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A B S T R A C T   

Environmental factors are external conditions that can affect the health of living organisms. For a number of rare 
genetic diseases, an interplay between genetic and environmental factors is known or suspected. However, the 
studies are limited by the scarcity of patients and the difficulties in gathering reliable exposure information. 

In order to aid in fostering research between environmental factors and rare diseases, we propose ODAMNet, a 
Python package to investigate the possible relationships between chemicals, which are a subset of environmental 
factors, and rare diseases. ODAMNet offers three different and complementary bioinformatics approaches for the 
exploration of relationships: overlap analysis, active module identification and random walk with restart. 
ODAMNet allows systematic analysis of chemical - rare disease relationships and generation of hypotheses for 
further investigation of effect mechanisms.   

Metadata  
C1 Current code version v1.1.0 
C2 Permanent link to code/ 

repository used for this code 
version 

https://github.com/MOohTus 
/ODAMNet 

C3 Permanent link to reproducible 
capsule 

https://github.com/MOohTus/ 
ODAMNet/tree/v1.1.0 

C4 Legal code license MIT License 
C5 Code versioning system used git 
C6 Software code languages, tools 

and services used 
python, DOMINO server, CTD, 
WikiPathways, NDEx 

C7 Compilation requirements, 
operating environments and 
dependencies 

python >= 3.9, multiXrank==0.1, 
requests, SPARQLWrapper, pandas, scipy, 
statsmodels, alive_progress, 
click_option_group, click, ndex2, 
networkx 

C8 If available, link to developer 
documentation/manual 

https://odamnet.readthedocs.io/en/late 
st/ 

C9 Support email for questions morgane.terezol@univ-amu.fr   

1. Motivation and significance 

Environmental factors are external conditions that can affect the 
health of living organisms. These factors can be physical, biological, 
social, economic, or political [1]. They can play a significant role in the 
development and progression of genetic diseases. The relationship be
tween genes and environment has been compared to the relationship 
between a loaded gun and its trigger [2]. 

The role of environmental factors have been reviewed for different 
diseases and disease groups, such as autism [3], inflammatory bowel 
disease [4,5], cardiovascular disease [6,7], congenital anomalies of the 
kidney and urinary tract [8,9], amyotrophic lateral sclerosis [10], 
idiopathic pulmonary fibrosis [11], and Legg–Calvé–Perthes Disease 
[12]. 

There are multiple methodological challenges in studying the inter
play between environmental factors and genetic diseases. Environ
mental factors have large spatial and temporal heterogeneities; a 
person’s activity patterns, residential changes and other conditions can 
modify the amount of exposure [13]. For the diseases that manifest later 
in life, relationships with an exposure that happened decades ago is hard 
to prove [10]. In the case of rare diseases, sample scarcity is adding 
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another level of difficulty to the studies of environmental factor - disease 
relationships: low sample size and testing for multiple factors decrease 
the statistical power. Hence, limiting the environmental factors to be 
investigated is important, and this requires well supported hypotheses. 

With this study, our aim is to provide a tool that can generate 
knowledge-based hypotheses regarding the relationships between 
chemicals, which are a subset of environmental factors, and the rare 
diseases. We previously investigated the role of vitamin A and vitamin D 
in the etiology of Congenital Anomalies of the Kidney and Urinary Tract 
(CAKUT) [14]. We explored the overlap between vitamin target genes 
and gene sets related to CAKUT. We observed significant enrichment of 
vitamin A target genes in CAKUT-related gene sets. Here, we propose 
ODAMNet (“Overlap, Diffusion, Active Module, Network”), a Python 
package that allows performing systematic analyses with i) multiple 
chemicals, ii) multiple rare diseases, and iii) multiple integrative bio
informatics approaches to explore the possible relationships between 
chemicals and rare diseases. 

In ODAMNet, targets of the chemicals are retrieved from the 
Comparative Toxicogenomics Database (CTD) [15], and rare disease 
pathways are retrieved from WikiPathways [16]. We used three 
different and complementary bioinformatics approaches to integrate the 
data: overlap analysis, active module identification and random walk 
with restart. Of note, for the network-based approaches, i.e. active 
module identification and random walk with restart, the biological 
interaction networks are downloaded from the Network Data Exchange 
(NDEx) [17]. 

