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ON THE CAUCHY PROBLEM FOR LOGARITHMIC

FRACTIONAL SCHRÖDINGER EQUATION

RÉMI CARLES AND FANGYUAN DONG

Abstract. We consider the fractional Schrödinger equation with a logarith-
mic nonlinearity, when the power of the Laplacian is between zero and one. We
prove global existence results in three different functional spaces: the Sobolev
space corresponding to the quadratic form domain of the fractional Laplacian,
the energy space, and a space contained in the operator domain of the frac-
tional Laplacian. For this last case, a finite momentum assumption is made,
and the key step consists in estimating the Lie commutator between the frac-
tional Laplacian and the multiplication by a monomial.

1. Introduction

We consider the logarithmic Schrödinger equation

(1.1) i∂tu− (−∆)su = λ log
(
|u|2

)
u , u|t=0 = u0 ,

where 0 < s < 1, u = u(t, x) represents a complex-valued function defined on
(t, x) ∈ R×Rd, with d ≥ 1. The fractional Laplacian (−∆)s is defined through the
Fourier transform as follows:

(1.2) F [(−∆)su] (ξ) = |ξ|2sFu(ξ),

where the Fourier transform is given by

(1.3) Fu(ξ) =
1

(2π)d/2

∫

Rd

u(x)e−iξ·x dx.

The fractional Laplacian (−∆)s is a self-adjoint operator acting on the space
L2

(
Rd

)
, characterized by a quadratic form domain Hs

(
Rd

)
and an operator do-

main H2s
(
Rd

)
. The nonlocal operator (−∆)s serves as the infinitesimal generators

in the context of Lévy stable diffusion processes, as outlined in [2]. Fractional
derivatives of the Laplacian have applications in numerous equations in mathemat-
ical physics and related disciplines, as proposed in [28, 29] in the case of linear
Schrödinger equations; see also [2, 16, 22] and the associated references. Recently,
there has been a strong focus on studying mathematical problems related to the
fractional Laplacian purely from a mathematical perspective. Regarding specifically
fractional nonlinear Schrödinger equations, important progress has been made in
e.g. [4, 6, 12, 13, 18, 19, 20, 21].

The problem (1.1) does not seem to have physical motivations (so far), and
was introduced in [15] as a generalization of the case s = 1, introduced in [5],
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2 R. CARLES AND F. DONG

and proposed in different physical contexts since (see e.g. [25, 33]). Note also
that the logarithmic nonlinearity may be obtained as the limit of an homogeneous
nonlinearity λ|u|2σu when σ goes to zero, at least when ground states are considered
(case λ < 0; see [31] for s = 1, [1] in the fractional case).

In [3], the author addresses the nonlinear fractional logarithmic Schrödinger
equation (1.1) with λ = −1 and d ≥ 2, employing a compactness method to estab-
lish a unique global solution for the associated Cauchy problem within a suitable
functional framework, inspired by [11] (for the logarithmic nonlinearity) and [13]
(for the fractional Laplacian). In [32], the author investigate the existence of a
global weak solution to the problem (1.1) in the case of λ = −1, when the space
variable x belongs to some smooth bounded domain, by using a combination of
potential wells theory and the Galerkin method. In this paper, we complement the
approach from [3, 32] by adapting the strategy employed in [24] in the case of the
standard Laplacian, s = 1.

Formally, (1.1) enjoys the the conservations of mass, angular momentum, and
energy:

M(u(t)) = ‖u(t)‖2L2(Rd),

J(u(t)) = Im

∫

Rd

ū(t, x)∇u(t, x)dx,

E(u(t)) =
1

2
‖(−∆)s/2u(t)‖2L2(Rd) +

λ

2

∫

Rd

|u(t, x)|2
(
log |u(t, x)|2 − 1

)
dx.(1.4)

The energy is well-defined in the subset of Hs
(
Rd

)
,

W s
1 :=

{
u ∈ Hs(Rd) , x 7→ |u(x)|2 log |u(x)|2 ∈ L1(Rd)

}
.

When s = 1, Hayashi and Ozawa [24] revisit the Cauchy problem for the logarithmic
Schrödinger equation, constructing strong solutions in bothH1 andW1 =W 1

1 . This
approach deliberately avoids relying on compactness arguments, demonstrating the
convergence of a sequence of approximate solutions in a complete function space.
The authors in [24] also address the existence in the H2-energy space, as discussed
below.

The main contributions of this paper can be summarized as follows:
1. Construction of Hs strong solutions, without relying on the conservation of the
energy.
2. Construction of solutions in the energy space W s

1 .
3. The higher H2s regularity is established, by assuming some further spatial decay
of the initial data.

In all cases, no sign assumption is made on λ ∈ R.

Theorem 1.1. Let λ ∈ R and 0 < s < 1. For any ϕ ∈ Hs
(
Rd

)
, there exists a

unique solution C
(
R, Hs

(
Rd

))
to (1.1) in the sense of

(1.5) i∂tu− (−∆)su = λ log
(
|u|2

)
u in H−s(Ω)

for all bounded open sets Ω ⊂ Rd and all t ∈ R, and with u|t=0 = ϕ. If in addition

we assume ϕ ∈ W s
1 , this Hs-solution satisfies u ∈ (C ∩ L∞) (R,W s

1 ) if λ < 0
and u ∈ C (R,W s

1 ) if λ > 0. Moreover, the W s
1 -solution u satisfies the equation

(1.5) in the sense of (W s
1 )

∗, where (W s
1 )

∗ is the dual space of W s
1 . Finally, if
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ϕ ∈ H1(Rd), then the solution u ∈ C
(
R, Hs

(
Rd

))
to (1.1) satisfies in addition

u ∈ C
(
R, H1

(
Rd

))
.

