
HAL Id: hal-04538731
https://hal.science/hal-04538731

Preprint submitted on 9 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hard Homogeneous Spaces
Jean-Marc Couveignes

To cite this version:

Jean-Marc Couveignes. Hard Homogeneous Spaces. 2006. �hal-04538731�

https://hal.science/hal-04538731
https://hal.archives-ouvertes.fr


Hard Homogeneous Spaces

Jean-Marc Couveignes

August 24, 2006

Abstract

This note was written in 1997 after a talk I gave at the séminaire de

complexité et cryptographie at the École Normale Supérieure After it was

rejected at crypto97 I forgot it until a few colleagues of mine informed

me that it could be of some interest to some researchers in the field of

algorithmic and cryptography. Although I am not quite happy with the

redaction of this note, I believe it is more fair not to improve nor correct

it yet. So I leave it in its original state, including misprints. I just added

this introductory paragraph. If need be, I will publish an updated version

later.

We introduce the notion of hard homogeneous space (HHS) and briefly
develop the corresponding theory. We show that cryptographic protocols
based on the discrete logarithm problem have a counterpart for any hard
homogeneous space. Indeed, the notion of hard homogeneous space is a
more general and more natural context for these protocols. We exhibit
conjectural hard homogeneous spaces independant from any discrete log-
arithm problem. They are based on complex multiplication theory. This
shows the existence of schemes for authentication and key exchange that
do not rely on the difficulty of computing dicrete logarithm in any finite
group nor factoring integers. We show that the concept of HHS fits with
class field theory to provide a unified theory for the already used discrete
logarithm problems (on multiplicative groups of finite fields or rational
points on elliptic curves) and the HHS we present here. We discuss a few
algorithmic questions related to hard homogeneous spaces.

The paper is looking for a wider point of view on the discrete logarithm
problem both mathematically and cryptographically.

Key Words: Discrete Logarithm, Authentication, Key Exchange, Elliptic Curves, Lattices
http://www.di.ens.fr/ wwwgrecc/Seminaire/1996-97.html
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1 Introduction

In this paper we describe a special kind of assymetric function that we call hard
homogeneous space (HHS). We show that this is a very natural object to study
from the point of view of cryptography. Indeed, any such hard homogeneous
space leads in a quite natural and elegant manner to cryptographic schemes for
authentication and key-exchange.

A special case of HHS is provided by discrete logarithm over some commuta-
tive group such as Z/nZ (for n an integer) or an elliptic curve over a finite field.
But there exist many more HHS than these already known ones.

In the second part of the paper we give conjectural examples of new hard
homogeneous spaces. They come from the theory of complex multiplication of
elliptic curves. These examples lead to cryptographic schemes that rely on new
algorithmic problems. We describe a general mathematical context for both these
new HHS and the already known discrete logarithm problems in finite fields and
elliptic curves.

We did not study any other example of hard homogeneous spaces than the
one we present here but we do believe it is an interesting problem to look for
some different and more practical ones since the concept of HHS is more general
and more natural than the one of hard discrete logarithm. In particular it may
be interesting to look for HHS based on more combinatorial problems than the
ones we discuss there.

In the next section we define hard homogeneous spaces (HHS) and give several
examples. In the third one we show how to make key-exchange schemes through
HHS. In section four we construct authentication schemes with a HHS and make
a connection with graph isomorphism problems as in [4]. In section five we show
how complex multiplication theory leads to many HHS, some of them beeing just
discrete logarithm problems are some others beeing different. Finally we list a
few problems and questions about HHS.

This work benefited from comments by Jacques Stern and the audience of his
weekly seminar on Complexity and Cryptography. We thank David Pointcheval
for interesting discussions and comments on section 4.

2 Definition of Hard Homogeneous Spaces

Let G be a finite commutative group. A homogeneous space H for G is a finite set
H of the same cardinality S = #H = #G which is acted on simply transitively
by G. This means that there is a single orbite and for any g ∈ G not the identity,
the permutation of H induced by g has no fixed points. In other words there is
a unique g in G that maps a given h1 to a given h2. The left action is denoted
by a dot. We thus have
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(∃h ∈ H, g.h = h) =⇒ g = 1.

Any group admits a homogeneous space. Namely itself together with the
action by left multiplication. But this is not a very interesting example.

