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Abstract

The work undertaken in this paper pertains to the optimal spatial config-
uration of a heterogeneous Wireless Sensor Network (WSN) for the Area
Coverage (AC) problem. Specifically, this research falls under the head-
ing of Anti-Submarine Warfare (ASW) with an emphasis on active sonar
systems and, more pointedly still, on a specific type of sensor: sonobuoys
(portmanteau word formed by “sonar” and “buoy”). These buoys are fur-
ther divided into three main categories: transmitter-only (Tx), receiver-only
(Rx) and transmitter-receiver (TxRx). In this paper, we will therefore try
to determine the geographical location of the different buoys comprising a
Multistatic Sonar Network (MSN), special case of WSN, so as to maximize
the overall surface area covered. To do this, we discretize an Area of Inter-
est (AoI) into regular cells using bathymetric and altimetric data, and place
a deployment position and a fictitious target at the center of each cell so
that we can evaluate the network’s performance. More precisely, we are tak-
ing into account a limited number of sensors (buoys) with possible pairwise
incompatibilities, variable performances, probabilistic detection models, an
adverse masking effect (direct blast) as well as coastlines features. Finally,
in order to solve this problem, we have developed several efficient Mixed-
Integer Linear Programs (MILPs), all of which have been thoroughly tried-
and-tested on a benchmark set of 100 instances derived from real elevation
data. This has led us to identify an ideal model, i.e. one that is significantly
better than all the others in the statistical sense.
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sensors, area coverage problem, mixed-integer linear programming
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Figure 1: Streamlined illustration of the overall operating environment.

1. Introduction

In airborne Anti-Submarine Warfare (ASW), the challenge of finding op-
timal deployment patterns for networked sonars is of particular importance
when it comes to conducting effective search operations against underwater
threats or even for carrying out wide-area surveillance [4, 47, 54, 55, 58].

More precisely, this work focus on this subject while laying special em-
phasis upon active sonar systems, i.e. with emission of a sound pulse and
reception of the reflected wave on the target, commonly referred to as echo
(see [11, 44, 59] for a comprehensive introduction to underwater acoustics).
For such active systems, there exist two separate geometrical configurations
depending on the spatial arrangement of the source–receiver pair. The con-
figuration is said to be monostatic when the two components are collocated
(i.e. a single full-fledged sensor) and bistatic when they are non-collocated,
i.e. two separate sensors located at two distinct geographical sites, some-
times several kilometres apart and possibly at different operating depths
[11, 59]. A special case of bistatism exists when the angle subtended by the
source–receiver segment from the target perspective (i.e. bistatic angle) is
close to 0: this is referred to as quasi-monostatism or pseudo-monostatism

2



Figure 2: Monostatic (a), bistatic (b) and multistatic (c) configurations.

in the literature [31].

Furthermore, in this work, we will confine ourselves to the case study of
a specific type of sonar, also known as underwater ears [33]: the sonobuoys
(portmanteau word formed by “sonar” and “buoy”). The latter are cylinder-
shaped, consumable acoustic sensors dropped from an airborne carrier such
as a Maritime Patrol Aircraft (MPA), a helicopter or even an Unmanned
Aerial Vehicle (UAV). Upon impact with the sea surface, a deployment se-
quence is then initiated and within which the acoustic heads are lowered
to a predetermined depth from a discrete range of options, which can be
further adjusted through remote control activations depending on the buoy
model [33]. Indeed, by means of a floating unit housing the UHF/VHF radio
antenna [33], the airborne carrier is able to interact with them throughout
the area, albeit within a limited communication range (buoy-dependent).
A simplified illustration of the operational context is available in Figure 1.
In addition, these aforementioned buoys are further divided into the follow-
ing three broad categories: transmitter-only1 (Tx), receiver-only (Rx) and
transmitter-receiver (TxRx), sometimes referred to as post in the related
literature [12, 21, 51]. Within each of these categories, there is a variety of
different types of buoys [33, 34, 36], all with their own intrinsic character-
istics (e.g. emission frequency, lifetime, emission power, immersion depth
etc.), which underpins the idea of addressing the heterogeneous sensor sce-
nario.

Indeed, in ASW surveillance missions, an MPA would logically try to
use homogeneous sensors to simplify pattern conception and buoys deploy-
ment. Yet, heterogeneous sensors are of interest for different reasons. MPA

1Note that the terms source and transmitter can be used interchangeably.
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missions variety imply that various types of sonobuoys would be embarked:
active or passive buoys with various characteristics in terms of bandwidth,
directivity and sensitivity. A mission may change from the initial assignment
without possibility to resupply, hence the need to exploit the available buoys
onboard and to manage possibly incompatible buoys and heterogeneous sen-
sors. Furthermore, sonar performance vary with environmental conditions,
especially bottom depth: an Area of Interest (AoI) may be composed of a
low depth region and a higher depth region, leading to different active sonar
frequencies in those regions.

With these assumptions, we can henceforward define formally a MSN as
a collection of active sonar systems in monostatic and/or bistatic configu-
ration, the latter being a generalization of the former [11, 38, 55, 60, 61].
In the present case study, such sonar systems arise from the pairing of a
source and a receiver stemming from one and the same buoy (Figure 2.a)
or from two separate ones (Figure 2.b). Indeed, a sonar system in bistatic
configuration might, for example, be comprised of the source of a Tx buoy
and the receiver of a TxRx buoy, assuming pairwise compatibility2. Figure
2 shows an illustration of monostatic (a), bistatic (b) and multistatic (c)
configurations respectively.

In this paper, we will therefore address the Area Coverage (AC) problem
that is frequently encountered in the literature related to MSNs and, to a
greater extent, in Wireless Sensor Networks (WSNs) [17, 41, 53]. Barrier
Coverage (BC) and Point Coverage (PC) problems are also found in the
WSN literature. The primary aim of AC involves ensuring a uniformly high
level of monitoring over a designated AoI. In contrast, BC focuses on opti-
mizing coverage along specific line segments or belt-shaped areas to prevent
intrusions. Meanwhile, PC, also known as target coverage, aims at achieving
maximum or specified coverage levels for particular points of interest, which
could be potential targets or vital installations. A literature review on these
three problems in the case of MSNs has been carried out in [57]. Here, we
deal with the scenario of heterogeneous sensors, in limited number, alongside
with probabilistic detection models and with the inclusion of certain adverse
effects proper to underwater acoustic such as the direct blast effect [11]. The
case of heterogeneous sensors is not inherent to MSNs, it is also ubiquitous
in the literature related to WSNs as discussed in [30]. In addition, we will
also take into account coastline features as well as particularities inherent
to the heterogeneity of the sensors at hand, such as variable performance
between source–receiver pairs and potential pairwise inter-incompatibilities

2From a practical point of view, incompatibilities may occur, for example between two
sonars operating at different frequencies.
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(e.g. between a high-frequency sensor and a low-frequency sensor). The
overall objective is to maximize the total surface area covered by the MSN
thus established.

To solve this problem, we will first discretize a given AoI with a certain
granularity through bathymetric and topographic data, giving us a Digital
Elevation Model (DEM), or, in more straightforward terms: a regular rect-
angular grid [29]. Then, we will reduce the AC problem to a PC problem
by assigning a fictitious/dummy target and a deployment position to the
center of each grid cell (see Section 2 for a formal description), as it was
originally done in [14] or in [25]. In this way, it will be possible to assess
the performance of the network across a range of appropriately distributed
points. Hence, the finer the discretization, the more accurate the placement.

In the literature and to the best of our knowledge, the problem of placing
heterogeneous sensors in the context of MSNs has never been addressed. It is
therefore the first time it is formalized and solved. This enables variable per-
formances to be taken into account, depending on the source–receiver pair
under consideration, as well as possible incompatibilities. See [12–14, 25, 57]
for the most recent literature dealing with coverage issues in MSNs. Sim-
ilarly, the problem of placing sonars that can explicitly be buoys of three
different categories (Tx, Rx, TxRx) has never been addressed either. In-
deed, a simplification is regularly adopted and consists in considering only
sources and receivers directly, i.e. Tx and Rx buoys. Furthermore, we also
take into account some rarely considered aspects such as the direct blast
effect, coastlines features and probabilistic detection models, whether taken
independently or in combination. It should be noted that the drift of the
buoys due to ocean currents is neglected and that the environment is 2D
and homogeneous (identical environmental conditions at all points), as in
the above-mentioned literature in the context of MSN configuration. More
specifically, this work is a direct sequel to [25] and [57], which both dealt with
the case of homogeneous sensors and did not distinguish between Tx, Rx
and TxRx buoys per se. In terms of methods, we extend the linearizations
of [50] used in [25]3 to deal with the heterogeneous case plus the presence of
TxRx buoys and thus propose a number of improved models (7) alongside
with base (näıve) models (2). Following the analysis methodology adopted
in [25], this has led us to identify an ideal model, i.e. one that is significantly
better than all the others in the statistical sense.

Finally, this research is of operational interest, since effective algorithms

3Among the different linearizations studied in [25], the linearization based on [50] was
indeed identified as the best performing for this problem.
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for buoys pattern design may be useful in different phases of MPA mis-
sions: before-flight tactics design and planification, and on board redesign
of patterns, when environmental conditions have been measured and do not
correspond to expectation. It is with this in mind that we propose a set of
methods and new considerations, hitherto unexplored.

The paper is organized as follows. In Section 2, we present several Mixed
Integer Linear Programs (MILPs), introducing preliminary notations, some
elements of multistatic detection theory and a core linearization. Then, in
Section 3, we conduct a series of experiments in order to test the proposed
formulations on a set of real instances. Finally, in Section 4, we conclude
and give some perspectives for future research.

2. Compendium of Mathematical Formulations

2.1. Prerequisites

We begin by introducing some prerequisites, in particular concerning the
notations employed, some theoretical elements of multistatic detection and
a core linearization.

2.1.1. Notations

Let m ∈ N∗ be the number of maritime cells in the regular rectangu-
lar grid (DEM) resulting from the discretization of a given AoI. We then
have E = {e1, . . . , em} ⊆ R2 the set of possible deployment positions and
T = {t1, . . . , tm} ⊆ R2 the set of dummy targets, i.e. a target and a de-
ployment position in the center of each maritime cell. As a reminder, these
dummy targets enable network performance to be assessed at a set of regu-
larly spaced points.

We then introduce the following notations for the three categories of
buoys that may be found:

• Tx the set of buoys types in the transmitter-only category,

• Rx the set of buoys types in the receiver-only category and, finally,

• TxRx the set of buoys types in the transmitter-receiver category.

Additionally, we have ni
Tx ∈ N∗ the number of transmitter-only buoys

of type i ∈ Tx, ni
Rx ∈ N∗ the number of receiver-only buoys of type i ∈ Rx

and ni
TxRx ∈ N∗ the number of transmitter-receiver buoys of type i ∈ TxRx.