The next result addresses on the construction of strong solutions in W s
2 , where

W s
2 :=

{
u ∈ H2s(Rd) , x 7→ u(x) log |u(x)|2 ∈ L2(Rd)

}
,

and this space is the natural counterpart of the space W2 of the H2-energy space
introduced in [24] for the case s = 1. Note that considering this space is interesting
especially when s > 1/2, since we have seen in Theorem 1.1 that the H1 regularity
is propagated, and H1(Rd) ⊂ H2s(Rd) when s ≤ 1/2.

In the fractional case, it seems delicate to adapt the strategy introduced in [24],
as some algebraic structure is lost. More precisely, the strategy in [24] starts by
showing that ∂tu ∈ L∞

loc(R, L
2), to eventually conclude that ∆u ∈ L∞

loc(R, L
2). At

this level of generality, this is the standard approach, as presented in e.g. [10], but
the logarithmic nonlinearity actually requires some special care. The above line
of reasoning needs, as an intermediary step, to know that u log |u|2 ∈ L∞

loc(R, L
2),

which is by no means obvious, due to the region {|u| < 1} where the nonlinearity
is morally sublinear. This difficulty is overcome in [24] by a beautiful algebraic
identity ([24, Lemma 3.3]), whose derivation involves an integration by parts in the
term

Re (∆u, u log (|u|+ ε))L2 = −Re

(
u∇u,

∇|u|

|u|+ ε

)

L2

+
(
|∇u|2, log (|u|+ ε)

)
L2 .

In the present case, we would face

Re ((−∆)su, u log (|u|+ ε))L2 ,

and the integration by parts would require to control a fractional derivative of
u log (|u|+ ε), at least in the case s < 1/2 (for s > 1/2, one could consider the
gradient again).

To overcome this issue, we adopt the approach considered in [7] for the case
s = 1, and rely on some finite momentum assumption. For 0 < α ≤ 1, we have

F (Hα) =
{
u ∈ L2

(
R

d
)
, x 7→ 〈x〉αu(x) ∈ L2

(
R

d
)}
,

where 〈x〉 :=
√
1 + |x|2, and this space is equipped with the norm

‖u‖F(Hα) := ‖〈x〉αu(x)‖L2(Rd) .

Denote, for α > 0, X2s
α := H2s ∩ F(Hα): for any α > 0, X2s

α ⊂ W s
2 , as can be

seen from the estimate, valid for any δ ∈ (0, 1),

(1.6)
∣∣u log

(
|u|2

)∣∣ . |u|1−δ + |u|1+δ.

Theorem 1.2. Let λ ∈ R, 0 < s < 1. Consider 0 < α < 2s with α ≤ 1. For any

ϕ ∈ X2s
α = H2s ∩ F(Hα), there exists a unique solution u ∈ Cw ∩ L∞

loc(R, X
2s
α ) to

(1.1) in the sense of

(1.7) i∂tu− (−∆)su = λ log
(
|u|2

)
u in L2(Ω),

for all bounded open sets Ω ⊂ Rd and a.e. t ∈ R, with u|t=0 = ϕ. Moreover, when

λ < 0, u ∈ C
(
R, X2s

α

)
and (1.7) holds in L2

(
R

d
)
and for all t ∈ R.
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The new difficulty in proving the above result, compared to the case s = 1, lies in
the fact that the Lie bracket [(−∆)s, 〈x〉

α
] requires some extra care; see Lemma 2.3.

We underline the fact that we do not know whether the Hσ regularity is prop-
agated by the flow of (1.1), where σ = max(1, 2s), like in the case of the regular
Laplacian s = 1.

Notations.

•
∫
f is employed in place of

∫
Rd f(x)dx.

• The inner product in L2 is denoted by

(f, g)L2 =

∫

Rd

f(x)g(x)dx =

∫
f ḡ.

• Let C(I,X) (resp. Cw(I,X)) be the space strongly (resp. weakly) contin-
uous functions from interval I(⊆ R) to X .

• Abbreviated notation: for T > 0, we write

CT (X) = C([−T, T ], X), L∞
T (X) = L∞((−T, T ), X), .

• A . B represents the inequality A ≤ CB with some constant C > 0.

Content. The rest of the paper is organized as follows. In Section 2, we collect
lemmas which are of constant use in this paper. Section 3 is dedicated to the study
of the Cauchy problem for (1.1) in both Hs and W 1

s , proving Theorem 1.1. In
Section 4, we consider higher regularity and prove Theorem 1.2.

2. Useful lemmas

The following lemma is a generalization of the inequality proven initially by
Cazenave and Haraux [11] in the case ε = µ = 0:

Lemma 2.1 ([24], Lemma A.1). For all u, v ∈ C and ε, µ ≥ 0, we have

(2.1) | Im(u log(|u|+ ε)− v log(|v|+ µ))(ū − v̄)| ≤ |u− v|2 + |ε− µ||u− v|.

We will also use several times the fractional Leibniz rule. We state a simpli-
fied version of a result from [30], by using the fact that BMO contains L∞, and
considering only the L2 setting.

Lemma 2.2 ([30], Corollary 1.4). For σ > 0, let Aσ be a differential operator such

that its symbol Âσ(ξ) is homogeneous of degree σ and Âσ(ξ) ∈ C∞(Sd−1).

• If 0 < σ < 1,

‖Aσ(fg)− gAσf‖L2 . ‖f‖L2‖(−∆)σ/2g‖L∞ .

• If 1 ≤ σ < 2,

‖Aσ(fg)− gAσf −∇g ·Aσ,∇f‖L2 . ‖f‖L2‖(−∆)σ/2g‖L∞ .

where Âσ,∇(ξ) = −i∇ξ

(
Âσ(ξ)

)
.
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We recall that the characterization of the Hs norm, for 0 < s < 1, can be
expressed as follows (see e.g. [17]):

‖f‖2Hs = ‖f‖2L2 +

∫∫

Rd×Rd

|f(x)− f(y)|2

|x− y|d+2s
dydx

= ‖f‖2L2 +

∫∫

Rd×Rd

|f(x+ y)− f(x)|2

|y|d+2s
dydx.

