŷ,y MSEq̂,q

Metrics MSEŷ,y LMel
ŷ,y MSEq̂,q MSEŷ,y LMel

ŷ,y MSEq̂,q

Eq. 0.28 0.32 0.089 0.27 0.40 0.072
Comp. 0.011 0.076 0.11 0.0081 0.069 0.069
Clip. 0.0045 0.072 0.044 0.0041 0.064 0.028

Chain 0.31 0.40 0.10 0.33 0.49 0.072

4. CONCLUSION

In this work, we proposed an auto-encoder approach for Blind Es-
timation of Audio Effects. Given only processed (wet) audio sig-
nals, we train a neural network to estimate AFX parameters such
that when used for effects applied to an unprocessed (dry) signal it
approximates the processed (wet) signal. This allows training a net-
work using real dry/wet data pairs without knowing the exact effect
implementation. We show that our audio-based method better repli-
cates the audio quality of the mastering process than the previous
parameter-based method.

Further work will focus on performing subjective perceptual ex-
periments, including other important mastering effects in the chain
and testing their estimation on real mastered music productions.

4

5. REFERENCES

[1] Flávio R. Ávila and Luiz W. P. Biscainho, “ML estimation of
memoryless nonlinear distortions in audio signals,” in Proc. of
IEEE ICASSP (International Conference on Acoustics, Speech,
and Signal Processing). May 2014, pp. 4493–4497, IEEE.

[2] Mirco Ravanelli and Yoshua Bengio, “Speaker recognition
from raw waveform with SincNet,” in IEEE SLT (Spoken
Language Technology Workshop), December 2018, pp. 1021–
1028.

[3] Jesse Engel, Lamtharn (Hanoi) Hantrakul, Chenjie Gu, and
Adam Roberts, “DDSP: Differentiable digital signal process-
ing,” in Proc. of ICLR (International Conference on Learning
Representations). April 2020, ICLR.

[4] Shahan Nercessian, “Neural parametric equalizer matching us-
ing differentiable biquads,” in Proc. of DAFx (International
Conference on Digital Audio Effects), September 2020, pp.
265–272.

[5] Sungho Lee, Hyeong-Seok Choi, and Kyogu Lee, “Differen-
tiable artificial reverberation,” Audio, Speech and Language
Processing, IEEE Transactions on, vol. 30, pp. 2541–2556,
2022.

[6] Christian J. Steinmetz, Nicholas J. Bryan, and Joshua D. Reiss,
“Style transfer of audio effects with differentiable signal pro-
cessing,” JAES (Journal of the Audio Engineering Society),
vol. 70, no. 9, pp. 708–721, September 2022.

[7] Christian J. Steinmetz, Jordi Pons, Santiago Pascual, and Joan
Serrà, “Automatic multitrack mixing with a differentiable mix-
ing console of neural audio effects,” in Proc. of IEEE ICASSP
(International Conference on Acoustics, Speech, and Signal
Processing). June 2021, pp. 71–75, IEEE.

[8] Marco A. Martı́nez Ramı́rez, Oliver Wang, Paris Smaragdis,
and Nicholas J. Bryan, “Differentiable signal processing with
black-box audio effects,” in Proc. of IEEE ICASSP (Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing). June 2021, pp. 66–70, IEEE.

[9] Joseph T. Colonel and Joshua D. Reiss, “Reverse engineering
of a recording mix with differentiable digital signal process-
ing,” JASA (Journal of the Acoustical Society of America), vol.
150, no. 1, pp. 608–619, July 2021.

[10] Reemt Hinrichs, Kevin Gerkens, and Jörn Ostermann, “Clas-
sification of Guitar Effects and Extraction of Their Parame-
ter Settings from Instrument Mixes Using Convolutional Neu-
ral Networks,” in Artificial Intelligence in Music, Sound, Art
and Design, Tiago Martins, Nereida Rodrı́guez-Fernández, and
Sérgio M. Rebelo, Eds., vol. 13221, pp. 101–116. Springer In-
ternational Publishing, 2022.

[11] Sungho Lee, Jaehyun Park, Seungryeol Paik, and Kyogu Lee,
“Blind estimation of audio processing graph,” in Proc. of IEEE
ICASSP (International Conference on Acoustics, Speech, and
Signal Processing). June 2023, pp. 1–5, IEEE.