There are multiple resources that integrate biological data stored in 
different databases, including Pathway Commons [18], OmniPath [19, 
20], Hetionet [21], NeDRex [22], Drugst.one [23], BOCK [24], PrimeKG 
[25]. While Pathway Commons and OmniPath are specialized in mo
lecular interactions, Hetionet, BOCK, and PrimeKG serve as extensive 
knowledge graphs, integrating highly heterogeneous data. These re
sources gather a wealth of information but leveraging this information is 
not straightforward and demands additional tools. In contrast, NeDRex 
and Drugst.one, akin to ODAMNet, focus on integrating data sources and 
analysis methods tailored to specific research questions, that is drug 
repurposing in this instance. A detailed comparison of ODAMNet with 
these tools can be found in the Impact section. 

The novelty of ODAMNet stems from multiple factors. First of all, 
ODAMNet is developed for the systematic analysis of chemical - rare 
disease relationships in order to generate hypotheses. ODAMNet in
tegrates the three most relevant databases for this purpose. ODAMNet 
does not use static data but works by querying the integrated databases. 
This, for example, allows harnessing up-to-date rare disease information 
available from WikiPathways, benefiting from the ongoing curation ef
forts. ODAMNet, with its extensive documentation and simple setup 
thanks to pip and conda, provides easy access to three complementary 
bioinformatics approaches. Furthermore, ODAMNet offers the flexibility 

to use any user-provided input dataset, allowing the application of the 
bioinformatics approaches to any data source and research question. 
Overall, ODAMNet extends the bioinformatics analysis ecosystem 
available in Python. 

2. Software description 

2.1. Software architecture 

ODAMNet is a Python package for the investigation of chemical - rare 
disease relationships. It takes a list of chemicals as input and automat
ically retrieves the genes that are targeted by these chemicals from the 
Comparative Toxicogenomics Database (CTD) (Fig 1). Rare disease 
pathways are retrieved automatically from WikiPathways and networks 
are downloaded automatically from NDEx [17]. The user can also pro
vide their own target genes, pathways of interest and biological net
works. Then, ODAMNet can perform three different approaches. The 
first approach is an overlap analysis between the target genes and the 
rare disease pathways. The second approach is active module identifi
cation (AMI) using DOMINO [26], followed by an overlap analysis be
tween the identified active modules and rare disease pathways. The 
third approach is a random walk with restart (RWR) using multiXrank 
[27]. 

ODAMNet is written in Python 3 and is designed primarily as a 
command line program for the Linux operating system. It can be 
installed using pip and a detailed documentation is available on htt 
ps://odamnet.readthedocs.io/en/latest/, with descriptions of:  

• the three integrative bioinformatics approaches  
• the format of input and output files  
• all input parameters  
• two use-cases, in which the datasets are either automatically 

retrieved or provided by the user 

2.2. Software functionalities 

2.2.1. Data retrieval by queries 
ODAMNet can retrieve the datasets required for an analysis, which 

are chemical target genes, rare disease pathways and biological net
works, by querying the relevant databases. 

For the retrieval of genes targeted by a list of chemicals, the required 
input is a list of MeSH identifiers (https://meshb.nlm.nih.gov/) that 
correspond to those chemicals. Chemical target genes which have been 
reported for human are automatically retrieved from CTD (http://ct 
dbase.org/tools/batchQuery.go) using HTTP requests. The user can 
select the type of chemical - target gene associations. By default, direc
tAssociation parameter is set to “True” and returns target genes solely for 
the input chemicals. Alternatively, setting this parameter to “False” will 

Fig 1. ODAMNet workflow.  
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retrieve target genes not only for the input chemicals but also for any of 
its descendant chemicals. The user can also filter chemical - target gene 
associations based on the number of references, with the default being 
relationships supported by at least two references. 