We also have, for 0 < s < 1 and f ∈ S(Rd) (see e.g. [17]),

(2.2) (−∆)sf(x) = c(d, s)

∫∫

Rd×Rd

f(x+ y) + f(x− y)− 2f(x)

|y|d+2s
dydx,

for some constant c(d, s) whose exact value is irrelevant here.
The following lemma will be crucial in the proof of Theorem 1.2.

Lemma 2.3. Let 0 < s < 1. If 0 < α < 2s and α ≤ 1, then the commutator

[(−∆)s, 〈x〉α] is continuous from Hs(Rd) to L2(Rd).

Proof. The proof relies on the fractional Leibniz rule stated in Lemma 2.2, with
Aσ = (−∆)s, hence σ = 2s. Fix f ∈ C∞

c (Rd), and let g(x) = 〈x〉
α
.

We first show that under the assumptions of the lemma, (−∆)sg ∈ L∞(Rd), by
using the characterization (2.2). In the region {|y| ≥ 1}, we write, since 0 < α ≤ 1,

| 〈x± y〉
α
− 〈x〉

α
| ≤ | 〈x± y〉 − 〈x〉 |α . |y|α,

hence ∣∣∣∣∣

∫

|y|≥1

〈x+ y〉α + 〈x− y〉α − 2 〈x〉α

|y|d+2s
dy

∣∣∣∣∣ .
∫

|y|≥1

|y|α

|y|d+2s
dy <∞,

provided that α < 2s. In the ball {|y| < 1}, Taylor’s formula yields

〈x+ y〉α + 〈x− y〉α − 2 〈x〉α =
〈
∇2g(x)y, y

〉
+O

(
|y|3

)
,

where the remainder is uniform in x ∈ Rd, as the third order derivatives of g are
bounded. Also, the Hessian of g is bounded since |∇2g(x)| . 〈x〉α−2, and

∣∣∣∣∣

∫

|y|≤1

〈x+ y〉
α
+ 〈x− y〉

α
− 2 〈x〉

α

|y|d+2s
dy

∣∣∣∣∣ .
∫

|y|≤1

|y|2

|y|d+2s
dy <∞,

since s < 1.

First case: 0 < s < 1/2. In view of the first case in Lemma 2.2,

‖[(−∆)s, 〈x〉α]f‖L2 . ‖f‖L2‖(−∆)sg‖L∞ . ‖f‖L2,

and [(−∆)s, 〈x〉α] is continuous from L2(Rd) to L2(Rd).
Second case: 1/2 ≤ s < 1. In view of the second case in Lemma 2.2,

‖[(−∆)s, 〈x〉α]f‖L2 . ‖∇g ·A2s,∇f‖L2 + ‖f‖L2‖(−∆)sg‖L∞.

In view of the definition of A2s,∇, with A2s = (−∆)s,

‖A2s,∇f‖L2 . ‖f‖Ḣ2s−1 . ‖f‖Hs ,

since 0 < s < 1. Recalling that since α ≤ 1, ∇g ∈ L∞, the lemma is proved. �
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3. The Cauchy problem in Hs and the energy space

In this section, we prove Theorem 1.1, by resuming the strategy of [24], which
requires very few adaptations to treat this fractional case (essentially, the fractional
Leibniz rule).

3.1. Approximate problems. For ε > 0, we consider the approximate equation

(3.1) i∂tuε − (−∆)suε = 2λuε log (|uε|+ ε) , uε(0, x) = ϕ(x).

We set
g(u) = 2u log |u|, gε(u) = 2u log(|u|+ ε).

For σ ≥ 0 we have
∫ σ

0

gε(τ)dτ =
1

2
σ2 log

(
(σ + ε)2

)
−

1

2

∫ σ

0

2τ2

τ + ε
dτ.

We define Gε(u) by

Gε(u) =
1

2

∫
|u|2 log

(
(|u|+ ε)2

)
−

1

2

∫
µε(|u|), for u ∈ Hs

(
R

d
)
,

where

µε(σ) :=

∫ σ

0

2τ2

τ + ε
dτ for σ ≥ 0.

We define Eε(u) by

(3.2)

Eε(u) =
1

2

∫
|(−∆)s/2u|2 + λGε(u)

=
1

2

∫
|(−∆)s/2u|2 +

λ

2

∫
|u|2 log

(
(|u|+ ε)2

)
−
λ

2

∫
µε(|u|)

Lemma 3.1. Let ϕ ∈ Hs(Rd) and ε > 0. Then (3.1) possesses a unique solution

uε ∈ C
(
R, Hs

(
R

d
))

∩C1
(
R, H−s

(
R

d
))
.

Moreover, the mass and energy are conserved: for all t ∈ R,

‖uε(t)‖
2
L2 = ‖ϕ‖2L2, Eε (uε(t)) = Eε(ϕ).

Proof. Unlike in the case of the regular Laplacian, s = 1, it seems delicate to invoke
Strichartz estimates independently of the space dimension d in order to solve (3.1)
in Hs, since a loss of regularity is present when 0 < s < 1, see [14], and [23, 26]. We
rather adopt the approach of [13], which in turn resumes the arguments from [10].
A key step is to check that, for a given T > 0, (3.1) has a most one (weak) solution

uε ∈ L∞
T H

s ∩W 1,∞
T H−s. By interpolation, such a solution belongs to CTL

2, and
if uε, vε are two such solutions, uε − vε solves

(i∂t − (−∆)s) (uε − vε) = λ (uε log (|uε|+ ε)− vε log (|vε|+ ε)) .