Moreover, for practical reasons, in the following, we set I = Tx ∪ TxRx
and J = Rx ∪ TxRx corresponding respectively to the set of buoys types
with a source and the set of buoys types with a receiver. The reason behind
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this choice is that a sonar system is formed by a source–receiver pair, re-
gardless of their native buoys. Indeed, as stated earlier, a sonar system can
be composed of the source of a TxRx buoy (or Tx) and the receiver of an
Rx buoy (or TxRx).

Henceforth, we can introduce the set of admissible solutions (i.e. net-
works), which is formally defined as

Ω = {(S,R) | S ⊆ E × I,R ⊆ E × J, (2), (3), (7), (8), (9)}, (1)

where

∀(e, i) ∈ E × TxRx, (e, i) ∈ S ⇐⇒ (e, i) ∈ R, (2)

∀e ∈ E, (4) + (5) + (6) ≤ 1, (3)

|{(e, i) ∈ S \R}| (4)

|{(e, i) ∈ R \ S}| (5)

|{(e, i) ∈ S ∩R}| (6)

∀i ∈ Tx, |{(e, i) ∈ S \R}| ≤ ni
Tx, (7)

∀i ∈ Rx, |{(e, i) ∈ R \ S}| ≤ ni
Rx, (8)

∀i ∈ TxRx, |{(e, i) ∈ S ∩R}| ≤ ni
TxRx. (9)

In the above, S corresponds to buoys that can act as a source (TxRx or
Tx) and R corresponds to buoys that can act as a receiver (TxRx or Rx).
Then, (2) means that a source attached to a TxRx buoy can be deployed if
and only if the associated receiver is also deployed (the two constituting one
and the same buoy). In other words, a TxRx buoy must be present in both
sets S and R. Equation (3) means that only one buoy may be deployed on
a given deployment position where (4), (5) and (6) correspond respectively
to the number of Tx, Rx and TxRx buoys. Indeed, the sets S \ R, R \ S
and S ∩ R correspond respectively to the set of Tx, Rx and TxRx buoys
deployed on the AoI. Finally, (7) , (8) and (9) are capacity constraints on
the number of buoys available for each of the three categories (Tx, Rx and
TxRx).

Furthermore, we introduce the set of all possible sonar systems, which
is explicitly defined as

Ξ = {(s, r) | s = (e, i) ∈ E × I, r = (e′, j) ∈ E × J, (i, j) ∈ C}, (10)

where C ⊆ I × J is the set of functional sonar systems, in the sense
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of compatibility (hardware or software) between source and receiver. Thus,
(i, j) ∈ C means that it is possible to form a functional sonar system from
a source of type i and a receiver of type j. Indeed, it is for example pos-
sible that a high frequency source and a low frequency receiver are unable
to interact with one another and therefore cannot form a full-fledged sonar
system. Besides, we write Ξω ⊆ Ξ the set of (functional) sonar systems
forming a network ω ∈ Ω.

Concerning the evaluation of the performance of a given network ω ∈ Ω,
let Pω

d (t) be the probability of cumulative detection of a target t ∈ T by ω

and P
(s,r)
d (t) the probability of instantaneous detection of a target t ∈ T by a

sonar system (s, r) ∈ Ξω. The calculation of these detection probabilities is
further described in subsection 2.1.2. As such, a target is said to be covered
(or detected) when the cumulative detection probability exceeds a certain
threshold ϕ ∈ [0, 1] set upstream and generally close to 1 (e.g. 0.95), as done
in [25]. More precisely, it corresponds to the concept of cooperative binary
coverage [20, 39] (“all or nothing”), also known as cooperative cover [5, 49],
although the individual contributions of the sonar systems are based on a
gradual (or partial) coverage through a detection model with a decay func-
tion (e.g. Fermi). In other words, once the individual contributions have
been aggregated, either the detection takes place, or it does not. This is in
contrast to its counterpart, the cooperative gradual coverage [20, 39], or joint
partial coverage [49], where there may not be detection in the strict sense
defined previously, but where partial detection is nevertheless accounted for
(after aggregating individual contributions).

The objective (cost) function we will use here captures the coverage rate
of the AoI by some network ω ∈ Ω, or, in other words, the proportion of
targets covered. It is explicitly defined as

f : Ω → [0, 1]

ω 7→ 1

|T |
∑
t∈T

σ (Pω
d (t)) , (11)

where

σ(x) =

{
1 if x ≥ ϕ,
0 otherwise.

(12)

Note that it is possible to weight the different targets and, by exten-
sion, the cells in which they are located to put more or less emphasis on
certain areas. This could be useful if one knows the probability distribution
of the target’s presence in a particular area or if one wishes to protect cer-
tain key sites such as docks, straits, harbor basins, anchored ships or even
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harbor entrances as discussed in [18, 19, 52]. However, for ease of use, we
consider unitary weights in this paper, without this choice being restrictive4.

Finally, we look for the optimal solution (network) ω∗ ∈ Ω, i.e. the one
maximizing the newly-defined objective function f:

ω∗ = argmax f(ω)
ω∈Ω

. (13)

2.1.2. Multistatic Detection Theory

Active sonar equation and Cassini ovals. By rearranging the terms of the
active sonar equation presented in [59], it is possible to express the Trans-
mission Losses (TLs) as a function of other terms such as Source Level (SL),
Noise Level (NL), Target Strength (TS), Detection Threshold (DT) and the
Directivity Index (DI) of the receiving antenna (units: dB). Note that this
is true for the noise-limited case (the one examined here), but also for the
reverberation-limited case (not examined). The TLs include geometric and
absorption losses based on the source-to-target distance ds,t and the target-
to-receiver distance dt,r. Neglecting absorption losses, one may derive the
equation

ds,tdt,r = ρ20, (14)

where ρ0 ∈ R+, called the “Range of the Day (RoD)”5 [21, 51], encom-
passes all of the above-mentioned terms (except TLs) and corresponds to
the distance at which the detection probability is 50 % for a sonar system in
monostatic configuration and in a given environment [21]6. In other words,
this translates to the maximum allowed transmission losses to have this 50
% detection probability. Then, relative to this ρ0, if the target is further
away (higher losses), then the detection probability is lower, and if the tar-
get is closer (lower losses), then the detection probability is higher. Note
that this detection probability of 50 % is an arbitrary convention which has
a direct influence on the DT value (embedded within ρ0). Indeed, by set-
ting a detection probability (e.g. 0.5) and a false alarm probability (e.g.
10−4), then it is possible to derive a value for DT (under a certain sta-
tistical distribution for NL) so as to obtain these respective detection and
false alarm ratios [10, 59]. Hence, some could have chosen different values
for the detection probability (e.g. 0.9) and the false alarm probability (e.g.
10−6), which would have led to a different DT value and therefore a lower

4Indeed, apart from the weights associated with the targets in the objective function,
the rest of the formulations remain unaltered.

5In the literature, we also find “range of the moment” [1] and r50 [2, 42] as synonyms
for RoD.

6For a sonar system in monostatic configuration, this equation becomes d = ρ0 where
d is the distance from the target.
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or higher ρ0 value with a different interpretation. In other respects, the
advantage of neglecting absorption losses to obtain this equation is that it
gives us a visual interpretation of the geometric locus where the detection
probability is greater than or equal to 0.5 for a given sonar system. This
geometric interpretation is otherwise known as Cassini ovals in the literature
[11, 37, 48] and translates graphically into an isocontour where the detection
probability is 0.5 (by convention). A visualization of these ovals is available
in Figure 3 and first row of Figure 4. Ex post facto corrections are possible
to reintegrate absorption losses, as proposed in [21].

For a sonar system in bistatic configuration, we introduce the distance
in monostatic equivalent [21] defined as

ρt,s,r =
√
ds,tdt,r. (15)

This will allow us to derive detection models in the monostatic case and
to refer to them when we have a sonar system in bistatic configuration since
we then have

ρt,s,r = ρ0, (16)

which corresponds to the equation of a sonar system in monostatic con-
figuration.

Instantaneous detection probability. As it is the case in the literature related
to WSNs [17, 40], we distinguish two main categories of detection (sens-
ing) models: deterministic (binary) and probabilistic (diffuse). We briefly
present the two classes to express this instantaneous detection probability,
also known as the single-ping probability [22].

The deterministic model, also known as Cookie-Cutter or Definite-Range
[15, 21, 25] in the MSN-specific literature; is formally defined as

P
(s,r)
d (t) =

{
1 if ρt,s,r ≤ ρ0,
0 otherwise.

(17)

This can be interpreted as the best case scenario, i.e. systematic de-
tection within the Cassini oval. Concerning probabilistic models, several
so-called ideal models (because monotonic decreasing7) have been proposed
in the literature [21, 23], including an exponential function and a class of
parameterizable functions called Fermi, related to the Fermi–Dirac distri-
bution [46]. The common denominator of these probabilistic models is a

7In practice, there can be sudden drops in detection due to the particular propagation
of acoustic waves underwater.
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Figure 3: Theory of multistatic detection: a simplified view through Cassini ovals.

detection probability of 50 % when
ρt,s,r
ρ0

= 1, in order to be consistent with
the definition of the RoD introduced above as described in [21]. We recall
here the equation governing this class of Fermi functions, a special case of
sigmoid/logistic function and defined as

P
(s,r)
d (t) =

1

1 + 10
(
ρt,s,r
ρ0

)−1

b

, (18)

where b ∈ R+ is called the diffusivity parameter and controls the rate of
decay of the detection probability as a function of the ratio

ρt,s,r
ρ0

. Finally,
a sample of these detection models may be seen in Figure 4 with different
inter-sensor spacings expressed as multiples of the RoD ρ0.
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Figure 4: Instantaneous detection probability for a selection of models (deterministic and
probabilistic).

Direct blast effect. In addition, there is also an adverse effect called direct
blast and materialized geometrically by a masking ellipse whose foci are
the source and the receiver. Within this ellipse, detection is theoretically
not possible [11, 38]. In a nutshell, this happens whenever an echo reaches
the receiver while it is still receiving the original signal, and it is therefore
unable to process it. The magnitude of this ellipse is proportional to the
pulse duration τ ∈ R+ (in s) and the celerity of sound underwater c ∈ R+ (in
km · s−1). We then define rb =

cτ
2 (in km) which is equal to half the “pulse

length”, i.e. the distance traveled by the acoustic wave over the period τ .
Hence, detection will not be possible if [38, 51]

ds,t + dt,r < ds,r + 2rb. (19)

12



The mathematical details of this equation are discussed in greater depth
in Appendix A. Finally, the direct blast effect is illustrated in Figure 5 with
different values of rb expressed in multiples of ρ0, the RoD.