A more intrinsic example would be for H an affine space and for G the un-
derlying vector space.

Given a homogeneous space, there are several algorithmic problems one would
like to consider.

We assume that elements in G and H are represented by strings in a non
necessarily unique way.

We first have to compute the composition law, inversion of an element and
testing for equality.

Problem 1 (Group Operations) Given strings g1 and g2 decide if they rep-

resent elements in G and if these elements are equal or not. Given g1, g2 ∈ G
compute g−1

1 , g1g2 and decide if g1 = g2.

We also need to choose random elements in G.

Problem 2 (Random Element) Find a random element in G with uniform

probability.

Remark: If we know some element in H , then applying a random element
of G to it we obtain a random element of H .

We may like to decide membership and equality for elements in H .

Problem 3 (Membership) Given a string h0 decide if h0 represents an ele-

ment in H

Problem 4 (Equality) Given h1, h2 ∈ H decide if h1 = h2.

We also want to compute the action of G on H .

Problem 5 (Action) Given g ∈ G and h ∈ H compute g.h.

All these problems are sort of basic requirements for an Homogeneous Space
to be algorithmic.

We now come to more subtle ones. Remember that because of the lack of
fixed points, there is a unique g mapping h1 on h2. This is the unique vector
mapping h1 to h2. We denote it by δ(h2, h1). We thus have

δ(h2, h1).h1 = h2.

We may like to compute this δ(h2, h1).
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Problem 6 (Vectorization) Given h1, h2 ∈ H find g ∈ G such that g.h1 = h2.

A related problem would be to complete a parallelogram namely

Problem 7 (Parallelization) Given h1, h2, h3 ∈ H compute the unique h4 such

that δ(h2, h1) = δ(h4, h3).

Remark: This h4 is just δ(h2, h1).h3.

We will be interested in Homogeneous Spaces for which problems 1 to 5 are
easy while problems 6 and 7 are difficult. We call these Hard Homogeneous
Spaces.

We observe that under the above conditions problem 7 is easier than problem
6.

We notice also that problem 6 can be solved in time S by exhaustive search
and even in time and space S1/2 if we use baby-step-giant-step algorithm. This
is possible if elements in H admit a sufficiently unique representation together
with some order on it and if we know enough about the group G. For example if
G is cyclic of known order and generator.

Example: We show how discrete logarithm is a special case of homogeneous
space.

Let C be a cyclic group of order n and generator c and let G be its automor-
phism group. An element g of G maps c to g(c) = ca where a is an integer prime
to n. The map

g 7→ a mod n

defines an isomorphism between G and (Z/nZ)∗.
We take E to be the set of generators of C. Then #E = φ(n) and G acts

simply transitively on E.

Remark: we may consider an eighth problem namely

Problem 8 (ParallelTesting) Given four elements h1, h2, h3, h4 in H decide

whether δ(h2, h1) = δ(h4, h3).

If the later problem is difficult we say our homogeneous space is very hard
(VHHS).

Discrete logarithm apparently leads to VHHS.

3 Key exchange

We describe a key exchange scheme based on a HHS. It is the evident general-
ization of the Diffie-Hellman scheme to HHS.

If Alice and Bob are to exchange a key, they proceed in several steps
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1. Alice chooses a random element h0 in H and a random element g1 in G.
She computes h1 = g1.h0 and sends (h0, h1) to Bob.

2. Bob chooses a random element g2 in G and computes h2 = g2.h0. He sends
h2 to Alice. The secret key is K = g2.h1.

3. Alice computes the secret key K = g2.h1 = g1.h2.

In order to break the system one has to solve the Parallelization problem for
the considered HHS.

We stress the importance of the commutativity of G in the above protocol.

4 Authentication

Protocols in this section are adaptation to the HHS context of ideas in [3] and
[4].

We describe an authentication protocol that is not zero-knowledge. An ex-
tensive study of interactive proofs can be found in the work of Pointcheval [11].

The public knowledge will include the description of the HHS plus some el-
ement h0 in H . The set of participants is called I. Each participant i ∈ I
picks a random element gi in G and computes gi.h0 = hi. The secret of i is
gi and i publishes hi. The participant i is then defined as the one who knows
gi = δ(hi, h0).