We then proceed with the usual argument for L2 estimates in Schrödinger equations:
multiply by ūε − v̄ε, integrate over Rd, and take the imaginary part. The term
involving the fractional Laplacian vanishes by self-adjointness, and the nonlinear
term is controlled thanks to Lemma 2.1 (with µ = ε), so we get

d

dt
‖uε − vε‖

2
L2 . ‖uε − vε‖

2
L2 ,

hence uε ≡ vε by Gronwall Lemma, since ‖uε(t) − vε(t)‖L2 is continuous at t = 0.
The existence of such a weak solution is given by [10, Theorem 3.3.5], which is
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readily adapted to the case of the fractional Laplacian, and since we note that for
fixed ε > 0, there exists a function Cε(·) such that if ‖u‖Hs , ‖v‖Hs ≤M , then

‖gε(u)− gε(v)‖H−s ≤ ‖gε(u)− gε(v)‖L2 ≤ Cε(M)‖u− v‖Hs .

With the above uniqueness property, we can resume the proof of [10, Theorem 3.3.9]
and [10, Theorem 3.4.1] for the globalization, since, as we have, for every δ > 0,

∣∣|u|2 log (|u|+ ε)− µε(|u|)
∣∣ ≤ Cε,δ|u|

2+δ + |u|,

Gagliardo-Nirenberg and Young inequalities yield

|λGε(u)| ≤
1

4
‖u‖2

Ḣs
+ C(‖u‖L2),

so we obtain the lemma. �

3.2. Construction of weak Hs solution. We initially establish a uniform esti-
mate for approximate solutions within the Hs space.

Lemma 3.2. Let 0 < α ≤ 1 and ϕ ∈ Hs. For all t ∈ R we have

(3.3)
∥∥∥(−∆)s/2uε(t)

∥∥∥
2

L2
≤ e4|λ||t|‖(−∆)s/2ϕ‖2L2 .

Proof. We resume the energy estimate from [8]: in view of the conservation of the
L2-norm,

d

dt
‖uε(t)‖

2
Hs(Rd)

=2Re

∫∫

Rd×Rd

(uε(t, x+ y)− uε(t, x))∂t (uε(t, x+ y)− uε(t, x))
dxdy

|y|d+2α

=− 2 Im

∫∫

Rd×Rd

(uε(t, x+ y)− uε(t, x))(−∆)s (uε(t, x+ y)− uε(t, x))
dxdy

|y|d+2α

− 4λ Im

∫∫

Rd×Rd

(uε(t, x+ y)− uε(t, x)) (gε (uε(t, x+ y))− gε (uε(t, x)))
dxdy

|y|d+2α
.

Here, the first term on the right-hand side of the equation vanishes, since (−∆)s

is self-adjoint, and so the imaginary part of the integral in x is zero. By applying
Lemma 2.1 with µ = ε, we obtain

d

dt
‖uε(t)‖

2
Hs(Rd)

≤4|λ|

∫∫

Rd×Rd

∣∣∣Im
[
(uε(t, x+ y)− uε(t, x)) (gε (uε(t, x + y))− gε (uε(t, x)))

]∣∣∣ dxdy

|y|d+2α

≤4|λ|

∫∫

Rd×Rd

|uε(t, x+ y)− uε(t, x)|
2 dxdy

|y|d+2α
≤ 4|λ| ‖uε(t)‖

2
Hs(Rd) .

Gronwall Lemma then yields

‖uε(t)‖
2
Hs(Rd) ≤ e4|λt|‖ϕ‖2Hs(Rd) for all t ∈ R,

hence the lemma. �

It follows from Lemma 3.1 and (3.3) that for any T > 0 we have

(3.4) MT := sup
0<ε<1

‖uε‖L∞

T
(Hs) ≤ C (T, ‖ϕ‖Hs) .
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Next we prove that {uε}0<ε<1 forms a Cauchy sequence in CT

(
L2
loc

(
Rd

))
as ε ↓ 0

for any T > 0. Take a function ζ ∈ C∞
c

(
Rd

)
satisfying

ζ(x) =

{
1 if |x| ≤ 1,
0 if |x| ≥ 2,

0 ≤ ζ(x) ≤ 1 for all x ∈ R
d.

For R > 0 we set ζR := ζ(x/R). For ε, µ ∈ (0, 1), utilizing (3.1), (2.1), and (3.4), a
direct computation indicates that

d

dt
‖ζR (uε − uµ)‖

2
L2 =2 Im

(
iζ2R∂t (uε − uµ) , uε − uµ

)

=2 Im
(
ζ2R(−∆)s (uε − uµ) , uε − uµ

)

+ 4λ Im
(
ζ2R (uε log (|uε|+ ε)− uµ log (|uµ|+ µ)) , uε − uµ

)
.

The first term on the right hand side is estimated thanks to the fractional Leibniz
rule recalled in (the first case of) Lemma 2.2, since

Im
(
(−∆)s/2 (uε − uµ) , ζ

2
R(−∆)s/2(uε − uµ)

)
= 0,

by:
∣∣∣Im

(
(−∆)s/2 (uε − uµ) , (−∆)s/2

(
ζ2R(uε − uµ)

))∣∣∣

. ‖uε − uµ‖Ḣs‖uε − uµ‖L2‖(−∆)s/2
(
ζ2R

)
‖L∞.

The estimate ‖(−∆)s/2ζ2R‖L∞ . 1/Rs follows by homogeneity (using e.g. Fourier
transform), and thus

d

dt
‖ζR (uε − uµ)‖

2
L2 ≤

C

Rs
‖uε − uµ‖Ḣs ‖uε − uµ‖L2

+ 4|λ|
(
‖ζR (uε − uµ)‖

2
L2 + |ε− µ|

∥∥ζ2R (uε − uµ)
∥∥
L1

)
.