Figure 5: Influence of the direct blast effect on the probabilistic (diffuse) Fermi model
with b = 0.4

Cumulative detection probability. We first assume that the detections or,
more precisely, the ensonifications, are stochastically independent from one
another as assumed in [15, 21, 23, 25, 42, 62], although this is partially
questioned in [23]. Then, for a sonar system ω ∈ Ω and a target t ∈ T , we
introduce

Pω
d (t) = 1−

∏
(s,r)∈Ξω

(
1− P

(s,r)
d (t)

)
, (20)
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corresponding to the probability that at least one of the sonar systems
detects the target, or, in other words, one minus the probability that none
of the sonar systems detects the aforementioned target as done in [23, 25]
(called “networked detection probability”). See Figure 6 for an illustration
of the computation of cumulative detection probabilities on a sample of ba-
sic patterns that may be used, for example, to tile a given space (mainly
used in open water and for homogeneous sensors as in [51]).

One way of interpreting this cumulative detection probability is to as-
sume that at a given instant, all sources send out sound pulses whose re-
spective reflections will be assessed by the different receivers throughout the
area [32]. Indeed, since we are neglecting any temporal dimension here, it
therefore corresponds to a snapshot of the overall situation (sort of ideal
scenario). Note that it is possible to generalize the above formula by cal-
culating the probability that at least K ∈ N+ sonar systems will detect a
given target. This gives us

Pω
d (t) =

∑
k∈JK,|Ξω |K

∑
Ξ′∈Pk(Ξω)

 ∏
(s,r)∈Ξ′

P
(s,r)
d (t)

∏
(s,r)∈Ξω\Ξ′

(
1− P

(s,r)
d (t)

) ,

(21)
where the notation Pk(Ξω) corresponds to the set of subsets of Ξω with

cardinality k (i.e. subsets with k sonar systems from the power set), formally
defined by Pk(Ξω) = {X ⊆ Ξω | |X| = k}. A more condensed formula
can be derived by replacing the two outer sums by a single sum iterating
over P≥K(Ξω) = {X ⊆ Ξω | |X| ≥ K}, i.e. all subsets with cardinality
greater than or equal to K. In order to minimize the number of calculations
performed (frugality-driven), when K ≥ (|Ξω |+1)

2 , the cumulative detection

probability is computed using equation (21), whereas when K < (|Ξω |+1)
2 ,

the cumulative detection probability is computed as follows:

Pω
d (t) = 1−

∑
k∈J0,K−1K

∑
Ξ′∈Pk(Ξω)

 ∏
(s,r)∈Ξ′

P
(s,r)
d (t)

∏
(s,r)∈Ξω\Ξ′

(
1− P

(s,r)
d (t)

) .

(22)
Whenever K = 1, with this last equation 22, we do indeed fall back on

equation 20 (P0(Ξω) = ∅) which is then a special case.

Coastlines. As for the coastlines, it is simply a matter of drawing two seg-
ments, one between the source and the target and the other between the
target and the receiver. Then, using image synthesis algorithms such as the
ones described in [3, 7], it is possible to discretize each of these two segments
and determine if there is a collision with one of the terrestrial cells of the
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Figure 6: Cumulative detection probability on the three basic tessellation shapes (triangle,
square and hexagon). Fermi model with b = 0.4 and rb = 0.5ρ0. One Rx buoy at each
pole and two configurations for the nucleus: Tx (top line) and TxRx (bottom line).

grid. If there is a collision on one of the two segments, then we set the
instantaneous detection probability to zero. Note that the accuracy of such
an action will thus depend directly on the the granularity of the working
grid. Finally, this approach remains reasonable, as we are operating on re-
stricted areas (in terms of longitude/latitude extent) where the impact of
the earth’s rotundity may be neglected. Indeed, over a restricted area, a
straight line on a map projection is virtually identical to the great-circle
route, i.e. “straight” line on the globe or shortest distance between two
points.

Heterogeneous sensors. To generalize the current considerations to the case
of heterogeneous sensors, we have chosen to extend the definition of the RoD
so that it now depends on both the type of source and the type of receiver
comprising a given sonar system. Thus, we introduce ρi,j0 ∈ R+ as the RoD
of the sonar system resulting from the pairing of a source of type i ∈ I
with a receiver of type j ∈ J if the latter two are mutually compatible, i.e.
(i, j) ∈ C. All that has been developed beforehand remains unaltered with
this definition enlargement.

2.1.3. Core Linearization

First of all, let us recall that a target t ∈ T is considered as detected
by the network ω ∈ Ω when the cumulative detection probability Pω

d (t) is
higher than the detection threshold ϕ, i.e. whenever
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Pω
d (t)︷ ︸︸ ︷

1−
∏

(s,r)∈Ξω

(
1− P

(s,r)
d (t)

)
≥ ϕ. (23)

Then, by linearizing the previous expression through the logarithm as
done in [25], one obtains

P̃ω
d (t)︷ ︸︸ ︷∑

(s,r)∈Ξω

log(1−ϕ)

(
1− P

(s,r)
d (t)

)
︸ ︷︷ ︸

P̃
(s,r)
d (t)

≥ 1, (24)

where P̃
(s,r)
d (t) is then defined as the individual contribution of the sonar

system (s, r) ∈ Ξω in the detection of the target t ∈ T and P̃ω
d (t) is the total

contribution of the network ω in the detection of the target t.

Finally, in order to lighten the model and without loss of generality, we
do not take into account the contributions where the instantaneous detection
probability is lower than a threshold ϵ ≃ 0. Equivalently, taking into account
the newly defined individual contributions and considering a target t ∈ T , a
sonar system (s, r) ∈ Ξ will be discarded if

P̃
(s,r)
d (t) < ϵ̃, (25)

where ϵ̃ = log(1−ϕ) (1− ϵ) is an enforced minimal contribution threshold.

2.2. Base Models

We begin by giving the two most intuitive models for solving the problem
at hand, which we will subsequently refer to as the base (näıve) models.

Model M1. Concerning the decision variables, we first have sie ∈ {0, 1} where
sie = 1 if a source of type i ∈ I is deployed on position e ∈ E (0 otherwise)
and rje ∈ {0, 1} where rje = 1 if a receiver of type j ∈ J is deployed on
position e ∈ E. Then, we have the variable xt ∈ {0, 1} where xt = 1 if the
target t ∈ T is covered (0 otherwise).

Furthermore, for the two base models, we introduce an auxiliary binary
variable yi,je,e′ ∈ {0, 1} where yi,je,e′ = 1 if a source of type i ∈ I is deployed on
position e ∈ E and if a receiver of type j ∈ J is deployed on position e′ ∈ E.
This auxiliary variable is formally defined as:

yi,je,e′ = sier
j
e′ , ∀e ∈ E, i ∈ I, e′ ∈ E, j ∈ J. (26)

Finally, the first model M1 is written as follows:
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max.
1

|T |
∑
t∈T

xt (27)

s.t.
∑
e∈E

∑
i∈I

∑
e′∈E

∑
j∈J

(i,j)∈C

P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e ̸=e′

P̃
((e,i),(e′,j))
d (t)yi,j

e,e′ ≥ xt ∀t ∈ T (28)

yi,j
e,e′ ≤ sie ∀e ∈ E,∀i ∈ I, ∀e′ ∈ E,∀j ∈ J (29)

yi,j
e,e′ ≤ rje′ ∀e ∈ E,∀i ∈ I, ∀e′ ∈ E,∀j ∈ J (30)∑

e∈E

sie ≤ ni
Tx ∀i ∈ Tx (31)

∑
e∈E

rie ≤ ni
Rx ∀i ∈ Rx (32)

∑
e∈E

sie ≤ ni
TxRx ∀i ∈ TxRx (33)

sie = rie ∀e ∈ E,∀i ∈ TxRx (34)∑
i∈Tx

sie +
∑
i∈Rx

rie +
∑

i∈TxRx

sie ≤ 1 ∀e ∈ E (35)

xt ∈ {0, 1} ∀t ∈ T (36)

sie ∈ {0, 1} ∀e ∈ E,∀i ∈ I (37)

rje ∈ {0, 1} ∀e ∈ E,∀j ∈ J (38)

yi,j
e,e′ ∈ {0, 1} ∀e ∈ E,∀i ∈ I, ∀e′ ∈ E,∀j ∈ J (39)

In this model, constraint (28) accounts for contributions from existing
sonar systems only, i.e., whenever yi,je,e′ = 1 or, in other words, when sie = 1

and rje′ = 1 for a given source (e, i) ∈ E × I and a given receiver (e′, j) ∈
E × J . Note that the constraint (e = e′ ∧ i = j) ∨ e ̸= e′ implies that

• if e = e′, then necessarily we are dealing with a TxRx buoy (hence we
require i = j), otherwise,

• if e ̸= e′, there are no restrictions, i.e. it is possible to consider any
pair of buoys (the objective is to avoid considering impossible cases
and to lighten the model).

The constraints (29) and (30) are the linearization constraints of the
auxiliary variable yi,je,e′ . Constraints (31), (32) and (33) restrict the number
of transmitter-only buoys (Tx), the number of receiver-only buoys (Rx) and
the number of transmitter-receiver buoys (TxRx) respectively. Constraint
(34) compels the deployment of the source and receiver of the same TxRx
buoy, since one cannot be deployed without the other: it is the same buoy.
Constraint (35) is a deployment constraint limiting to one and only one buoy
per position. Finally, constraints (36), (37), (38) and (39) are the integrity
constraints of the different variables.
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Model M2. Substituting the equations (29) and (30) by

2yi,je,e′ ≤ sie + rje′ (40)

yields the second base model denoted M2.

2.3. Improved models: extended linearization of Oral & Kettani

For the improved models, we rely on the linearization procedure named
OK1 in [25] and initially proposed by Oral and Kettani in [50] to linearize
quadratic formulations. This linearization is extended for the case of hetero-
geneous sensors and 7 different models are thus derived, all with their own
specificities, either on aggregations or on the choice of auxiliary variables.
Addressed problem aside (new in the literature), this is one of the major
contributions of this paper. Moreover, as proposed in [25], the collection of
models hereafter are available in two variants depending on the aggregation
of the individual contributions (with respect to the sources or with respect to
the receivers) giving us an effective total of 16 models. A complete example
will be given for the first model M3.

2.3.1. Model M3

We begin here by considering the variant denoted -S in which the ag-
gregation of individual contributions is done by fixing a target t ∈ T and a
source of type i ∈ I on position e ∈ E as follows:

Le,i,t =
∑
e′∈E

∑
j∈J

(i,j)∈C
P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e ̸=e′

P̃
((e,i),(e′,j))
d (t). (41)

We also introduce an auxiliary variable ze,i,t ∈ R+ that can be formally
defined as

ze,i,t =



Le,i,t −
∑
e′∈E

∑
j∈J

(i,j)∈C
P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e ̸=e′

P̃
((e,i),(e′,j))
d (t)rje′ if sie = 1,

0 otherwise.

