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Abstract

This paper introduces a Modified Reptile Search Algorithm (MRSA) designed to

optimize the operation of distribution networks (DNs) considering the growing

integration of renewable energy sources (RESs). The integration of RESs‐based
Distributed Generation (DG) systems, such as wind turbines (WTs) and

photovoltaics (PVs), presents a complex challenge due to its significant impact

on DN operations and planning, particularly considering uncertainties related to

solar irradiance, temperature, wind speed, consumption, and energy prices. The

primary objective is cost reduction, encompassing electricity acquisition, PV and

WTs unit costs, and annual energy losses. The proposed MRSA incorporates two

strategies: the fitness‐distance balance method and Levy flight motion, enhancing

its searching capabilities beyond standard Reptile Search Algorithm and mitigating

local optima issues. The uncertainties in load demand, energy prices, and

renewable energy generation are represented through probability density functions

and simulated using Monte Carlo methods. Evaluation involves typical bentchmark

functions and a real 112‐bus Algerian DN, comparing MRSA's efficacy with other

optimization techniques. Results indicate that the proposed DN optimization

program with WTs and PVs integration reduces annual costs by 21.43%, from

6.2715E+06 to 4.9270E+ 06USD, reduce voltage deviations by 21.67%, from

77.1022 to 60.4007USD, and enhance system stability by 2.59%, from 2.3699E+03

to 2.4314E+ 03USD, compared with the base case.

KEYWORD S

optimal distribution networks planning, optimal operation, renewable energy sources,
reptile search algorithm, uncertainty

1 | INTRODUCTION

Renewable energy integration has become an increas-
ingly important topic in recent years, as it offers many
advantages in terms of reducing the environmental

impact of electricity generation. One of the most
promising approaches is the optimal integration of
renewable energy resources (RERs)‐based Distributed
Generations (DGs), such as wind turbine (WT), and
photovoltaic (PV), into the distribution network (DN).
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This approach presents multiple advantages, such as
reducing greenhouse gas emissions, minimizing energy
losses, improving voltage stability, and reducing the
dependence on fossil fuels.

In this context, the optimization of RERs integration
in DNs has gained significant attention in the literature,
as it represents a crucial step towards achieving a
sustainable and dependable energy system. For this
aim, the integration of RERs‐based DG units at different
levels of the electrical networks has been recognized as a
promising solution to address both the increasing
demand for energy as well as to reduce the environ-
mental impact. Additionally, the integration of such
systems has shown multiple technoeconomic advantages
reducing the total production cost of electricity, as well as
enhancing system performance and voltage profiles.1

However, the presence of DGs in DNs also introduces
significant uncertainty, which greatly increases the
intricacy of the optimal operation.2 The main sources
of uncertainty in DNs are the load demand, the prices of
electricity, and the output power of renewable DGs,
which are subject to variations depending on weather
conditions (solar radiation, temperature, and wind
speed). As a result, determining the optimal placement
of DGs in DNs is a challenging and strenuous task.3 The
selection of appropriate combinations of PV and WT‐
based DGs has the potential to increase the efficiency and
reliability of the DNs by addressing the issues caused by
their variable nature.4 DGs can be strategically located
and operated in the network to defer major system
upgrades, improve voltage regulation, minimize distribu-
tion power losses, relieve heavily loaded feeders, and
enhance equipment reliability.5 However, inappropriate
DGs location and sizing can lead to various negative
impacts on the DN, such as voltage instability, increased
power losses, harmonic distortion, and even equipment
damage, which can affect the reliability and quality of
power supply, potentially leading to economic losses and
customer dissatisfaction.6 Therefore, an optimal opera-
tion of the system is necessary to make full use of the
benefits of DGs while mitigating their adverse effects.

A considerable amount of research has been con-
ducted on optimal DG integration from various perspec-
tives. In one study, Mansouri et al.7 delved into
numerous technological challenges that arise from the
widespread penetration of PV into DNs, such as active
power reduction, frequency regulation, energy storage,
and reactive power injection. Another study8 explored
the technical obstacles that arise due to the extensive and
intensive integration of PV into the DNs, such as
frequency disturbances and voltage limit violations, as
well as the resulting stability issues. The implications of
integrating PV on a large scale into the DNs were also

considered, along with potential solutions. The search‐
based dragonfly algorithm was introduced as a proposed
solution for the ideal allocation of DGs, taking into
account uncertainties in load demand and DGs. In
Prakash and Khatod,9 various strategies for locating and
sizing DGs in DNs were evaluated. In Zellagui et al.,10

two popular methods, the particle swarm optimization
(PSO) and the firefly method, were proposed as means of
achieving operational, financial, and environmental
benefits in DNs. In a recent study,11 a combined
approach utilizing the PSO and hybrid enhanced gray
wolf algorithms was proposed for the optimum location
for DGs. This approach aimed to minimize active power
losses, system costs, and emissions while improving the
voltage stability index (VSI) and reducing the voltage
deviation index (VDI). A bioinspired algorithm based on
Monte Carlo simulation was proposed by Hemeida
et al.12 In Rathore and Patidar,13 the PSO coefficient
was employed to minimize total energy losses by
optimizing the sizing and deployment of DGs. In El
Sehiemy et al.,14 the Slap swarm optimizer was utilized to
enhance the operational, financial, and environmental
performance of power plants. The equilibrium optimizer
method was introduced by Ahmed et al.15 A highly
effective algorithm was proposed for improving the size
and placement of DGs within power networks and
addressing the issues with microenergy management. In
a study by Thokar et al.,16 a bilayer approach to the
placement of energy storage systems and PV in DNs was
proposed. In Biswal and Shankar,17 the Strength Pareto
Evolutionary Algorithm 2 was proposed as a solution for
the problem of capacitor and DGs placement with load
uncertainty. In Hadidian‐Moghaddam et al.,18 an inno-
vative ant lion optimizer approach was proposed with the
goal of lowering energy costs, reducing losses and voltage
deviation (VD), and improving reliability. In Ahmed
et al.,19 the PSO approach was proposed, utilizing a
probabilistic uncertainty modeling approach, for the
siting and sizing of DGs. In Rao et al.,20 Monte Carlo
simulation was used for the best placement of DGs
within power systems. In this research, Ullah et al.21

create an energy optimization framework for intelligent
microgrids with the aim of reducing operational ex-
penses, minimizing emissions, and enhancing availabil-
ity. In Ali et al.,22 a demand side management strategy is
proposed to optimize operational cost, pollution emis-
sion, and load coordination in smart grid using multi-
objective wind‐driven optimization and modeling con-
sumer behavior the paper uses probability density
function (pdf) to forecast wind speed for integrating
wind power. Hafeez et al.23 propose an energy manage-
ment strategy using price‐based demand response
programs in an internet‐of‐things‐enabled smart grid to

4636 | HACHEMI ET AL.

 20500505, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ese3.1605 by U

niversité D
e N

antes, W
iley O

nline L
ibrary on [12/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



schedule smart home appliances. In Hafeez et al.,24 a
modular framework for efficient load scheduling in the
smart grid, utilizing a hybrid algorithm and real‐time
pricing data to reduce costs and peak demands,
benefiting both residents and power companies.