Gronwall Lemma implies

(3.5) ‖ζR (uε − uµ) (t)‖
2
L2 ≤ e4|λ|T

(
C (MT )

Rs
+ |ε− µ| |B2R|

1/2 ‖ϕ‖L2

)
,

for all t ∈ [−T, T ], where we have used
∥∥ζ2R (uε − uµ)

∥∥
L1 ≤ ‖uε − uµ‖L2(B2R) ≤ 2 |B2R|

1/2 ‖ϕ‖L2 .

We now fix R0 > 0 and take R ∈ (R0,∞) as a parameter. It follows from (3.5) that

‖uε − uµ‖
2
CT (L2(BR0))

≤ ‖ζR (uε − uµ)‖
2
CT (L2) ≤ C (T, ‖ϕ‖Hs)

(
1

Rs
+ |ε− µ| |B2R|

1/2

)
,

which yields

lim sup
ε,µ↓0

‖uε − uµ‖
2
CT (L2(BR0))

≤
C (T, ‖ϕ‖Hs)

Rs
−→
R→∞

0.

As R0 > 0 is arbitrary, we conclude that the sequence {uε}0<ε<1 constitutes a

Cauchy sequence in CT

(
L2
loc

(
Rd

))
. When combining this with Lemma 3.1, this

entails that there exists a function u ∈ L∞
(
R, L2

(
Rd

))
such that

(3.6) uε → u in CT

(
L2
loc

(
R

d
))

as ε ↓ 0,

for all T > 0.



LOGARITHMIC FRACTIONAL SCHRÖDINGER EQUATION 9

Lemma 3.3. u ∈ L∞
loc

(
R, Hs

(
Rd

))
and

(3.7) uε(t)⇀ u(t) in Hs
(
R

d
)

for all t ∈ R.

Proof. First it follows from (3.6) that

(3.8) uε(t)⇀ u(t) in L2
(
R

d
)

for all t ∈ R.

To prove u ∈ L∞
loc

(
R, Hs

(
Rd

))
, we use the characterization of Hs functions by

duality. For any ψ ∈ C∞
c

(
Rd

)
and t ∈ [−T, T ] we obtain from (3.4) that

∣∣∣∣
∫
uε(t)(−∆)s/2ψ

∣∣∣∣ =
∣∣∣∣
∫
(−∆)s/2uε(t)ψ

∣∣∣∣ ≤ ‖uε(t)‖Ḣs‖ψ‖L2 ≤MT ‖ψ‖L2.

Then it follows from (3.8) that
∣∣∣∣
∫
u(t)(−∆)s/2ψ

∣∣∣∣ ≤MT‖ψ‖L2 for all t ∈ [−T, T ].

We infer that for all t ∈ [−T, T ],

u(t) ∈ Hs(Rd) and ‖(−∆)s/2u(t)‖L2 ≤MT ,

hence u ∈ L∞
loc(R, H

s(Rd)). Also, in view of (3.8),
∫
(−∆)s/2uε(t)ψ →

∫
(−∆)s/2u(t)ψ,

for any ψ ∈ C∞
c (Rd) and t ∈ R. Using (3.4) and a density argument, we deduce

that
(−∆)s/2uε(t)⇀ (−∆)s/2u(t) in L2

(
R

d
)
, for all t ∈ R,

hence the lemma. �

Next, we prove that the convergence of the nonlinear term.

Lemma 3.4. For all t ∈ R we have

gε (uε(t)) → g(u(t)) in L2
loc

(
R

d
)

as ε ↓ 0.

Proof. We show that for any Ω ⊂⊂ Rd and t ∈ R,

uε(t) log (|uε(t)|+ ε) → u(t) log |u(t)| in L2(Ω) as ε ↓ 0.

In view of [24, Lemma A.2], we know that for α ∈ (0, 1), there exists C(α) > 0 such
that for all u, v ∈ C, ε ∈ (0, 1)

|v log(|v|+ ε)− u log |u|| ≤ε+ |u− v|+ C(α)×
(
1 + |u|1−α log+ |u|+ |v|1−α log+ |v|

)
|u− v|α,

where log+ x := max(log x, 0). Hence, for any δ > 0 small, there exists C(δ) > 0
such that

|uε log(|uε|+ ε)− u log |u|| ≤ε+ |uε − u|+ C(α)×
(
1 + |uε|

1
2
+δ + |u|

1
2
+δ

)
|uε − u|1/2.

Fixing δ > 0 sufficiently small so that Hs(Rd) ⊂ L2+4δ(Rd), we have
∥∥∥|uε|

1
2
+δ

|uε − u|
1/2

∥∥∥
2

L2(Ω)
=

∫

Ω

|uε|
1+2δ

|uε − u| ≤ ‖uε‖
1+2δ
L2+4δ ‖uε − u‖L2(Ω)

. ‖uε‖
1+2δ
Hs ‖uε − u‖L2(Ω) .
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Therefore, the results follows from (3.4) and (3.6). �

From (3.1) it follows that for every ϕ ∈ C∞
c (Rd) and every φ ∈ C1

c (R),
∫

R

(iuε, ψ)L2 φ
′(t)dt = −

∫

R

〈i∂tuε, ψ〉H−s,Hs φ(t)dt

= −

∫

R

〈(−∆)suε + 2λuε log (|uε|+ ε) , ψ〉H−s,Hs φ(t)dt

= −

∫

R

{(
(−∆)s/2uε, (−∆)s/2ψ

)
L2

+ (λgε (uε) , ψ)L2

}
φ(t)dt.