(42)

The M3-S model is therefore written as follows:
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max. (27)

s.t. (31), (32), (33), (34), (35)∑
e∈E

(∑
i∈I

Le,i,ts
i
e − ze,i,t

)
≥ xt ∀t ∈ T (43)

ze,i,t ≥ Le,i,ts
i
e −

∑
e′∈E

∑
j∈J

(i,j)∈C

P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e ̸=e′

P̃
((e,i),(e′,j))
d (t)rje′ ∀e ∈ E,∀i ∈ I, ∀t ∈ T (44)

(36), (37), (38)

ze,i,t ∈ R+ ∀e ∈ E,∀i ∈ I, ∀t ∈ T (45)

Here, constraints (43) and (44) replace constraints (28), (29), and (30)
of model M1. To understand this model, it is necessary to distinguish the
following two cases:

• In the first case, assume that sie = 0 for a source of type i ∈ I on
position e ∈ E. With sie = 0 and knowing that we want to maximize
−ze,i,t in (43), it is therefore the same as minimizing ze,i,t. Yet, ze,i,t is

lower bounded by −
∑

e′∈E
∑

j∈J
(i,j)∈C

P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e̸=e′

P̃
((e,i),(e′,j))
d (t)rje′ in (44), which thus

constrains ze,i,t = 0 by (45). This is correct, because no contribution
involving a sonar system constituted with the source sie is accounted
for, the latter not being deployed.

• In the second case, suppose that sie = 1 for a source of type i ∈
I on position e ∈ E. In (44), ze,i,t is lower bounded by Le,i,t −∑

e′∈E
∑

j∈J
(i,j)∈C

P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e̸=e′

P̃
((e,i),(e′,j))
d (t)rje′ . However, knowing that we want to

minimize ze,i,t in (43), we thus obtain ze,i,t = Le,i,t−
∑

e′∈E
∑

j∈J
(i,j)∈C

P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e ̸=e′

P̃
((e,i),(e′,j))
d (t)rje′ .

Finally, the terms Le,i,t cancel out in (43) and we eventually get∑
e′∈E

∑
j∈J

(i,j)∈C
P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e̸=e′

P̃
((e,i),(e′,j))
d (t)rje′ , which is equivalent to accounting for

all contributions such that sier
j
e′ = 1, which is correct. A graphical

illustration of this case is presented in Figure 7 to help the reader
understand the global picture.
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We will now present the -R variant of this same model. In this variant,
the aggregation of individual contributions is done by fixing a target t ∈ T
and a receiver of type j ∈ J on position e ∈ E as follows:

Le′,j,t =
∑
e∈E

∑
i∈I

(i,j)∈C
P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e ̸=e′

P̃
((e,i),(e′,j))
d (t) (46)

The M3-R model is then formulated as follows:

max. (27)

s.t. (31), (32), (33), (34), (35)∑
e′∈E

(∑
j∈J

Le′,j,tr
j
e′ − ze′,j,t

)
≥ xt ∀t ∈ T (47)

ze′,j,t ≥ Le′,j,tr
j
e′ −

∑
e∈E

∑
i∈I

(i,j)∈C

P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e ̸=e′

P̃
((e,i),(e′,j))
d (t)sie ∀e′ ∈ E,∀j ∈ J, ∀t ∈ T (48)

(36), (37), (38)

ze′,j,t ∈ R+ ∀e′ ∈ E,∀j ∈ J, ∀t ∈ T (49)

The reasoning is strictly analogous to the -S variant presented above.

We have therefore implemented the -R variant for the upcoming 7 mod-
els, but on the basis of numerous preliminary experiments, we have come to
the same conclusion as Fügenschuh et al. [25]: -S variants tend to be more
efficient than -R variants. One possible explanation is that there are usually
more receivers than sources, the latter being of lower cost. Aggregation by
fixing a source is therefore a priori more advantageous, at least for these for-
mulations. Hence, for the following, when we refer to model Mi, ∀i ∈ J3, 9K,
this means that we consider the -S variant by default. Besides, for reasons
of parsimony, from now onwards we will only give the -S variant for each of
these models knowing that we will present the experiments only for these
variants.

2.3.2. Model M4

The M4 model is very similar to the M3 model. Indeed, we substitute
the auxiliary variable ze,i,t ∈ R+ by the auxiliary variable ze,t ∈ R+. This
closely related model takes advantage of the fact that only one source can
be deployed on a given deployment position. It is written as follows for the
-S variant:
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Figure 7: ModelM3-S: illustration of case n°2 where se,i = 1 for a given source (e, i) ∈ E×I
and target t ∈ T .
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max. (27)

s.t. (31), (32), (33), (34), (35)∑
e∈E

(∑
i∈I

Le,i,ts
i
e

)
− ze,t ≥ xt ∀t ∈ T (50)

ze,t ≥ Le,i,ts
i
e −

∑
e′∈E

∑
j∈J

(i,j)∈C

P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e̸=e′

P̃
((e,i),(e′,j))
d (t)rje′ ∀e ∈ E,∀i ∈ I, ∀t ∈ T (51)

(36), (37), (38)

ze,t ∈ R+ ∀e ∈ E,∀i ∈ I, ∀t ∈ T (52)

If no source is deployed on position e ∈ E, then ze,t will be set to
0 by (50), (51) and (52) as in the previous model since we will try to
minimize it. On the other hand, if a source of type i ∈ I is deployed
on position e ∈ E (sie = 1), then the variable ze,t will be set to Le,i,t −∑

e′∈E
∑

j∈J
(i,j)∈C

P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e ̸=e′

P̃
((e,i),(e′,j))
d (t)rje′ by (51), this constraint acting as a maximum.

Then the terms will cancel each other out in 50, leaving us only with indi-
vidual contributions such as sier

j
e′ = 1, which is correct.

2.3.3. Model M5

In the sequel, we will aggregate the contributions at a higher level by
fixing a target t ∈ T and a position e ∈ E (which can accommodate a source)
as follows:

Le,t =
∑
i∈I

∑
e′∈E

∑
j∈J

(i,j)∈C
P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e ̸=e′

P̃
((e,i),(e′,j))
d (t) =

∑
i∈I

Le,i,t (53)

It is important to note that it will be possible to use the aggregations
Le,i,t to compute Le,t, this will be particularly useful for the forthcoming
models M7, M8 and M9 in a pursuit of computational efficiency. We also
introduce a new auxiliary meta-variable se ∈ {0, 1} where se = 1 if a source
has been deployed on position e ∈ E (regardless of the type). The M5-S
model is therefore written as:
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max. (27)

s.t. (31), (32), (33), (34), (35)∑
e∈E

(
Le,tse −

∑
i∈I

ze,i,t

)
≥ xt ∀t ∈ T (54)

ze,i,t ≥ Le,ts
i
e −

∑
e′∈E

∑
j∈J

(i,j)∈C

P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e̸=e′

P̃
((e,i),(e′,j))
d (t)rje′ ∀e ∈ E,∀i ∈ I, ∀t ∈ T (55)

se =
∑
i∈I

sie ∀e ∈ E (56)

(36), (37), (38)

se ∈ {0, 1} ∀e ∈ E (57)

ze,i,t ∈ R+ ∀e ∈ E,∀i ∈ I, ∀t ∈ T (58)

First, constraint 56 is used to find out whether a source has been de-
ployed on position e ∈ E. Then, the idea remains the same. If no source
is deployed on position e ∈ E, then all ze,i,t are set to 0 by (55) and
(58). In the opposite case, if a source has been deployed on position e ∈
E, then all ze,i,t except one will be fixed to 0, the latter being fixed to

Le,t−
∑

e′∈E
∑

j∈J
(i,j)∈C

P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e ̸=e′

P̃
((e,i),(e′,j))
d (t)rje′ by (55). Eventually, the terms will can-

cel out in (54) and we will be left with only the valid individual contributions,
i.e. whenever sier

j
e′ = 1.

2.3.4. Model M6

This M6 model is very close to the previous one and uses the same
principle as the M4 model by substituting ze,i,t with ze,t. It is written as
follows:
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max. (27)

s.t. (31), (32), (33), (34), (35)∑
e∈E

(Le,tse − ze,t) ≥ xt ∀t ∈ T (59)

ze,t ≥ Le,ts
i
e −

∑
e′∈E

∑
j∈J

(i,j)∈C

P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e ̸=e′

P̃
((e,i),(e′,j))
d (t)rje′ ∀e ∈ E,∀i ∈ I, ∀t ∈ T (60)

se =
∑
i∈I

sie ∀e ∈ E (61)

(36), (37), (38)

se ∈ {0, 1} ∀e ∈ E (62)

ze,t ∈ R+ ∀e ∈ E,∀t ∈ T (63)

2.3.5. Model M7

From this point on and for the following three models, we will use both
aggregations Le,i,t and Le,t simultaneously. For this M7 model, we will use
only the auxiliary variable ze,i,t ∈ R+. The M7-S model is written as follows:

max. (27)

s.t. (31), (32), (33), (34), (35)∑
e∈E

(
Le,tse −

∑
i∈I

ze,i,t

)
≥ xt ∀t ∈ T (64)

ze,i,t ≥ Le,i,ts
i
e −

∑
e′∈E

∑
j∈J

(i,j)∈C

P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e ̸=e′

P̃
((e,i),(e′,j))
d (t)rje′ ∀e ∈ E,∀i ∈ I, ∀t ∈ T (65)

ze,i,t ≥ Le,i,t(1− sie)− Le,i,t(1− se) ∀e ∈ E,∀i ∈ I, ∀t ∈ T (66)

se =
∑
i∈I

sie ∀e ∈ E (67)

(36), (37), (38)

se ∈ {0, 1} ∀e ∈ E (68)

ze,i,t ∈ R+ ∀e ∈ E,∀i ∈ I, ∀t ∈ T (69)

If no source is deployed on position e ∈ E, then all variables ze,i,t are set
to 0 by (64), (65) and (66). Otherwise, if a source is deployed on position
e ∈ E, we must distinguish two cases:

• if a source of type i ∈ I is deployed at position e, then ze,i,t = Le,i,t −∑
e′∈E

∑
j∈J

(i,j)∈C
P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e̸=e′

P̃
((e,i),(e′,j))
d (t)rje′ by (65) (ze,i,t ≥ 0 through (66)), and,
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• if a source of type i ∈ I is not deployed on position e, then ze,i,t = Le,i,t

by (66).