In Sakr et al.,25 a revised differential evolution
algorithm was introduced for the best positioning of
DGs. Additionally, the gorilla troops optimizer, which
models gorilla social behavior and movement, has been
applied to various engineering problems, including PV
model extraction.26

The incorporation of the Levy flight distribution has
been found to enhance the performance of optimization
algorithms for engineering global optimization problems,
leading to improved optimal solutions, as demonstrated
in several studies.27 Additionally, balancing fitness and
distance has been shown to enhance the algorithm's
capabilities for searching, as reported in various
studies.28 Overall, these findings highlight the potential
of incorporating these techniques into optimization
algorithms for engineering design problems.

Table 1 lists a comparison between the presented
work and other related references for the Optimal
Operation problem (OOP) of DNs with RERs.

This research paper proposes a modified version of
the Modified Reptile Search Algorithm (MRSA) for the
optimal operation of DNs. The proposed approach is
compared against several established optimization tech-
niques, including Sand Cat Swarm Optimization

(SCSO),29 PSO,30 Dandelion Optimizer (DO),31 Sine
Cosine Algorithm (SCA),32 improved harmony search
(IHS),33 and the conventional Reptile Search Algorithm
(RSA).28 The study considers the integration of PV and
WT generators into DNs with the primary objective of
cost minimization and the summation of VD and VSI
over a 24‐h planning horizon. The model's performance
is assessed in the presence of uncertainty in load, wind
speed, solar irradiation, temperature, and energy prices
for purchasing. Weather data, such as irradiance and
temperature, are crucial input variables for simulating
PV, whereas the output power of WT is influenced by
several factors, such as turbine size and wind speed.
Therefore, an accurate modeling approach is essential
due to the sensitivity of both PV and WT. To this end, the
study employs actual data on irradiance, temperature,
and wind speed from the DN area, namely, from the real
112‐bus Algerian DN, to guarantee the precision and
practicality of the findings.

The novelty and significant contributions of the
developed algorithm compared with existing works are
articulated as follows:

1. This study proposes an MRSA specifically designed to
solve the optimal planning problem involving RERs
within DNs.

2. Investigating the synergies between RERs (WTs and
PVs), thereby enhancing grid stability and reducing
reliance on expensive grid energy purchases.

TABLE 1 Comparison between the presented work and other related references for the Optimal Operation of distribution networks.

Type of DG

Uncertainty

Improved
approach

Objective function

Reference Loading Irradiance
Wind
speed Temperature Price Technical Economical

[10] PV with DSTATCOM ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓

[11] PV with capacitors ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

[12] WT ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

[13] PV +WT+Gravity
energy storage

✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗

[15] PV with WT ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓

[16] PV with energy
storage

✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗

[17] PV with capacitors ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓

[18] PV ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

[19] WT ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

[20] Conventional DG
with WT

✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

This paper PV with WT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Abbreviations: DG, Distributed Generation; DSTATCOM, distributed static compensator; PV, photovoltaic; WT, wind turbine.
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3. The effectiveness and reliability of the MRSA algo-
rithm are rigorously demonstrated through extensive
statistical comparisons with established optimization
techniques.

4. Rigorous uncertainty analysis to account for the
stochastic nature of key parameters, including load
demand, solar irradiation, wind speed, temperature,
and energy pricing. This facilitates the robust optimi-
zation of the distribution grid operation.

5. The proposed MRSA algorithm is tested on standard
benchmark functions and applied to address the optimal
operation challenges of a real 112‐bus Algerian DN.

This paper is organized as follows: In Section 2, the
optimal planning problem formulation. Section 3 out-
lines the modeling approach for uncertainty parameters.
Sections 4 and 5 explain the mathematical formulation of
the RSA and the proposed MRSA, respectively. Section 6
provides the simulation results. Lastly, the conclusions of
this paper are depicted in Section 7.

2 | PROBLEM FORMULATION

This section describes the problem formulation that
includes the objective functions and the corresponding
constraints of the optimal operation.

2.1 | Objective function

In this paper, three objective functions are considered
which include the following:

2.1.1 | Cost minimization

The objective function taken into consideration com-
prises the cost of electricity acquired from the network
(CGrid), the cost of PV units (CPV ), the cost of WT (CWind),
and the yearly cost of energy loss (CLoss), and it may be
expressed as follows34:

C min C C C C= ( + + + ).Grid PV Wind Loss (1)

In which,

C P U= 365 × × ,Grid

h

Grid h Grid h

=1

24

( ) ( ) (2)

where UGrid represents the cost of purchasing electricity
from the grid, and PGrid h( ) refers to the power withdrawn
from the grid.35

C U P= 365 × × ,Loss Loss

h

T Loss h

=1

24

_ ( ) (3)

where ULoss is the cost of energy, and PT_Loss h( ) refers to
the total power losses.

C C C= + ,PV PV
inst

PV
O M. & (4)

where CPV
inst. is the cost of installing the PV, CPV

O M& is the
PV unit's operating and maintenance costs.34

C U P= × ,PV
O M

PV
O M

h

PV h
& &

=1

24

( ) (5)

C CF U P= × × ,PV
inst

PV rated PV
.

_ (6)

where CF is a factor affecting capital recovery, Prated_PV is
the rated produced power of the PV.34

C C C= + ,Wind wind
inst

wind
O M. & (7)

where CWind
inst. is the cost of installing the WT, and Cwind

O M& is
the wind's operating and maintenance costs.34

C U P= × ,Wind
O M

Wind
O M

h

Wind h
& &

=1

24

( ) (8)

where UPV
O M& and UWind

O M& represent the WTs and PVs
operation and maintenance costs ($/kW).34

C CF U P= × × ,Wind
inst

WT rated wind
.

_ (9)

where Prated_wind is the rated produced power of WT,UWT

and UPV represent the WTs and PVs purchased cost
($/kW), and PWind h( ) and PPV h( ) represent the yielded
power from WTs and PVs systems.

CF
β β

β
=

× (1 + )

(1 + ) − 1
,

NP

NP (10)

where β and NP the interest rate and system lifetime of
the winds turbine or PV unit.36

The generated power from the PV can be calculated
as follows:

T T
I

T= +
800

( − 20),c a
s

N (11)

 P t A η t I t( ) = ( ) ( ).pv pv pv (12)

The surface area utilized by the set of PV, denoted
as Apv in (m2), is multiplied by a constant value
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representing the conversion efficiency of the PV
panels, for the purpose of calculating the power
generated by the PV, denoted as Ppv (kW), I solar
insolation in (kW/m2) and ηpv represent the instanta-

neous efficiency of PV panels. The instantaneous
efficiency of PV panels is obtained using the following
equation37:





  









 








η t η η

β T t T

β I t
NOCT

η η

( ) =

× 1 − ( ( ) − )

− ( )
− 20

800

(1 − ) .

pv r t

a r

r t

(13)

The effectiveness of the maximum power point trac-
king equipment is denoted by ηt, and ηr represents the
reference efficiency of the PV panels. The temperature
coefficient of efficiency β, typically ranging from 0.004 to
0.006/°C for silicon cells, is also considered. The ambient
temperatureTa (°C), PV cell reference temperatureTr (°C),
and nominal operating cell temperature NOCT (°C) are
also taken into account.