From (3.7), uε(t) ⇀ u(t) in Hs(Rd). In view of Lemma 3.4, taking the limit ε ↓ 0
yields

∫

R

(iu, ψ)L2φ′(t)dt = −

∫

R

{
((−∆)s/2u, (−∆)s/2ψ)L2 + (λg(u), ψ)L2

}
φ(t)dt.

It can be easily verified for any Ω ⊂⊂ R
d,

u ∈ L∞
loc

(
R, Hs

(
R

d
))

∩W s,∞
loc

(
R, H−s(Ω)

)

and

(3.9) i∂tu− (−∆)su = λg(u) in H−s(Ω),

for almost all t ∈ R.

3.3. Uniqueness and regularity. Following [11, Lemme 2.2.1], we have:

Lemma 3.5. Assume that, for some T > 0, u, v ∈ L∞
T

(
Hs

(
Rd

))
solve (1.1) in

the distribution sense. Then u = v.

Proof. We set

M := max
{
‖u‖L∞

T
(Hs), ‖v‖L∞

T
(Hs)

}
.

As mentioned above, u, v satisfy the equation in the sense of (3.9). Resuming the
cut-off function ζR, and the computations from Section 3.2 (with uε replaced by u
and uµ replaced by v), Gronwall Lemma yields, like for (3.5) (with now ε = µ = 0),

‖ζR(u− v)(t)‖2L2 ≤ e4|λ|T
(
‖ζR(u(0)− v(0))‖2L2 +

C(M)

Rs
T

)
for all t ∈ [−T, T ].

By Fatou’s Lemma,

‖(u− v)(t)‖2L2 ≤ lim inf
R→∞

‖ζR(u− v)(t)‖2L2 ≤ 0,

for all t ∈ [−T, T ]. Therefore, u = v on [−T, T ]. �

Continuity in time and strong L2 convergence are established like in the proof
of [24, Lemma 2.10].

Lemma 3.6. u ∈ Cw

(
R, Hs

(
Rd

))
∩ C

(
R, L2

(
Rd

))
and

uε(t) → u(t) in L2
(
R

d
)
.
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Proof. First we note that u ∈ Cw

(
R, Hs

(
Rd

))
. Indeed this easily follows from

Lemma 3.3 and u ∈ C
(
R, L2

loc

(
Rd

))
. Next, we obtain from Lemma 3.1 and (3.8)

that

‖u(t)‖2L2 ≤ lim inf
ε→0

‖uε(t)‖
2
L2 = ‖ϕ‖2L2 for all t ∈ R.

Uniqueness of solutions yields that

(3.10) ‖u(t)‖2L2 = ‖ϕ‖2L2 for all t ∈ R

As u ∈ Cw

(
R, L2

(
Rd

))
, we deduce that u ∈ C

(
R, L2

(
Rd

))
. Since no mass is lost

in the weak convergence (3.8), the convergence is strong in L2. �

Lemma 3.7. u ∈ C
(
R, Hs

(
R

d
))
.

Proof. We just need to show the continuity t 7→ u(t) ∈ Hs
(
Rd

)
at t = 0. It follows

from (3.3), (3.7), and the weak lower semicontinuity of the norm that

‖u(t)‖2
Ḣs

≤ e4|λ||t|‖ϕ‖2
Ḣs
.

Passing to the limit as t→ 0 we have

lim sup
t→0

‖u(t)‖2
Ḣs

≤ ‖ϕ‖2
Ḣs
.

On the other hand, it follows from the weak continuity t 7→ u(t) ∈ Hs
(
Rd

)
at t = 0

that

‖ϕ‖2
Ḣs

≤ lim inf
t→0

‖u(t)‖2
Ḣs
.

So we obtain

lim
t→0

‖u(t)‖2
Ḣs

= ‖ϕ‖2
Ḣs
.

Therefore, the weak convergence in (3.7) is actually strong. �

3.4. Construction of solutions inW s
1 . We now assume that ϕ ∈W s

1 ⊂ Hs
(
Rd

)
.

From the dominated convergence theorem we have

Eε(ϕ) → E(ϕ) as ε ↓ 0,

recalling that Eε(ϕ) and E(ϕ) are defined in (3.2) and (1.4), respectively. Let
θ ∈ C1

c (C,R) satisfying

θ(z) =

{
1 if |z| ≤ 1/4,
0 if |z| ≥ 1/2,

0 ≤ θ(z) ≤ 1 for z ∈ C,

and set, for ε > 0,

F1ε(u) = θ(u)|u|2 log
(
(|u|+ ε)2

)
, F2ε(u) = (1 − θ(u))|u|2 log

(
(|u|+ ε)2

)
,

F1(u) = θ(u)|u|2 log
(
|u|2

)
, F2(u) = (1 − θ(u))|u|2 log

(
|u|2

)
.

In the subsequent discussion, we confine the range of ε to (0, 1/2). The energy
expressed in equation (3.1) is denoted as

Eε(u) =
1

2

∫
|(−∆)s/2u|2 +

λ

2

∫
F1ε(u) +

λ

2

∫
F2ε(u)−

λ

2

∫
µε(|u|).

Taking δ > 0 sufficiently small,
(3.11)∫

|F2(u)| .

∫
|u|2+δ .

(
‖u‖1−η

L2 ‖u‖η
Ḣs

)2+δ

, η =
d

s

(
1

2
−

1

2 + δ

)
∈ (0, 1).
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In particular,

for u ∈ Hs
(
R

d
)
, u ∈W s

1 ⇐⇒

∫
|F1(u)| <∞.

Lemma 3.8. For all t ∈ R we have, as ε→ 0,
∫
µε (|uε(t)|) →

∫
|u(t)|2,

∫
F2ε (uε(t)) →

∫
F2(u(t)).