The terms will thus cancel each other out in (64) to finally give us

P̃
((e,i),(e′,j))
d (t)rje′ , which amounts to taking into account the contributions

such that sier
j
e′ = 1.

2.3.6. Model M8

In this M8 model we will have the two auxiliary variables ze,t ∈ R+ and
ze,i,t ∈ R+ which will be used a bit differently from the previous model. The
M8-S model is written as follows:

max. (27)

s.t. (31), (32), (33), (34), (35)(∑
e∈E

Le,tse − ze,t

)
≥ xt ∀t ∈ T (70)

ze,t ≥ Le,tse −
∑
i∈I

(
Le,i,ts

i
e − ze,i,t

)
∀e ∈ E,∀t ∈ T (71)

ze,i,t ≥ Le,i,ts
i
e −

∑
e′∈E

∑
j∈J

(i,j)∈C

P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e ̸=e′

P̃
((e,i),(e′,j))
d (t)rje′ ∀e ∈ E,∀i ∈ I, ∀t ∈ T (72)

se =
∑
i∈I

sie ∀e ∈ E (73)

(36), (37), (38)

se ∈ {0, 1} ∀e ∈ E (74)

ze,i,t ∈ R+ ∀e ∈ E,∀i ∈ I, ∀t ∈ T (75)

ze,t ∈ R+ ∀e ∈ E,∀t ∈ T (76)

If no source is deployed on position e ∈ E, then all variables ze,i,t
and ze,t are set to 0 as it was the case in the previous models. Else,
if a source of type i ∈ I is deployed at position e ∈ E, then ze,i,t =

Le,i,t−
∑

e′∈E
∑

j∈J
(i,j)∈C

P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e ̸=e′

P̃
((e,i),(e′,j))
d (t)rje′ by (72) and ze,t = Le,t−(Le,i,t−ze,i,t) =

Le,t − P̃
((e,i),(e′,j))
d (t)rje′ by (71). Finally, all terms cancel out in (70) and we

get only the individual contributions where sier
j
e′ = 1.

2.3.7. Model M9

Concerning the last model, the idea is slightly different, we introduce a
new auxiliary variable ze′,t ∈ R+ in addition to ze,t ∈ R+ and it is written
as follows:
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max. (27)

s.t. (31), (32), (33), (34), (35)(∑
e∈E

Le,tse − ze,t − z′e,t

)
≥ xt ∀t ∈ T (77)

ze,t ≥ Le,i,ts
i
e −

∑
e′∈E

∑
j∈J

(i,j)∈C

P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e̸=e′

P̃
((e,i),(e′,j))
d (t)rje′ ∀e ∈ E,∀i ∈ I, ∀t ∈ T (78)

z′e,t ≥ Le,tse −
∑
i∈I

Le,i,ts
i
e ∀e ∈ E,∀t ∈ T (79)

se =
∑
i∈I

sie ∀e ∈ E (80)

(36), (37), (38)

se ∈ {0, 1} ∀e ∈ E (81)

ze,t ∈ R+ ∀e ∈ E,∀t ∈ T (82)

z′e,t ∈ R+ ∀e ∈ E,∀t ∈ T (83)

If no source is deployed on the position e ∈ E, then all variables ze,t
and ze′,t are set to 0. Otherwise, if a source of type i ∈ I is deployed at

position e ∈ E, then ze,t = Le,i,t −
∑

e′∈E
∑

j∈J
(i,j)∈C

P̃
((e,i),(e′,j))
d

(t)≥ϵ̃

(e=e′∧i=j)∨e ̸=e′

P̃
((e,i),(e′,j))
d (t)rje′ by (78)

and ze′,t = Le,t − Le,i,t by (79). Finally, all these terms cancel out in (77)

and we get only the individual contributions where sier
j
e′ = 1.

2.3.8. Summary

In Table 1, there is a synoptic summary of the improved models’ intrinsic
characteristics. These characteristics are given for the -S variants, but the
reasoning is identical for the -R variants.

Model Aggregations Auxiliary variables |Additional constraints|

M3 Le,i,t ze,i,t |E| · |I| · |T |
M4 Le,i,t ze,t |E| · |I| · |T |
M5 Le,t ze,i,t, se |E|+ |E| · |I| · |T |
M6 Le,t ze,t, se |E|+ |E| · |I| · |T |
M7 Le,t, Le,i,t ze,i,t, se |E|+ 2 (|E| · |I| · |T |)
M8 Le,t, Le,i,t ze,t, ze,i,t, se |E|+ |E| · |T |+ |E| · |I| · |T |
M9 Le,t, Le,i,t ze,t, z

′
e,t, se |E| · |I| · |T |+ |E| · |T |

Table 1: Summary table of improved models’ characteristics (-S variant)
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Note that, in this paper, we have chosen to extend the OK1 formulation,
because it presented the best results in [25]. However, it could have been
possible to do the same for the different linearizations presented in the above-
mentioned article, such as the Chaovalitwongse–Pardalos–Prokopyev’s lin-
earization (CPP) [8] or the Glover’s linearization (GLO) [27], for example.
This would have led to the derivation of many other models.

3. Numerical Experiments

In this section, we will showcase the instances on which we conducted
the experiments, present the results obtained on the different formulations
introduced above, and, finally, provide statistical tests carried out a poste-
riori in order to analyze these results. These statistical tests are based on
the two-stage methodology proposed in [25].

3.1. Instances

Before turning our attention to the numerical results, we first discuss
the different instances that were used. First, in Table 2, we list the vari-
ous non-specified control buoys in each of the categories (Tx, Rx, TxRx)
that will be used for the upcoming experiments. Note that HF stands for
“High-Frequency” and LF for “Low-Frequency”. Then, in Table 3, we sum-
marize the different RoDs ρi,j0 (in km) for all compatible sonar systems
(i, j) ∈ C that could be encountered8. Recall that I = TxRx ∪ Tx and
J = TxRx ∪ Rx corresponding respectively to all sources and all receivers.

In a GitHub repository9, we provide a breakdown of all the various in-
stances as well as an illustration of the grids and the AoIs from which they
originate. Note that from a single regular rectangular grid (i.e., a DEM), 25
instances were derived with different volumes of buoys in each of the respec-
tive categories. Note that these instances are also described in Tables F.23,
F.24, F.25 and F.26 in Appendix F (one table per group of 25 instances).
Moreover, these grids were obtained through a down-sampling10 process of
bathymetric and topographic data made publicly-available by the GEneral
Bathymetric Chart of the Oceans (GEBCO) as of 2022 [26]. Finally, the
various parameters set for the experiments are summarized in Table 4.

8These figures are not meant to represent real sonar systems performance but are
sufficiently realistic for demonstration purposes.

9https://github.com/owein-thuillier/MSN-dataset
10This down-sampling procedure enables us to reduce the resolution of a DEM by ag-

gregating several cells into a single one.
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Category TxRx Tx Rx

Type AHF BLF CHF DLF EHF FHF GLF HLF

Table 2: Details of the different buoys considered for each category (Tx, Rx, TxRx).

I

J
AHF EHF FHF BLF GLF HLF

AHF 5.0 4.0 3.5 x x x

CHF 4.5 3.0 2.5 x x x

BLF x x x 8.0 7.5 6.5

DLF x x x 7.0 6.0 5.5

Table 3: Performance (ρi,j0 , in km) of the various sonar systems (i, j) ∈ C.

c τ rb ϕ Fermi (b) ϵ

1.5 1 0.75 0.95 0.2 10−6

Table 4: Parameters set for the numerical experiments.

3.2. Results

All the experiments were conducted on a Debian 11 server (64 bits) with
190 GB of RAM and 2 processors Intel® Xeon® Gold 6258R clocked at
2.70 Ghz (50 cores each). Moreover, all the resolutions were done using
IBM ILOG CPLEX 20.1 [35] with default settings, 8 threads in parallel
and a computational budget of 7 200 seconds (2 hours). The models have
been implemented in Julia 1.7.3 [6]. In total, the whole set of experiments
involved 900 resolutions (100 instances, 9 formulations) and required 1 155
hours of CPU time, or approximately 48 days.

In Tables B.6, B.7, B.8 and B.9 in Appendix B, the following information
is systematically reported for each instance:

• computation time (in s) if the optimal solution is found within the
computational budget of 2 hours; and,

• relative gap (in %) if the computational budget is reached, i.e.:
(
|zD−zP |
|zP |+δ

)
·

100 where zP is the primal objective bound (the incumbent objective
value, or lower bound11), zD is the dual objective bound (the upper

11Best integer (feasible) solution found so far for a maximization problem and typically
obtained using heuristics or during the branch-and-bound procedure.
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bound12) and δ ∈ R a sufficiently small number (typically 10−10 for
CPLEX [35]). This relative gap corresponds, in essence13, to the def-
inition of GAPUB given in [43] and is the gap returned natively by
CPLEX during the branch-and-bound execution.

For the sake of brevity, these two pieces of information are reported in
the same table cell. Indeed, when an optimal solution is found in the given
budget, then the gap is 0 and it is not necessary to report it. Hence, for a
given formulation i ∈ J1, 9K and instance j ∈ J1, 100K, this allows us to define
the score si,j , or figure of merit, as follows [25]: si,j = min{7 200, ti,j}+ gi,j ,
where ti,j is the computation time (in s) and gi,j the relative gap defined
previously. The use of a min is simply to ensure that none of the solve times
exceed 7 200 s, which can happen in practice as discussed in [25]. Indeed,
the solver must finish its current operation before terminating the execution
if the computational budget is reached, and the min thus allows to get rid
of this artifact.

Then, for a given instance j ∈ J1, 100K, this newly-defined score enables
us to order the different formulations i ∈ J1, 9K with a rank Ri,j ∈ J1, 9K,
1 being the best position. In case of a tie, the average rank is assigned as
mentioned in [9, 24]. For example, if three formulations are competing for
place number 3, then the average rank is 3+4+5

3 = 4. In particular, these
ranks will be used for the non-parametric statistical tests in the next sub-
section to conduct a thorough qualitative analysis of these raw results.

Note that the best result for each instance is displayed in bold and that
there may be ties for first place. Moreover, at the bottom of each of these
tables, several additional metrics are aggregated for each of the different
models. For a given formulation (column) and in order of appearance, we
find the number of instances solved, the number of times the formulation
performed best, the average rank, the average resolution time and, finally,
the average relative gap. Finally, in Table 5 and Figure 814, a summary of
the results over the 100 instances is provided.