The WT's produced output power (PWT) is computed
as follows:

 



















P W

W W W W

P
W W

W W
W W W

P W W W

( )

=

0 for < and > ,

−

−
for ( ),

for ( < ),

WT

i o

rated wind
i

r i
i r

rated wind r o

_

_

(14)

the rated power of the used WT is 250 kW while its
rated velocity W( )r is 15 m/s, the cut‐in speed (Wi)
is 2.5 m/s, and cut‐out speed (Wo) the WT taken as
25 m/s.38

2.1.2 | Enhancement of voltage level

To improve the network performance, the voltage
deviations should be kept closed to 1 p.u. value which
can be defined as36,39

  VD V= |( − 1)|,
h k

NB

k

=1

24

=1

(15)

where NB represents the number of buses in the
network, and Vk represents the voltage of the kth bus.

2.1.3 | Improved system stability

The system stability index statement is as follows40,41:

VSI V P X Q R

P X Q R V

= | | − 4( − )

− 4( + ) | | ,

k k k km k km

k km k km k

4 2

2
(16)

  VSI VSI= ,
h k

NB

k

=1

24

=1

(17)

where VSIk is the voltage stability index, Rkm represent
the resistance of the transmission lines while the Xkm is
its reactance. Pk and Qk define the real and reactive
power at bus, respectively. The following three objective
functions are taken into consideration simultaneously:

F ε F ε F ε F= + + ,1 1 2 2 3 3 (18)

F
C

C
= ,RERs

Base
1 (19)


F
VD

VD
= ,RERs

Base
2 (20)

F
VSI

=
1

,
RERs

3 (21)

where RERs and Base are subscripts refers to with RERs
and the base case, respectively. ε1, ε2, and ε3 are the
weighted factors that were selected to be 0.5, 0.25, and
0.25, respectively.42

2.2 | Limitations of the network

 V V V ,Min i Max (22)

 P P P+ ,PV rated wind rated

i

NB

Load i_ _

=1

, (23)

 PF PF PF ,Min Max (24)

I I n NT, = 1, 2, 3, …, ,n max n, (25)

where Vmin and Vmax are the lower and upper voltage
limits. PLoad andQLoad signified the real and reactive load,
respectively; Imax n, is the maximum allowable current
limit of the line; NT defines the number of lines; PFmax
and PFmin are the maximum and minimum of the WT
power factor, respectively.
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2.2.1 | Equality constraints

 P P P P P+ + = + ,S PV Wind

i

NT

Loss i

i

NB

Load i

=1

,

=1

, (26)

 Q Q Q Q+ = + ,S Wind

i

NT

Loss i

i

NB

Load i

=1

,

=1

, (27)

where QS and PS are the reactive and real powers of the
main network.

3 | MODELING THE
UNCERTAINTIES

In this section, the considered uncertain parameters are
represented as follows:

3.1 | The probabilistic model of solar
irradiance

The Beta pdf has been employed to model the intermit-
tent nature of the solar irradiance, as follows43,44:

  






f g

α β

α β
s g g α β

( ) =

Γ( + )

Γ( )Γ( )
(1 − ) , 0 1, , 0,

0, otherwise,

s

α
s
β

s
( −1) ( −1) (28)

where σ is the standard deviation while μ is the mean
value which has been obtained from the historical
data. β and α can be obtained from the following
equations45,46:







β μ

μ μ

σ
= (1 − ) ×

× (1 + )
− 1 ,

2 (29)

α
μ β

μ
=

×

1 −
. (30)

3.2 | The probabilistic model of wind
speed

For modeling the wind speed uncertainty, the Weibull
pdf is utilized which can be described as follows47,48:



 



 











 









f W
k

c

W

c

W

c
( ) = exp − ,

k k−1

(31)

whereW represents the wind speed. c and k are the scale
and shape parameters of the Weibull pdf.

3.3 | The probabilistic model of load
demand

Normal pdf is employed to model the demanding uncertainty
that can be mathematically described as follows46:


















f L

σ π

l μ

σ
( ) =

1

2
× exp −

−

2
,

l

l

l
2 (32)

where σl and μl are the standard deviation and the mean
value of the loading, respectively. The probability of the
loading is divided into subsegments according to the
following equation:

3.4 | The probabilistic model of price

One of the most significant random characteristics in
power systems is the price of electricity, which is an
unreliable parameter that is acquired from the grid. To
model the probability distribution of the electricity price,
the Normal pdf can be used based on its mean value μEP
and standard deviation σEP, as shown in Equation (33)49:









f P

σ π

EP μ

σ
( ) =

1

2
exp −

( − )

2( )
.

EP

EP

EP

2

2 (33)

3.5 | The probabilistic model of
temperature

As the surrounding temperature varies continuously.
Thus, the temperature is considered as uncertain
parameter and it is assumed that the uncertainty of
the temperature is represented using the normal
probability distribution for modeling the uncertainty
of the temperature as follows:













( )
( )

f T
πσ

s μ

σ
( ) =

1

2
exp −

– 2

2
,

T
t

T
t

T
t 2 (34)

where σT is the standard deviation while μT is the mean
value of temperature.

4 | REPTILE SEARCH
ALGORITHM

The RSA draws inspiration from the hunting and
encircling behaviors of crocodiles in the wild. These
behaviors involve crocodiles working together to
surround and capture their prey.28
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RSA uses mathematical modeling to mimic these
behaviors and create an optimization process that is
both gradient‐free and population‐based. This means
that it can tackle optimization challenges of varying
complexities, with or without specific constraints.

4.1 | Initialization phase

RSA begins the optimization by generating a set of
possible solutions, represented as X in Equation (35),
through a stochastic approach. The algorithm then

FIGURE 1 Flowchart of the proposed MRSA for optimal operation. MRSA, Modified Reptile Search Algorithm.
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FIGURE 2 Steps procedure for solving the Operation of a Distribution Grid Considering RESs Integration. PV, photovoltaic;
RESs, renewable energy sources; WT, wind turbine.

TABLE 2 Selected parameters of the optimizers.

Algorithm Parameter Value

SCSO29 Sensitivity range (rg) [2, 0]

Phases control range (R) [−2rg, 2rg]

PSO30 C1 2

C2 2

Vmax 6

DO31 a [0, 1]

K [0, 1]

SCA32 a 2

IHS33 HMCR 0.95

PAR 0.45

RSA28 a 0.1

β 0.1

MRSA a 0.1

β 0.1

Abbreviations: DO, Dandelion Optimizer; HMCR, harmony memory considering
rate; IHS, improved harmony search; MRSA, Modified Reptile Search Algorithm;
PAR, pitch adjusting rate; PSO, particle swarm optimization; RSA, Reptile Search
Algorithm; SCA, Sine Cosine Algorithm; SCSO, Sand Cat Swarm Optimization.

identifies the best solution obtained and considers it as an
approximation of the optimal solution in each iteration.