The proof of this lemma is found in[24, Lemma 2.13], and relies on the observa-
tion that for any δ ∈ (0, 1) there exists C(δ) > 0 such that

|F2ε(z)− F2(w)| ≤ C(δ)
(
|z|1+δ + |w|1+δ

)
|z − w| for all z, w ∈ C.

Proposition 3.9. Let λ < 0. Then, u ∈ (C ∩ L∞) (R,W s
1 ) and E(u(t)) = E(ϕ)

for all t ∈ R.

Proof. For ε ∈ (0, 1/2), we have F1ε(u) ≤ 0, and we can rewrite the first two terms
Eε(u) as

1

2

∫
|(−∆)s/2u|2 +

λ

2

∫
F1ε(u) =

1

2

∫
|(−∆)s/2u|2 +

|λ|

2

∫
|F1ε(u)|.

The weak lower semicontinuity of the norm, Fatou’s lemma (for the second term),
and Lemma 3.8 imply

1

2

∫
|(−∆)s/2u(t)|2 +

|λ|

2

∫
|F1(u(t))| ≤ lim inf

ε→0

(
Eε (uε(t))−

λ

2

∫
F2ε (uε(t)) +

λ

2

∫
µε (uε(t))

)

≤ E(ϕ)−
λ

2

∫
F2(u(t)) +

λ

2

∫
|u(t)|2,

for all t ∈ R. It implies that

u(t) ∈W s
1 , E(u(t)) ≤ E(ϕ) for all t ∈ R.

Invoking Lemma 3.6, we obtain that the conservation of the energy

(3.12) E(u(t)) = E(ϕ) for all t ∈ R.

From inequality (3.11) with (2 + δ)η < 2, and the identity (3.10) we get
∫

|(−∆)s/2u(t)|2 +

∫
|F1(u(t))| ≤ C (E(ϕ), ‖ϕ‖L2) ,

for all t ∈ R. Therefore we deduce that

u ∈ L∞
(
R, Hs

(
R

d
))

and t 7→

∫
|u(t)|2 log

(
|u(t)|2

)
∈ L∞(R),

and thus u ∈ L∞ (R,W s
1 ). Moreover, from (3.12) and Lemma (3.7), we know that

t 7→

∫
|u(t)|2 log

(
|u(t)|2

)
∈ C(R) ⇐⇒ u ∈ C (R,W s

1 ) ,

which completes the proof. �

Proposition 3.10. Let λ > 0. Then, u ∈ C (R,W s
1 ).
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Proof. Step 1. We show that u ∈ L∞
loc (R,W

s
1 ). It follows from (3.2) and (3.12)

that for any T > 0 and t ∈ [−T, T ],

|λ|

2

∫
|F1ε (uε(t))| = −

λ

2

∫
F1ε (uε(t))

= −Eε (uε(t)) +
1

2

∫ ∣∣∣(−∆)s/2uε(t)
∣∣∣
2

+
λ

2

(∫
F2ε (uε(t))−

∫
µε (|uε(t)|)

)
.

Fatou’s Lemma and (3.4) imply

|λ|

2

∫
|F1(u(t))| ≤ lim inf

ε→0

|λ|

2

∫
|F1ε (uε(t))| ≤ −E(ϕ) + C (MT ) ,

for all t ∈ [−T, T ]. This entails

t 7→

∫
|u(t)|2 log

(
|u(t)|2

)
∈ L∞

loc(R),

hence the claim.

Step 2. We show that u ∈ C (R,W s
1 ). We check that the map t 7→

∫
F2(u(t)) is

continuous, and then we need to show that so is t 7→
∫
F1(u(t)). As in the proof of

Lemma 3.7, we consider continuity at t = 0 only. Resuming the computation for
the preceding paragraph, we derive

|λ|

2

∫
|F1ε (uε(t))| = −Eε (uε(t)) +

1

2

∫ ∣∣∣(−∆)s/2uε(t)
∣∣∣
2

+
λ

2

(∫
F2ε (uε(t))−

∫
µε (|uε(t)|)

)

≤ −Eε(ϕ) +
1

2
e4|λ||t|‖(−∆)s/2ϕ‖2L2

+
λ

2

(∫
F2ε (uε(t))−

∫
µε (|uε(t)|)

)
.

In view of Fatou’s Lemma and Lemma 3.8, we infer

|λ|

2

∫
|F1(u(t))| ≤ −E(ϕ) +

1

2
e4|λ||t|‖(−∆)s/2ϕ‖2L2 +

λ

2

∫
F2(u(t))−

λ

2

∫
|u(t)|2.

Passing to the limit t→ 0 yields

lim sup
t→0

|λ|

2

∫
|F1(u(t))| ≤ −E(ϕ) +

1

2
‖(−∆)s/2ϕ‖2L2 +

λ

2

∫
F2(ϕ)−

λ

2

∫
|ϕ|2

= −
λ

2

∫
F1(ϕ) =

|λ|

2

∫
|F1(ϕ)| .

Thanks to Fatou’s Lemma,∫
|F1(ϕ)| ≤ lim inf

t→0
|F1(u(t))|,

hence the proposition. �

Since regardless of the sign of λ, u ∈ C(R,W s
1 ), arguing like in the proof of [9,

Lemma 2.6], we infer

i∂tu− (−∆)su = λu log
(
|u|2

)
in (W s

1 )
∗.
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3.5. The H1 case. To conclude the proof of Theorem 1.1, we now assume ϕ ∈
H1(Rd). Since 0 < s < 1, we already know that (1.1) has a unique solution
u ∈ C(R, Hs(Rd)). We note that the solution uε to (3.1) is bounded in H1(Rd),
uniformly on any time interval [−T, T ] and in ε ∈ (0, 1]. Indeed, applying the
gradient to (3.1) yields

i∂t∇uε − (−∆)s∇uε = 2λ∇uε log (|uε|+ ε) + 2λ
uε

|uε|+ ε
∇|uε|,

and the standard L2 estimate readily provides

d

dt
‖∇uε‖

2
L2 ≤ 4|λ|‖∇uε‖L2‖∇|uε|‖L2 ≤ 4|λ|‖∇uε‖

2
L2 .

The conclusion of Theorem 1.1 then follows from the same arguments as above,
when we proved that u ∈ C(R, Hs(Rd)).