In the context of the European Joint Programme on Rare Diseases 
(EJP RD), there has been an extensive effort to curate rare disease 
pathways for the WikiPathways database (https://www.wikipathways. 
org/communities/rarediseases.html), resulting in more than 100 rare 
disease pathways. These rare disease pathways are composed of disease- 
associated genes and other genes that function in the mechanisms 
associated with the disease. This is well-suited for our study because we 
are using the information on chemicals’ effects on the genes; genes 
without any genetic associations to the disease are also relevant. 
ODAMNet retrieves rare disease pathways and the genes they involve 
from WikiPathways using SPARQL queries (https://sparql.wikipath 
ways.org/). All human pathways and associated genes are also 
retrieved to construct the background gene set that will be used in the 
statistical tests. 

In ODAMNet active module identification approach, biological net
works are downloaded automatically from NDEx (https://www.nde 
xbio.org/) using the NDEx2 Python Client [28] and the networks’ uni
versally unique identifiers (UUID). In the ODAMNet random walk with 
restart approach, multiple networks, including a bipartite network, are 
required. For this reason, ODAMNet does not perform the automatic 
download but provides assistive functions for downloading or building 
the necessary networks (please see Section 2.2.4). 

2.2.2. Data input by the user 
While the automatic retrieval of chemical targets and pathways from 

relevant databases is the default workflow, ODAMNet also allows the 
user to input custom target genes and gene sets such as annotation terms 
or pathways. In the case of using such custom gene sets, the user is ex
pected to provide the background gene sets (as GMT files) that will be 
used in the statistical tests. It is possible to use gene sets from different 
databases (e.g. WikiPathways, Reactome [29], Gene Ontology (GO) [30, 
31]) in the same analysis; in this case, a background gene set for each 
database should also be provided. It should be noted that the identifier 
type of the genes must be consistent between the input files. 

As stated in the previous section, in random walk with restart, 
ODAMNet does not download and use networks automatically. However 
ODAMNet provides assistive functions to download networks from 
NDEx. The user can also provide their own networks. The user can 
provide their own network in the active module identification approach, 
as well. 

2.2.3. Integrative bioinformatics approaches 
ODAMNet uses three approaches for finding the relationships be

tween chemical target genes and rare disease pathways. 
The first approach is an overlap analysis. It assesses if the chemical 

target genes are part of the rare disease pathways and applies a hyper
geometric test to determine statistical significance. Benjamini-Hochberg 
method is then applied for the multiple testing correction. 

The second approach is based on active module identification. An 
active module is a connected subset of gene nodes in a biological 
interaction network relevant to the investigated condition. For the dis
covery of active modules that have high connectivity and contain a high 
number of target genes (considered as active genes), we use the DOM
INO method [26] with the default parameters through its web server 
[32]. Following the active module identification, a pairwise overlap 
analysis is performed between all the identified active modules and all 
the rare disease pathways. Duplicate significant rare disease pathways 
are removed, keeping only the most significant ones. The biological 
interaction network used by DOMINO can be automatically downloaded 
from NDEx or provided by the user. 

There are multiple reasons behind the selection of DOMINO for 
active module identification. First, in contrast to other methods that 

require p-values as input, DOMINO takes binary input; genes should be 
either “active” or “non-active”, which is convenient in our case where 
we use a list of chemical target genes as input. Second, DOMINO pro
vides a web server and an API to access it, which is again convenient for 
integration with ODAMNet. Third, DOMINO works fast. Finally, DOM
INO has been shown to outperform its competitors in both the original 
DOMINO study [26] and in an independent study that evaluated active 
module identification methods by randomizing input networks [33]. 

The third approach is the random walk with restart (RWR) approach. 
RWR measures the proximity between given seed nodes (i.e., chemical 
target genes) and all the other nodes in the network, in a way analogous 
to a person that travels randomly on the connected nodes and sometimes 
teleports back to one of the seed nodes. RWR thereby considers both the 
network distance and the network topology. RWR has been widely used 
in research for disease-associated gene prediction and drug repurposing 
[34–41]. In the ODAMNet RWR approach, we add the rare disease 
pathways as nodes connected to their associated genes in the network. 
Then, RWR can find the rare disease pathway nodes that are proximal to 
the target genes, which are set as seeds. We use multiXrank v0.1 [27], a 
Python package that enables RWR on any kind of multilayer network. 
The biological networks are provided by the user. The input networks 
must include at least one network of genes/proteins, one rare disease 
pathways network (each node only connected to itself, disconnected 
otherwise) and a bipartite network connecting the rare disease pathway 
nodes to the genes in other networks. The rare disease pathways 
network and its corresponding bipartite network can be created using 
the networkCreation function available in ODAMNet. The user needs to 
provide a configuration file for multiXrank in which the seeds file and 
the network files are stated. multiXrank is run with the default param
eters but these can be adjusted through the multiXrank configuration 
file. Please see our example configuration on https://github.com/MOoh 
Tus/ODAMNet/tree/v1.1.0, and multiXrank documentation at https:// 
multixrank-doc.readthedocs.io and [27]. 

