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Abstract

We consider the damped nonlinear Schrödinger equation with saturation: i.e., the complex
evolution equation contains in its left hand side, besides the potential term V (x)u, a nonlinear
term of the form iµu(t, x)/|u(t, x)| for a given parameter µ > 0 (arising in optical applications
on non-Kerr-like fibers). In the right hand side we assume a given forcing term f(t, x). The
important new difficulty, in contrast to previous results in the literature, comes from the fact
that the spatial domain is assumed to be unbounded. We start by proving the existence and
uniqueness of weak and strong solutions according the regularity of the data of the problem. The
existence of solutions with a lower regularity is also obtained by working with a sequence of spaces
verifying the Radon-Nikodým property. Concerning the asymptotic behavior for large times we
prove a strong stabilization result. For instance, in the one dimensional case we prove that there
is extinction in finite time of the solutions under the mere assumption that the L∞-norm of the
forcing term f(t, x) becomes less than µ after a finite time. This presents some analogies with
the so called feedback bang-bang controls v (here v = −iµu/|u|+ f).
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1 Introduction

The main goal of this paper is the consideration of the following damped nonlinear Schrödinger

equation 
i
∂u

∂t
+ ∆u+ V (x)u+ iµ

u

|u|
= f(t, x), in (0,∞) × Ω,

u|∂Ω = 0, on (0,∞) × ∂Ω,

u(0) = u0, in Ω,

(1.1)

(1.2)

(1.3)

where i2 = −1, µ > 0, Ω ⊆ RN , f ∈ L1
loc

(
[0,∞);L2(Ω)

)
, V ∈ L1

loc(Ω;R) and u0 ∈ L2(Ω).

It is important to point out that although the study of some damped nonlinear Schrödinger

equations (µ > 0) was already considered since the seventies of the past century, in most of the

cases the domain Ω was assumed to be an open bounded subset of RN , or the nonlinear term was

usually assumed to be a Lipschitz continuous function (see Cazenave [18] and the references therein,

and references, for instance, in [8]). We will explain later why the case of Ω unbounded presents

important difficulties in its treatment.

The nonlinear term considered in this paper (see (1.1)) is usually called as a “saturation non-

linearity”. This kind of nonlinearity arises quite often in the modeling of some problems in the

framework of optical applications in non-Kerr-like fibers (see, e.g., Gatz and Herrmann [26], Lyra and

Gouveia-Neto [33], Tatsing, Mohamadou and Tiofack [48], and the references given in [8]).

The case of a saturation nonlinearity as the one considered in (1.1) can be understood also in the

framework of Control Theory as a special case of feed-back control of “bang-bang type”

y(t, x) = iµ
u(t, x)

|u(t, x)|
. (1.4)

This type of control has been considered in the applications to many dissipative evolution equations

(see, e.g. Lasiecka and Seidman [32], Tarbouriech, Garcia, Gomes da Silva and Queinnec [47], and

Laabissi and Taboye [31]). Nevertheless, the controllability for Schrödinger equations is more delicate

(see, e.g., Machtyngier [34]) and requires “ad hoc” arguments.

The main goal of this paper is to offer a mathematical treatment of problem (1.1) for the case

that was left as an open problem in some previous results in the literature (see, e.g., Carles and
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Gallo [16], Carles and Ozawa [17], Hayashi [30] and [8, 9, 10]): the case of Ω an unbounded domain.

More precisely, the case m = 0 is not treated in Hayashi [30] and in [8, 10]. The case m = 0 and Ω

unbounded (actually Ω = RN ) is partially treated in Carles and Ozawa [17]: m ∈ [0, 1] and N = 1.

Before describing the main difficulties in the study of this case, let us point out that the relevance

of the consideration of this formulation comes from the fact that we will prove (in Section 7) that

thanks to this kind of nonlinearity (i.e., for controls y ∈ L∞((0,∞) × Ω;C
)

given by (1.4)) we will

show the stabilization to zero (as t→ ∞) of solutions of (1.1) even if the source term f(t, x) is merely

a bounded function (i.e., without require that f(t, . ) → 0, in some sense, as t → ∞). Moreover, in

the case of N = 1, we will prove that the finite time extinction (which under suitable conditions on

f(t, . )) may be instantaneous – see Theorem 3.2, part 2.

A natural way to start the study of equation (1.1) is to enlarge the framework by considering the

more general sublinear Schrödinger equation (now not necessarily saturated) of the form

i
∂u

∂t
+ ∆u+ V (x)u+ a|u|−(1−m)u = f(t, x), in (0,∞) × Ω, (1.5)

where a ∈ C and m ∈ [0, 1]. Such as we will indicate later, different authors introduced some con-

straints among the parameters m and a in order to get the existence and uniqueness of different types

of solution (this will be properly presented in the Section 2 below). So, if m ∈ [0, 1] then we had to

assume that a ∈ C(m), where

C(m) =
{
z ∈ C; Im(z) > 0 and 2

√
mIm(z) ⩾ (1 −m)|Re(z)|

}
. (1.6)

Here and after, for z ∈ C, Re(z), Im(z) and z denote the real part, the imaginary part and the

conjugate of z, respectively. Notice that in this paper, we have m = 0 and a ∈ C(0) in (1.5). Hence

a = iµ, for a positive real µ (the saturated case). Another set of complex numbers which plays an

important role is:

D(m) =
{
z ∈ C; Im(z) > 0 and 2

√
mIm(z) = (1 −m)Re(z)

}
. (1.7)

Note that D(0) = C(0), D(1) = ∅, and

C(0) =
{
z ∈ C; Re(z) = 0 and Im(z) > 0

}
,

C(1) =
{
z ∈ C; Im(z) > 0

}
.

Below, we summarize the results about the existence, uniqueness and finite time extinction property

of the solutions in the previous literature according the presence of a potential V (x) in the equation.

Case without potential (V ≡ 0)
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m a
Ω ⊆ RN Existence and uniqueness

Finite time
Ref.

arbitrary
of the solutions in

extinction for
L2(Ω) H1

0 (Ω) H2(Ω)

∈ (0, 1) ∈ C(m) |Ω| <∞ yes yes yes
(N = 1) or (N ⩽ 3,

[8]
Ω bounded and C1,1)

= 1 ∈ C(1) yes yes yes yes Impossible [8]

∈ (0, 1) ∈ C(m) \D(m) Ω = RN yes yes yes N ⩽ 3 [3]

Case with a potential V (x)

m a
Ω ⊆ RN Existence and uniqueness

Finite time
Ref.

arbitrary
of the solutions in

extinction for
L2(Ω) H1

0 (Ω) H2(Ω)

∈ (0, 1) ∈ C(m) \D(m) yes yes yes yes N ⩽ 3 [9]

= 1 ∈ C(1) yes yes yes yes Impossible [9]

= 0 ∈ C(0) |Ω| <∞ yes yes yes N ⩽ 3 [9]

∈ (0, 1) ∈ D(m) yes yes yes
yes (N = 1) or (N ⩽ 3

[10]
if |Ω| <∞ and |Ω| <∞)

= 0 ∈ C(0) yes yes yes no N = 1 Here

Due to the lack of regularity of the nonlinear term in equation (1.1) (and in (1.5) when m ∈ [0, 1)),

a good technique to get the existence and uniqueness of solutions is to understand the equation as a

special case of the abstract Cauchy problem

du

dt
+Au = f,

where Au = −i∆u − iV u − ia|u|−(1−m)u. In particular, we used the theory of maximal monotone

operator in L2(Ω) (see Brezis [13]).

The more favorable case corresponds to when |Ω| < ∞, m ∈ (0, 1] and a ∈ C(m). So, in [8] we

show directly that (D(A), A) is maximal monotone by using the embedding Lp(Ω) ↪→ L2(Ω), for any

p ⩾ 2 :
∣∣|u|−(1−m)u

∣∣ = |u|m ∈ L
2
m (Ω) ↪→ L2(Ω), ∀m ∈ (0, 1].

When Ω = RN but m ∈ (0, 1) and a ∈ C(m) \ D(m) the abstract theory can be applied. So,

in [3] we show that (D(A), A) is maximal monotone in the following way. First, we build solutions

compactly supported in H2(RN ) to (A + I)u = F with help of the results in [6, 7]. Second, we

obtain a priori estimates in H2(RN ) with [3, Lemma 4.2]. Third, we show that (D(A), A) is maximal

monotone by approximations with solutions compactly supported.

An approximation argument allowed us to extend the above mentioned results to the case in which

m ∈ [0, 1], a ∈ C(m) \D(m) but according the boundedness or not of Ω ([9]). First, we approximate

(D(A), A) by a nice maximal monotone operator (D(A), Aε). Second, we obtain a priori estimates in

H2(Ω) with [3, Lemma 4.2]. Third, we pass to the limit. If m = 0 then it is assumed that |Ω| < ∞,

and then
∣∣∣ u
|u|

∣∣∣ = 1 ∈ L∞(Ω) ↪→ L2(Ω).
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The critical case a ∈ D(m) was considered in [10] when m ∈ (0, 1). The main idea was to get

different a priori estimates for the approximate problems, with (D(A), Aε).

One of the main difficulties when considering the problem (1.1), main goal of this article, comes

from the lack of separability of the space L∞(Ω) (notice that the nonlinear term is a bounded function).

When |Ω| < ∞ it is possible to use additional a priori estimates allowing the passing to the limit

when ε↘ 0, but this strategy fails when Ω is unbounded.

We point out that although there are some abstract results (and with many interesting applications

to nonlinear PDEs – see Bénilan and Ha [11]) this theory does not apply to the case of unbounded

domains Ω. The difficulty comes from the fact that it is very hard to get “strong solutions” (i.e.,

solutions such that ut ∈ L1(0, T ;H−1(Ω) + L∞(Ω)), for any T > 0). This is also associated to the

fact that when the Banach space X is not reflexive (as it is also the case of X = H1
0 (Ω) ∩ L1(Ω))

then the Radon-Nikodým property may fail (see, e.g., Diestel and Uhl [21]). Actually, we do not

even know if the time differential ut is measurable when the data (u0 and f) are not regular enough.

Nevertheless, by introducing a suitable sequence of spaces (Yn)n∈N satisfying (in an appropriate sense)

the Radon-Nikodým property (see Definition 5.4 below) it is possible to get a limit solution which is

stronger than the “weak solutions” but weaker than the “strong solutions”.

The paper is organized as follows. Section 2 is devoted to state the existence and uniqueness of

weak and strong solutions under suitable assumptions on the initial data u0 and f. The explanation

at the sense in which the weak solutions satisfy (1.1) already uses the approximating sequence of

spaces (Yn)n∈N mentioned before. Section 3 contains the statement of the strong stabilization results

when t ↗ ∞. In particular, when N = 1 we get the finite time extinction of solutions with a time-

decay estimate that is stronger than the usual time-decay estimate for sublinear parabolic equations

(see, e.g., [1]). The occurrence of the problem of measurability of ut is presented in Section 4 (for

a different approach in an abstract framework, see Deville [19]). The proof of the existence and

uniqueness results stated in Section 2 are presented in Section 6, after recalling and developing some

results on Functional Analysis in Section 5. The results stated in Section 3 are proved in Section 7.

The consideration of solutions with lower regularity is carried out in Section 8 and explains how it is

possible to pass to the limit in suitable approximations.

To end this introduction, we collect here some notations which will be used throughout this paper.

For a real number t ∈ R, t+ = max{t, 0} is its positive part. Let Ω be an open subset of RN . Unless

specified, all functions are complex-valued (H1(Ω)
def
= H1(Ω;C), etc) and all the vector spaces are

considered over the field R. For p ∈ [1,∞], p′ is the conjugate of p defined by 1
p + 1

p′ = 1. For a (real)

Banach space X, we denote by X⋆ def
= L (X;R) its topological dual and by ⟨ . , .⟩X⋆,X ∈ R the X⋆−X

duality product. When X (respectively, X⋆) is endowed of the weak topology σ (X,X⋆)
(
respectively,

the weak⋆ topology σ (X⋆, X)
)
, it is denoted by Xw (respectively, by Xw⋆). For p ∈ [1,∞], u ∈
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Lp
loc

(
[0,∞);X

)
means that u ∈ Lp

loc(0,∞;X) and for any T > 0, u|(0,T ) ∈ Lp(0, T ;X). In the same

way, we will use the notation u ∈W 1,p
loc

(
[0,∞);X

)
. The scalar product in L2(Ω) between two functions

u, v is, (u, v)L2(Ω) = Re
∫
Ω
u(x)v(x)dx. For any real interval I and Banach space X, Cw(I;X) is the

space of weakly continuous function from I to Xw. The space of measurable functions u : Ω −→ C

such that |u| <∞, almost everywhere in Ω, is denoted by L0(Ω). Auxiliary positive constants will be

denoted by C and may change from a line to another one. Also for positive parameters a1, . . . , an, we

shall write C(a1, . . . , an) to indicate that the constant C depends only and continuously on a1, . . . , an.

The set of positive integers is denoted by N, and N0 = N ∪ {0}. We denote by BL∞(0, 1) the closed

unit ball of L∞(Ω). Finally, the Lebesgue measure of a measurable set A ⊂ RN will be denoted by

|A|.

2 Existence and uniqueness of weak and strong solutions

Throughout this paper we shall always identify L2(Ω) with its topological dual. We refer to Section 5

for some results of Functional Analysis. The following assumptions will be needed to build solutions.

Assumption 2.1. We assume that

Ω is any nonempty open subset of RN , (2.1)

µ > 0, (2.2)

V ∈ L∞(Ω;R) + LpV (Ω;R), (2.3)

where,

pV =


2, if N = 1,

2 + β, for some β > 0, if N = 2,

N, if N ⩾ 3.

(2.4)

Now, let us recall the definition of solution ([9]) for a general µ ∈ C.