[12] Joseph T. Colonel, Marco Comunità, and Joshua D. Reiss, “Re-
verse Engineering Memoryless Distortion Effects with Differ-
entiable Waveshapers,” in Audio Engineering Society Conven-
tion 153. 2022, p. 10, AES.

[13] Udo Zölzer, Ed., DAFX: Digital Audio Effects, Wiley, 2nd
edition, 2011.

[14] Robert Bristow-Johnson, “RBJ audio-EQ-cookbook,”
2005, https://www.musicdsp.org/en/latest/Filters/197-rbj-
audio-eq-cookbook.html.

[15] Dimitrios Giannoulis, Michael Massberg, and Joshua D. Reiss,
“Digital dynamic range compressor design— a tutorial and
analysis,” JAES (Journal of the Audio Engineering Society),
vol. 60, no. 6, 2012.

[16] Christian J. Steinmetz and Joshua D. Reiss, “Efficient neu-
ral networks for real-time modeling of analog dynamic range
compression,” JAES (Journal of the Audio Engineering Soci-
ety), May 2022.

[17] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin,
and Aaron Courville, “FiLM: Visual Reasoning with a General
Conditioning Layer,” in Proc. of the AAAI Conference on Ar-
tificial Intelligence. April 2018, vol. 32, AAAI.

[18] Antonin Novak, Laurent Simon, Pierrick Lotton, and Joël
Gilbert, “Chebyshev Model and Synchronized Swept Sine
Method in Nonlinear Audio Effect Modeling,” in Proc. of
DAFx (International Conference on Digital Audio Effects),
September 2010.

[19] Junghyun Koo, Seungryeol Paik, and Kyogu Lee, “End-to-end
music remastering system using self-supervised and adversar-
ial training,” in Proc. of IEEE ICASSP (International Confer-
ence on Acoustics, Speech, and Signal Processing). May 2022,
pp. 4608–4612, IEEE.

[20] Jordi Pons, Olga Slizovskaia, Rong Gong, Emilia Gómez, and
Xavier Serra, “Timbre analysis of music audio signals with
convolutional neural networks,” in Proc. of EUSIPCO (Euro-
pean Signal Processing Conference), August 2017, pp. 2744–
2748.

[21] Judith C. Brown, “Calculation of a constant Q spectral trans-
form,” JASA (Journal of the Acoustical Society of America),
vol. 89, no. 1, pp. 425–434, January 1991.

[22] Kin Wai Cheuk, Hans Anderson, Kat Agres, and Dorien Her-
remans, “nnAudio: An on-the-fly GPU audio to spectrogram
conversion toolbox using 1D convolutional neural networks,”
IEEE Access, vol. 8, pp. 161981–162003, 2020.

[23] Jordi Pons, Deep Neural Networks for Music and Audio Tag-
ging, Ph.D. thesis, Universitat Pompeu Fabra, 2019.

[24] Zafar Rafii, Antoine Liutkus, Fabian-Robert Stöter,
Stylianos Ioannis Mimilakis, and Rachel Bittner, “MUSDB18
- a corpus for music separation,” 10.5281/zenodo.1117372.

[25] Christian J. Steinmetz and Joshua D. Reiss, “Auraloss: Audio-
focused loss functions in PyTorch,” in Digital Music Research
Network One-Day Workshop 2020, 2020.

[26] Jiaqi Su, Yunyun Wang, Adam Finkelstein, and Zeyu Jin,
“Bandwidth extension is all you need,” in Proc. of IEEE
ICASSP (International Conference on Acoustics, Speech, and
Signal Processing), June 2021, pp. 696–700.

5

	 Introduction
	 Related works
	 Proposal
	 Paper organization

	 Proposal
	 Audio effects
	 Equalizer
	 Dynamic range compressor (DRC)
	 Clipper
	 Parameter ranges

	 Analysis network fa

	 Evaluation
	 Dataset
	 Training
	 Performance metrics.
	 Results
	 Single effect estimation.
	 Training method comparison.
	 Effects chain estimation

	 Conclusion
	 References