We assume Alice is user number 2 and Bob is user number 1. Now if Alice is
to identify Bob the scheme goes as follows.

1. Alice finds h1 in the phonebook at the entry “Bob”. She picks a random
element gt in G and computes ht = gt.h0. She sends ht to Bob.

2. Bob knows g1 such that h1 = g1h0. He computes hp = g1.ht and sends it to
Alice.

3. Alice checks that hp = gt.h1.

The information obtained by some observer is a random parallelogram with
size [h0, h1] that is a random ht and a hp such that δ(hp, ht) = δ(h1, h0). But
this is no knowledge since anyone can build such a parallelogram by choosing a
random gt.

In order to break the system one has to solve the parallelization problem.
Now if we want to get a zero-knowledge protocol we adapt ideas about graph

isomorphism to our situation. We will also discuss the similarity and differences
between graph (non) isomorphism problems and HHS.

The public and private knowledge are the same as before. Alice is user number
2 and Bob is user number one. Bob proves himself.
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1. Bob picks a random gr ∈ G and computes gr.h1 = hr. He sends hr to Alice.

2. Alice flips a coin and sends the result ǫ ∈ {0, 1} to Bob.

3. If ǫ = 0 then Bob sends gp = gr to Alice. Otherwise he sends gp = grg1.

4. Alice checks that gp.h1 is hr (if ǫ = 0) or gp.h0 = hr (if ǫ = 1).

An unfair prover will escape with probability one half.
Iterating the process we get a proof that Bob knows g1. Therefore breaking

the system amounts to solving the vectorization problem.
If we now come back to the Goldreich, Micali, Wigderson paper we realize

that in the case of graph isomorphism the group involved is not commutative and
the verifier is not supposed to have an oracle for graph isomorphism.

Indeed the above protocol will work for a HHS with non commutative group
and even if membership is not easy to decide. Both these later hypothesis are
necessary though to key exchange. So is randomly choosing a transformation in
all cases.

Perhaps the main difference between graph theory and our HHS is that in the
context of graphs it is difficult to decide isomorphism (and even more difficult
to find some isomorphism) while in our case the existence of a transformation
between h1 and h2 can be tested easily (problem 3).

Nevertheless, if we have a very hard homogeneous space (VHHS) we can
reproduce a very similar situation to the one in [4] by considering pairs of elements
in H and say that two such pairs (h1, h2) and (k1, k2) are isomorphic if there is
a g ∈ G such that g.(h1, h2) = (g.h1, g.h2) = (k1, k2). Then testing isomorphism
of two pairs is hard but there is a zero knowledge protocol to convince a verifier
that two pairs are actually isomorphic without saying anything about the g.

*****

5 A HHS that does not rely on any discrete

logarithm problem

In this section we discribe candidate HHS that are different from any discrete
logarithm problem. The first paragraph recalls basic facts about elliptic curves.
The three following paragraphs are devoted to the description of the HHS we
propose. In paragraph 5 we study a nice elementary problem of additive num-
ber theory connected to HHS. The sixth paragraph is concerned with efficiency
considerations. The last paragraph enlarges the point of view of this paper to
complex multiplication theory.
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5.1 Ordinary elliptic curves over a finite field

We recall here a few basic facts concerning elliptic curves over finite fields. We
will restrict to the most trivial cases of the theory. See [14, 8, 12] for a complete
account on these questions.

We consider a finite field Fq of cardinality q = pd and an elliptic curve E0

over Fq. We assume that E0 is ordinary or equivalently not supersingular. This
means that the endomorphism ring of E0 is an order O in some quadratic field.
We call t the trace of the Frobenius map. It is related to the cardinality of the
curve by

#E = q + 1 − t.

We call ∆ = t2 − 4q the discrimimant of the curve E0. We assume that ∆ is
squarefree. This implies that O = End(E0) = Z[Φ] and O is the maximal order
OK in K = Q(

√
∆) = End(E0) ⊗Z Q.

For any ideal a of OK one defines an elliptic curve a.E0 and an isogeny

Ia : E0 → a.E0

of degree N (a) the norm of a. All these can be computed in polynomial time in

N (a).
If a and b are ideals in OK then the two elliptic curves a.E0 and b.E0 are equal

if and only if a and b are equivalent i.e. there exists α ∈ K∗ such that b = (α)a.
We denote by CL(OK) the class group of OK and by [a] the class of the ideal a.