12Usually obtained by solving a relaxation of the MILP.
13In [43], there is no absolute values (gaps may be negative), no delta (as in Gurobi

[28]) and there is no explicit multiplication by 100 to obtain a percentage.
14For each figure, the models are sorted in ascending order according to the criterion

studied.
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Base models Improved models

Instance M1 M2 M3 M4 M5 M6 M7 M8 M9

#Opt 19 17 53 57 52 55 53 53 50

#Winner 2 1 19 18 13 33 12 18 14

Ri 8.16 7.82 3.98 3.96 3.86 3.25 4.76 4.33 4.85

ti 1.77 h 1.80 h 1.11 h 1.09 h 1.15 h 1.10 h 1.18 h 1.14 h 1.21 h

gi 26.66 % 33.90 % 6.42 % 5.27 % 5.89 % 5.13 % 6.91 % 6.81 % 7.35 %

Table 5: Results of the different models: synthesis over the 100 instances.

Figure 8: Visualization of results with: average rank (a), average resolution time (b), av-
erage relative gap (c), number of instances solved (d) and number of times the formulation
performed best (e).
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In addition to the above, we provide a set of supplementary appendices,
each time with one table per group of 25 instances. First, the full detail of
ranks, for each formulation and each instance, are reported in Tables D.14,
D.15, D.16 and D.17 in Appendix D. In addition to these ranks, two-by-two
comparisons between the different formulations are also available in Tables
E.18, E.19, E.20, E.21 in Appendix E. Then, all the integer solutions ob-
tained are reported in Tables C.10, C.11, C.12 and C.13 in Appendix C.

Some examples of solutions are also available in Figure 9. More specifi-
cally, there is a focus on one instance for each of the 4 groups, each consisting
of 25 instances: peninsula, strait, island and river. For example, for instance
no. 36 in the strait group (upper right), we observe a coverage rate of 70.37
% (upper left corner) and the associated optimal solution (network)15 is
made up of

• 1 TxRx buoy of type A (high-frequency) in the center,

• 4 Rx buoys surrounding the TxRx buoy, including:

– 2 of type F (high-frequency), and,

– 2 of type E (high-frequency).

Maritime cells are shown in blue and land cells in green. Rhombuses
correspond to Tx buoys, circles to Rx buoys and circled rhombuses to TxRx
buoys. Finally, the cumulative detection probability is represented by a
heatmap with values ranging from 0.1 at the darkest to 1.0 at the lightest.

3.3. Statistical Tests (Non-Parametric)

In this section, we will analyze the raw results presented above using non-
parametric16 statistical methods in order to conduct a rigorous qualitative
analysis. As in [25], we begin with a Friedman test followed by a post-hoc
pairwise comparison.

3.3.1. Friedman Test

First, we will use a Friedman test [9, 24] which is based on the ranking
of the different formulations on each instance. It is an extension of the sign
test when there are more than 2 treatments [9, 16] and the non-parametric
analog of one-way repeated-measures ANOVA [45]. To begin with, we will
consider the following two hypotheses.

15Note that the optimal solution systematically uses all available sensors (refer to the
GitHub repository mentioned above to find the number of sensors available for each in-
stance).

16Making no assumptions about the parameters of the distribution (e.g. variance or
mean).
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Figure 9: Example of solutions with one instance of each group.
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• Null hypothesis H0: for a given instance, all formulations are equally
effective or, in other words, each ranking is equally likely (i.e. there is
no difference between them).

• Alternative hypothesis H1: at least one formulation tends to be better
than at least one other formulation.

The test is subsequently described by

T =


(k − 1)

∑k
i=1

(
Ri − b(k+1)

2

)2

A− C
if there are ties [9] and,

12
bk(k+1)

∑k
i=1

(
Ri − b(k+1)

2

)2
otherwise [24].

(84)

In both of these formulas, Ri is equal to the sum of the ranks of a
given formulation i ∈ J1, 9K over all instances (i.e.

∑k
j=1Ri,j), b (block)

corresponds to the number of instances (100) and k (treatments) to the
number of formulations (9). Furthermore, for the formula with ties, we have

A =

k∑
i=1

b∑
j=1

R2
i,j and C = bk(k+1)2

4 (i.e. the correction factor). An important

assumption is that the variables are mutually independent, which is the case
here: the results on one instance (i.e. one block/row) do not influence the
results on another instance. As it is difficult to find the exact distribution
of T , an approximation is often used for the null distribution: chi-squared
(χ2) with (k − 1) degrees of freedom [9]. Finally, we have

• k = 9; b = 100; A = 28 265; C = 22 500; T = 345.629,

• α = 0.05 (significance level) and, lastly,

• χ2
α,k−1 = χ2

0.05,8 = 15.507 (critical value).

Thus, with a significant level of α = 0.05, we can reject the null hypoth-
esis H0 (T > χ2

0.05,8) and conclude that there exist at least one formulation
whose performance is different from at least one of the other formulation.
In fact, the p-value associated with the T -value is about 7e − 70 and this
means that the null hypothesis could have been rejected at a significance
level as low as this.

3.3.2. Multiple Comparisons (post-hoc)

The Friedman test having resulted in the rejection of the null hypothesis
H0, it is now relevant to perform a post-hoc pairwise comparison of the
different formulations. As suggested by Conover in [9], two formulations i
and i′ are considered significantly different if

33



|Ri −Ri′ | > t(1−α
2
),(b−1)(k−1) ·

√
(A− C)2b

(b− 1)(k − 1)

(
1− T

b(k − 1)

)
︸ ︷︷ ︸

λ

, (85)

where Ri, A and C are the same as in the previous subsection 3.3.1 and
where t(1−α

2
),(b−1)(k−1) is the (1− α

2 ) quantile of the Student’s t-distribution
with (b − 1)(k − 1) degrees of freedom (the value for α is identical to the
Friedman test). We therefore have

• t(1−α
2
),(b−1)(k−1) = t0.975,792 = 1.963 and,

• λ = 56.446 from equation (85).

Thus, all formulations such that |Ri − Ri′ | > λ can be considered sig-
nificantly different with respect to the level of significance α = 0.05. More
precisely, Mi is said to outperform Mi′ at this significant level if Ri′−Ri > λ
(this implies Ri < Ri′). A visual representation of the pairwise comparisons
may be seen in Figure 10 where the formulations are ordered by sum of
the ranks Ri in ascending order. In addition, the notation Mi ≻ Mi′ means
that formulation i is significantly better than formulation i′ in the statistical
sense and with the significant level α = 0.05. For each rank Ri, a vertical
segment with length λ

2 extends both above and below. In this way, it is
possible to visualize when two formulations overlap and two cases can then
be distinguished.

• Case 1 (overlap): when there is an overlap (i.e. |Ri − Ri′ | ≤ λ), then
it is not possible to say that one formulation tends to be significantly
better than the other.

• Case 2 (no overlap): when there is no overlap (i.e. |Ri−Ri′ | > λ), then
it is said that the formulation with the lowest rank sum is significantly
better than the other.

We first note that the improved models are significantly better than the
base models, which also supports the results obtained in [25]. On the other
hand, we have formulation M6 which is significantly better than all other
formulations at the significant level α = 0.05. It is therefore recommended
to use this formulation for this problem. Moreover, from Table 5 and Figure
8, we also note that the improved models resolve more than 50 % of the
instances while less than 20 % are resolved with the base models. Finally,
further experiments could be carried out on a larger dataset with instances
(DEMs) of varying dimensions, covering a wider range of different geometric
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Figure 10: Visual representation of post-hoc pairwise comparisons between the different
models.

situations for coastlines. Such a dataset has recently been derived in [56]
with 17 700 instances distributed throughout the world’s coastlines and with
dimensions ranging from 10× 10 to 300× 300 cells.

4. Conclusions and Further Research

In this paper, we addressed the Area Coverage (AC) problem in the scope
of optimizing the spatial configuration of heterogeneous multistatic sonar
networks with a particular emphasis on acoustic buoys (sonobuoys). The
problem of placing buoys that can be transmitter-only (Tx), receiver-only
(Rx) and transmitter-receiver (TxRx) as well as of different types with pos-
sible incompatibilities and variable performances between source–receiver
pairs has, to our knowledge, never been addressed in the literature. In ad-
dition, we also take into account some rarely considered aspects such as
the direct blast effect, coastlines features and probabilistic detection mod-
els, whether taken independently or in combination. For this problem, we
have therefore proposed a set of Mixed-Integer Linear Programs (MILPs)
to efficiently solve instances of operational interest and we have identified
an ideal model, i.e. one that is significantly better than the others in the
statistical sense. In particular, this ideal model is an extension of a lin-
earization for quadratic formulations that comes from the literature. Also,
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an important point to underline is that the work undertaken here can be
easily extended to the dual problem of covering the entire area while trying
to minimize the number of buoys used. Moreover, it is also possible to recy-
cle the work undertaken in this study for the AC problem to treat both the
Barrier Coverage (BC) and Point Coverage (PC) problems. Indeed, the first
one was treated through a reduction to the latter and the BC problem is a
special case of AC. Also, it is possible to put greater accent on certain areas
by introducing weights on the different targets and to use other detection
models, including more realistic ones (e.g. by means of ray-tracing and 2D
projection if needed).

Among the perspectives, it would be judicious to try to derive other
models based on different linearizations, because the existence of a better
model is not to be proscribed. Then, in a perspective of solving more effi-
ciently large-scale instances, it would also be interesting to derive approx-
imate methods such as heuristics or metaheuristics for this newly-defined
problem.
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Appendix A. Direct Blast Effect: Mathematical Details

In this appendix, we will give the mathematical details of equation 19,
starting with the monostatic case and ending with the bistatic case, which
is more general. Both cases are illustrated in Figure A.11.

Appendix A.1. Monostatic case

First of all, for a sonar system in monostatic configuration, suppose that
the source emits a sound pulse (ping) in the time interval [0, τ ] (emission of
τ seconds) and that a target is at a distance d = ds,t = dt,r, in km, from this
sonar system. Thus, the signal reflected by the target (the echo) will arrive
at the receiver (collocated with the source) in the time interval [2dc ,

2d
c + τ ]

where the first term corresponds to the starting time of reception of the
signal and the second term to the ending time of reception of the signal.
Finally, detection will not be possible if the receiver starts to receive the
reflected signal while the source is still transmitting17, or, in other words, if

2d

c
< τ ⇔ d <

cτ

2
, (A.1)

with rb = cτ
2 equal to half the pulse length. In terms of geometric

interpretation, this gives us a circle of radius rb centered on the sonar system
and within which detection is theoretically impossible.

Appendix A.2. Bistatic case

For a sonar system in bistatic configuration, the signal from the direct
path18 will arrive at the receiver in the time interval [

ds,r
c ,

ds,r
c + τ ] while the

signal reflected by the target will arrive at the receiver in the time interval
[
ds,t+dt,r

c ,
ds,t+dt,r

c +τ ]. Indeed, there is the source-target path and the target-
receiver path to take into account for the reflected signal. Finally, detection
will not be possible if the receiver starts to receive the reflected signal while
it is still receiving the signal from the direct path, or, in other words, if

ds,t + dt,r
c

<
ds,r
c

+ τ, (A.2)

⇐⇒ ds,t + dt,r < ds,r + cτ, [× c] (A.3)

⇐⇒ ds,t + dt,r < ds,r + 2rb.
[
rb =

cτ

2
⇐⇒ cτ = 2rb

]
(A.4)

17This implies that the receiver receives both the signal from the initial pulse and the
reflected signal.