4. The Cauchy problem in the H2s regularity

In this section we show that if ϕ ∈ X2s
α = H2s ∩ F(Hα), then the solution

u ∈ C(R, Hs) provided by Theorem 1.1 actually belongs to Cw∩L∞
loc(R, X

2s
α ) (note

the obvious relation X2s
α ⊂ Hs).

The strategy is inspired by the classical one in the case of the nonlinear Schrödinger
equation, when H2 regularity is addressed, see [27] (see also [10]): we first prove
that ∂tu ∈ L∞

loc(R, L
2), and eventually use the equation, (1.1), to conclude that

(−∆)su ∈ L∞
loc(R, L

2). The intermediate step consists in considering the nonlinear-
ity, to show that u log |u|2 ∈ L∞

loc(R, L
2): due to the singularity of the logarithm at

the origin, this is by no means obvious (in particular, the information u ∈ C(R, Hs)
and the Sobolev embedding do not suffice to conclude). The first step is indeed:

Lemma 4.1. Let α > 0, ϕ ∈ X2s
α , and, for ε > 0, uε solve (3.1). For all t ∈ R we

have

‖∂tuε(t)‖
2
L2 ≤ e4|λt| ‖∂tuε(0)‖

2
L2 ,

and there exists a map C independent of ε ∈ (0, 1) such that

‖∂tuε(0)‖L2 ≤ C (‖ϕ‖H2s , ‖ 〈x〉
α
ϕ‖L2) .

Proof. For the first part of the lemma, we compute

d

dt
‖∂tuε‖

2
L2 = 2Re

(
∂2t uε, ∂tuε

)

= −2 Im(∂t {(−∆)suε + 2λuε log (|uε|+ ε)} , ∂tuε)

= −4λ Im

(
uε

|uε|+ ε
∂t |uε| , ∂tuε

)
≤ 4|λ|‖∂tuε(t)‖

2
L2 ,

hence the announced inequality by Gronwall Lemma. Now in view of (3.1),

‖∂tuε(0)‖L2 ≤ ‖(−∆)suε(0)‖L2 + 2|λ| ‖uε(0) log(|uε(0)|+ ε)‖L2

≤ ‖ϕ‖H2s ++2|λ| ‖ϕ log(|ϕ|+ ε)‖L2 .

For δ > 0,

|ϕ log(|ϕ|+ ε)| . |ϕ|
(
(|ϕ|+ ε)−δ + (|ϕ|+ ε)δ

)
. |ϕ|1−δ + |ϕ|(|ϕ|δ + 1),

and, provided that δ > 0 is sufficiently small (in terms of s and α),
∥∥|ϕ|1−δ

∥∥
L2 . ‖〈x〉

α
ϕ‖

1−δ
L2 ,

∥∥ϕ(|ϕ|δ + 1)
∥∥
L2 . ‖ϕ‖1+δ

H2s + |ϕ‖L2 ,
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hence the lemma. �

Combined with (3.4),

(4.1) NT := sup
ε∈(0,1)

(
‖uε‖CT (Hs) + ‖∂tuε‖CT (L2)

)
≤ C

(
T, ‖ϕ‖X2s

α

)
.

The unique solution u ∈ C
(
R, Hs

(
Rd

))
to (1.1) was constructed in Section 3,

obtained as the limit of uε as ε→ 0, and we deduce from (4.1) that

u ∈W 1,∞
loc

(
R, L2

(
R

d
))
, ∂tuε(t)⇀ ∂tu(t) in L2

(
R

d
)
.

As announced above, the next step consists in showing that u log |u|2 belongs to
L∞
loc(R, L

2). Using the same estimates as in the proof of Lemma 4.1, it suffices to
prove the following result:

Lemma 4.2. Let 0 < s < 1, 0 < α < 2s with α ≤ 1, and ϕ ∈ X2s
α . Then the

solution u ∈ C(R, Hs) provided by Theorem 1.1 also belongs to Cw∩L
∞
loc(R,F(Hα)).

Proof. Let ε > 0: multiplying (3.1) by 〈x〉
α
, we find

i∂t(〈x〉
α uε)− 〈x〉α (−∆)suε = 2λ 〈x〉α uε log (|uε|+ ε),

which can be rewritten as

i∂t(〈x〉
α
uε)− (−∆)s (〈x〉

α
uε) = 2λ 〈x〉

α
uε log (|uε|+ ε)− [(−∆)s, 〈x〉

α
]uε.

Multiplying the above equation by 〈x〉
α
ūε, integrating over Rd and taking the

imaginary part, we obtain, since (−∆)s is self-adjoint,

d

dt
‖〈x〉

α
uε‖

2
L2 ≤ 2 ‖〈x〉

α
uε‖L2 ‖[(−∆)s, 〈x〉

α
]uε‖L2 .

The last factor is estimated thanks to Lemma 2.3: for T > 0 and t ∈ [−T, T ],

‖[(−∆)s, 〈x〉
α
]uε(t)‖L2 . ‖uε(t)‖Hs .MT . NT .

Gronwall Lemma implies that uε is uniformly bounded in L∞
T F(Hα), and the

lemma follows by the same arguments as in Section 3. �

As explained above, we conclude that (−∆)su ∈ Cw ∩ L∞
loc(R, L

2), and Theo-
rem 1.2 follows, keeping Lemma 4.2 in mind.
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