Definition 2.2. Assume (2.1), (2.3) and (2.4). Let µ ∈ C, f ∈ L1
loc

(
[0,∞);L2(Ω)

)
and u0 ∈ L2(Ω).

We shall say that u is a strong solution (or an H1
0 -solution) to (1.1)–(1.3) if u satisfies the following

properties.

1. We have that,

u ∈ L1
loc

(
[0,∞);X

)
∩W 1,∞

loc

(
[0,∞);X⋆

)
↪→ C

(
[0,∞);L2(Ω)

)
, (2.5)

where X = H1
0 (Ω) ∩ L1(Ω) (hence, X⋆ = H−1(Ω) + L∞(Ω)).
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2. There exists a saturated section U associated to u, namely a U ∈ L∞((0,∞) × Ω
)

such that

i
∂u

∂t
+ ∆u+ V (x)u+ iµU = f(t, x), in D ′((0,∞) × Ω

)
, (2.6)

∥U∥L∞((0,∞)×Ω) ⩽ 1, (2.7)

U(t, x) =
u(t, x)

|u(t, x)|
, as soon as u(t, x) ̸= 0. (2.8)

3. u(0) = u0, in L2(Ω).

We shall say that u is a weak solution (or an L2-solution) to (1.1)–(1.3) if there exists,

(un, Un, fn)n∈N ⊂ C
(
[0,∞);L2(Ω)

)
× L∞((0,∞) × Ω

)
× L1

loc

(
[0,∞);L2(Ω)

)
, (2.9)

such that for any n ∈ N, un is a strong solution of (1.1)–(1.2) with the saturated section Un, where

the right-hand side member of (1.1) is fn, and if

(un, fn)
C([0,T ];L2(Ω))×L1(0,T ;L2(Ω))−−−−−−−−−−−−−−−−−−−−→

n−→∞
(u, f), (2.10)

Un

L∞((0,T )×Ω)w⋆

−−−−−−−−−−−⇀
n→∞

U, (2.11)

for any T > 0. Sometimes, we shall write (u, f), (u, U), or (u, U, f) to designate a solution with the

obvious meanings.

Remark 2.3. The embedding (2.5) comes from Theorem 5.3 below.

Before recalling a result of uniqueness and continuous dependence ([9, Proposition 2.5]), we explain

below in which way the weak solutions satisfy (1.1).

Proposition 2.4. Assume (2.1), (2.3) and (2.4). Let µ ∈ C, f ∈ L1
loc

(
[0,∞);L2(Ω)

)
and u0 ∈ L2(Ω).

Let (Yn)n∈N0 be any L1-approximating sequence of RNP-spaces (see Definition 5.4 below). If u is a

weak solution to (1.1)–(1.3) then for any n ∈ N0,

u ∈W 1,1
loc

(
[0,∞);H−2(Ω) + Y ⋆

n

)
, (2.12)

and u solves (1.1) in L1
loc

(
[0,∞);H−2(Ω) + Y ⋆

n

)
↪→ D ′((0,∞) × Ω

)
. Finally there exists N0 ⊂ (0,∞)

with |N0| = 0 such that,

u′(t) ∈ H−2(Ω) + L∞(Ω), (2.13)

for any t ∈ (0,∞) ∩N c
0 . In particular, u solves (1.1) in H−2(Ω) + L∞(Ω), for almost every t > 0.

Remark 2.5. Below are some comments about Proposition 2.4.
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1. If |Ω| < ∞ then the spaces H−2(Ω) + Y ⋆
n may be replaced with H−2(Ω). See the end of the

proof of Proposition 2.4 for the details.

2. “RNP” stands for “Radon-Nikodým Property”. For the justification of this terminology, see

Section 4 below.

3. Whether or not u′ : [0,∞) −→ H−2(Ω) + L∞(Ω) is measurable is an open question.

Proposition 2.6 (Uniqueness and continuous dependence). Let Assumption 2.1 be fulfilled, let

f, f̃ ∈ L1
loc

(
[0,∞);L2(Ω)

)
and X = H1

0 (Ω) ∩ L1(Ω). Finally, let p ∈ [1,∞] and let

u, ũ ∈ Lp
loc

(
[0,∞);X

)
∩W 1,p′

loc

(
[0,∞);X⋆

)
↪→ C

(
[0,∞);L2(Ω)

)
, (2.14)

be solutions in D ′((0,∞) × Ω
)
to,

iut + ∆u+ V u+ iµU = f,

iũt + ∆ũ+ V ũ+ iµ Ũ = f̃ ,

respectively, where U and Ũ satisfy (2.7)–(2.8). Then,

∥u(t) − ũ(t)∥L2(Ω) ⩽ ∥u(s) − ũ(s)∥L2(Ω) +

t∫
s

∥f(σ) − f̃(σ)∥L2(Ω)dσ, (2.15)

for any t ⩾ s ⩾ 0. Finally, (2.15) also holds true for the weak solutions.

Theorem 2.7 (Existence and uniqueness of weak solutions). Let Assumption 2.1 be fulfilled

and let f ∈ L1
loc

(
[0,∞);L2(Ω)

)
. Then for any u0 ∈ L2(Ω), there exists a unique weak solution u to

(1.1)–(1.3). In addition,

u ∈ L1
loc

(
[0,∞);L1(Ω)

)
, (2.16)

1

2
∥u(t)∥2L2(Ω) + µ

t∫
s

∥u(σ)∥L1(Ω)dσ ⩽
1

2
∥u(s)∥2L2(Ω) + Im

t∫∫
s Ω

f(σ, x)u(σ, x) dx dσ, (2.17)

for any t ⩾ s ⩾ 0. If |Ω| <∞ then the inequality in (2.17) becomes an equality.

Remark 2.8. If (u, f) and (ũ, f̃) are two weak solutions then, by Hölder’s inequality, we obtain for

any p ∈ (1, 2),

∥u− ũ∥
L

p
2−p (s,t;Lp(Ω))

⩽ ∥u− ũ∥
2−p
p

L1(s,t;L1(Ω))∥u− ũ∥
2(p−1)

p

Cb([s,t];L2(Ω)),

for any t ⩾ s ⩾ 0. Then by (2.15)–(2.17), the left-hand side of the above estimate is bounded.
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Theorem 2.9 (Existence and uniqueness of strong solutions). Let Assumption 2.1 be fulfilled

and f ∈W 1,1
loc

(
[0,∞);L2(Ω)

)
. Then for any u0 ∈ H2

loc(Ω) ∩H1
0 (Ω) ∩ L1(Ω) for which(

∆u0 + iµ
u0
|u0|

)
|{u0 ̸=0}

∈ L2({u0 ̸= 0}),

there exists a unique H1
0 -solution u to (1.1)–(1.3). Furthermore, u satisfies (1.1) in L∞

loc

(
[0,∞);L2

loc(Ω)
)
∩

L∞
loc

(
[0,∞);H−1(Ω)

)
as well as the following properties.

1. u ∈ Cw

(
[0,∞);H1

0 (Ω)
)
∩ L∞

loc

(
[0,∞);L1(Ω)

)
∩W 1,∞

loc

(
[0,∞);L2(Ω)

)
.

2. For any t ⩾ s ⩾ 0, 

∥u(t) − u(s)∥L2(Ω) ⩽ ∥ut∥L∞(s,t;L2(Ω))|t− s|,

∥u(t)∥L2(Ω) ⩽ A(t),

∥ut∥L∞(0,t;L2(Ω)) ⩽ B(t),

∥∇u(t)∥2L2(Ω) + µ∥u(t)∥L1(Ω) ⩽ C(t)A(t),

(2.18)

(2.19)

(2.20)

(2.21)

where,

A(t) = ∥u0∥L2(Ω) +

∫ t

0

∥f(s)∥L2(Ω)ds,

B(t) = ∥∆u0 + V u0 + iµU0 − f(0)∥L2(Ω) +

∫ t

0

∥f ′(σ)∥L2(Ω)dσ,

C(t) = C
(
A(t), B(t), ∥f(t)∥L2(Ω), ∥V1∥L∞(Ω), ∥V2∥LpV (Ω), N, β

)
,

for some U0 ∈ BL∞(0, 1) satisfying U0 = u0

|u0| , almost everywhere where u0 ̸= 0.

3. The map t 7−→ ∥u(t)∥2L2(Ω) belongs to W 1,∞
loc

(
[0,∞);R

)
and we have,

1

2

d

dt
∥u(t)∥2L2(Ω) + µ∥u(t)∥L1(Ω) = Im

∫
Ω

f(t, x)u(t, x) dx, (2.22)

for almost every t > 0.

4. If f ∈W 1,1(0,∞;L2(Ω)) then u ∈ L∞(0,∞;H1
0 (Ω) ∩ L1(Ω)) ∩W 1,∞(0,∞;L2(Ω)).

Remark 2.10. Below are some comments about Theorem 2.9.

1. The solution obtained in Theorem 2.9 is not an H2-solution (in the sense of [9, Definition 2.2]).

Indeed, to be one, we would have to have ∆u(t) ∈ L2(Ω), for almost every t > 0, while we merely

have ∆u(t) ∈ L2
loc(Ω), for almost every t > 0. Existence, uniqueness, finite time extinction and

asymptotic behavior of the H2-solutions are obtained in [9] in the special case of |Ω| <∞.
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2. Using that u ∈ C0,1
(
[0,∞);L2(Ω)

)
, and the Gagliardo-Nirenberg and Hölder inequalities, we

get that for any p ∈
(

1, 2N
N−2

)
(p ∈ (1,∞] if N = 1),

u ∈ C0,α
(
[0,∞);Lp(Ω)

) (
u ∈ C0,α

b

(
[0,∞);Lp(Ω)

)
, if f ∈W 1,1(0,∞;L2(Ω))

)
,

where α = 2N−p(N−2)
2p if p ⩾ 2, and α = 2p−1

p if p ⩽ 2.

3 Finite time extinction and asymptotic behavior for large
time

Large time behavior of the weak solutions

Theorem 3.1. Let Assumption 2.1 be fulfilled, f ∈ L1(0,∞;L2(Ω)), u0 ∈ L2(Ω) and let u be the

unique weak solution to (1.1)–(1.3) given by Theorem 2.7. Then,

lim
t↗∞

∥u(t)∥L2(Ω) = 0.

Finite time extinction and asymptotic behavior of the strong
solutions

Under some additional conditions on f(t, x) we have:

Theorem 3.2 (Finite time extinction and time decay estimates). Let Assumption 2.1 be

fulfilled, f ∈W 1,1(0,∞;L2(Ω)), u0 ∈ H2
loc(Ω) ∩H1

0 (Ω) ∩ L1(Ω) with(
∆u0 + iµ

u0
|u0|

)
|{u0 ̸=0}

∈ L2({u0 ̸= 0}),

and let u be the unique strong solution to (1.1)–(1.3) given by Theorem 2.9.

1. If there exists T0 ∈ [0,∞) such that

f ∈ L∞((T0,∞) × Ω
)
and ∥f∥L∞((T0,∞)×Ω) < µ, (3.1)

then the following holds true.

• If N = 1 then

∀t ⩾ T⋆, ∥u(t)∥L2(Ω) = 0, (3.2)

for some,

T0 ⩽ T⋆ ⩽ C∥u(T0)∥
1
2

L2(Ω)∥∇u∥
1
2

L∞(0,∞;L2(Ω)) + T0, (3.3)
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where C = C(µ− ∥f∥L∞((T0,∞)×Ω)). Actually,

∥u(t)∥L2(Ω) ⩽
(
∥u0∥

1
2

L2(Ω) + C(T0 − t)
)2
+
,

for any t ⩾ T0 and for some C = C(∥∇u∥L∞(0,∞;L2(Ω)), µ− ∥f∥L∞((T0,∞)×Ω)).

• If N = 2 then for any t ⩾ T0,

∥u(t)∥L2(Ω) ⩽ ∥u(T0)∥L2(Ω)e
−C(t−T0), (3.4)

where C = C(∥∇u∥L∞(0,∞;L2(Ω)), µ− ∥f∥L∞((T0,∞)×Ω)).

• If N ⩾ 3 then for any t ⩾ T0,

∥u(t)∥L2(Ω) ⩽
∥u(T0)∥L2(Ω)(

1 + C∥u(T0)∥
(N−2)

2

L2(Ω) (t− T0)

) 2
(N−2)

, (3.5)

where C = C(∥∇u∥L∞(0,∞;L2(Ω)), µ− ∥f∥L∞((T0,∞)×Ω), N).

2. Suppose N = 1. For each M > 0, there exists ε⋆ = ε⋆(M,µ) satisfying the following property.

Let T0 ⩾ 0. If 

∥f∥W 1,1(0,∞;L2(Ω)) ⩽M,

∥∇u0∥L2(Ω) +
∥∥∥∆u0 + iµ u0

|u0|

∥∥∥
L2({u0 ̸=0})

⩽M,

∥u0∥L2(Ω) + ∥f∥L1(0,∞;L2(Ω)) ⩽ ε⋆,

∥u0∥L2(Ω) ⩽ ε⋆T
2
0 ,

∥f(t)∥L2(Ω) ⩽ ε⋆
(
T0 − t

)
+
, ∀t ⩾ 0,

(3.6)

then (3.2) holds true with T⋆ = T0.

Remark 3.3. If f satisfies (3.1) then it follows from (3.2) and (1.1) that,

iµU(t, x) = f(t, x),

for almost every (t, x) ∈ (T⋆,∞) × Ω.