There is a simply transitive action of CL(OK) on the set I(E0) of isogeneous
curves to E0.

One can test easily if a curve E is in I(E0). It is enough to check that
#E = #E0 which is easy if we are given a factorisation of #E0.

The group CL(OK) is a commutative group. Its size S is given assymptotically
by

log(S) ∼ log(∆)/2.

If ℓ is a prime integer such that ∆ is a non zero square modulo ℓ then the
polynomial

f(X) = X2 − tX + q

has two roots λ and µ and the prime ℓ decomposes in OK as

ℓ = lm with l = (ℓ, Φ − λ) and m = (ℓ, Φ − µ).

We shall consider small primes ℓi such that ∆ is a non zero square modulo ℓi

and the corresponding ideals li and mi. We notice that
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[li][mi] = [ℓi] = 1

in the class group.
On average, one prime over two satisfies the property we require. Such primes

are called Elkies primes. It may be that few small primes are Elkies. In this case
we pick another curve E0.

We will consider all Elkies primes (ℓi)1≤i≤I smaller than a constant times
log S. Heuristically the corresponding li will generate CL(OK) ([2] page 249). We
are interested in the module of relations among them. Indeed we want to know
the kernel R of the map

G : ZI // CL(OK)

(x1, ..., xI)
�

//

∏
i[li]

xi

These data can be computed once for all in subexponential time using Hafner-
McCurley-Buchmann algorithm [5, 1]. This gives us in particular the structure
and cardinality S = hK of CL(OK).

Suppose to be simpler that CL(OK) is cyclic (this will always be the case if
S = hK is squarefree) and [l1] is a generator. In particular we know residues
γi mod S such that [li] = [l1]

γi . Then any element [l1]
k with k ∈ Z/SZ can be

writen as a product

[l1]
k =

∏

i

[li]
ai

with small ai’s. The ai are small solutions to the congruence

∑

i

aiγi ≡ k (mod S)

and they correspond to short vectors in the lattice R.
We can see now how to proceed. One can pick a random element in CL(OK)

choosing a random exponent k then express it as a product of small primes with
small exponents and apply it to some elliptic curve in I(E0).

On the other hand, given two elliptic curves, it is a difficult matter to find an
isogeny between them.

From a mathematical point of view there are two possible ways to prove the
existence of such an isogeny.

The first one is to lift the elliptic curves as elliptic curves over Q̄ with complex
multiplication. Then these curves will be defined over some degree hK extension
of Q which is impossible to deal with using a computer.
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The other approach is Tate’s proof for the existence of isogenies between
abelian varieties. But it uses a pigeon hole principle on I(E0) which clearly gives
rise to an exponential algorithm.

In the following paragraphs we will describe in more detail the computational
aspects of the homogeneous spaces introduced in the previous section. We first
explain how such an homogeneous space can be given. We then explain how
problems 1 to 5 can be dealt with. Then we explain how to construct the initial
data for our HHS.

5.2 Presentation

We here explain how our HHS will be given. It will consist of certain data
available to all users and that any one can check in polynomial time.

First of all, one is given a finite field Fq with q = pd of size 1080 typically. We
also have an ordinary elliptic curve E0 given in Weierstrass form with invariant
j ∈ Fq. We also know c = #E0 the cardinality of E0 i.e. the number of Fq-
rational points on E0. We also are provided with the prime decomposition of c
together with a proof of it. Further c is squarefree. We set t = q + 1 − c and
we have a list of small primes (ℓi)1≤i≤I and residues λi modulo ℓi that are simple
roots of f(X) = X2 − tX + q modulo ℓi. We define the ideals li = (ℓi, Φ − λi)
and mi = (ℓi, Φ − µi) where µi = t − λi.

We know the class number hK and its factorisation. Further hK is squarefree
and [l1] is a generator of CL(OK). We set S = hK and we are given residues γi

modulo S such that [li] = [l1]
γi .

We call J the integral part of log2(S). We are given small integers (ei,j)1≤i≤I;0≤j≤J

such that
[l1]

2j

=
∏

1≤i≤I

[li]
ei,j .