X

x x x x

x x x

x

x x x

x x x x

= .

j n n

j n

i j

N N j N n

N N j N n N n

1,1 1, 1, −1 1,

2,1 2, 2,

,

−1,1 −1, −1,

,1 , , −1 ,

⋯

⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮
⋯ ⋯

⋯

(35)

The set of candidate solutions, X , used in the RSA is
generated randomly through the use of Equation (36), xi j,
represents the value of the solution at the jth position
within the ith candidate solution. The number of
candidate solutions generated is denoted as N , while
the dimension size of the problem is represented by n.

x rand UB LB LB j n= × ( − ) + , = 1, 2, …, .ij

(36)

4.2 | Exploration phase

Two exploration search methods are utilized in the RSA.
Each component is given a stochastic scaling factor to get
more varied solutions and investigate different locations.
The position‐updating equations used in the exploration
phase are designed to imitate the surrounding behavior
of crocodiles and are presented in Equation (37). It is
noteworthy that the algorithm employs a simple rule to
facilitate this behavior.















x t

Best t η t

β R t

rand

t
T

Best t x

ES t rand

t
T

t
T

( + 1)

=

( ) × − ( )

× − ( )

× ,

4
,

( ) ×

× ( ) × ,

2
4

and >
4

.

i j

j i j

i j

r J

( , )

( , )

( , )

( , )1

(37)

The values used in this calculation include Best t( )j ,
which denotes the position of the jth element in the
optimal solution obtained until the current point. The
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TABLE 3 Statistical results of different optimizers for the standard functions.

Function Algorithms Average Best Worst SD p Value

F1 SCSO 1.38E− 63 4.10E− 75 3.45E− 62 6.89E− 63 9.73E− 11

PSO 6.424440 3.405028 11.52595 2.484545 9.73E− 11

DO 0.000996 1.62E− 04 0.005010 0.000943 9.73E− 11

SCA 182.7205 3.475340 1032.703 255.0227 9.73E− 11

IHS 3709.594 2534.045 5222.689 765.3992 9.73E− 11

RSA 0 0 0 0 –

MRSA 0 0 0 0 9.73E− 11

F2 SCSO 3.87E− 36 1.40E− 39 2.88E− 35 6.98E− 36 9.73E− 11

PSO 14.61081 5.433588 29.35110 7.175295 9.73E− 11

DO 0.011470 5.39E− 03 0.020483 0.003692 9.73E− 11

SCA 0.272542 0.008164 1.280333 0.335631 9.73E− 11

IHS 12.84327 9.376357 15.42907 1.559890 9.73E− 11

RSA 0 0 0 0 –

MRSA 0 0 0 0 9.73E− 11

F3 SCSO 2.86E− 58 2.33E− 67 2.55E− 57 7.48E− 58 9.73E− 11

PSO 356.9342 172.4677 840.5712 160.1756 9.73E− 11

DO 199.8629 4.51E + 01 994.6379 197.4348 9.73E− 11

SCA 13410.65 3860.001 29541.4 7336.314 9.73E− 11

IHS 34383.79 26383.11 46825.71 5633.336 9.73E− 11

RSA 0 0 0 0 –

MRSA 0 0 0 0 9.73E− 11

F4 SCSO 1.39E− 28 9.23E− 34 2.89E− 27 5.77E− 28 9.73E− 11

PSO 2.489528 1.948191 3.315541 0.324898 9.73E− 11

DO 3.72332 3.53E− 01 20.19588 3.837033 9.73E− 11

SCA 46.81593 22.09118 60.92903 11.30440 9.73E− 11

IHS 40.34242 36.98943 42.37694 1.410474 9.73E− 11

RSA 0 0 0 0 –

F5 SCSO 2.82E+ 01 2.58E + 01 2.89E + 01 8.22E− 01 1.12E− 06

PSO 2803.884 1143.793 6242.928 1334.683 1.42E− 09

DO 43.58443 2.41E + 01 208.2927 46.0841 2.78E− 05

SCA 223133.4 1850.487 1938306 426164.4 1.42E− 09

IHS 1989223 927233.6 3433610 634165.5 1.42E− 09

RSA 20.60125 1.83E− 14 29 12.80898 0.028655

MRSA 26.98798 26.08742 27.88721 0.516893 1.12E− 6

F6 SCSO 2.19E + 000 1.24E + 000 3.54E + 000 6.10E− 01 2.29E− 09

PSO 7.522896 3.574887 12.91259 2.289411 1.42E− 09

DO 0.000271 6.50E− 05 0.000602 0.000133 1.42E− 09

SCA 128.2935 8.85283 744.3154 156.7731 1.42E− 09

IHS 3526.831 2250.587 4877.084 723.5816 1.42E− 09

(Continues)
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TABLE 3 (Continued)

Function Algorithms Average Best Worst SD p Value

RSA 7.331290 5.710000 7.5 0.381222 6.58E− 10

MRSA 0.608169 0.218609 1.415836 0.257723 2.29E− 09

F7 SCSO 3.08E− 04 8.55E− 06 3.10E− 03 6.10E− 04 0.000331

PSO 10.78179 1.576448 46.78055 9.612627 1.42E− 09

DO 0.035633 1.67E− 02 0.068770 0.014530 1.42E− 09

SCA 0.260816 0.021967 0.894358 0.269184 1.42E− 09

IHS 1.290274 0.854433 2.013562 0.282050 1.42E− 09

RSA 0.000170 2.71E− 06 0.000573 0.000159 0.013733

MRSA 7.63E− 05 1.48E− 06 0.000403 9.56E− 05 0.000331

F8 SCSO −6.40E + 03 −7.83E + 03 −5.03E + 03 7.72E + 02 2.29E− 09

PSO −5620.21 −8082.7 −3130.020 1426.450 1.80E− 09

DO −7665.32 −8.56E + 03 −6053.18 547.5695 6.89E− 08

SCA −3662.45 −4422.04 −3206.05 300.7578 1.42E− 09

IHS −11322.6 −11687.2 −10999 164.3765 5.62E− 06

RSA −4990.86 −5.64E + 03 −3377.24 705.1705 1.41E− 09

MRSA −1.00E+ 04 −1.25E+ 04 −7326.62 1.23E+ 03 2.29E− 09

F9 SCSO 0.000E + 000 0.000E + 000 0.000E + 000 0.000E + 000 –

PSO 250.6723 190.465 306.2746 34.95964 9.73E− 11

DO 36.71142 5.10E + 000 106.8397 24.08433 9.73E− 11

SCA 71.89162 14.4388 187.1399 44.45624 9.73E− 11

IHS 63.91474 52.07516 77.19766 7.126956 9.73E− 11

RSA 0 0 0 0 N/A

MRSA 0 0 0 0 –

F10 SCSO 8.88E− 16 8.88E− 16 8.88E− 16 0.00E + 000 N/A

PSO 3.51132 2.417290 4.259182 0.422709 9.73E− 11

DO 0.00799 3.18E− 03 0.012885 0.002006 9.73E− 11

SCA 14.51416 0.624838 20.36937 8.212028 9.73E− 11

IHS 11.45441 10.32844 12.78042 0.622297 9.73E− 11

RSA 8.888E− 16 8.888E− 16 8.888E− 16 0 N/A

MRSA 8.888E− 16 8.888E− 16 8.888E− 16 0 –

F11 SCSO 0 0 0 0 N/A

PSO 0.376341 0.241846 0.581791 0.098999 9.73E− 11

DO 0.014719 6.15E− 04 0.063421 0.016309 9.73E− 11

SCA 2.079527 0.514695 5.884849 1.452231 9.73E− 11

IHS 33.42945 22.37086 47.96473 6.541254 9.73E− 11

RSA 0 0 0 0 –

MRSA 0 0 0 0 –
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TABLE 3 (Continued)