18The direct path corresponds to the signal received directly from the source, without
reflection.
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Figure A.11: Illustration of the direct blast effect.

In terms of geometric interpretation, we find here the masking ellipse
mentioned in the paper, the foci of which are respectively the source and
the receiver (non-colocated).
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Appendix B. Raw Results

Appendix B.1. Group 1: Peninsula

Base models Improved models

Instance M1 M2 M3 M4 M5 M6 M7 M8 M9

01 174.05 875.77 29.39 28.76 29.83 29.70 30.16 30.17 31.45

02 964.80 437.96 21.28 20.68 23.58 23.20 23.29 18.21 22.67

03 6272.77 4777.70 21.30 21.55 23.08 20.80 19.96 20.53 32.94

04 125.81 % 125.81 % 2903.74 2939.29 1662.68 1697.41 1713.28 1693.97 2134.67

05 40.00 % 37.25 % 21.83 % 1085.14 8.88 % 5330.95 5887.73 30.94 % 5611.91

06 25.00 % 20.69 % 8.33 % 6.95 % 7.58 % 13.46 % 11.65 % 16.20 % 15.19 %

07 4096.32 3413.19 1778.53 2727.83 1686.15 1027.63 4564.15 2675.17 4445.71

08 42.86 % 42.86 % 3295.51 5467.09 6.79 % 14.80 % 27.05 % 23.69 % 9.43 %

09 4.48 % 2.94 % 3050.74 1417.95 2091.30 1611.94 2627.39 2598.94 2443.21

10 2171.50 438.44 31.66 46.48 23.60 33.94 41.68 64.38 65.37

11 29.63 % 25.00 % 8.50 % 14.35 % 12.50 % 9.06 % 12.59 % 8.93 % 12.52 %

12 866.86 150.39 39.30 157.30 23.04 19.96 44.08 56.91 70.51

13 11.11 % 11.11 % 7.79 % 6.06 % 5.23 % 9.37 % 7.39 % 7.69 % 7.61 %

14 7.69 % 7.69 % 782.38 1834.73 1551.69 1044.09 2641.57 7142.94 5397.93

15 1.45 % 1.45 % 158.25 1.45 % 312.87 359.90 1017.04 1012.46 5493.56

16 94.44 % 94.44 % 1376.17 1350.04 5373.24 5531.39 5210.17 1150.11 2916.12

17 7.69 % 9.37 % 6849.61 6679.77 4094.51 1.52 % 3266.10 3588.69 3.03 %

18 4.48 % 6.06 % 2.94 % 4.48 % 2.94 % 2.94 % 7049.85 2.94 % 2.94 %

19 12.90 % 11.11 % 6.21 % 7.81 % 5.46 % 7.80 % 12.90 % 11.03 % 9.23 %

20 48.94 % 52.17 % 48.55 % 48.43 % 21.63 % 21.61 % 27.06 % 45.01 % 31.30 %

21 4506.07 2236.99 1032.72 760.22 724.38 311.66 1385.66 3255.87 450.90

22 4852.25 538.43 190.81 192.13 92.28 48.78 42.38 212.64 76.91

23 1314.93 3140.98 27.65 71.13 34.12 35.86 36.52 36.66 114.15

24 1.45 % 1.45 % 74.93 332.23 397.20 66.05 147.57 98.63 1103.48

25 2.94 % 2.94 % 446.30 287.93 403.17 239.18 288.64 167.70 715.99

#Opt / 25 9 9 18 18 17 17 19 17 17

#Winner 0 0 5 4 4 5 4 3 0

Ri 8.50 8.14 3.56 4.26 3.28 3.12 4.42 4.44 5.28

ti 1.56 h 1.46 h 0.81 h 0.84 h 0.85 h 0.83 h 0.88 h 0.90 h 0.99 h

gi 18.43 % 18.09 % 4.17 % 3.58 % 2.84 % 3.22 % 3.95 % 5.86 % 3.65 %

Table B.6: Results of the different formulations: CPU time (s) or relative gap if compu-
tational budget is reached. Ri (resp. ti, gi) is the average rank (resp. average CPU time,
average relative gap) of model i ∈ J1, 9K. Peninsula instance group: 9× 9 grid with
70 maritime cells (1/4).
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Appendix B.2. Group 2: Detroit

Base models Improved models

Instance M1 M2 M3 M4 M5 M6 M7 M8 M9

26 1.25 % 1.25 % 59.99 251.59 77.39 57.06 705.02 673.46 803.67

27 8.00 % 9.46 % 6.67 % 6.67 % 6.67 % 4.33 % 8.11 % 6.67 % 6.67 %

28 5.19 % 2.53 % 2.51 % 2.53 % 2.53 % 1.27 % 2.53 % 1.27 % 2.53 %

29 3726.91 334.15 % 233.80 242.55 746.60 767.20 785.12 812.15 265.41

30 159.14 % 216.67 % 1368.70 1498.22 2454.23 2391.81 2574.78 1537.79 87.53

31 5484.48 161.84 % 1088.96 996.66 2854.12 3025.97 2929.29 3015.78 4055.86

32 28.57 % 22.73 % 31.15 % 16.18 % 19.40 % 20.78 % 20.90 % 19.40 % 17.65 %

33 30.65 % 19.12 % 8.32 % 11.11 % 12.86 % 12.68 % 17.39 % 14.08 % 17.39 %

34 24.62 % 10.96 % 12.68 % 9.48 % 8.11 % 4.05 % 9.46 % 14.07 % 10.56 %

35 8.00 % 8.00 % 5.19 % 6.58 % 5.19 % 5.19 % 8.00 % 6.58 % 5.19 %

36 5667.39 40.94 % 1623.94 1518.76 1641.42 1641.12 2471.52 2865.34 6669.40

37 10.96 % 9.46 % 7.93 % 9.53 % 9.59 % 6058.52 9.59 % 10.95 % 9.34 %

38 3994.32 2197.19 441.53 1014.09 523.58 1119.19 2295.08 282.13 1.25 %

39 20.90 % 12.50 % 12.66 % 15.94 % 9.59 % 9.55 % 9.59 % 11.11 % 12.50 %

40 5.19 % 5.19 % 3.90 % 4138.34 3884.00 2.54 % 3308.58 2433.49 1.27 %

41 1.25 % 2.53 % 25.00 % 506.18 507.89 384.97 4832.98 1809.47 1162.20

42 26.56 % 26.56 % 26.56 % 26.56 % 24.62 % 26.56 % 26.56 % 37.29 % 32.79 %

43 26.56 % 20.90 % 19.12 % 20.90 % 20.90 % 30.65 % 28.57 % 22.73 % 32.79 %

44 24.62 % 28.57 % 24.62 % 19.12 % 22.73 % 17.39 % 24.62 % 19.12 % 19.12 %

45 2.53 % 3.85 % 2.53 % 3.85 % 3.85 % 5.19 % 3.85 % 3.85 % 2.53 %

46 5.19 % 1.25 % 2.53 % 2.53 % 2.53 % 1.25 % 1.25 % 2.53 % 2.53 %

47 3.90 % 5.19 % 5.19 % 5.19 % 5.19 % 5.19 % 5.19 % 5.19 % 5.19 %

48 5.19 % 3.85 % 3.81 % 3.85 % 3.85 % 2.56 % 2.56 % 3.85 % 2.56 %

49 17.39 % 20.90 % 17.39 % 17.39 % 14.08 % 22.73 % 19.12 % 14.08 % 19.12 %

50 37.29 % 39.66 % 28.57 % 24.62 % 22.73 % 22.73 % 22.73 % 22.73 % 26.56 %

#Opt / 25 4 1 6 8 8 8 8 8 6

#Winner 2 1 5 3 4 12 3 5 4

Ri 7.26 6.96 4.13 4.00 3.88 3.66 5.30 4.74 5.05

ti 1.89 h 1.94 h 1.57 h 1.47 h 1.50 h 1.53 h 1.58 h 1.51 h 1.66 h

gi 18.12 % 40.32 % 9.85 % 8.08 % 7.78 % 7.79 % 8.80 % 8.62 % 9.10 %

Table B.7: Results of the different formulations: CPU time (s) or relative gap if compu-
tational budget is reached. Ri (resp. ti, gi) is the average rank (resp. average CPU time,
average relative gap) of model i ∈ J1, 9K. Strait instance group: 12× 12 grid with
81 maritime cells (2/4).
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Appendix B.3. Group 3: Island