We call K the maximum of |ei,j|.
We will also assume that we know a table of modular equations Eℓi

(x, y) for
1 ≤ i ≤ I. We only need to store these equations modulo p the characteristic.

5.3 Complexity of our homogeneous spaces

In this paragraph we evaluate the complexity of problems 1 to 5 for the homoge-
neous spaces we consider.

Group Computation: Elements in G will be denoted by an integer 0 ≤ k <
S. The integer k denotes the element gk where g = [l1] is the generator. Group
computations then reduce to arithmetic modulo S.

Random Element: We just pick a random integer in [0, S[.
Membership: Elements in H are given as elliptic curves in Weierstrass form.

Such a representation is not unique. An elliptic curve E is in H if and only if
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its cardinality is equal to #E0. Since the latter is given (an even its prime
decomposition) we can easily check that a point P on E has order dividing #E0.
If this is not the case then we know E is not isogenous to E0. If the order of
P is exactly #E0 then the cardinality of E is a multiple λ#E0 of #E0. But
#E0 > q − 2

√
q thus λ#E0 > λ(q − 2

√
q). On the other hand #E < q + 2

√
q

thus λ < (q + 2
√

q)/(q − 2
√

q). This implies λ = 1 as soon as q > 36. Thus if we
find a point of order #E0 on E then E ∈ H . Finally, if P is of order a divisor of
#E0 we pick another P .

This procedure must end quickly since a random element in E is very likely to
be a generator. Indeed E is a commutative group, product of at most two cycles.
And since the endomorphism ring is maximal we even know that E is cyclic [9].
The proportion of generators in a cyclic group of order n is

∏
p|n(1 − 1/p). We

thus can easily evaluate this proportion µ for E0. We will have to perform 1/µ
tries on average.

Equality Two Weierstrass elliptic curves are isomorphic over Fq if an only
if they have the same j invariant and are not twisted to each other. We first
compute the j invariants. If they are equal, testing for isomorphism reduces to a
quadratic residue computation in Fq [13].

Action: We first explain how to compute the action of a small prime ideal
[li] on an elliptic curve E ∈ H . We have to factor modular equations of level ℓi

as explained in [10]. This gives us two candidate elliptic curves. One is [li].E
and the other one is [mi].E. We sort of by looking at the action of Φ on the
corresponding subgroups of the ℓi-torsion on E. All this is detailed in [10]. The
complexity is O(ℓ3

i ) operations in Fq and O(ℓ2+ǫ
i ) if we use fast multiplication.

Now if we want to apply an arbitrary element gk of G to some elliptic curve
E ∈ H we first express gk as a product of [li] with small exponents. For example
we can write k in base 2 and use the (ei,j)i,j.

If we find gk =
∏

i[li]
ai we have to apply each li successively ai times to E. If

ai is negative we apply mi instead of li.
Since the |ai| are smaller than JK we have at most IJK isogenies to consider.

Their degree is bounded by I1+ǫ so the total complexity is bounded by I4+ǫJK.
All these computations will be polynomial time in I = O(log(S)) provide K

is. In practice we shall be able to find ei,j that are essentially constant so the
computation of

∏
i[li]

ai .E will take time log5+ǫ(S) multiplications in the field Fq

if one uses no fast multiplication technique.

5.4 Construction

We now explain how the data for an HHS can be prepared. We first choose a
finite field Fq. Since the cardinality of the class group is going to be like

√
q we

may take q of size 1080 to avoid any baby-step-giant-step attack. For reasons that
will appear later we also prefer a field with small characteristic (2 is perfect).
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We then pick an elliptic curve E0 over Fq and we compute its cardinality
using Schoof’s algorithm and the many known improvements. This computation
takes around 30 minutes on a DEC alpha 250 using the most recent ideas and
implementations. We then set t = q +1−#E0 and try to factor the discriminant
∆. If ∆ is not a large prime times a product of distinct small ones then we pick
another random curve E0. After a few tries we get an elliptic curve E0 such that
the ∆ is squarefree. We then pick an integer I = O(log(S)) and look for the
I first primes (ℓi)1≤i≤I that split . If we have any difficulty finding such primes
i.e. if the small primes are not Elkies then we pick another curve E0. Another
approach would be to check that the elliptic curve has many small Elkies primes
before computing its cardinality. By exhaustive search it is reasonable to look
for an elliptic curve on GF (280) with all twenty smallest primes Elkies primes.