Function Algorithms Average Best Worst SD p Value

F12 SCSO 1.28E− 01 6.07E− 02 3.08E− 01 5.96E− 02 1.42E− 09

PSO 0.223935 0.035205 0.701546 0.165885 2.29E− 09

DO 0.126405 3.95E− 06 1.155118 0.308977 0.029771

SCA 3065855 2.741164 37929699 8385062 1.42E− 09

IHS 248120.3 19626.86 660950.4 145754.7 1.42E− 09

RSA 1.52E + 000 7.65E− 01 1.67E + 000 0.293867 5.66E− 10

MRSA 2.10E− 02 5.74E− 03 5.09E− 02 1.17E− 02 1.42E− 09

F13 SCSO 2.46E + 000 1.28E + 000 2.89E + 000 4.26E− 01 1.42E− 09

PSO 1.582987 0.951961 2.47593 0.461503 1.42E− 09

DO 0.00504 5.88E− 05 0.021212 0.006323 1.42E− 09

SCA 2995027 215.1451 55398050 11004997 1.42E− 09

IHS 2998273 458341.9 5990629 1293964 1.42E− 09

RSA 7.49E− 01 4.26E− 18 3.00E + 000 1.236653 1.40E− 09

MRSA 1.23E− 26 8.62E− 32 1.73E− 25 3.72E− 26 1.42E− 09

F14 SCSO 3.71E + 000 9.98E− 01 1.08E + 01 3.28E + 000 1.70E− 05

PSO 3.835392 0.998004 7.873993 2.756515 0.000546

DO 1.037765 9.98E− 01 1.992031 0.198805 0.001539

SCA 2.04507 0.998004 2.982105 0.996002 8.53E− 05

IHS 0.998011 0.998004 0.998186 3.65E− 05 0.001542

RSA 4.18E + 000 1.03E + 000 1.27E + 01 3.108389 6.93E− 06

MRSA 2.56E+ 000 9.98E− 01 1.27E+ 01 3.64E+ 000 1.70E− 05

F15 SCSO 5.51E− 04 3.07E− 04 1.22E− 03 3.19E− 04 4.46E− 08

PSO 0.008475 0.000753 0.022553 0.009408 1.42E− 09

DO 0.002152 3.08E− 04 0.020363 0.005487 6.57E− 09

SCA 0.001163 0.000723 0.001636 0.000343 1.42E− 09

IHS 0.002797 0.000625 0.021701 4.21E− 03 1.42E− 09

RSA 2.80E− 03 7.72E− 04 7.24E− 03 0.00202 1.42E− 09

MRSA 3.08E− 04 3.08E− 04 3.18E− 04 2.66E− 06 4.46E− 08

F16 SCSO −1.030E + 000 −1.030E + 000 −1.030E + 000 1.13E− 09 0.472337

PSO −1.03163 −1.03163 −1.03163 7.93E− 14 0.185999

DO −1.03163 −1.03E + 000 −1.03163 7.18E− 12 0.228482

SCA −1.03156 −1.03163 −1.03143 5.07E− 05 1.95E− 09

IHS −1.03115 −1.03163 −1.02957 5.51E− 04 1.36E− 09

RSA −1.030E + 000 −1.030E + 000 −1.030E + 000 0.001163 1.36E− 09

MRSA −1.030E+ 000 −1.030E+ 000 −1.030E+ 000 3.58E− 08 0.472337

F17 SCSO 3.98E− 01 3.98E− 01 3.98E− 01 1.24E− 07 9.73E− 11

PSO 0.397887 0.397887 0.397887 1.21E− 14 0.001164

DO 0.397887 3.98E− 01 0.397887 2.09E− 10 9.73E− 11

SCA 0.400606 0.397888 0.406122 2.57E− 03 9.73E− 11

(Continues)
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TABLE 3 (Continued)