2.2.4. Assistive functions 
ODAMNet provides two assistive functions to download and build 

networks. The networkDownloading function allows downloading bio
logical networks from NDex. This function uses the NDEx2 Python Client 
and the networks’ corresponding universally unique identifiers (UUID) 
provided by the user. The second function, networkCreation, allows the 
creation of the networks necessary for the ODAMNet RWR approach. It 
creates a rare disease pathways network (each node only connected to 
itself, disconnected otherwise) and its corresponding bipartite network 
which connects the rare disease pathway nodes to the genes. 

3. Illustrative examples 

Vitamin A is a fat-soluble compound that plays an essential role in 
vision, intercellular communication, mucin production, embryogenesis, 
cell growth, and cell differentiation [42]. Deficiency or excess of vitamin 
A might play a role in disease development. Vitamin A deficiency can 
cause ocular degeneration, diverse changes in epithelial tissues, immune 
deficits, and excessive mortality from childhood diseases [42]. Excess or 
systemic intake of vitamin A during pregnancy can cause a spectrum of 
malformations including ocular, pulmonary, cardiovascular, and uro
genital birth defects [42]. In this context, we used ODAMNet to inves
tigate the molecular relationships between vitamin A and rare diseases. 
We used the automatic data retrieval functions of ODAMNet and its 
three analysis approaches. 

3.1. Data query results 

As input, we gave ODAMNet a chemicals file that contains the 
vitamin A MeSH ID (D014801). ODAMNet automatically retrieved the 
genes targeted by vitamin A and its 9 descendant molecules from CTD 
(directAssociation parameter set to “False”), which resulted in 7765 
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human target genes for 10 chemicals. Then, we kept the chemical - gene 
associations with at least 2 references. After filtering, we obtained 2143 
target genes for vitamin A and its 6 descendants. 

ODAMNet retrieved all pathways labeled as “rare disease” in Wiki
Pathways, which resulted in 104 rare disease pathways. It also retrieved 
all human pathways to construct the background gene set. We obtained 
1281 human pathways in total. 

The protein-protein interaction (PPI) network (UUID: bfac0486-cefe- 
11ed-a79c-005056ae23aa) was downloaded from NDEx. This network is 
the fusion of three datasets (Lit-BM, Hi-Union [43] and APID [44]). It is 
composed of 15,390 nodes and 131,087 edges. 

The molecular complexes network (UUID: 419ae651-cf05–11ed- 
a79c-005056ae23aa) was also downloaded from NDEx. This network is 
the fusion of two molecular complex databases (CORUM [45] and 
HuMap [46]). It is composed of 8497 nodes and 62,073 edges. 

The last network downloaded from NDEx is the Reactome pathways 
network (UUID: b13e9620-cefd-11ed-a79c-005056ae23aa). This 

network was built based on data derived from Reactome protein-protein 
interaction data [29]. It is composed of 4598 nodes and 19,292 edges. 

All results are available on https://github.com/MOohTus/ 
ODAMNet/tree/v1.1.0. Queries were made on 7 September 2022. 

3.2. Overlap analysis results 

We first used the ODAMNet overlap analysis approach. ODAMNet 
retrieved the chemical target genes and pathways as described in Section 
3.1 ODAMNet performed an overlap analysis between the 2143 target 
genes and the 104 rare disease pathways. We obtained a significant 
overlap (adjusted p-value ≤ 0.05) between target genes and 28 rare 
disease pathways (Table 1). 