4 On the non-measurability

Due to the special nonlinearity, in this paper, we are not able to build H1
0 -solutions of (1.1) under

the mere “natural conditions”

u0 ∈ H1
0 (Ω), (4.1)

f ∈ L1
loc

(
[0,∞);H1

0 (Ω)
)
∩ L∞

loc

(
[0,∞);H−1(Ω) + L∞(Ω)

)
, (4.2)
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(see Theorem 2.9). In the previous papers [3, 8, 9, 10], the methods used to obtain such solutions

have been the following. We proceed by density, either by starting from the equation (1.5), or by

starting from the approximate equation

i
∂u

∂t
+ ∆u+ V (x)u+ a

u

(|u|2 + ε)
1−m

2

= f(t, x), in (0,∞) × Ω, (4.3)

where the nonlinearity |u|−(1−m)u is regularized as above. In both cases, we show that the sequence

of solutions (uε)ε>0 is bounded in Lm+1(I;H1
0 (Ω) ∩ Lm+1(Ω)) and in

W 1,m+1
m (I;H−1(Ω) + L

m+1
m (Ω)), (4.4)

for any T > 0, where I = (0, T ). When 0 < m ⩽ 1 then 1 < m+1
m < ∞ and thus H−1(Ω) + L

m+1
m (Ω)

is reflexive, and so is the space of (4.4). It follows that we may extract from (uε)ε>0 a sequence which

converges in the weak topology to some u belonging to (4.4). When m = 0, in [9] we assumed that

|Ω| <∞. It follows that L∞(Ω) ↪→ H−1(Ω), and the space in (4.4) becomes

W 1,∞(I;H−1(Ω)). (4.5)

But since H1
0 (Ω) is reflexive and separable then L1(I;H1

0 (Ω)) is separable and is the predual of

L∞(I;H−1(Ω)) (see Section 5 below). And again we may extract from (uε)ε>0 a sequence which

converges in the weak⋆ topology to some u belonging to the space in (4.5). But in the present paper,

m = 0 and it is no more assumed that |Ω| <∞. Then, we have to deal with the space

W 1,∞(I;X⋆), (4.6)

where X = H1
0 (Ω) ∩ L1(Ω). But X is not reflexive so that L1(I;X) is not the predual of L∞(I;X⋆).

We then have to proceed in a different way. Using the Arzelà-Ascoli compactness Theorem, we

could extract a sequence (uεn)n∈N of (uε)ε>0 such that for any t ∈ I, (uεn(t))n∈N converges to

some u ∈ L∞(I;H1
0 (Ω)) in the weak topology H1

0 (Ω)w. But, H1
0 (Ω) ↪→ X⋆, whose the predual X is

separable. We may deduce that,

∥u(t) − u(s)∥X⋆ ⩽ lim inf
n→∞

∥uεn(t) − uεn(s)∥X⋆ ⩽ C|t− s|, (4.7)

for any t, s ∈ I. In particular, u : I −→ X⋆ is absolutely continuous. But it is well-known that

X⋆ does not satisfy the Radon-Nikodým property, RNP in short (Stegall [45], Maurey [35]), and

even not the weak Radon-Nikodým property, WRNP in short (Musia l [37], Rosenthal [41]), so that

we cannot conclude that u : I −→ X⋆ is differentiable almost everywhere (Diestel and Uhl [21,

Theorem 2, p.107]). So, the idea is to embed X⋆ in a bigger space, but the smallest bigger space as

possible, satisfying the RNP. For instance, this space is chosen to be reflexive (Phillips [39], Diestel and

Uhl [21, Corollary 13, p.76]), or to be a separable dual space (Dunford and Pettis [23, Theorem 2.1.4,
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p.345], Diestel and Uhl [21, Corollary 1, p.79]). In this case, for such a space Y ⋆, we obtain that

u ∈ C0,1(I;Y ⋆) = W 1,∞(I;Y ⋆). This justifies the Definition 5.4 below. Nevertheless, we may wonder

if, thereafter, we may give up this space. Indeed, from (1.1) and the fact that u ∈W 1,∞(I;Y ⋆), there

exist N0 ⊂ I and C > 0 such that |N0| = 0, and

∀t ∈ I \N0, u
′(t) ∈ X⋆ and ∥u′(t)∥X⋆ ⩽ C, (4.8)

∀t ∈ I \N0, lim
h→0

∥∥∥∥u(t+ h) − u(t)

h
− u′(t)

∥∥∥∥
Y ⋆

= 0, (4.9)

∀t, s ∈ I, u(t) − u(s)
Y ⋆

=

∫ t

s

u′(σ)dσ. (4.10)

But u ∈ C0,1(I;X⋆), so that the equality in (4.10) also makes sense in X⋆. From (4.7) and (4.9), if

Y ↪→ X with dense embedding (which will be our case), then we easily deduce that,

∀t ∈ I \N0,
u(t+ h) − u(t)

h
−−−−⇀
h→0

u′(t), in the weak⋆ topology σ(X⋆, X). (4.11)

It follows that u′ : I −→ X⋆ is weak⋆-measurable, and by Pettis’ Theorem ([38]), it will be measurable

if, and only if, u′(I \ N1) is separable in X⋆, for some null set N1 ⊂ I. The answer is no, as shows

the counter-example below. Indeed, the separability of a subset of L∞(Ω) is very difficult to obtain

in a general way. So, we build a solution u with lower regularity, in the sense that we do not know

whether u′ : I −→ H−1(Ω) + L∞(Ω) is measurable (see Section 8 below). For a related analysis, see

Deville [19].

Example 4.1. Below, we give an example of a function u ∈ L∞(R;L∞(R)) and of a separable Hilbert

space Σ, such that Σ ↪→ L1(RN ) with dense embedding, and which satisfy,

u : R −→ L∞(R) is weakly⋆ differentiable everywhere, (4.12)

u : R −→ Σ⋆ is differentiable almost everywhere, (4.13)

∀t ∈ R, u′(t) ∈ L∞(R) and ∥u′(t)∥L∞(R) ⩽ 1, (4.14)

∀t, s ∈ R, u(t) − u(s)
L∞(R)

=

∫ t

s

u′(σ)dσ, (4.15)

but

u′ : R −→ L∞(R) is not measurable. (4.16)

We define u : R −→ L∞(R) as follows. Let t ∈ R. For any x ∈ R, let u(t)(x) = arctan |t+ x|. Clearly,

u ∈ C0,1
b (R;Cb(R)). Let t ∈ R. Let φ ∈ L1(R). By the dominated convergence Theorem, we have

lim
h→0

〈
u(t+ h) − u(t)

h
, φ

〉
L∞(R),L1(R)

=

∫
R

sign(t+ x)

1 + (t+ x)2
φ(x)dx.
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Therefore, (4.12) and (4.14) hold true. It follows from Pettis’ Theorem (Diestel and Uhl [21, Corol-

lary 4, p.42-43]) that u′ : R −→ L∞(R) is measurable if, and only if, there exists a null set N ⊂ R

such that u′(R \N) is separable in L∞(R). Let t, s ∈ R with t > s. If t− s ⩾ 2 then we let x0 = 1− t,

and we obtain u′(t)(x0) − u′(s)(x0) ⩾ 1
2 , while if t − s < 2 then we let x0 = − t+s

2 , and we obtain

u′(t)(x0) − u′(s)(x0) ⩾ 1. It follows that for any t, s ∈ R with t ̸= s, we have

∥u′(t) − u′(s)∥L∞(R) ⩾
1

2
.

As a consequence, for any null set N ⊂ R, u′(R \ N) is not separable. Hence, (4.16). In particular,

u′ ̸∈ L∞(R;L∞(R)). Nevertheless, if we consider,

Σ =
{
u ∈ L2(R); | . |u( . ) ∈ L2(R)

}
,

with its obvious norm, then it is well-known that Σ is a separable Hilbert space and that Σ ↪→ L1(R)

with dense embedding. Therefore, Σ⋆ is reflexive and L∞(R) ↪→ Σ⋆ with dense embedding. Then Σ⋆

has the Radon-Nikodým property, and since u : R −→ Σ⋆ is Lipschitz continuous, (4.13) follows. In

particular, u′ ∈ L∞(R; Σ⋆) and u′ : R −→ Σ⋆ is Bochner integrable on every compact set of R. Then,

(4.15) follows since u ∈ C0,1
b (R;Cb(R)).

Some results avoiding this difficulty will be given in Section 8.

5 Some results of Functional Analysis

We recall that we shall always identify L2(Ω) with its topological dual. Below, we recall some impor-

tant results of Functional Analysis and give some new ones. Let E and F be locally convex Hausdorff

topological vector spaces. If E
e
↪→ F with dense embedding then F ⋆ e⋆

↪→ E⋆, where e⋆ is the transpose

of e :

∀L ∈ F ⋆, ∀x ∈ E, ⟨e⋆(L), x⟩E⋆,E = ⟨L, e(x)⟩F⋆,F . (5.1)

If, furthermore, E is reflexive then the embedding F ⋆ e⋆

↪→ E⋆ is dense. In most of the cases, e is the

identity function, so that e⋆ is nothing else but the restriction to E of continuous linear forms on F.

For more details, see Trèves [49, Corollary 5, p.188; Corollary, p.199; Theorem 18.1, p.184] and [4].

Let A1 and A2 be two Banach spaces such that A1, A2 ⊂ H for some Hausdorff topological vector

space H. Then A1 ∩A2 and A1 +A2 are Banach spaces where,

∥a∥A1∩A2
= max

{
∥a∥A1

, ∥a∥A2

}
and ∥a∥A1+A2

= inf{
a=a1+a2

(a1,a2)∈A1×A2

(
∥a1∥A1

+ ∥a2∥A2

)
.

If, in addition, A1 ∩A2 is dense in both A1 and A2 then,(
A1 ∩A2

)⋆
= A⋆

1 +A⋆
2 and

(
A1 +A2

)⋆
= A⋆

1 ∩A⋆
2. (5.2)
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See, for instance, Bergh and Löfström [12] (Lemma 2.3.1 and Theorem 2.7.1). Let Y be a Banach

space such that D(Ω) ↪→ Y with dense embedding. Then,

L1
loc

(
[0,∞);Y ⋆

)
↪→ D ′((0,∞) × Ω

)
. (5.3)

See, for instance, Droniou [22, Lemme 2.6.1, p.58]. Let I be an interval, let X be a Banach space and

let p ∈ [1,∞). If X is separable then so is Lp(I,X), and if X is reflexive then,

Lp(I;X)⋆ ∼= Lp′
(I;X⋆).

See, for instance, Droniou [22] (Corollaire 1.3.2, p.13), and Edwards [25] (Theorem 8.18.3, p.590;

Theorem 8.20.5, p.607). Finally, another result which will be useful is the following (Strauss [46,

Theorem 2.1]). Let X ↪→ Y be two Banach spaces. Let I be an interval and u ∈ Cw(I;Y ). Assume

that there exist C > 0 and N0 ⊂ I with |N0| = 0 such that for any t ∈ I \ N0, u(t) ∈ X and

∥u(t)∥X ⩽ C. If X is reflexive then,

∀t ∈ I, u(t) ∈ X and u ∈ Cw(I;X). (5.4)

Let I be an interval. It is well-known that if X is a Banach space which is neither reflexive, nor

separable then it is not true that L1(I;X) is separable and that L∞(I;X⋆) is the dual space of

L1(I;X). In particular, we do not have a duality product L1(I;X)-L∞(I;X⋆) represented by the

natural integral. In addition, it is also well-known that the space of smooth functions is not dense in

L∞(I;X⋆). Nevertheless, we may obtain some kind of density result in “some weak⋆ topology”, and

do as if L∞(I;X⋆) was the dual space of L1(I;X) (see, in particular, (5.8) below).

Theorem 5.1 (Weak⋆ density). Let Ω ⊆ RN be an open set, let I be any interval and let X ↪→ X⋆

be a Banach space. Then, for any u ∈ L1(I;X) ∩W 1,∞(I;X⋆), there exists (un)n∈N ⊂ D(I;X) such

that,

∀n ∈ N, ∥un∥L1(I;X) ⩽ ∥u∥L1(I;X), (5.5)

∀n ∈ N, ∥un∥W 1,∞(I;X⋆) ⩽ 2∥u∥W 1,∞(I;X⋆), (5.6)

un
L1(I;X)−−−−−→
n→∞

u, (5.7)

∀φ ∈ L1(I;X), lim
n→∞

∫
I

∣∣∣〈u′n(t) − u′(t), φ(t)
〉
X⋆,X

∣∣∣ dt = 0. (5.8)

In addition, un(t)
X−−−−→

n→∞
u(t), for almost every t ∈ I.

Proof. With help of a continuous linear extension operator, we are brought back to the case where

I = R. For the construction of such an operator, see for instance Droniou [22, Corollaire 2.3.1,

p.48], Brezis [14, Theorem 8.6, p.209], or the Appendix in Brezis and Cazenave [15]. Let then
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u ∈ L1(R;X)∩W 1,∞(R;X⋆). Let (ρn)n∈N and (ξn)n∈N be sequences of mollifiers and cut-off functions,

respectively. The following results are standard and may be found, for instance, in Droniou [22]

(for vector-valued functions), and Brezis [14] (for real-valued functions, but the proofs can be easily

adapted for vector-valued functions). Set for any ℓ, n ∈ N, uℓ,n = ρℓ ⋆ (ξnu) ∈ D(R;X). By Young’s

inequality, we have that for any ℓ, n ∈ N, ∥uℓ,n∥L1(R;X) ⩽ ∥u∥L1(R;X), ∥uℓ,n∥L∞(R;X⋆) ⩽ ∥u∥L∞(R;X⋆),

εℓ,n
def
= ∥ρℓ ⋆ (ξnu) − ξnu∥L1(R;X)

ℓ→∞−−−→ 0, (5.9)

ε′ℓ,n
def
= ∥ρℓ ⋆ (ξnu

′) − ξnu
′∥L1(R;X⋆)

ℓ→∞−−−→ 0, (5.10)

u′ℓ,n = ρℓ ⋆ (ξ′nu) + ρℓ ⋆ (ξnu
′), (5.11)

∥⟨ρℓ ⋆ (ξ′nu), φ⟩X⋆,X∥L1(R) ⩽
C

n
∥u∥L∞(R;X⋆)∥φ∥L1(R;X), (5.12)

for any φ ∈ L1(R;X). By (5.9)–(5.11), and renumbering the sequences if necessary, we may find an

increasing sequence (ℓn)n∈N ⊂ N such that ∥u′ℓn,n∥L∞(R;X⋆) ⩽ 2∥u∥W 1,∞(R;X⋆),

εℓn,n + ε′ℓn,n
n→∞−−−−→ 0, (5.13)

for almost every t ∈ R, ρℓn ⋆ (ξnu
′)(t) − ξnu

′(t)
X⋆

−−−−→
n→∞

0.