Function Algorithms Average Best Worst SD p Value

IHS 0.398056 0.397891 0.398643 1.67E− 04 9.73E− 11

RSA 4.45E− 01 3.99E− 01 6.15E− 01 0.051209 9.73E− 11

MRSA 3.988E− 01 3.988E− 01 3.988E− 01 0 9.73E− 11

F18 SCSO 3.000E + 000 3.000E + 000 3.000E + 000 2.21E− 05 1.35E− 09

PSO 3 3 3 9.70E− 13 1.35E− 09

DO 3 3.00E + 000 3 5.10E− 08 1.35E− 09

SCA 3.000244 3.000004 3.001866 4.04E− 04 1.35E− 09

IHS 3.004249 3.000239 3.017577 5.11E− 03 1.35E− 09

RSA 6.47E + 000 3.00E + 000 3.28E + 01 9.552113 1.35E− 09

MRSA 3.00E+ 000 3.00E+ 000 3.00E+ 000 3.21E− 15 1.35E− 09

F19 SCSO −3.860E + 000 −3.860E + 000 −3.860E + 000 8.49E− 05 0.007937

PSO −3.86278 −3.86278 −3.86278 2.34E− 13 0.007937

DO −3.86278 −3.86E + 000 −3.86278 2.67E− 07 0.007937

SCA −3.8534 −3.85836 −3.85082 3.11E− 03 0.007937

IHS −3.86274 −3.86277 −3.86272 2.03E− 05 0.007937

RSA −3.790E + 000 −3.810E + 000 −3.780E + 000 0.011682 0.007937

MRSA −3.860E+ 000 −3.860E+ 000 −3.860E+ 000 4.97E− 16 0.007937

F20 SCSO −3.200E + 000 −3.320E + 000 −2.430E + 000 1.79E− 01 0.013733

PSO −3.13442 −3.322 −1.70606 3.38E− 01 0.091402

DO −3.25541 −3.32E + 000 −3.20301 6.02E− 02 0.252305

SCA −2.8142 −3.24815 −1.4431 5.41E− 01 1.17E− 08

IHS −3.30751 −3.32196 −3.20226 3.95E− 02 0.084194

RSA −2.48 −3.02 −1.33 0.423885 1.42E− 09

MRSA −3.23 −3.32 −3.14 6.05E− 02 0.013733

F21 SCSO −5.21E + 000 −1.02E + 01 −8.82E− 01 2.16E + 000 1.41E− 09

PSO −7.65757 −10.1532 −2.63047 3.22E + 000 1.41E− 09

DO −6.22932 −1.02E + 01 −2.63047 3.16E + 000 1.41E− 09

SCA −2.09573 −5.55252 −0.49724 1.76E + 000 1.41E− 09

IHS −4.75303 −10.1504 −2.62343 3.42E + 000 1.41E− 09

RSA −5.06E + 000 −5.06E + 000 −5.06E + 000 4.53E− 07 1.41E− 09

MRSA −1.02E+ 010 −1.02E+ 010 −1.02E+ 010 2.21E− 10 1.41E− 09

F22 SCSO −6.13E + 000 −1.04E + 01 −9.10E− 01 2.92E + 000 1.42E− 09

PSO −7.35997 −10.4029 −1.83759 3.44E + 000 1.42E− 09

DO −6.25978 −1.04E + 01 −1.83759 3.80E + 000 1.42E− 09

SCA −3.35866 −6.91684 −0.90076 1.72E + 000 1.42E− 09

IHS −6.68595 −10.4026 −2.75128 3.64E + 000 1.42E− 09

RSA −5.04E + 000 −5.09E + 000 −3.80E + 000 2.58E− 01 1.42E− 09

MRSA −1.04E+ 01 −1.04E+ 01 −1.04E+ 01 8.37E− 11 1.42E− 09
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integer rand is created at random and ranges from 0 to 1,
T , the upper limit of iterations and t , the current iteration
number. Equation (38) is used to calculate the hunting
operator, denoted as (i,), for the jth location in the ith
solution. Iterations are conducted with a fixed sensitive
parameter, β, set to 0.1, to regulate the exploration
accuracy during the encircling phase. A reduction
function, denoted as R i j( , ), is employed to narrow down
the search area and its calculation is determined by
Equation (39). The random number r1, generated
between [1 N ], is used to represent a stochastic location
in the ith solution, represented by x r J( , )1

. The value of N
represents the number of candidate solutions. The
Evolutionary Sense ES t( ) probability ratio varies ran-
domly between 2 and −2 during each iteration according
to Equation (40).

η Best t P= ( ) × ,i j j i j( , ) ( , ) (38)

R
Best t x

Best t
=

( ) −

( ) + ϵ
,i j

j r j

j
( , )

( , )2
(39)



 


ES t r

T
( ) = 2 × × 1 −

1
.3 (40)

This equation describes some variables used in RSA,
including r2, which is a random number between [1 N ],
and ϵ, which is a small value The equation also involves
the use of r3, which represents a random value among −1
and 1. P i j( , ) is another variable used in the algorithm,
which represents the proportional difference between of
the jth position of the best‐obtained solution and the jth
position of the current solution. This calculation is
performed using Equation (41).

P α
x M x

Best t UB LB
= +

− ( )

( ) × ( − ) + ϵ
.i j

i j i

j j j
( , )

( , )

( ) ( )
(41)

This excerpt explains the variables used in the
hunting cooperation phase. The average position of the
current solution is denoted by M x( )i , which is calculated
using Equation (41). UB j( ) and LB j( ) represent the upper
and lower boundaries of the jth position, respectively.
The parameter α is fixed at 0.1 in this study.

M x
n

x( ) =
1

.i

j

n

i j

=1

( , ) (42)

4.3 | Exploitation phase

The RSA algorithm uses two main search strategies,
namely, hunting cooperation and hunting coordination,
to investigate the search space and locate an ideal
solution. These strategies are modeled in Equation (43)
and are used for exploitation mechanisms.















x t

Best t P t

rand

t
T

t
T

Best t η t

R t

rand

t T t
T

( + 1)

=

( ) × ( )

× ,

3
4

and > 2
4

,

( ) − ( )

× ϵ − ( )

× .

and > 3
4

,

i j

j i j

j i j

i j

( , )

( , )

( , )

( , )

(43)

The jth location in the optimal solution obtained until
now is represented by the term Best t( )j . The hunting
operator applied to jth location in the ith solution, denoted
as η i j( , ), is calculated using Equation (38). The disparity

TABLE 3 (Continued)

Function Algorithms Average Best Worst SD p Value

F23 SCSO −5.86 −1.05E + 01 −1.68 2.20E + 000 6.25E + 00

PSO −8.75315 −10.5364 −2.42173 3.04E + 000 1.67E + 00

DO −5.12039 −1.05E + 01 −1.85948 3.24E + 000 8.04E + 00

SCA −3.39436 −7.4654 −0.93762 2.15E + 000 2.21E + 00

IHS −6.26178 −10.535 −2.42036 3.87E + 000 1.16E + 01

RSA −5.130 −5.130 −5.130 1.78E− 06 1.02E + 01

MRSA −1.050E+ 010 −1.050E+ 010 −1.050E+ 010 3.68E− 10 2.53E+ 01

Note: Bold values indicate the best obtained solutions.

Abbreviations: DO, Dandelion Optimizer; IHS, improved harmony search; MRSA, Modified Reptile Search Algorithm; PSO, particle swarm optimization;
RSA, Reptile Search Algorithm; SCA, Sine Cosine Algorithm; SCSO, Sand Cat Swarm Optimization.
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FIGURE 3 Convergence curves of the test benchmark functions by different optimizers. DO, Dandelion Optimizer; IHS, improved
harmony search; MRSA, Modified Reptile Search Algorithm; PSO, particle swarm optimization; RSA, Reptile Search Algorithm; SCA, Sine
Cosine Algorithm; SCSO, Sand Cat Swarm Optimization.
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FIGURE 3 (Continued).
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FIGURE 3 (Continued).
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FIGURE 4 Boxplot for test benchmark functions by different optimizers. DO, Dandelion Optimizer; IHS, improved harmony search;
MRSA, Modified Reptile Search Algorithm; PSO, particle swarm optimization; RSA, Reptile Search Algorithm; SCA, Sine Cosine Algorithm;
SCSO, Sand Cat Swarm Optimization.
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FIGURE 4 (Continued).
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FIGURE 4 (Continued).

HACHEMI ET AL. | 4653

 20500505, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ese3.1605 by U

niversité D
e N

antes, W
iley O

nline L
ibrary on [12/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



percentage of the jth element in the current solution
compared with the jth element in the best‐obtained
solution is denoted by P i j( , ), and is calculated using
Equation (41). R i j( , ) is a parameter utilized to shrink
the search space, and its value is determined using
Equation (39).