The command used to perform this overlap analysis is:   

Table 1 
Top 10 of the 28 rare disease pathways significantly overlapping with vitamin A target genes.  

Pathway ID Pathway name Pathway size Intersection size pAdjusted 

WP5087 Malignant pleural mesothelioma 346 146 3.77e-24 
WP4298 Acute viral myocarditis 85 45 9.38e-16 
WP2447 Amyotrophic lateral sclerosis (ALS) 38 25 1.04e-11 
WP5053 Development of ureteric collection system 60 28 2.61e-08 
WP4879 Overlap between signal transduction pathways contributing to LMNA laminopathies 57 25 7.80e-07 
WP5124 Alzheimer’s disease 262 69 1.15e-06 
WP3584 MECP2 and associated Rett syndrome 73 28 2.80e-06 
WP2059 Alzheimer’s disease and miRNA effects 275 70 2.60e-06 
WP3995 Prion disease pathway 33 17 3.86e-06 
WP4746 Thyroid hormones production and peripheral downstream signaling effects 92 31 1.26e-05  

Fig 2. Active module identification with DOMINO followed by overlap analysis between genes in the module and the rare disease pathways. Visualization of 3 over 6 
active modules identified by DOMINO. Target genes are in gray and non target genes are in white. 
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3.3. Active module identification results 

To perform an active module identification approach, ODAMNet 
needs a chemicals file with the MeSH ID of vitamin A and the UUID of 
the PPI network. For the overlap analysis between the identified active 
modules and rare disease pathways, ODAMNet extracted pathways from 
WikiPathways (see Section 3.1 for more details about the query results). 
Over the 2143 target genes, 1937 were found in the PPI and used by 
DOMINO as active genes to find active modules. DOMINO found 12 
active modules enriched in chemical target genes. Then, ODAMNet 
performed an overlap analysis between the 12 identified active modules 
and the 104 rare disease pathways. It found a significant overlap be
tween 6 active modules and 19 rare disease pathways. 

In Fig 2, we present 3 active modules as examples. We can observe 
that the topology of those active modules and the associated rare disease 
pathways vary. For instance, the active module on the right is highly 
connected and the genes are involved in many different rare disease 
pathways. The two other modules are less connected. The genes con
tained in the active module in the middle are involved only in the 
Development of ureteric collection system rare disease pathway. 

The command used to perform this active module identification is:   

3.4. Random walk with restart results 

To run the random walk with restart (RWR) analysis, we provided 
the vitamin A MeSH ID to automatically retrieve target genes from CTD 
(see Section 3.1 for more details about the query results). We also pro
vided a configuration file containing the path to the multilayer network. 
The multilayer network contains a gene multiplex network composed of 
three layers with the same nodes but different types of edges: the PPI 
network, the molecular complexes network and a network composed of 
Reactome pathways. We downloaded these networks from NDEx using 
the networkDownloading function. The multilayer network contains also 
a layer for the rare disease pathways network. This network layer con
tains disconnected rare disease pathway nodes (i.e., each node is only 
connected to itself), which are linked to the gene multiplex network by 
bipartite gene-disease associations. This rare disease pathways network 
and its corresponding bipartite network were created using the net
workCreation function in ODAMNet. 

MultiXrank used 2012 chemical target genes available in the multi
plex network (over the 2143 genes retrieved from CTD). Then it calcu
lated a RWR score for all the nodes of the multilayer network, which can 
be gene or rare disease pathway nodes. We selected the top 20 rare 

disease pathways nodes based on their RWR scores (Table 2). 
The command to download the PPI network used in the random walk 

with restart is:   

The command to create rare disease pathway network and its cor
responding bipartite network is: 
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The command to perform this random walk with restart is:   

3.5. Comparison of the results obtained with the three integrative 
bioinformatics approaches 

To summarize and compare the results from the three approaches, 
we used orsum [47], a Python package for filtering and integrating 
enrichment analysis results obtained from multiple studies (Fig 3). We 
observed that some rare disease pathways are identified as related to 
vitamin A by all three approaches, e.g. Malignant pleural mesothelioma 
and Acute viral myocarditis. Some others are specific to one or two ap
proaches. For instance, Male infertility is retrieved with the overlap 
analysis and the random walk with restart analysis but not with the 
active module identification approach. 