By Young’s inequality, we have for any φ ∈ L1(R;X) and ℓ, n ∈ N,

|⟨ρℓ ⋆ (ξnu
′) − ξnu

′, φ⟩X⋆,X | ⩽ 2∥u′∥L∞(R,X⋆)∥φ∥X ∈ L1(R;R),

almost everywhere in R. It follows from the dominated convergence Theorem that,

∀φ ∈ L1(R;X), ∥⟨ρℓn ⋆ (ξnu
′) − ξnu

′, φ⟩X⋆,X∥L1(R)
n→∞−−−−→ 0. (5.14)

Finally, still by the Lebesgue Theorem, we easily obtain that,

∥ξnu− u∥L1(R;X)
n→∞−−−−→ 0, (5.15)

∀φ ∈ L1(R;X), ∥⟨ξnu′ − u′, φ⟩X⋆,X∥L1(R)
n→∞−−−−→ 0. (5.16)

Let for any n ∈ N, un = uℓn,n. Putting together (5.13) and (5.15), we get (5.7). Using (5.11) and

putting together (5.12), (5.13) and (5.16), we get (5.8). Finally, by (5.7), there exists a subsequence,

that we still denote by (un)n∈N, such for almost every t ∈ R, un(t)
X−−−−→

n→∞
u(t), This concludes the

proof of the theorem.

The proof of the following result is any easy adaptation of that of Theorem 5.1, and the details are

left to the reader.

Theorem 5.2 (Weak⋆ approximation). Let Ω ⊆ RN be an open set, let I be any interval and let

X ↪→ X⋆ be a Banach space. Then, for any u ∈ L∞(I;X) ∩W 1,1(I;X⋆), there exists (un)n∈N ⊂
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D(I;X) such that,

∀n ∈ N, ∥un∥W 1,1(I;X⋆) ⩽ 3∥u∥W 1,1(I;X⋆), (5.17)

∀n ∈ N, ∥un∥L∞(I;X) ⩽ ∥u∥L∞(I;X), (5.18)

un
W 1,1(I;X⋆)−−−−−−−→

n→∞
u, (5.19)

∀φ ∈ L1(I;X⋆), lim
n→∞

∫
I

∣∣∣〈φ(t), un(t) − u(t)
〉
X⋆,X

∣∣∣dt = 0. (5.20)

In addition, un(t)
X⋆

−−−−→
n→∞

u(t) and u′n(t)
X⋆

−−−−→
n→∞

u′(t), for almost every t ∈ I.

If X ↪→ L2(Ω) with dense embedding, and if 1 < p < ∞ then for any interval I, Lp(I;X) ∩
W 1,p′

(I;X⋆) ↪→ Cb(I;L2(Ω)) ([3, Lemma A.4]). We need and extend this to the case p ∈ {1,∞}.

Theorem 5.3. Let Ω ⊆ RN be an open set, let I be any interval and let X be a Banach space such

that X ↪→ L2(Ω) with dense embedding. We have the following results.

1) L1(I;X) ∩W 1,∞(I;X⋆) ↪→ Cb(I;L2(Ω)).

2) L∞(I;X) ∩W 1,1(I;X⋆) ↪→ Cb(I;L2(Ω)).

3) If u ∈ L1(I;X) ∩W 1,∞(I;X⋆) or if u ∈ L∞(I;X) ∩W 1,1(I;X⋆) then the mapping

t 7−→ 1

2
∥u(t)∥2L2(Ω) belongs to W 1,1(I;R), (5.21)

and we have,

1

2

d

dt
∥u(t)∥2L2(Ω) =

〈
u′(t), u(t)

〉
X⋆,X

, (5.22)

for almost every t ∈ I.

Proof. By the dense embedding X ↪→ L2(Ω), we have by (5.1) that,

X ↪→ L2(Ω) ↪→ X⋆, (5.23)

∀v ∈ X, ∥v∥2L2(Ω) = ⟨v, v⟩X⋆,X . (5.24)

We split the proof into four steps.

Step 1: Proof of the statement 2).

Let u ∈ L∞(I;X) ∩ W 1,1(I;X⋆). By the embedding W 1,1(I;X⋆) ↪→ Cb(I;X⋆), we get by (5.23),

(5.24), and (5.4) that u ∈ Cb(I;L2(Ω)), and that there exists C > 0 such that

∥u(t)∥2L2(Ω) ⩽ C∥u∥L∞(I;X)∥u∥W 1,1(I,X⋆) ⩽ C
(
∥u∥L∞(I;X) + ∥u∥W 1,1(I,X⋆)

)2
,

for any t ∈ I. Hence, L∞(I;X) ∩W 1,1(I;X⋆) ↪→ Cb(I;L2(Ω)).

Step 2: Proof of the statement 3).
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Let u ∈ L1(I;X)∩W 1,∞(I;X⋆) (u ∈ L∞(I;X)∩W 1,1(I;X⋆), respectively). We claim that ∥u(.)∥L2(Ω) ∈
Cb(I;R),

1

2
∥u(t)∥2L2(Ω) =

1

2
∥u(s)∥2L2(Ω) +

∫ t

s

〈
u′(σ), u(σ)

〉
X⋆,X

dσ, (5.25)

for any t, s ∈ I, and that (5.21)–(5.22) hold true.

For such a u, let (un)n∈N ⊂ D(I;X) be given by Theorem 5.1 (Theorem 5.2, respectively). Let n ∈ N.

We have that ∥un( . )∥2L2(Ω) ∈ C1(I;R), and for any t, s ∈ I,

1

2
∥un(t)∥2L2(Ω) =

1

2
∥un(s)∥2L2(Ω) +

∫ t

s

〈
u′n(σ), un(σ)

〉
X⋆,X

dσ. (5.26)

By (5.6)–(5.8) ((5.18)–(5.20), respectively), we have that,

lim
n→∞

∫
I

〈
u′n(σ), un(σ)

〉
X⋆,X

dσ =

∫
I

〈
u′(σ), u(σ)

〉
X⋆,X

dσ. (5.27)

If u ∈ L1(I;X) ∩W 1,∞(I;X⋆) then, since X ↪→ L2(Ω), we have by Theorem 5.1, that

for almost everywhere t ∈ I, un(t)
L2(Ω)−−−−→
n→∞

u(t), (5.28)

while if u ∈ L∞(I;X) ∩W 1,1(I;X⋆), then (5.28) comes from (5.24) and Theorem 5.2. Passing to

the limit in (5.26), it follows from (5.27) and (5.28) that (5.25) holds true for almost every t, s ∈ I.

Now, since the mapping, σ 7−→
〈
u′(σ), u(σ)

〉
X⋆,X

belongs to L1(I;R), it follows that (5.21)–(5.22)

come from (5.25). Finally, by (5.21)–(5.22) and the embedding W 1,1(I;R) ↪→ Cb(I;R), we deduce

that ∥u( . )∥L2(Ω) ∈ Cb(I;R), and that (5.25) holds true for any t, s ∈ I.

Step 3: If u ∈ L1(I;X) ∩W 1,∞(I;X⋆) then u ∈ Cb(I;L2(Ω)).

Let u ∈ L1(I;X) ∩W 1,∞(I;X⋆). By the embedding W 1,∞(I;X⋆) ↪→ Cb(I;X⋆), we have that u ∈
Cb(I;X⋆), and by (5.25), we have that sup

t∈I
∥u(t)∥L2(Ω) < ∞. It then follows from (5.4) that for any

t ∈ I, u(t) ∈ L2(Ω), and u ∈ Cw(I;L2(Ω)). Let t ∈ I and (tn)n∈N ⊂ I converging toward t. Then by

weak continuity,

u(tn)
L2(Ω)w
−−−−−⇀

n→∞
u(t).

By Step 2, we have that,

lim
n→∞

∥u(tn)∥L2(Ω) = ∥u(t)∥L2(Ω).

The space L2(Ω) being uniformly convex, we deduce that u(tn)
L2(Ω)−−−−→
n→∞

u(t). Hence, u ∈ Cb(I;L2(Ω)).

Step 4: Proof of the statement 1).

Let u ∈ L1(I;X)∩W 1,∞(I;X⋆). By Step 3, u ∈ Cb(I;L2(Ω)). Let us show the continuous embedding.

It follows from (5.24), (5.25), and Hölder’s and Young’s inequalities that,

∥u(t)∥2L2(Ω) ⩽ ∥u(s)∥X∥u(s)∥X⋆ + ∥u∥2L1(I;X) + ∥u′∥2L∞(I;X⋆),
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for any t, s ∈ I. Let (In)n∈N ⊂ I be a sequence of bounded intervals such that
⋃

n∈N In = I. Integrating

in s and applying, once more time, Hölder’s and Young’s inequalities, we get,

|In| ∥u∥2Cb(In;L2)
⩽ (1 + |In|)

(
∥u∥L1(I;X) + ∥u∥W 1,∞(I;X⋆)

)2
,

for any n ∈ N. Dividing by |In|, taking the square root and letting n↗ ∞, we arrive at,

∥u∥Cb(I;L2) ⩽ (1 + |I|− 1
2 )
(
∥u∥L1(I;X) + ∥u∥W 1,∞(I;X⋆)

)
,

with the convention that |I|− 1
2 = 0, if |I| = ∞. The theorem is proved.

Before to state some consequences we need to introduce some definitions, and auxiliary results.

Definition 5.4. Let Ω ⊆ RN be an open subset. Let Y be a Banach space. We shall say that a family

(Yn)n∈N0
of Banach spaces is a Y -approximating sequence of RNP-spaces if it satisfies the following

properties.

1. For any n ∈ N, Yn is separable and reflexive.

2. For any n ∈ N0, Yn ↪→ Yn+1 ↪→ Y, and for any f ∈ Yn, ∥f∥Y ⩽ ∥f∥Yn
. Moreover, each embedding

is dense.

3. For any n ∈ N0, D(Ω) ↪→ Yn, with dense embedding.

4. For any f ∈ Y0, lim
n→∞

∥f∥Yn = ∥f∥Y .

Remark 5.5. Assume that Y is a Banach space which admits an approximating sequence (Yn)n∈N0

of RNP-spaces. If there exists ℓ0 ∈ N such that for any n ⩾ ℓ0, Yn = Yℓ0 , then it follows from

Definition 5.4 that Y and Yℓ0 are two Banach spaces with the same norm, and that Yℓ0 is dense in

Y. Therefore, Yℓ0 = Y. As a consequence, if Y is not separable or not reflexive then, renumbering

(Yn)n∈N0
if necessary, we have that for any n ∈ N0, Yn ⊊ Yn+1 ⊊ Y.

Lemma 5.6. Let Ω ⊆ RN be an open subset. Let Y be a Banach space and let (Yn)n∈N0
be a

Y -approximating sequence of RNP-spaces. Then (Y ⋆
n )n∈N0

satisfies the following properties.

1. For any n ∈ N, Y ⋆
n is separable and reflexive.

2. For any n ∈ N0, Y
⋆ ↪→ Y ⋆

n+1 ↪→ Y ⋆
n , and for any f ∈ Y ⋆, ∥f∥Y ⋆

n
⩽ ∥f∥Y ⋆ . Moreover, if n ∈ N

then each embedding is dense.

3. For any n ∈ N0, Y
⋆
n ↪→ D ′(Ω), with dense embedding.

4. For any f ∈ Y ⋆, lim
n→∞

∥f∥Y ⋆
n

= ∥f∥Y ⋆ .
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Proof. It is well-known that the dual space of a reflexive and separable Banach space is also a reflexive

and separable Banach space. Therefore, Property 1 holds true. The rest of the lemma follows easily

by duality, Definition 5.4, and the results about Functional Analysis we recalled at the beginning of

this section.

Corollary 5.7. Let Ω ⊆ RN be an open subset. Let Y be Banach space and let (Yn)n∈N0
be a Y -

approximating sequence of RNP-spaces. Finally, let Z be a separable and reflexive Banach space such

that D(Ω) ↪→ Z, with dense embedding. Then, (Z ∩ Yn)n∈N0
is a Z ∩ Y -approximating sequence of

RNP-spaces.

Proof. Let n ∈ N. Since D(Ω) ↪→ Z and D(Ω) ↪→ Yn with dense embeddings, it follows that

convergences in the weak topologies Zw and Yn,w imply convergence in D ′(Ω). Therefore, we easily

obtain from (5.2) and the Eberlein-Šmulian Theorem that Z ∩ Yn is reflexive. For n ∈ N, let T :

Z ∩Yn −→ Z×Yn be defined by T (u) = (u, u). We recall that for any (u, v) ∈ Z×Yn, ∥(u, v)∥Z×Yn =

max
{
∥u∥Z , ∥v∥Yn

}
. It is clear that T is an isometry and that Z × Yn is separable. It follows that

T (Z × Yn) is separable (Brezis [14, Proposition 3.25, p.73]), and so is Z ∩ Yn. Then, Property 1

of Definition 5.4 is satisfied. Let n ∈ N0. It is clear that D(Ω) ↪→ Z ∩ Yn. Let us show that this

embedding is dense. Let T ∈ Z⋆ + Y ⋆
n be such that for any φ ∈ D(Ω), ⟨T, φ⟩Z⋆+Y ⋆

n ,Z∩Yn
= 0. We

write T = T1 +T2, where (T1, T2) ∈ Z⋆×Y ⋆
n . Using the dense embeddings Z ∩Yn ↪→ Z, Z ∩Yn ↪→ Yn,

D(Ω) ↪→ Z and D(Ω) ↪→ Yn, it follows from (5.1) that for any φ ∈ D(Ω),

0 = ⟨T, φ⟩Z⋆+Y ⋆
n ,Z∩Yn = ⟨T1, φ⟩Z⋆,Z + ⟨T2, φ⟩Y ⋆

n ,Yn

= ⟨T1, φ⟩D′(Ω),D(Ω) + ⟨T2, φ⟩D′(Ω),D(Ω) = ⟨T1 + T2, φ⟩D′(Ω),D(Ω)

= ⟨T, φ⟩D′(Ω),D(Ω).