5 | MODIFIED REPTILE SEARCH
ALGORITHM

The suggested MRSA is based on two improvement
methods. The first modification aims to improve the
exploration phase of the RSA using the fitness‐distance
balance (FDB) approach. The FDB is an efficient
selection method that can guide the algorithm to the
global solution.50–53 The FDB selection method is based
on score values of the solution candidates. Then, the
locations of the crocodiles are modified based on the
fitness values and the distance between the candidates
and the best solution. The distance values are calculated
as follows:

DS

x Best x Best x Best

=

( − ) + ( − ) + +( − ) .

i

i i i
d d1 1 2 2 2 2 2⋯

(44)

Then, construct the vectors of the fitness and the
distance values as follows:

DS DS DS DS= [ , , …, ],n1 2 (45)

F F F F= [ , , …, ].n1 2 (46)

Then the distance and the fitness value can be
normalized as follows:

normDS
DS min DS

max DS min DS
m=

− ( )

( ) − ( )
,i

i
(47)

normF
F min F

max F min F
=

− ( )

( ) − ( )
,i

i
(48)

where min and max are the minimum and maximum in
the distance and the fitness vectors. The following
formula is used to calculate the FDB score:

 FDB score α normF α normDS= (1 − ) + (1 − ) .i i i (49)

In which








α

t

T
= 0.5 1 + .

max
(50)

The second modification is based on boosting the
exploitation phase of the RSA technique by updating the
locations of the crocodiles around the best solution using
the Levy flight distribution according to (51).54–57

FIGURE 5 Schematic diagram of the 112‐bus Algerian distribution network in the base case.
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 

x t r Best t r x t

C L x t x t

( + 1) = ( ) − ( )

+ ( ( ) − ( )),

i j i j

F r j i j

( , ) 3 4 ( , )

1 ( , ) ( , )

(51)

where r3 and r4 refer to a random value in the range
(0, 1). x t( )i j( , ) and x t( )r j( , ) represent the current loca-
tion of the crocodiles and the best location,
respectively. C r T T= 2 (1 − / )max1 4 represents an oper-
ator that measures the intensity of the Levy flight. LF
is the Levy flight function which can be measured as
follows:

L
u σ

v
= 0.05 ×

×

| |
.F β1/ (52)

In which







σ

β πβ

β β
=

Γ(1 + ) × sin( /2)

Γ((1 + )/2) × × 2
,

β

β

( −1)/2

1/

(53)

where u and v denote random values that can be
obtained from the normal distribution. β refers to a
constant that is 1.5.

FIGURE 6 Expected load profile.

FIGURE 7 Expected price profile.
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Figure 1 shows the MRSA for the optimal operation
solution. The methodology for solving the stochastic optimal
operation of a distribution grid is depicted in Figure 2.

6 | SIMULATION RESULTS

The suggested MRSA is applied to solving the real 112‐bus
Algerian DN. Initially, The proposed approach's performance
was assessed through a comparison with other established
optimization methods, such as SCSO,29 PSO,30 DO,31 SCA,32

IHS,33 and the conventional RSA.28 All the algorithms,

including the proposed MRSA, were programmed in
MATLAB software (MATLAB R2019b) and executed on a
computer with an Intel i7, 2.5GHz CPU, and 6GB RAM.
The studied cases are presented as follows:

6.1 | Validation of the MRSA technique
on standard benchmark functions

Here, the proposed MRSA is utilized for 23 classic
functions, including the multimodal, unimodal, and
fixed‐dimension multimodal functions which have been

FIGURE 8 Expected wind speeds.

FIGURE 9 Expected solar irradiance.
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listed in Appendix A.58,59 For all cases, the parameters
are set according to Table 2 and the obtained results are
represented over 30 run times.

6.2 | Statistical results analysis

This section depicts the performance of the proposed
MRSA compared SCSO,29 PSO,30 DO,31 SCA,32 IHS,33

and the conventional RSA.28 Table 3 shows the statistical
results, including the mean, the worst, the average, the
best, and the Wilcoxon p value between the proposed
MRSA and the other algorithms. According to Table 3,

the proposed MRSA optimizer is superior in terms of the
mean, best, and worst values for the F1–F4, and F17–F23
while the obtained results for the reported algorithms are
similar for F17–F23. In addition to that for F15 and F5,
the RSA is better than MRSA in the value of the best
score but the mean value of the MRSA is better. The
p values of the Wilcoxon test compared with MRSA and
the other optimizers are included in the 7th column of
Table 3. When the p value is less than 5%, it is a
significant difference between algorithms.60 On the
opposite of that when is more than 5%, no significant
difference between optimizers. In addition to that if the
results of different algorithms are identical, the p value

FIGURE 10 Expected temperature.

TABLE 4 Constraints and the cost coefficients.

Parameter Value Parameter Value

The investment cost of PV (KPV )
63 770 USD/kW The investment cost of WT (KWT)

64 1400 USD/kW

The maintenance and operation costs of
PV (KPV

O M& )63
0.01 USD/kWh The maintenance and operation costs of

WT (CoWT
O M& )64

0.01 USD/kWh

The interest rate of PV (βPV )
63 10% The interest rate of WT (βWT)

64 10%

The lifetime of PV (NPPV )
63 20 The lifetime of WT (NPWT)

64 20

The energy loss cost K( Loss)
65 0.06 USD/kWh

The system constraints

Voltage boundaries  V0.95 p. u. 1.05 p. u.

PV and WT sizes  PV WT0 , 3367.60 kW

PF of the WT  PF0.7 1

Abbreviations: PF, power flow; PV, photovoltaic; WT, wind turbine.
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will be N/A. From the p value, it is clear that the
proposed MRSA has significant difference compared
with SCSO, PSO, DO, SCA, IHS, and the standard RSA
for most of the studied benchmark functions, the
population size and maximum iteration for all algorithms
are 30 and 300, respectively.

6.3 | Convergence curves analysis

The convergence carves of the MRSA and other reported
techniques including SCSO,29 PSO,30 DO,31 SCA,32 IHS,33

and the conventional RSA28 can be realized from
Figure 3. According to the convergence carves, the
proposed MRSA has the best convergence speed for the
fixed‐dimension functions, the unimodal functions, and

TABLE 5 Energy management results of Algerian distribution network.

Item Without RERs MRSA RSA

Energy losses (kWh) 2.4901E + 03 1.9064E + 03 2.0017E + 03

Purchased power from grid (kW) 7.2657E + 04 4.4704E + 04 4.7329E + 04

Optimal location of PVs – 81 46

82 56

102 103

Optimal location of WTs – 5 35

95 94

112 105

Optimal area of the solar module (m2) – 4310 3152

4000 2915

5000 4592

Optimal size WTs (kW) – 1000 750

250 750

250 250

Optimal PF of WTs – 1 0.9178

1 0.8430

1 0.8243

Total annual energy loss cost (USD) 5.4533E + 04 4.1751E + 04 4.3838E + 04

Total annual purchased energy
cost (USD)

6.2170E + 06 3.3349E + 06 3.6868E + 06

Total cost of PVs and WTs – 1.5504E + 06 1.3425E + 06

VD (p.u.) 77.1022 60.4007 65.5820

VSI (p.u.) 2.3699E + 03 2.4314E+ 03 2.4121E + 03

Total annual cost (USD) 6.2715E + 06 4.9270E+ 06 5.0731E + 06

Note: Bold values indicate the best obtained solutions.

Abbreviations: MRSA, Modified Reptile Search Algorithm; PF, power flow; PV, photovoltaic; RESs, Renewable Energy Sources; RSA, Reptile Search
Algorithm; WT, wind turbine.