We then compute the class number and class group of Z[
√

∆]. This is done
using Hafner-McCurley-Buchman’s algorithm [5, 1]. The complexity of this algo-
rithm is subexponential. Implementations in progress [7] achieve this computa-
tion within a few days on a station for ∆ of size 1070 although many improvements
and tricks are still to be implemented. Thus computing the class group for a ∆
of size 1080 will be soon a standard calculation. The algorithm will also give us
the module of relations between the [li] i.e. the kernel R of the map

G : ZI // CL(OK)

(x1, ..., xI)
�

//

∏
i[li]

xi

We observe that the discriminant of R is the cardinality of CL(OK). Since the

dimension is I we expect to find a basis of size CL(OK)1/I . In order to simplify
the presentation we assume that CL(OK) is cyclic although this is by no way
essential.

We compute the (ei,j)i,j applying LLL to R. For S of size 1040 with I = 40 one
finds small ei,j’s (between −17 and 17 experimentally with an average absolute
value smaller than 3) in a few minutes. We note that LLL is not garanteed to
success there although it works surprisingly well in practice. We discuss these
questions in the next paragraph.

As for modular equations Eℓi
(x, y) for 1 ≤ i ≤ I, these are everywhere. We

only need to store these equations modulo p the characteristic. This is why we
prefer p = 2. Since the degree of Eℓ is ℓ+1 in each variable we need (ℓ+1)(ℓ+2)/2
bits to store it modulo 2.

5.5 Cyclic groups with prescribed generators

We study here the problem we encountered above of representing an arbitrary
element w in a cyclic group Z/SZ as a linear combination of certain given elements
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(gi)1≤i≤I . To be simpler we shall deal with the slightly more restrictive question
of expressing w as a subset sum of the gi’s. We use standard tools see [6]. We
assume we are given a cyclic group G = Z/SZ and a random sequence of elements
(gi)1≤i≤I in G. For 1 ≤ n ≤ I we call Xn the set of sums

∑
k∈J gk where J is any

subset of {1, 2, ..., n}. We call αn the ratio #Xn/S i.e. the density of Xn. We
want to show that for n big enough this density is very likely to be 1.

We shall compare αn and αn+1. We know that Xn is a subset of G with
cardinality αnS and take y = gn+1 to be a random element in G. Then Xn+1 =
Xn∪Xn+y. We claim that for any fixed Xn the average cardinality of Xn∪Xn+y
is (αn + αn(1 − αn))S. Indeed for any two subsets A and B of G the average
cardinality of A∩B + y when y runs over all values of G is #A#B/N (exercise).
We then take A = X̄n the complement of Xn and B = Xn and we get the desired
result.

We thus reduce to the study of the iterated sequence

un+1 = f(un) with f(X) = 2X − X2.

We see from the graph of f that (un)n will have a geometric behaviour (i.e.
un+1 ∼ 2un) as long as it is small enough. When it gets close to 1 the behaviour is
quadratic i.e. (1−un+1) ∼ (1−un)2. From this one deduces that for n greater than
a constant times log2(S) the set Xn is equal to G with overwhelming probability.

So we see that representations of w as a linear combination of the (gi)1≤i≤I

with small coefficients do exist. We can look for them using LLL algorithm. Of
course there is an exponential (in the dimension) factor in the bound for the norm
of LLL reduced basis so that we are no sure to catch an actual small vector. In
practice however we can find really small coefficients as already mentioned.

If we have represented well choosen w’s as a linear combination of the (gi)1≤i≤I

with small coefficients we can then obtain decent expressions for all values of w. In
the previous section we recommanded to use w = 1, 2, 22, 23, ... but any decreasing
sequence of integers such that x0 = S and xn+1 ≥ xn/2 will work.