Therefore, T = 0 in D ′(Ω), hence in Z⋆ + Y ⋆
n . The rest of the proof is obvious.

Lemma 5.8. Let Ω ⊆ RN be any open subset. Then L1(Ω) admits an approximating sequence

(Yn)n∈N0 of RNP-spaces. In addition, Y0 may be chosen separable.

Proof. Let Ω ⊆ RN be an open subset. For convenience, we introduce some notations. Let n ∈ N,

εn = 1
n , Ωn = {x ∈ Ω; |x| ⩽ n}, and let ωN−1 be the area of the unit sphere SN−1 of RN (with the

convention that ω0 = 2). We define,

Yn =
{
f ∈ L1+εn(Ω); |f |1+εn | . |εn(N+εn)1Ωc

n
∈ L1(Ω)

}
,

Y0 =
{
f ∈ Y1; f | . |ε1(N+ε1) ∈ L1(Ω)

}
,
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whose norms are,

∥f∥Yn = (2ωN−1n
N )

1
n+1

(∫
Ωn

|f |1+εndx+

∫
Ωc

n

|f |1+εn |x|εn(N+εn)dx

) 1
1+εn

,

∥f∥Y0
= max

{
∥f∥Y1

,

∫
Ω

|f ||x|ε1(N+ε1)dx

}
.

Note that Yn ↪→ L1+εn(Ω). Let λ be the Lebesgue measure on the Lebesgue sets B(Ω) of Ω, let

gn(x) = (2ωN−1n
N )

1
n

(
1Ωn

(x) + |x|εn(N+εn)1Ωc
n
(x)
)
,

g0(x) = |x|ε1(N+ε1),

for any x ∈ Ω, and let νn be the density measure defined on B(Ω) by

dνn
dλ

= gn and
dν0
dλ

= g0.

It follows that Yn = L1+εn(Ω,B(Ω), νn), and Y0 = Y1 ∩L1(Ω,B(Ω), ν0). Classical results on measure

and integration theory give that Yn is a separable and reflexive Banach space, and that Y0 is a separable

Banach space (for the proof of the separability of Y0, proceed as in Corollary 5.7). Therefore, (Yn)n∈N0

satisfies Property 1 of Definition 5.4. Let n ∈ N. It is also obvious that D(Ω) ↪→ Y0 ↪→ Yn. Let us

establish the density. Let f ∈ Yn. Set a = εn(N + εn) and b = 1 + εn. Let (ρj)j∈N be a sequence of

mollifiers. Let Oℓ =
{
x ∈ Ωℓ; dist(x,Ωc) > 2

ℓ

}
, ℓ ∈ N. Denote by f̃ the extension of f by 0 outside of

Ω. Finally, for j, ℓ ∈ N, let φ̃ℓ
j = ρj ⋆ (f̃1Oℓ

). For any ℓ ∈ N, and j > ℓ, we have that

21−b

∫
Ωc

n

|x|a|φ̃ℓ
j − f̃ |bdx ⩽ (2ℓ)a

∫
Ωc

n

|φ̃ℓ
j − f̃1Oℓ

|bdx+

∫
Ωc

n

|x|a|f̃1Oℓ
− f̃ |bdx, (5.29)

21−b

∫
Ωn

|φ̃ℓ
j − f̃ |bdx ⩽

∫
Ωn

|φ̃ℓ
j − f̃1Oℓ

|bdx+

∫
Ωn

|f̃1Oℓ
− f̃ |bdx. (5.30)

By the Lebesgue Theorem, the last integrals in (5.29) and (5.30) go to 0, as ℓ → ∞, while the first

of the right members go to 0, as j → ∞, for each ℓ ∈ N (by the classical results about truncation

and regularization). It follows that there exists an increasing sequence (jℓ)ℓ∈N which goes to ∞, as

ℓ −→ ∞, such that

lim
ℓ→∞

∫
Ωn

|φ̃ℓ
jℓ
− f̃ |bdx = lim

ℓ→∞

∫
Ωc

n

|x|a|φ̃ℓ
jℓ
− f̃ |bdx = 0.

Let for any ℓ ∈ N, φℓ = φ̃ℓ
jℓ |Ω ∈ D(Ω). It follows that (φℓ)ℓ∈N answers to the problem. A trivial

adaptation of the proof gives the density of D(Ω) in Y0. Therefore, (Yn)n∈N0
satisfies Property 3 of

Definition 5.4. Now, let us show that (Yn)n∈N0
satisfies Property 2. The density result comes from

the density of D(Ω) in L1(Ω) and Property 3. Let n ∈ N (the case n = 0 is immediate). Let f ∈ Yn.
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We have,

(2ωN−1(n+ 1)N )−
1

n+1 ∥f∥1+εn+1

Yn+1

=

∫
Ωn+1

|f |1+εn+1dx+

∫
Ωc

n+1

|f |1+εn+1 |x|εn+1(N+εn+1)dx

⩽
∫
Ωn

|f |1+εn+1dx+

∫
Ωc

n

|f |1+εn+1 |x|εn+1(N+εn+1)dx.

By Hölder’s inequality,∫
Ωn

|f |1+εn+1dx ⩽ |B(0, n)|
1

(n+1)2

(∫
Ωn

|f |1+εndx

) 1+εn+1
1+εn

,

and ∫
Ωc

n

|f |1+εn+1 |x|εn+1(N+εn+1)dx

=

∫
Ωc

n

|x|εn+1(N+εn+1)−εn(N+εn)
1+εn+1
1+εn

(
|f |1+εn+1 |x|εn(N+εn)

1+εn+1
1+εn

)
dx

⩽

(∫
Ωc

n

|x|−(N+εnεn+1+εn+εn+1)dx

) εn−εn+1
1+εn

(∫
Ωc

n

|f |1+εn |x|εn(N+εn)dx

) 1+εn+1
1+εn

⩽ C(N,n)

(∫
Ωc

n

|f |1+εn |x|εn(N+εn)dx

) 1+εn+1
1+εn

.

Gathering together the above estimates, we get that, ∥f∥Yn+1 ⩽ C(N,n)∥f∥Yn . Now, let f ∈ Yn. Let

us show that f ∈ L1(Ω) and ∥f∥L1(Ω) ⩽ ∥f∥Yn . Using twice Hölder’s inequality, we have that,

∥f∥L1(Ω)

⩽ |B(0, n)|
εn

1+εn

(∫
Ωn

|f |1+εndx

) 1
1+εn

+

∫
Ωc

n

|x|−
εn(N+εn)

1+εn

(
|f ||x|

εn(N+εn)
1+εn

)
dx

⩽ |B(0, n)|
εn

1+εn

(∫
Ωn

|f |1+εndx

) 1
1+εn

+ ω
εn

1+εn

N−1

(∫ ∞

n

r−(1+εn)dr

) εn
1+εn

(∫
Ωc

n

|f |1+εn |x|εn(N+εn)dx

) 1
1+εn

⩽ (ωN−1n
N )

1
n+1

(∫
Ωn

|f |1+εndx

) 1
1+εn

+ ω
1

n+1

N−1n
− 1

n

(∫
Ωc

n

|f |1+εn |x|εn(N+εn)dx

) 1
1+εn

⩽ (ωN−1n
N )

1
n+1

(∫
Ωn

|f |1+εndx

) 1
1+εn

+

(∫
Ωc

n

|f |1+εn |x|εn(N+εn)dx

) 1
1+εn


⩽ ∥f∥Yn ,
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since for any a, b ⩾ 0 and 0 < α < 1, aα + bα ⩽ 21−α(a+ b)α. Hence Property 3 is satisfied. Now, to

prove Property 4, it is sufficient to see that for any f ∈ Y0, and n ∈ N,

|f |1+εn1Ωn
⩽ |f |1+ε11{|f |>1} + |f |1{|f |⩽1} ∈ L1(Ω),

|f |1+εn | . |εn(N+εn)1Ωc
n

⩽ |f |1+ε1 | . |ε1(N+ε1)1Ωc
1
1{|f |>1} + |f || . |ε1(N+ε1)1Ωc

1
1{|f |⩽1} ∈ L1(Ω),

and to apply the dominated convergence Theorem. This ends the proof of the lemma.

6 Proofs of the theorems on uniqueness and existence of strong
and weak solutions

Proof of Proposition 2.4. Let (u, U, f) be a weak solution and let (un, Un, f)n∈N satisfying (2.9)–

(2.11). Let (Yℓ)ℓ∈N0 be any L1-approximating sequence of RNP-spaces, which exists by Lemma 5.8.

It follows from Corollary 5.7 that (H2
0 ∩Yℓ)ℓ∈N0 is an H2

0 ∩L1-approximating sequence of RNP-spaces.

By (2.10), [9, Lemma 4.2], and the diagonal procedure, we have that (up to a subsequence),

∆un
C([0,T ];H−2(Ω))−−−−−−−−−−−→

n→∞
∆u, (6.1)

V un
C([0,T ];H−1(Ω))−−−−−−−−−−−→

n→∞
V u, (6.2)

un
a.e. in (0,∞)×Ω−−−−−−−−−−→

n→∞
u. (6.3)

for any T > 0. Let T > 0, k ∈ N, Ωk = Ω ∩ B(0, k), and ωT,k =
{

(t, x) ∈ (0, T ) × Ωk;u(t, x) ̸= 0
}
.

Finally, let ω =
{

(t, x) ∈ (0,∞) × Ω;u(t, x) ̸= 0
}
. Note that by (2.11), we have,

Un|ωT,k

L2(ωT,k)w
−−−−−−−−⇀

n→∞
U|ωT,k

. (6.4)

On the other hand, it follows from (6.3) and the dominated convergence Theorem that,

un
|un| |ωT,k

L2(ωT,k)−−−−−−→
n→∞

u

|u| |ωT,k

. (6.5)

Finally, by (2.8) and (6.3), we have for any n large enough that Un = un

|un| , almost everywhere in ωT,k.

Since T and k are arbitrary, we then deduce from (6.4) and (6.5) that U = u
|u| , almost everywhere

in ω. Therefore, U satisfies (2.7)–(2.8). Now, with help of (2.10), (2.11), (6.1) and (6.2), we have

that u satisfies (1.1) in D ′((0,∞) × Ω
)
. Let ℓ ∈ N. By Definition 2.2, (un)n∈N ⊂ W 1,∞

loc

(
[0,∞);X⋆

)
,

where X = H1
0 (Ω) ∩ L1(Ω). By (1.1), it follows that for any n ∈ N, t 7−→ Un(t) is measurable

[0,∞) −→ H−2(Ω)+L∞(Ω). By Corollary 5.7, (Un)n∈N is bounded in L∞(0,∞;H−2(Ω)+Y ⋆
ℓ ) (whose

each norm is bounded by 1). But H2
0 (Ω) ∩ Yℓ is separable and reflexive, so that L1(0,∞;H2

0 (Ω) ∩ Yℓ)
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is separable, and

L1(0,∞;H2
0 (Ω) ∩ Yℓ)⋆ ∼= L∞(0,∞;H−2(Ω) + Y ⋆

ℓ ) ↪→ D ′((0,∞) × Ω
)
.

See the beginning of Section 5. And since the limit in (2.11) also takes place in D ′((0,∞) × Ω
)
, we

deduce that

U ∈ L∞(0,∞;H−2(Ω) + Y ⋆
ℓ ).

It then follows from (1.1) that (2.12) holds true, and that (1.1) makes sense in L1
loc

(
[0,∞);H−2(Ω) +

Y ⋆
ℓ

)
, for any ℓ ∈ N0. In addition, (2.13) comes easily from (1.1), and it is clear that u solves (1.1) in

H−2(Ω) +L∞(Ω), for almost every t > 0. Finally, note that if |Ω| <∞ then H2
0 (Ω)∩L1(Ω) = H2

0 (Ω),

which is reflexive and separable. In this case, the above arguments work for H2
0 (Ω) in place of

H2
0 (Ω) ∩ Yℓ.

From now, we suppose Assumption 2.1. Before proving the other results of Section 2, we recall some

results of our previous papers we will need. Here and in the rest of this article, we shall use the

following notations and conventions.

For any u ∈ L2(Ω), V u ∈ H−1(Ω) and for any u ∈ H1
0 (Ω), V u ∈ L2(Ω). There exists C = C(N, β) > 0

such that for any u ∈ H1
0 (Ω),

∥V u∥L2(Ω) ⩽ C∥V ∥L∞(Ω)+LpV (Ω)∥u∥H1
0 (Ω). (6.6)

See [9, Lemma 4.1].

Let ε ⩾ 0. For any u ∈ L0(Ω) and almost every x ∈ Ω, we define

gε(u)(x) = (|u(x)|2 + ε)−
1
2u(x), ε > 0,

g(u)(x) = g0(u)(x) =
u(x)

|u(x)|
, u(x) ̸= 0.