4. Impact 

ODAMNet offers a versatile and comprehensive framework for 
exploring the relationships between chemicals and rare diseases through 
its integrative approach that combines three databases and three distinct 
and complementary bioinformatics approaches. These three bioinfor
matics approaches work at different levels of knowledge: while overlap 
analysis focuses on the direct involvement of the chemical target genes 
in the rare disease pathways, active module identification considers both 
the target genes and the non-target genes in interaction with rare disease 
pathways. On the other hand, RWR finds the proximity of chemical 
target genes to the disease pathway nodes using more biological infor
mation through a multilayer network. 

ODAMNet can be used in multiple ways to generate hypotheses for 
chemical - rare disease relationships. When investigating a specific 

chemical, this chemical can be tested for its relationships with multiple 
pathways, e.g. all the rare disease pathways from WikiPathways. 
Conversely, when investigating a specific disease, a set of chemicals and 

disease associated pathways can be determined and tests can be per
formed to assess their relationships. Furthermore, when the relationship 
between a chemical and a disease is already known, ODAMNet enables a 
focused analysis on the shared genes. For all these analyses, we advise 
the close examination of the target genes, active modules (when active 
module identification is used), and the rare disease pathways to un
derstand the possibly perturbed mechanisms. 

The automatic retrieval of chemical target genes, rare disease path
ways and biological networks from relevant databases is the default 
workflow for ODAMNet. This ensures the usage of up-to-date data and 
enhances ease-of-use. ODAMNet also accepts direct custom input of 
target genes, gene sets and biological networks. This has multiple ad
vantages. First of all, it allows reproducibility; target genes and rare 
disease pathways from specific versions of CTD and WikiPathways can 
be stored and used in ODAMNet. Second, even if the external resources 
become temporarily unavailable, ODAMNet can still be run with the 
previously saved data. And last, this functionality extends the possible 
use-cases of ODAMNet, as any gene list and gene set data can be 
incorporated. 

NeDRex and Drugst.one are two tools developed for drug repurpos
ing that have similar strategies with ODAMNet (Table 3). These tools 
integrate multiple databases and provide different bioinformatics anal
ysis methods. The main difference between ODAMNet and the two other 
tools is the targeted research question. ODAMNet is developed to study 
chemical - rare disease relationships and for this purpose it integrates 
the three most relevant databases. ODAMNet also has the advantage of 
allowing custom data input. 

Table 2 
Top 10 rare disease pathways identified by the ODAMNet RWR approach for vitamin A.  

Pathway ID Pathway name RWR score 

WP5087 Malignant pleural mesothelioma 2.85e-03 
WP4673 Male infertility 9.02e-04 
WP2059 Alzheimer’s disease and miRNA effects 7.76e-04 
WP5124 Alzheimer’s disease 7.76e-04 
WP4298 Acute viral myocarditis 7.69e-04 
WP3584 MECP2 and associated Rett syndrome 6.03e-04 
WP4746 Thyroid hormones production and peripheral downstream signaling effects 5.83e-04 
WP4549 Fragile X syndrome 5.77e-04 
WP5224 2q37 copy number variation syndrome 5.66e-04 
WP4657 22q11.2 copy number variation syndrome 5.62e-04  
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Fig 3. Summarization of rare disease pathways that are found to be related to vitamin A using overlap analysis (Overlap), active module identification (AMI) and 
random walk with restart (RWR) analysis. This heatmap is created by orsum [47]. 
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5. Conclusions 

Environmental factors, in particular chemical substances, are known 
or suspected to be playing a role in multiple diseases. There is growing 
knowledge on chemical - gene/protein interactions and rare disease 
molecular mechanisms. We designed ODAMNet to bridge the gap be
tween these knowledge sources. Using three different and complemen
tary approaches, ODAMNet can generate knowledge-based hypotheses 
for chemical - rare disease relationships and their underlying mecha
nisms. Overall, ODAMNet’s comprehensive approach, flexibility in 
analysis design, and utilization of up-to-date or custom input data 
should allow its usage in a wide variety of contexts. 
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