5.6 Efficiency

As interesting as they may be from the point of view of complexity theory the
above HHS are still far from competing with classical ones. The construction of
the HHS should require a few days of CPU on a workstation which is reasonable.
The size of the public data also is reasonable (a few kilo bites). The difficulty
will be in computing the action of some element of the class group on some
curve. Experimental data show that the time required to authentify safely on
a standard work station following the above scheme is of a few hours. There is
certainly much to be thought about improving the scheme presented above. To
start with, we may not use the ei,j and look for the ai directly using LLL. This
is not garanteed to work but it will provide much smaller ai on average. Another
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possibility would be to use abelian varieties of higher dimension over a smaller
field since they have in a sense more isogenies of small degree but it is not yet
clear how to make this idea work in practice.

5.7 Class field theory

In this paragraph we show that the discrete logarithm problem over a finite field,
the discrete logarithm problem over an elliptic curve and the HHS we introduced
are actually the three most elementary HHS one can obtain from class field theory.
We just recall the context.

Assume we have a number field K and an abelian extension L of K. We call
OK and OL the ring of integers. Let q be a prime in OL of residual degree 1. Set
p = q ∩ OK and p the characteristic of the residue field Fp. We assume there is
no ramification at p. Let ζ = (ζ1, ..., ζu) be a set of integral generators of L over
K. We call ζ̄ ∈ Fp

u the reduction of ζ modulo q. For σ an element of the Galois
group G of L/K we denote by ζσ = (ζσ

i )1≤i≤u the conjugate of ζ by σ. Since
there is no ramification at p the conjugates of ζ have pairwise distinct reductions
modulo q. We call H the set of all these vectors in Fp

u that are reductions of
conjugates of ζ . This H is clearly acted on simply transitively by G. This action
is the action induced on the ζ̄ ’s by the Galois action on the ζ . And class field
theory tells us that in some cases there is a way to compute this action inside Fp

in polynomial time by some geometric construction.
We review the three most classical cases of this situation and find our discrete

logarithms and new HHS.

1. If K = Q and L = Q(ζn) where n is a primitive n-th root of unity and
p = pZ with n|p − 1. The group G is canonically isomorphic to (Z/nZ)∗

and the action of σ ∈ (Z/nZ)∗ on ζ̄n is just by exponentiation. We find the
discrete logarithm problem in a subgroup of (Z/pZ)∗.

2. Suppose K = Q(jn) is the definition field of an elliptic curve (E, T ) with
complex multiplication and n-torsion structure jn ∈ X0(n). This means
E is an elliptic curve over K and T a one dimensional n-torsion space on
E. Let p be a prime in K with residue field Fp with p prime to n. Let
L = K(P ) be the field of definition of an n-torsion point P ∈ T and assume
that p splits in L and we call q a prime above it. The action of the Galois
group G on the points in T identifies G with a subgroup of (Z/nZ)∗. All
the points in T reduce modulo q to points defined over Fp. We end up with
the problem of discrete logarithm in E mod p.

3. Suppose K is Q and L is Q(j) with j the invariant of an elliptic curve E
with complex multiplication. Take a prime p = pZ that splits in L. Here
G is identified with the class group of the endomorphism ring of E. When
reducing modulo q we obtain the HHS presented above.
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We observe that we may mix the last two examples considering the Galois
action on curves with torsion structure over Q let’s say.

The main difference between cases 1 and 2 and case 3 is that in cases 1
and 2 elements of H are also generators of an algebraic group. This allows fast
exponentiation. In case three on the contrary we have nothing like an algebraic
group (rather correspondances on a moduli space).

As we can see, any class field theory leads to an homogeneous space. It may
be that well choosen CM abelian varieties of higher dimension are of some use.

6 Conclusion

We have introduced the notion of Hard Homogeneous Space and we have shown
its relevance to cryptography. We also have shown that it provides a range of new
algorithmic problems to do cryptography with. The discrete logarithm problems
on finite fields or elliptic curves are special cases of HHS. Although the new HHS
that we discribed are not practical enough to be used efficiently as they are now,
one can hope for improvements. The bottleneck is solving modular equations effi-
ciently. Alternatively one may look for completely different HHS based on other
mathematical ideas. In any case it is interesting to look at discrete logarithm
problem from the point of view of HHS. Not all the algorithmic ideas for discrete
logarithm generalize to HHS. As we have seen there is no fast exponentiation on
a HHS. We instead have the notion of prescribed easy generators and the related
problems connected with integer lattices problems.

From the point of view of complexity theory HHS provide a bridge between
the discrete logarithm problem and the graph (non) isomorphism one.
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