Now, for µ > 0, let us define the operator (A,D(A)) on L2(Ω) given by,

D(A) =

{
u ∈ H1

0 (Ω) ∩ L1(Ω);

(
−i∆u+ µ

u

|u|

)
|{u̸=0}

∈ L2({u ̸= 0})

}
,

C(u) =

{
U ∈ BL∞(0, 1);−i∆u+ µU ∈ L2(Ω) and if u(x) ̸= 0, U(x) =

u(x)

|u(x)|

}
,

Au =
{
− i∆u− iV u+ µU ;U ∈ C(u)

}
, ∀u ∈ D(A).

Notice that, as in the theory of maximal monotone operators (Brezis [13]) the operator A is mulitval-

ued, since, at least formally A0 = BL∞(0, 1) ∩ L2(Ω). Note that by the inclusion L∞(Ω) ⊂ L2
loc(Ω),

we have D(A) ⊂ H2
loc(Ω). We split the proof of Theorem 2.9 into several lemmas. The proofs of
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Corollary 6.2 and Lemma 6.3 below are close to those of [9, Corollary 5.9 and Lemma 5.12]. However,

they require an adaptation because we do not have that ∆u and u
|u| belong separately in L2(Ω).

Let us start by proving that the operator A is monotone in L2(Ω).

Lemma 6.1. Let u1, u2 ∈ L1(Ω) and U1, U2 ∈ BL∞(0, 1) be such that for any j ∈ {1, 2}, Uj =
uj

|uj | ,

almost everywhere where uj ̸= 0. Then,

Re

(∫
Ω

(U1 − U2)
(
u1 − u2

)
dx

)
⩾ 0.

Proof. Let for j ∈ {1, 2}, ωj =
{
x ∈ Ω; uj(x) ̸= 0

}
. We have that,

Re

(∫
Ω

(U1 − U2)
(
u1 − u2

)
dx

)
= Re

(∫
ωc

1∩ω2

(
U1 −

u2
|u2|

)
(−u2)dx

)
+ Re

(∫
ω1∩ωc

2

(
u1
|u1|

− U2

)
u1dx

)

+ Re

(∫
ω1∩ω2

(
u1
|u1|

− u2
|u2|

)(
u1 − u2

)
dx

)
def
= I1 + I2 + I3.

Since |U1u2| ⩽ |u2| and |U2u1| ⩽ |u1|, we get that, I1 ⩾ 0 and I2 ⩾ 0. Finally, I3 ⩾ 0 by [9,

Corollary 5.5], and the lemma is proved.

Corollary 6.2. (A,D(A)) is monotone on L2(Ω).

Proof. Let (u1, u2) ∈ D(A)×D(A) and (W1,W2) ∈ Au1×Au2. Let then (U1, U2) ∈ C(u1)×C(u2) be

such that −i∆uj − iV uj + µUj = Wj , for any j ∈ {1, 2}. Since ∆uj or Uj may not belong separately

to L2(Ω), we have to proceed in a different way than in [9]. By [10, Lemma 4.4],

(W1 −W2, u1 − u2)L2(Ω) = (−iV (u1 − u2), u1 − u2)L2(Ω)

+
(
i∇(u1 − u2),∇(u1 − u2)

)
L2(Ω)

+ µ⟨U1 − U2, u1 − u2⟩L∞(Ω),L1(Ω)

= µRe

(∫
Ω

(U1 − U2)
(
u1 − u2

)
dx

)
,

and we conclude with help of Lemma 6.1.

Lemma 6.3. R(I +A) = L2(Ω).

Proof. Let F ∈ L2(Ω). By [10, Lemma 4.3], there exist u ∈ H1
0 (Ω) ∩ L1(Ω) (hence V u ∈ L2(Ω),

by (6.6)) and a sequence (uεn)n∈N ⊂ H1
0 (Ω) with (∆uεn)n∈N ⊂ L2(Ω), where (εn)n∈N ⊂ (0,∞) is a

decreasing sequence converging toward 0, satisfying the following properties: for each n ∈ N, uεn is

the unique solution to,

−i∆uεn − iV uεn + µgεn(uεn) + uεn = F, in L2(Ω), (6.7)
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and

uεn
D′(Ω)−−−−→
n→∞

u, (6.8)

V uεn
D′(Ω)−−−−→
n→∞

V u, (6.9)

uεn
a.e. in Ω−−−−−→
n→∞

u. (6.10)

Now, let us denote by ω = {x ∈ Ω;u(x) ̸= 0}, and for k ∈ N, let ωk = ω ∩ B(0, k). Let k ∈ N. Since(
gεn(uεn)

)
n∈N belongs to BL∞(0, 1), there exists U ∈ BL∞(0, 1) such that, up to a subsequence,

gεn(uεn) −−−−⇀
n→∞

U in L∞(Ω)w⋆. (6.11)

In addition, we have that gεn(uεn)
a.e. in ω−−−−−→
n→∞

g(u), by (6.10). It follows from the dominated convergence

Theorem that,

gεn(uεn)|ωk

L1(ωk)−−−−→
n→∞

g(u)|ωk
. (6.12)

Let h ∈ L∞(Ω) ∩ L1(Ω) be defined by,

h =

{
g(u) − U, in ωk,

0, in Ω \ ωk.

We have by Hölder’s inequality that,∫
ωk

|g(u) − U |2dx

= Re

∫
ωk

(
g(u) − gεn(uεn)

)
hdx+ Re

∫
ωk

(
gεn(uεn) − U

)
hdx

⩽ 2∥gεn(uεn) − g(u)∥L1(ωk) + ⟨gεn(uεn) − U, h⟩L∞(Ω),L1(Ω).

With help of (6.11) and (6.12), we are allowed to pass to the limit in the above to infer that for any

k ∈ N, U = g(u), almost everywhere in ωk. Hence,

U = g(u), a.e. in ω. (6.13)

Now, passing to the limit in (6.7), we get with help of (6.8), (6.9), (6.11) and (6.13) that

u ∈ D(A) and (I +A)u ∋ F.

This ends the proof.

Remark 6.4. In [10], we study the sublinear problem
i
∂u

∂t
+ ∆u+ V (x)u+ ag(u) = f(t, x), in (0,∞) × Ω,

u|∂Ω = 0, on (0,∞) × ∂Ω,

u(0) = u0, in Ω,

(6.14)

(6.15)

(6.16)
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where g(u) = |u|−(1−m)u, with 0 < m < 1 (and under some suitable assumptions about V, a ∈ C and

f). To prove existence of a solution with initial data in H1
0 (Ω) (see [10, Theorem 2.10]), we proceed

by regularizing the nonlinearity g(u) with gmε (u)
def
= (|u|2 + ε)−

1−m
2 u, ε > 0. This proof contains a

slight flaw. Indeed, taking the L2-scalar product of the regularized equation,

i
∂uε
∂t

+ ∆uε + V (x)uε + agmε (uε) = fε(t, x), in L2(Ω),

with iuε, and applying the Cauchy-Schwarz inequality, we wrongly arrive at

1

2

d

dt
∥uε(σ)∥2L2(Ω) + Im(a)∥uε(σ)∥m+1

Lm+1(Ω) ⩽ ∥fε(σ)∥L2(Ω)∥uε(σ)∥L2(Ω). (6.17)

But actually, the correct result is,

1

2

d

dt
∥uε(σ)∥2L2(Ω) + Im(a)

∫
Ω

|uε(σ, x)|2

(|uε(σ, x)|2 + ε)
1−m

2

dx ⩽ ∥fε(σ)∥L2(Ω)∥uε(σ)∥L2(Ω), (6.18)

and then [10, Lemmas 4.6 and 4.7], and their proofs have to be modified. The statement of [10,

Lemma 4.8] is totally unchanged but its proof has to be very slightly changed. [10, Lemmas 4.6–4.8]

are only needed to prove [10, Theorems 2.9 and 2.10]. Once these lemmas are correctly stated and

proved, the proof of these theorems is totally unchanged. The correct version follows with very closed

arguments to the ones used in [10]. The only important modification consists in to replace formula

(4.32) of [10, Lemma 4.6] by properties(uε)ε>0 is bounded in L∞
loc

(
[0,∞);H1

0 (Ω)
)
∩W 1,m+1

m

loc

(
[0,∞);X⋆ + L

2
m (Ω)

)
,(

gmε (uε)
)
ε>0

is bounded in L∞
loc

(
[0,∞);L

2
m (Ω)

)
,

(6.19)

and

sup
ε>0

T∫
0

∫
Ω

|uε(t, x)|2

(|uε(t, x)|2 + ε)
1−m

2

dxdt ⩽ C(T ), (6.20)

for any T > 0. The full correct version may be found in [5].

Proof of Proposition 2.6. The embedding in (2.14) comes from Bégout and Dı́az [8, Lemma A.4]

(1 < p < ∞) and Theorem 5.3 (p = 1 or p = ∞). We make the difference between the two equations

satisfied by u and ũ, respectively. It follows from (6.6) that u − ũ satisfies the equation obtained in

L1
loc(0,∞;X⋆). We take the X⋆ − X duality product with i(u − ũ). By Lemma 6.1, Theorem 5.3,

Bégout and Dı́az [8, Lemma A.5], and Cauchy-Schwarz’ inequality, we get,

1

2

d

dt
∥u− ũ∥2L2(Ω) ⩽ ∥f − f̃∥L2(Ω)∥u− ũ∥L2(Ω),

almost everywhere on (0,∞). Integrating over (s, t), we obtain (2.15). Finally, we note that the strong

solutions satisfy (2.14) with p = 1, and that (2.15) is stable by passing to the limit in C
(
[0, T ];L2(Ω)

)
×
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L1(0, T ;L2(Ω)), for any T > 0. By using (2.10), we then deduce that (2.15) still holds true for the

weak solutions.

Proof of Theorem 2.9. Let f and u0 be as in the theorem. We recall that we identify the

Hilbert space L2(Ω) with its own dual. It follows that the duality mapping is nothing else but the

identity. As a consequence, and from Corollary 6.2 and Lemma 6.3, the operator (A,D(A)) is m-

accretive (i.e., maximal monotone) on L2(Ω). Then, by Vrabie [51, Theorem 1.7.1]), there exist a

unique u ∈W 1,∞
loc

(
[0,∞);L2(Ω)

)
and U ∈ L∞

loc

(
[0,∞);H−2(Ω)

)
which satisfy (1.1) in D ′((0,∞)×Ω

)
,

(2.20), u(0) = u0, −i∆u − iV u + µU ∈ L∞
loc(0,∞;L2(Ω)). In addition, for almost every t > 0,

u(t) ∈ H1
0 (Ω) ∩ L1(Ω), U(t) ∈ BL∞(0, 1), (−i∆u + µU)(t) ∈ L2(Ω), and U(t, x) = u(t,x)

|u(t,x)| , for

almost every (t, x) ∈ (0,∞) × Ω where u(t, x) ̸= 0. Then (2.18) is an immediate consequence of

(2.20). Taking the L2-scalar product of (1.1) with iu, we deduce from [8, Lemma A.5], and [10,

Lemma 4.4] that Property 3 holds true. Then, u ∈ L∞
loc

(
[0,∞);L1(Ω)

)
, and applying the Cauchy-

Schwarz inequality to (2.22), and integrating, we get (2.19). Now, let us establish (2.21) and prove

that u ∈ Cw

(
[0,∞);H1

0 (Ω)
)
. We take again the L2-scalar product of (1.1) with −u and apply [10,

Lemma 4.4]. By the Cauchy-Schwarz inequality, we infer

∥∇u∥2L2(Ω) ⩽
(
∥ut∥L2(Ω) + ∥V u∥L2(Ω) + ∥f∥L2(Ω)

)
∥u∥L2(Ω),

and with help of (4.2) and (4.3) in [9], we have that for some γ ∈ [0, 1),

∥V u∥L2(Ω) ⩽ C(N, β)
(
∥V1∥L∞(Ω) + ∥V2∥2−γ

LpV (Ω)

)
∥u∥L2(Ω) +

1

2∥u∥L2(Ω)
∥∇u∥2L2(Ω).

Putting together the two above estimates, we deduce that

∥∇u∥2L2(Ω) ⩽ C
(
∥ut∥L2(Ω) +

(
∥V1∥L∞(Ω) + ∥V2∥2−γ

LpV (Ω)

)
∥u∥L2(Ω) + ∥f∥L2(Ω)

)
∥u∥L2(Ω), (6.21)

almost everywhere on (0,∞), where C = C(N, β). In particular, (2.19), (2.20), (2.22) and (6.21)

give (2.21). Now, since u ∈ C
(
[0,∞);L2(Ω)

)
, it follows from (2.19), (2.21) and (5.4) that u ∈

Cw

(
[0,∞);H1

0 (Ω)
)
. In particular, by (6.6), we have that V u ∈ L∞

loc

(
[0,∞);L2(Ω)

)
. We claim that

U ∈ L∞((0,∞) × Ω
)

and that ∥U∥L∞((0,∞)×Ω) ⩽ 1. We first have to show that (t, x) 7−→ U(t, x) is

measurable. By the previous estimates, we only have that,

−i∆u+ µU ∈ L∞
loc

(
[0,∞);L2(Ω)

)
, (6.22)

but we do not have any information on ∆u and U, separately. Let Ω′ ⊂ Ω be any bounded open

subset. Since for almost every t > 0, U(t) ∈ BL∞(0, 1), it follows that for any T > 0, there exist

C > 0 and N0 ⊂ (0, T ) such that |N0| = 0, and for any t ∈ (0, T ) \ N0, ∥∆u(t)|Ω′∥L2(Ω′) ⩽ C.