FIGURE 11 Voltage profile for the 112‐bus Algerian
distribution network without a hybrid system.
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the multimodal functions. In addition to that, the
suggested MRSA is superior and converged to the
optimal solution faster than the conventional RSA
due to the proposed modifications which can boost
the exploration and exploitation phases of the pro-
posed algorithm.

6.4 | Boxplot analysis

Boxplots are ideal for displaying data distributions in
quartiles that can be used to show the characteristics of

data distribution. Figure 4 depicts the Boxplots of the
studied MRSA and the other reported optimization
algorithms. It is obvious that the boxplots of the MRSA
are narrower compared with the other optimizers.

6.5 | Solving the operation problem of
Algerian DN using the proposed algorithm

In this section, the proposed MRSA is applied to solve the
optimal operation and determine the best location for
solar PV unit ratings and the WTs on 112‐bus Algerian
DN. The system, shown in Figure 5, consists of 112 buses
and 111 branches with a cumulative load of 3367.60 kW
and 3725.70 kVAR. The meteorological data for the wind
speed, temperature, and solar radiation are collected over
a period of 3 years from Ehsan and Yang.61 Also, the load
demand data are collected for 3 years which given in
Kaur et al.62 To validate the effectiveness of the proposed
MRSA algorithm, the obtained results have been with
those by other meta‐heuristic optimization algorithms,
including RSA, SCSO, DE, PSO, SCA, and IHS. To ensure
a fair and valid comparison, the maximum number of
iterations and populations selected for the proposed
algorithms were set at 60 and 25, respectively. The
presence of uncertainties, including load variations, wind
speed, energy price, temperature, and solar irradiance,
were considered in accordance with the methodology
outlined in Section 3. Figure 6 illustrates the expected
day‐ahead load demand, while Figure 7 displays the
market price for purchasing energy. In addition,

FIGURE 12 Voltage profile for the 112‐bus Algerian
distribution network with a hybrid system.

FIGURE 13 Power losses without and with RERs for the 112‐bus Algerian DN. DN, distribution network; RESs, Renewable Energy
Sources.
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Figures 8–10 present the expected wind speed,
irradiance, and temperature, respectively. Table 4 details
the cost coefficients for RERs as well as the operational
limitations.

The main objective of this paper is to optimize the total
annual cost while improving system performance.

Initially, the base case was considered without any RERs
integrated into the DN. The results showed that the total
annual purchased energy from the grid was 7.2657E+
04 kWh, with energy losses of 2.4901E+ 03 kW. The total
purchase energy cost was 6.2170E+ 06USD, and the
energy loss cost was 5.4533E+ 04USD, resulting in a total
annual cost of 6.2715E+ 06USD. The summation of the
VD was 77.1022 p.u. and the VSI was 2.3699E+ 03 p.u.
Table 5 shows the simulation results which have been
obtained by different algorithms. According to Table 5,
with the application of the proposed MRSA with the ideal
allocation of the RERs, the total annual cost has been from
6.2715E+ 06 to 4.9270E+ 06USD and the voltage devia-
tions have been reduced from 77.1022 to 60.4007 p.u.,
while VSI has been improved from 2.3699E+ 03 to
2.4314E+ 03 p.u. The system voltage profiles with and
without RERs are provided in Figures 11 and 12. Judging
from Figures 11 and 12, the voltage profile was enhanced
considerably with the inclusion of the PV units and the
WTs. Additionally, as seen in Figure 13, the power losses
have been significantly decreased. The optimal locations
of PV units in the DN are identified as 81, 82, and 102, and
the optimal locations of WTs are identified as 5, 95, and
112, respectively as shown in Figure 14. The WTs ratings
are 1000, 250, and 250 kW, respectively, while the

FIGURE 14 Schematic diagram of the 112‐bus Algerian distribution network after integration renewable energy resources.

TABLE 6 Simulation results of objective function for applied
algorithms.

Algorithm Best Worst Average SD

SCSO 0.591805 0.612766 0.600848 0.007993

PSO 0.598368 0.610271 0.604014 0.004717

DO 0.592609 0.616277 0.602314 0.009906

SCA 0.599937 0.616666 0.605769 0.006643

IHS 0.591025 0.60109 0.594352 0.003926

RSA 0.617207 0.645338 0.633937 0.010721

MRSA 0.58876 0.598005 0.592394 0.003944

Note: Bold values indicate the best obtained solutions.

Abbreviations: DO, Dandelion Optimizer; IHS, improved harmony search;
MRSA, Modified Reptile Search Algorithm; PSO, particle swarm
optimization; RSA, Reptile Search Algorithm; SCA, Sine Cosine Algorithm;
SCSO, Sand Cat Swarm Optimization.
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corresponding area of the solar modules are 4310, 4000,
and 5000m2. The statistical outcomes for the objective
function achieved through various optimization tech-
niques are tabulated in Table 5. As depicted in Table 6,
the results obtained by the proposed MRSA algorithm
outperform other optimization techniques in terms of the
mean, best, and worst values. The power output of the PV
units is illustrated in Figure 15, indicating that their yields
fluctuate continuously with irradiance variations. Simi-
larly, the generated powers of the WT vary with changes
in wind speed, as demonstrated in Figure 16.

7 | CONCLUSIONS

This paper solved the OOP of a real 112‐bus Algerian DN
with ideal integration of the RERs, including the PV
units and the WTs using a new MRSA. The proposed
MRSA is based on the FDB method and the Levy flight
motion selection strategies. The optimal operation was
solved by considering the uncertainties of the price, the
load, the wind speed, temperature, and the solar
irradiance. The proposed MRSA has been applied and
tested on standard benchmark functions and the

FIGURE 15 Hourly output power of PV units in the 112‐bus Algerian DN. DN, distribution network; PV, photovoltaic;

FIGURE 16 The hourly output power of WT units for the 112‐bus Algerian DN. DN, distribution network; WT, wind turbine.
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obtained results were compared with other optimization
algorithms, including the SCSO, DE, PSO, SCA, IHS, and
the standard RSA. The numerical results of optimal
inclusion of the RERs using the proposed MSA show
that the total cost has been reduced from 6.2715E + 06
to 4.9270E + 06 USD, the VD has been reduced from
77.1022 to 60.4007 p.u., and an enhancement in VSI has
been enhanced from 2.3699E + 03 to 2.4314E + 03 p.u. in
comparison to the base case. In addition, the findings
demonstrate that the proposed MRSA algorithm for
solving the optimal operation surpasses other optimiza-
tion techniques, including SCSO, DE, PSO, SCA, IHS,
and the standard RSA, in terms of performance and
effectiveness. However, this study has certain limitations,
such as the absence of considerations for energy storage
systems and electric vehicles (EVs). Future work will
expand to encompass energy management in distribution
systems, including various energy storage systems, like,
batteries, compressed air, and Superconducting Magnetic
Energy Storage, as well as incorporating EV charging
stations.
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APPENDIX A: STUDIED OBJECTIVE TEST FUNCTIONS

See Tables A1–A3.
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TABLE A3 Fixed‐dimension multimodal benchmark functions.
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