But, ∆u( . )|Ω′ ∈ Cw

(
[0,∞);H−1(Ω′)

)
and so by (5.4), ∆u( . )|Ω′ ∈ Cw

(
[0,∞);L2(Ω′)

)
. It follows from
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(6.22) that

U ∈ L∞
loc

(
[0,∞);L2

loc(Ω)
)
↪→ L2

loc

(
(0,∞) × Ω

)
. (6.23)

In particular, U : (0,∞)×Ω −→ C is measurable and for almost every (t, x) ∈ (0,∞)×Ω, |U(t, x)| ⩽
∥U(t)∥L∞(Ω) ⩽ 1. Hence, ∥U∥L∞((0,∞)×Ω) ⩽ 1. Furthermore, by (6.23), we infer that (1.1) makes sense

in L∞
loc

(
[0,∞);L2

loc(Ω)
)
∩L∞

loc

(
[0,∞);H−1(Ω)

)
. Finally, Property 4 follows easily from Properties 1–3

and (1.1). The theorem is proved.

Proof of Theorem 2.7. Let f ∈ L1
loc([0,∞);L2(Ω)) and u0 ∈ L2(Ω). Let (φn, fn)n∈N ⊂ D(Ω) ×

W 1,1
loc ([0,∞);L2(Ω)) be such that,

∀T > 0, (φn, fn)
L2(Ω)×L1(0,T ;L2(Ω))−−−−−−−−−−−−−−→

n−→∞
(u0, f). (6.24)

Finally, for each n ∈ N, let (un, Un) be the unique H1
0 -solution to (1.1)–(1.2) with u(0) = φn given by

Theorem 2.9. It follows from (2.15) that for any T > 0, (un)n∈N is a Cauchy sequence of the complete

space C
(
[0, T ];L2(Ω)

)
. It follows that there exists u ∈ C

(
[0,∞);L2(Ω)

)
such that,

∀T > 0, un
C([0,T ];L2(Ω))−−−−−−−−−→

n−→∞
u. (6.25)

Since (Un)n∈N is bounded in L∞((0,∞)×Ω) by one, there exists U ∈ L∞((0,∞)×Ω) satisfying (2.7)

such that, up to a subsequence, (2.11) holds true. Then u is a weak solution to (1.1)–(1.3), and by

Proposition 2.6, this solution is unique. Let t ⩾ s ⩾ 0. Using Theorem 2.9, we obtain that for any

n ∈ N,

1

2
∥un(t)∥2L2(Ω) + µ

t∫
s

∥un(σ)∥L1(Ω)dσ =
1

2
∥un(s)∥2L2(Ω) + Im

t∫∫
s Ω

fn(σ, x)un(σ, x) dxdσ, (6.26)

If |Ω| <∞ then L2(Ω) ↪→ L1(Ω). We then use (6.24)–(6.25) to pass to the limit in (6.26) from which

(2.16)–(2.17) follows. If |Ω| = ∞ then by (6.25), there exists a subsequence that we still denote by

(un)n∈N such that,

un
a.e. in (0,∞)×Ω−−−−−−−−−−→

n−→∞
u. (6.27)

Using (6.24), (6.25) and (6.27), we deduce (2.16)–(2.17) from (6.26) and Fatou’s Lemma.

7 Proofs of the finite time extinction and the asymptotic be-
havior theorems

Proof of Theorems 3.2. We first consider the assumption (3.1). By (2.22) and Hölder’s inequality

and (3.1), we have for almost every t ∈ (T0,∞),

1

2

d

dt
∥u(t)∥2L2(Ω) + λ∥u(t)∥L1(Ω) ⩽ 0, (7.1)
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where λ
def
= µ−∥f∥L∞((T0,∞)×Ω) > 0. By the Gagliardo-Nirenberg inequality, there exists CGN = C(N)

such that for almost every t > 0,

∥u(t)∥
N+2

2

L2(Ω) ⩽ CGN∥u(t)∥L1(Ω)∥∇u(t)∥
N
2

L2(Ω). (7.2)

By Theorem 2.9, u ∈ L∞(0,∞;H1
0 (Ω)). Then, setting for any t ⩾ 0, y(t) = ∥u(t)∥2L2(Ω), and using

(7.2) in (7.1), we get that for almost every t > 0,

y′(t) + C∥∇u∥−
N
2

L∞(0,∞;L2(Ω))y(t)
N+2

4 ⩽ 0.

Integrating over (0, T ) the above estimate, we obtain (3.2)–(3.5) (see also [8, Lemma 5.1]). It re-

mains to show the last property on the instantaneous extinction time. By (2.22), (7.2), and Young’s

inequality, we have for almost every t > 0,

y′(t) + 2µC−1
GN ∥∇u∥−

1
2

L∞(0,∞;L2(Ω))y(t)
3
4 ⩽ 3∥f(t)∥3L2(Ω) + y(t)

3
4 . (7.3)

Let δ =
3

4
, and

x⋆ = (δ(1 − δ)T0)
1

1−δ , y⋆ = (δδ(1 − δ))
1

1−δ ,

ε1 = min

{
(δ(1 − δ))

1
2(1−δ) ,

(y⋆
3

) 1
3

}
.

LetM > 0.Assume that ∥f∥W 1,1(0,∞;L2(Ω)) ⩽M. By Sobolev’ embedding, this entails that ∥f(0)∥L2(Ω) ⩽

C(M). Let ω = {x ∈ Ω;u0(x) ̸= 0}. We first need a refinement of B(t) in (2.20). Actually, we have

for any t > 0 by a result in Barbu [2] (Theorem 4.4, p.141),

∥ut∥L∞(0,t;L2(Ω)) ⩽ B̃(t)
def
= |∆u0 + V u0 + iµU0 − f(0)|L2(Ω) +

∫ t

0

∥f ′(σ)∥L2(Ω)dσ,

where |∆u0 +V u0 + iµU0−f(0)|L2(Ω) = min
{
∥v∥L2(Ω); v ∈ iAu0−f(0)

}
. (The multi-valued operator

(A,D(A)) is defined at the Section 6.) Furthermore, this minimum is unique (see the lines before

Barbu [2, Proposition 3.5, p.101]). It follows that B(t) may be replaced with B̃(t) in the whole

Theorem 2.9. Let us define V0 in Ω by V0 = |u0|−1u0, in ω, and V0 = 0, in ωc. Since u0 ∈ H2
loc(Ω),

we have in particular that ∆u0 = 0, almost everywhere in ωc. Then,

sup
t>0

B̃(t) ⩽ ∥∆u0 + V u0 + iµV0 − f(0)∥L2(Ω) +

∫ ∞

0

∥f ′(σ)∥L2(Ω)dσ,

⩽ ∥∆u0 + V u0 + iµ|u0|−1u0∥L2(ω) + ∥f(0)∥L2(Ω) +

∫ ∞

0

∥f ′(σ)∥L2(Ω)dσ.

As a consequence, if ∥u0∥L2(Ω) ⩽ ε1 and ∥∇u0∥L2(Ω) +
∥∥∥∆u0 + iµ u0

|u0|

∥∥∥
L2(ω)

⩽M, then it follows from

(6.6) and the above that

sup
t>0

B̃(t) ⩽

∥∥∥∥∆u0 + iµ
u0
|u0|

∥∥∥∥
L2(ω)

+ ∥V u0∥L2(Ω) + C(M)

⩽ C(∥V ∥LpV +L∞ ,M).
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By (2.21), there exists a positive constant ε⋆ = ε⋆(∥V ∥LpV +L∞ ,M, µ) ⩽ ε1 such that if ∥u0∥L2(Ω) +

∥f∥L1(0,∞;L2(Ω)) ⩽ ε⋆ then µC−1
GN ∥∇u∥−

1
2

L∞((0,∞);L2(Ω)) ⩾ 1. Now, assume that ∥f(t)∥L2(Ω) ⩽ ε⋆
(
T0 −

t
)
+
, for any t ⩾ 0. Then (7.3) becomes,

for almost every t > 0, y′(t) + y(t)
3
4 ⩽ y⋆

(
T0 − t

) δ
1−δ

+
.

Finally, if ∥u0∥L2(Ω) ⩽ ε⋆T
2
0 then y(0) ⩽ x⋆, and an appeal to [8, Lemma 5.2] gives that for any

t ⩾ T0, y(t) = 0. The theorem is proved.

Proof of Theorem 3.1. By density and (2.15), it is sufficient to consider the case in which u0 ∈ D(Ω)

and f ∈ D
(
[0,∞);L2(Ω)

)
. Then Theorem 3.2 yields the desired result.

8 Solutions with lower regularity

Due to problems of measurability of functions with values in non-separable spaces (Section 4), we

are unable to build solutions to (1.1) under the mere “natural condition” u0 ∈ H1
0 (Ω), and f which

satisfies (4.2). The closest result is the following.

Theorem 8.1. Let Assumption 2.1 be fulfilled. Let (Yn)n∈N0
be any L1-approximating sequence of

RNP-spaces (Definition 5.4). Assume that V ∈W 1,∞(Ω;R)+W 1,pV (Ω;R), where pV is given by (2.4)

and let

f ∈ L1
loc

(
[0,∞);H1

0 (Ω)
)
∩ Lp

loc

(
[0,∞);H−1(Ω) + L∞(Ω)

)
, (8.1)

for some 1 < p ⩽ ∞. Then for any u0 ∈ H1
0 (Ω), there exist u and U satisfying (2.7)–(2.8) such that

for any n ∈ N0, u ∈ Cw

(
[0,∞);H1

0 (Ω)
)
∩W 1,p

loc

(
[0,∞);H−1(Ω) + Y ⋆

n

)
,

u ∈ L1
loc

(
[0,∞);L1(Ω)

)
,

(8.2)

and such that the pair (u, U) is a solution to (2.6) in Lp
loc(0,∞;H−1(Ω) + Y ⋆

n ) ↪→ D ′((0,∞) × Ω
)
.

Furthermore, u verifies u(0) = u0, and

∥u(t)∥H1
0 (Ω) ⩽

∥u0∥H1
0 (Ω) +

t∫
0

∥f(s)∥H1
0 (Ω)ds

 eC∥∇V ∥L∞+LpV t, (8.3)

for any t ⩾ 0, where C = C(N, β). In addition, if ∇V = 0 then we have that,

∥∇u(t)∥L2(Ω) ⩽ ∥∇u0∥L2(Ω) +

t∫
0

∥∇f(s)∥L2(Ω)ds, (8.4)
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for any t ⩾ 0. Moreover, there exists N0 ⊂ (0,∞) with |N0| = 0 such that,

∀t ∈ (0,∞) \N0, u
′(t) ∈ H−1(Ω) + L∞(Ω). (8.5)

In particular, u solves (2.6) in H−1(Ω) + L∞(Ω), for almost every t > 0. Finally, if p = ∞ then for

any T > 0, there exists C(T ) > 0 such that,

∥u′(t)∥H−1(Ω)+L∞(Ω) ⩽ C(T ), (8.6)

for any t ∈ (0, T ) ∩N c
0 .

Remark 8.2. Below are some comments about Theorem 8.1.

1. We do not know whether u ∈ C
(
[0,∞);L2(Ω)

)
, and we do not know whether u′ : (0,∞) −→

H−1(Ω) + L∞(Ω) is measurable.

2. Let f satisfy (8.1) with p = ∞, and let X = H1
0 (Ω)∩L1(Ω). If u′ : (0,∞) −→ X⋆ is measurable

then it follows from (8.2), (8.5) and (8.6) that

u ∈ L1
loc

(
[0,∞);X

)
∩W 1,∞

loc

(
[0,∞);X⋆

)
,

so that u becomes an H1
0 -solution.

3. Let f satisfy (8.1) with p = ∞. Actually, we may get a little bit more information from (8.5)–

(8.6). Let n ∈ N0, Xn = H1
0 (Ω) ∩ Yn, and X = H1

0 (Ω) ∩ L1(Ω). By (8.2), we have that

lim
h→0

∥∥∥∥u(t+ h) − u(t)

h
− u′(t)

∥∥∥∥
X⋆

n

= 0, (8.7)

for almost every t > 0. But Xn ↪→ X, with dense embedding, and X is separable. It then follows

from (8.6) and (8.7) that,

u(t+ h) − u(t)

h
−−−−⇀
h→0

u′(t), in the weak⋆ topology σ(X⋆, X), (8.8)

for almost every t > 0, so that u′ : (0,∞) −→ X⋆ is weak⋆-measurable. Thus, with (8.6), we

conclude that u′ is Gel’fand integrable: for any finite-measure set E ⊂ (0,∞) and φ ∈ X,〈
G−

∫
E

u′(t)dt, φ

〉
X⋆,X

=

∫
E

⟨u′(t), φ⟩X⋆,Xdt,

where G −
∫
E

u′(t)dt denotes the Gel’fand integral over E (Gel′fand [27]). In addition, there

exists a sequence (sn)n∈N of simple functions such that for any φ ∈ X,

lim
n→∞

⟨sn(t), φ⟩X⋆,X = ⟨u′(t), φ⟩X⋆,X ,
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for almost every t ∈ E. Note that the null set Nφ on which the convergence fails may vary

with φ (while if u′ : (0,∞) −→ X⋆ was measurable, Nφ ≡ N would not depend on φ, and

u′ : (0,∞) −→ X⋆ would be locally Bochner integrable). By Pettis’ Theorem, u′ : (0,∞) −→ X⋆

is measurable if, and only if, there exists a null set N0 ⊂ (0,∞) for which u′((0,∞) \ N0) is

separable in X⋆. For more details about weak⋆-measurable functions, the Gel’fand integral and

its properties, see Gel′fand [27], Hashimoto [28], Hashimoto and Oharu [29], and Schwartz [42].

4. As noted just above, u′ : (0,∞) −→ X⋆ is weak⋆-measurable, where X = H1
0 (Ω) ∩ L1(Ω). It

seems very hard to answer to the question of the measurability of u′. Indeed, the first way, is to

know whether u′ is essentially separably valued in X⋆ (Pettis’ Theorem). The second method

would be to show that u′ is weakly⋆ equivalent to a measurable function, namely, to prove that

there exists a measurable function v : (0,∞) −→ X⋆ such that for any φ ∈ X,

⟨u′(t), φ⟩X⋆,X = ⟨v(t), φ⟩X⋆,X ,

for almost every t > 0. A priori, the null set on which the equality fails may vary with φ, but

actually, it does not with help of the separability of X. Therefore, we would have u′(t) = v(t), for

almost every t > 0, so that u′ would be measurable. But showing that u′ is weakly⋆ equivalent

to a measurable function requires to be able to identify weakly compact sets of X⋆, namely in

the weak topology σ(X⋆, X⋆⋆) (Uhl [50], Edgar [24]). A third method would consist to see the

Gel’fand integral of u′ as a vector measure and to look for make it represent by a measurable

function with help of the Radon-Nikodým Theorem (Rieffel [40], Maynard [36], Diestel and

Uhl [20], Schwartz [43]). It is interesting to note that all these theorems furnish a necessary and

sufficient condition to measurability. Unfortunately, they are too general and too abstract to be

applied in our case (such as the σ-dentability, for the third method), and the only handy tools

about measurability of the vector measure theory are reflexivity and separability.

Lemma 8.3. We use the notations of Theorem 8.1. Let the hypotheses of Theorem 8.1 be fulfilled

with p <∞. Let (fε)ε>0 ⊂ D
(
[0,∞);H1

0 (Ω)
)
and (φε)ε>0 ⊂ D(Ω) be such that,

φε
H1

0 (Ω)−−−−→
ε↘0

u0,

fε
L1(0,T ;H1

0 )∩Lp(0,T ;H−1+L∞)−−−−−−−−−−−−−−−−−−−−→
ε↘0

f.
(8.9)

for any T > 0. Then for any ε > 0, there exists a unique solution

uε ∈ Cw

(
[0,∞);H1

0 (Ω)
)
∩W 1,∞

loc

(
[0,∞);L2(Ω)

)
, (8.10)

to

i
∂uε
∂t

+ ∆uε + V (x)uε + iµgε(uε) = fε(t, x), in L2(Ω), (8.11)
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for almost every t > 0, such that uε(0) = φε. Furthermore, for any ε > 0,

∥uε(t)∥H1
0 (Ω) ⩽

∥φε∥H1
0 (Ω) +

t∫
0

∥fε(s)∥H1
0 (Ω)ds

 eC∥∇V ∥L∞+LpV t, (8.12)

for any t ⩾ 0, where C = C(N, β), and if ∇V = 0 then,

∥∇uε(t)∥L2(Ω) ⩽ ∥∇φε∥L2(Ω) +

t∫
0

∥∇fε(s)∥L2(Ω)ds, (8.13)

for any t ⩾ 0. Finally,(uε)ε>0 is bounded in L∞
loc

(
[0,∞);H1

0 (Ω)
)
∩W 1,p

loc

(
[0,∞);X⋆

n

)
,(

gε(uε)
)
ε>0

is bounded in L∞(0,∞;X⋆
n),

(8.14)

for any n ∈ N0, where Xn = H1
0 (Ω) ∩ Yn, and

sup
ε>0

T∫
0

∫
Ω

|uε(t, x)|2

(|uε(t, x)|2 + ε)
1
2

dxdt ⩽ C(T ), (8.15)

for any T > 0.

Proof. Let the assumptions of the Lemma be fulfilled. By [9, Corollary 5.11] and Barbu [2,

Theorem 4.5, p.141], there exists a unique solution uε ∈ W 1,∞
loc

(
[0,∞);L2(Ω)

)
to (8.11) such that

uε(t) ∈ H1
0 (Ω) and ∆uε(t) ∈ L2(Ω), for almost every t > 0. Moreover, uε(0) = φε. Taking the L2-

scalar product of (8.11) with −uε, applying Cauchy-Schwarz’ inequality, and then (4.2) and (4.3) of

[9], we get that uε ∈ L∞
loc

(
[0,∞);H1

0 (Ω)
)
. Therefore, by (5.4) we get (8.10). By (6.6) and (8.11), it

follows that ∆uε ∈ L∞
loc

(
[0,∞);H1

0 (Ω)
)
. Taking the L2-scalar product of (8.11) with −i∆uε, it then

follows from [8] ((6.8) and Lemma A.5), (6.6) and a density argument that for almost every s > 0,

1

2

d

dt
∥∇uε(s)∥2L2(Ω) ⩽ ∥∇fε(s)∥L2(Ω)∥∇uε(s)∥L2(Ω) + C∥∇V ∥L∞(Ω)+LpV (Ω)∥uε(s)∥2H1

0 (Ω). (8.16)

Therefore, (8.13) follows by integrating (8.16). Taking again the L2-scalar product of (8.11) with iuε,

we get that,

1

2

d

dt
∥uε(s)∥2L2(Ω) + µ

∫
Ω

|uε(s, x)|2

(|uε(s, x)|2 + ε)
1
2

dx ⩽ ∥fε(s)∥L2(Ω)∥uε(s)∥L2(Ω), (8.17)

for almost every s > 0. Summing (8.16) with (8.17), we get for almost every s > 0,

1

2

d

dt
∥uε(s)∥2H1

0 (Ω) ⩽ ∥fε(s)∥H1
0 (Ω)∥uε(s)∥H1

0 (Ω) + C∥∇V ∥L∞(Ω)+LpV (Ω)∥uε(s)∥2H1
0 (Ω).

Integrating the above and applying Gronwall’s Lemma, we get (8.12), implying that

(uε)ε>0 is bounded in L∞
loc

(
[0,∞);H1

0 (Ω)
)
. (8.18)
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So, integrating (8.17), we get (8.15). Let n ∈ N0. Since u′ε ∈ L∞
loc

(
[0,∞);L2(Ω)

)
, it follows from

(8.11) that both u′ε and gε(uε) are measurable [0,∞) −→ X⋆
n. Therefore, since |gε(uε)| ⩽ 1, almost

everywhere in (0,∞) × Ω, we get (8.14) by (8.18), (6.6), Lemma 5.6, Corollary 5.7, and again (8.11).

This ends the proof of the lemma.

Lemma 8.4. We use the notations of Lemma 8.3. Under the hypotheses of Lemma 8.3, there exist u

and U ∈ L∞(0,∞;X⋆
n) satisfying (2.7)–(2.8) such that,

u ∈ Cw

(
[0,∞);H1

0 (Ω)
)
∩W 1,p

loc

(
[0,∞);X⋆

n

)
, (8.19)

u ∈ L1
loc

(
[0,∞);L1(Ω)

)
, (8.20)

for any n ∈ N0, and a positive sequence εℓ ↘ 0, as ℓ −→ ∞, such that

uεℓ(t) −−−−⇀
ℓ→∞

u(t) in H1
0 (Ω)w, ∀t ⩾ 0, (8.21)

uεℓ
a.e. in (0,∞)×Ω−−−−−−−−−−→

n→∞
u, (8.22)

gεℓ
(
uεℓ
)
−−−−⇀
ℓ→∞

U, in L∞(0,∞;X⋆
n)w⋆. (8.23)

Proof. Let n ∈ N. By (8.10), (8.14), Cazenave [18] (Proposition 1.1.2(i), p.2, and Remark 1.3.13(ii),

p.12)) and the diagonal procedure, there exist a positive sequence εℓ ↘ 0, as ℓ −→ ∞, and u

satisfying (8.19) and (8.21). Let T > 0 and Ω′ ⊂ Ω be a smooth bounded open subset of RN . Let

(Yn(Ω′))n∈N0
be an L1(Ω′)-approximating sequence of RNP-spaces (Lemma 5.8). By the Rellich-

Kondrachov compactness Theorem,

H1(Ω′) ↪→
compact

L2(Ω′) ↪→ H−1(Ω′) + Yn(Ω′)⋆. (8.24)

By (8.10) and (8.11), u′ε and gε(uε) are measurable [0,∞) −→ H−1(Ω′) + Yn(Ω′)⋆. Therefore, since

|gε(uε)| ⩽ 1, almost everywhere on (0,∞) × Ω, we get by (8.14), (6.6), the embedding L∞(Ω′) ↪→
Yn(Ω′)⋆, and again (8.11), that{

(uε)ε>0 is bounded in L∞
loc

(
[0,∞);H1(Ω′)

)
and in W 1,p

loc

(
[0,∞);H−1(Ω′) + Yn(Ω′)⋆

)
.

(8.25)

By (8.21), (8.24)–(8.25) and compactness (Simon [44, Corollary 4, p.85]), we obtain that

u ∈ C
(
[0, T ];L2(Ω′)

)
and lim

ℓ→∞
∥uεℓ − u∥C([0,T ];L2(Ω′)) = 0.

Hence, uεℓ
L2

loc((0,∞)×Ω)−−−−−−−−−→
ℓ→∞

u, since T and Ω′ are arbitrary. Up to a subsequence, we get (8.22). We

then obtain (8.20) from (8.15), (8.22) and Fatou’s Lemma. Now, we note that by (5.3),

L∞(0,∞;X⋆
n) ↪→ D ′((0,∞) × Ω

)
.
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In addition, by Corollary 5.7, Xn is separable and reflexive, so that L∞(0,∞;X⋆
n) is the dual space

of the separable space L1(0,∞;Xn) (Section 5). Finally, sup
ε>0

∥gε(uε)∥L∞((0,∞)×Ω) ⩽ 1, so it follows

from the above and (8.14) that, up to a subsequence, there exists

U ∈ L∞(0,∞;X⋆
n) ∩ L∞((0,∞) × Ω

)
,

satisfying (2.7), (8.23), and

gεℓ
(
uεℓ
)
−−−−⇀
ℓ→∞

U, in L∞((0,∞) × Ω
)
w⋆
.

To conclude, it remains to show that U satisfies (2.8). This may be done by repeating the proof of

Lemma 6.3, from (6.11) to (6.13). The proof of the lemma is complete.

Proof of Theorems 8.1. We use the notations of Lemma 8.3. We first assume that p < ∞. Let

u be given by Lemma 8.4. Let n ∈ N, let φ ∈ Xn and ψ ∈ C1
c

(
(0,∞);R

)
. Let T > 0 be such that

suppψ ∈ (0, T ). Let (εℓ)ℓ∈N be given by Lemma 8.4. It follows from (8.11) and (4.5) in [9], that for

any ℓ ∈ N,
∞∫
0

〈
i
∂uεℓ
∂t

+ ∆uεℓ + V uεℓ + iµgεℓ
(
uεℓ
)
, φ

〉
X⋆

n,Xn

ψ(t) dt =

∞∫
0

〈
fεℓ(t), φ

〉
X⋆

n,Xn
ψ(t) dt,

and so,

T∫
0

(
⟨−iuεℓ , φ⟩L2(Ω),L2(Ω) ψ

′(t) − ⟨∇uεℓ ,∇φ⟩L2(Ω),L2(Ω) ψ(t) + ⟨uεℓ , V φ⟩L2(Ω),L2(Ω) ψ(t)
)

dt

+
〈
iµgεℓ

(
uεℓ
)
, ψφ

〉
L∞((0,∞);X⋆

n);L
1((0,∞);Xn)

=

T∫
0

〈
fεℓ(t), φ

〉
L2(Ω),L2(Ω)

ψ(t) dt.

By (8.9), (8.21), (8.23), the dominated convergence Theorem, and Hölder’s inequality, we can pass to

the limit in the above equality to obtain u(0) = u0, and

∞∫
0

〈
i
∂u

∂t
+ ∆u+ V u+ ag(u), φ

〉
X⋆

n,Xn

ψ(t) dt =

∞∫
0

〈
f(t), φ

〉
X⋆

n,Xn
ψ(t) dt.

It follows that u satisfies (2.6) in Lp
loc(0,∞;X⋆

n), hence in D ′((0,∞) × Ω
)
. Moreover, (8.3) and (8.4)

come from (8.9), (8.12), (8.13), (8.21) and the lower semicontinuity of the norm. Finally, since

∥U∥L∞((0,∞)×Ω) ⩽ 1, (8.5) comes from (8.2), (6.6) and (2.6), from which we deduce that u solves (2.6)

in H−1(Ω)+L∞(Ω), for almost every t > 0. Now, assume that p = ∞. It follows that the conclusion of

the theorem stands for any p <∞. Changing the null set N0 by a bigger one, if necessary, (8.6) comes

from (8.3), (2.7), (6.6) and (2.6). Finally, it follows from (8.6) and the embedding L∞(Ω) ↪→ Y ⋆
n , that

(8.2) holds for p = ∞, and that u satisfies (2.6) in L∞
loc(0,∞;X⋆

n). The theorem is proved.
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[14] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext.
Springer, New York, 2011.

37

https://arxiv.org/abs/2210.04493


[15] H. Brezis and T. Cazenave. Nonlinear evolution equations. Unpublished.

[16] R. Carles and C. Gallo. Finite time extinction by nonlinear damping for the Schrödinger equation.
Comm. Partial Differential Equations, 36(6):961–975, 2011.

[17] R. Carles and T. Ozawa. Finite time extinction for nonlinear Schrödinger equation in 1D and
2D. Comm. Partial Differential Equations, 40(5):897–917, 2015.

[18] T. Cazenave. Semilinear Schrödinger equations, volume 10 of Courant Lecture Notes in Mathe-
matics. New York University Courant Institute of Mathematical Sciences, New York, 2003.

[19] R. Deville. Strong solutions of evolution equations governed by m-accretive operators and the
Radon-Nikodým property. Proc. Amer. Math. Soc., 112(4):1001–1008, 1991.

[20] J. Diestel and J. J. Uhl, Jr. The Radon-Nikodym theorem for Banach space valued measures.
Rocky Mountain J. Math., 6(1):1–46, 1976.

[21] J. Diestel and J. J. Uhl, Jr. Vector measures. Mathematical Surveys, No. 15. American Mathe-
matical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis.
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1975: Espaces Lp, applications radonifiantes et géométrie des espaces de Banach, pages Exp. No.
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