Base models Improved models

Instance M1 M2 M3 M4 M5 M6 M7 M8 M9

51 1273.73 260.54 % 80.50 77.47 80.92 79.72 82.81 78.70 71.03

52 227.07 92.00 % 48.72 51.59 49.87 50.04 52.20 50.40 60.27

53 210.34 % 200.00 % 186.30 186.43 45.61 46.21 43.89 41.31 189.80

54 119.51 % 119.51 % 10.91 % 10.60 % 25.58 % 24.56 % 24.85 % 24.60 % 74.72 %

55 28.57 % 23.29 % 20.00 % 28.57 % 18.42 % 16.88 % 20.00 % 18.42 % 32.35 %

56 9.76 % 2.27 % 1.12 % 1.12 % 2.27 % 1.12 % 1.12 % 1.12 % 3.45 %

57 3557.42 1.12 % 105.28 2817.11 1524.21 1377.47 401.20 1358.52 816.02

58 18.42 % 18.42 % 9.76 % 18.42 % 9.76 % 8.43 % 12.50 % 11.11 % 15.38 %

59 23.29 % 26.76 % 8.43 % 7.14 % 8.43 % 7.14 % 12.50 % 7.14 % 7.14 %

60 5.88 % 7.14 % 4.65 % 2.27 % 3.45 % 3.45 % 8.43 % 2.27 % 3.45 %

61 18.42 % 8.43 % 5.88 % 4.65 % 4.65 % 5.88 % 4.65 % 5.88 % 5.88 %

62 15.38 % 4.65 % 2.27 % 2.27 % 2.27 % 1.12 % 1.12 % 2.27 % 3.45 %

63 1.12 % 1.12 % 1258.26 1.12 % 1.12 % 1661.96 1.12 % 530.70 3850.00

64 45.16 % 28.57 % 25.22 % 27.90 % 25.71 % 25.61 % 25.71 % 28.57 % 28.57 %

65 15.38 % 18.42 % 13.00 % 12.66 % 13.50 % 10.00 % 13.44 % 12.66 % 9.95 %

66 8.43 % 7.14 % 7.32 % 13.55 % 4.76 % 4.76 % 4.76 % 8.43 % 3.53 %

67 4.65 % 1.12 % 1.12 % 2197.81 1.12 % 1.12 % 1.12 % 2.27 % 2.27 %

68 69.81 % 69.81 % 56.36 % 4973.01 60.01 % 3763.32 64.76 % 50.75 % 67.03 %

69 4.65 % 5015.11 685.44 1227.08 1557.24 1151.78 2575.88 3191.72 985.65

70 2.27 % 2.27 % 2059.04 1782.85 418.79 2191.69 1815.41 953.10 539.63

71 12.50 % 7.14 % 4.64 % 6960.56 8.63 % 4268.47 5673.47 9.65 % 9.87 %

72 2.27 % 2.27 % 3251.40 2518.65 927.68 2323.24 1024.93 1.12 % 4816.57

73 2.27 % 2.27 % 260.70 677.59 390.53 745.25 477.57 222.94 146.28

74 2.27 % 5217.51 1142.05 148.65 443.90 101.53 163.16 167.45 917.32

75 2.27 % 6293.62 384.82 895.84 117.65 67.47 155.80 119.79 229.79

#Opt / 25 3 3 11 13 10 13 11 10 11

#Winner 0 0 5 6 3 9 3 5 5

Ri 8.38 7.68 3.98 4.30 4.16 3.02 4.42 4.08 4.98

ti 1.82 h 1.94 h 1.23 h 1.23 h 1.26 h 1.16 h 1.26 h 1.27 h 1.26 h

gi 24.90 % 36.17 % 6.83 % 5.21 % 7.59 % 4.40 % 7.84 % 7.45 % 10.68 %

Table B.8: Results of the different formulations: CPU time (s) or relative gap if compu-
tational budget is reached. Ri (resp. ti, gi) is the average rank (resp. average CPU time,
average relative gap) of model i ∈ J1, 9K. Island instance group: 10× 10 grid with
90 maritime cells (3/4).
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Appendix B.4. Group 4: River

Base models Improved models

Instance M1 M2 M3 M4 M5 M6 M7 M8 M9

76 1250.53 1828.11 26.20 21.96 22.41 19.86 21.27 22.46 24.56

77 1512.51 6215.72 18.04 16.67 17.01 15.66 16.68 17.12 19.53

78 211.19 % 241.38 % 486.69 479.20 491.71 460.51 475.53 937.75 435.14

79 98.00 % 98.00 % 40.70 % 33.76 % 54.37 % 50.19 % 54.96 % 46.81 % 43.35 %

80 130.23 % 125.00 % 703.08 583.10 7.94 % 7.18 % 19.64 % 3192.05 24.15 %

81 115.22 % 125.00 % 1956.40 2104.54 3314.67 3326.70 11.85 % 6175.95 4.00 %

82 52.31 % 52.31 % 15.67 % 16.66 % 17.77 % 19.76 % 25.05 % 28.94 % 16.10 %

83 19.28 % 11.24 % 5.00 % 3.03 % 2.18 % 3.28 % 7.62 % 5.33 % 2.52 %

84 20.73 % 12.50 % 8.61 % 6.29 % 7.95 % 4.22 % 9.40 % 9.24 % 6.50 %

85 10.00 % 15.12 % 6.01 % 6.67 % 4.38 % 5.02 % 6.93 % 5.73 % 3.70 %

86 8.79 % 4.21 % 4196.69 2861.85 6346.37 2057.99 1.03 % 5227.73 3417.48

87 3.12 % 2.06 % 729.05 1197.42 175.13 432.02 362.63 1410.73 999.48

88 2.06 % 2.06 % 4484.81 3072.78 2463.16 2705.88 1635.97 3507.04 3326.87

89 4.21 % 7.61 % 1.02 % 1.02 % 2.06 % 1.02 % 1.02 % 1.02 % 1.02 %

90 3.12 % 1.02 % 1324.37 588.90 585.56 40.73 735.90 586.47 405.63

91 824.95 4108.96 77.30 52.40 102.14 174.40 389.83 357.97 408.71

92 81.48 % 81.61 % 295.85 121.78 251.36 466.62 2939.29 454.45 835.15

93 129.91 % 3800.73 18.67 16.70 20.24 18.20 20.23 17.16 14.73

94 73.68 % 83.33 % 4694.43 3265.83 3754.60 4116.41 650.91 1521.90 544.04

95 35.62 % 30.26 % 2043.78 2210.33 6820.38 5962.93 2489.58 1677.60 2617.82

96 23.75 % 33.78 % 98.39 423.26 673.36 1265.16 2794.23 482.38 885.56

97 15.12 % 8.79 % 1534.63 2687.39 7132.49 1078.18 5299.81 1161.28 1599.12

98 7.61 % 4.21 % 2107.21 1663.89 694.90 600.12 787.99 255.38 1282.52

99 50.00 % 57.14 % 43.92 % 37.85 % 37.59 % 36.67 % 38.44 % 35.53 % 48.16 %

100 33.78 % 28.57 % 517.91 603.39 324.03 320.07 260.89 257.67 482.96

#Opt / 25 3 4 18 18 17 17 15 18 16

#Winner 0 0 4 5 2 7 2 5 5

Ri 8.50 8.50 4.26 3.30 4.12 3.22 4.94 4.05 4.09

ti 1.80 h 1.86 h 0.84 h 0.80 h 1.01 h 0.90 h 1.01 h 0.86 h 0.91 h

gi 45.17 % 41.01 % 4.84 % 4.21 % 5.37 % 5.09 % 7.04 % 5.30 % 5.98 %

Table B.9: Results of the different formulations: CPU time (s) or relative gap if compu-
tational budget is reached. Ri (resp. ti, gi) is the average rank (resp. average CPU time,
average relative gap) of model i ∈ J1, 9K. River instance group: 22× 22 grid with
99 maritime cells (4/4).
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Appendix C. Solutions

Appendix C.1. Group 1: Peninsula

Base Group 1

Instance M1 M2 M3 M4 M5 M6 M7 M8 M9 zBest

01 22.86 22.86 22.86 22.86 22.86 22.86 22.86 22.86 22.86 22.86∗

02 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00∗

03 31.43 31.43 31.43 31.43 31.43 31.43 31.43 31.43 31.43 31.43∗

04 44.29 44.29 45.71 45.71 45.71 45.71 45.71 45.71 45.71 45.71∗

05 71.43 72.86 74.29 74.29 72.86 74.29 74.29 72.86 74.29 74.29∗

06 80.00 82.86 85.71 85.71 85.71 84.29 85.71 84.29 84.29 85.71

07 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00∗

08 70.00 70.00 72.86 72.86 72.86 72.86 72.86 72.86 72.86 72.86∗

09 95.71 97.14 98.57 98.57 98.57 98.57 98.57 98.57 98.57 98.57∗

10 97.14 97.14 97.14 97.14 97.14 97.14 97.14 97.14 97.14 97.14∗

11 77.14 80.00 80.00 78.57 80.00 80.00 80.00 80.00 80.00 80.00

12 97.14 97.14 97.14 97.14 97.14 97.14 97.14 97.14 97.14 97.14∗

13 90.00 90.00 91.43 92.86 92.86 91.43 92.86 92.86 92.86 92.86

14 92.86 92.86 92.86 92.86 92.86 92.86 92.86 92.86 92.86 92.86∗

15 98.57 98.57 98.57 98.57 98.57 98.57 98.57 98.57 98.57 98.57∗

16 51.43 51.43 52.86 52.86 52.86 52.86 52.86 52.86 52.86 52.86∗

17 92.86 91.43 94.29 94.29 94.29 94.29 94.29 94.29 94.29 94.29∗

18 95.71 94.29 97.14 95.71 97.14 97.14 98.57 97.14 97.14 98.57∗

19 88.57 90.00 91.43 91.43 91.43 91.43 88.57 90.00 91.43 91.43

20 67.14 65.71 65.71 65.71 67.14 67.14 67.14 67.14 67.14 67.14

21 92.86 92.86 92.86 92.86 92.86 92.86 92.86 92.86 92.86 92.86∗

22 97.14 97.14 97.14 97.14 97.14 95.71 97.14 97.14 97.14 97.14∗

23 97.14 97.14 97.14 97.14 97.14 97.14 97.14 97.14 97.14 97.14∗

24 98.57 98.57 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00∗

25 97.14 97.14 97.14 97.14 97.14 97.14 97.14 97.14 97.14 97.14∗

Table C.10: Coverage rate (in %) associated with the best integer solutions for each of the
formulations. The grey background means that the instance has not been resolved. zBest

is the coverage rate (in %) of the best known integer solution for the considered instance
and the presence of an asterix means that it is the optimal solution. Peninsula instance
group (1/4).
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Appendix C.2. Group 2: Detroit

Base Group 1

Instance M1 M2 M3 M4 M5 M6 M7 M8 M9 zBest

26 98.77 98.77 98.77 98.77 98.77 98.77 98.77 98.77 98.77 98.77∗

27 92.59 91.36 92.59 92.59 92.59 92.59 91.36 92.59 92.59 92.59

28 95.06 97.53 97.53 97.53 97.53 97.53 97.53 97.53 97.53 97.53

29 20.99 20.99 20.99 20.99 20.99 20.99 20.99 20.99 20.99 20.99∗

30 32.10 29.63 32.10 32.10 32.10 32.10 32.10 32.10 32.10 32.10∗

31 34.57 34.57 34.57 34.57 34.57 34.57 34.57 34.57 34.57 34.57∗

32 77.78 81.48 75.31 83.95 82.72 82.72 82.72 82.72 83.95 83.95

33 76.54 83.95 88.89 88.89 86.42 87.65 85.19 87.65 85.19 88.89

34 80.25 90.12 87.65 90.12 91.36 91.36 91.36 87.65 90.12 91.36

35 92.59 92.59 95.06 93.83 95.06 95.06 92.59 93.83 95.06 95.06

36 70.37 70.37 70.37 70.37 70.37 70.37 70.37 70.37 70.37 70.37∗

37 90.12 91.36 91.36 90.12 90.12 91.36 90.12 90.12 91.36 91.36∗

38 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.77 100.00∗

39 82.72 88.89 87.65 85.19 90.12 90.12 90.12 88.89 88.89 90.12

40 95.06 95.06 95.06 97.53 97.53 96.30 97.53 97.53 97.53 97.53∗

41 98.77 97.53 79.01 98.77 98.77 98.77 98.77 98.77 98.77 98.77∗

42 79.01 79.01 79.01 79.01 80.25 79.01 79.01 72.84 75.31 80.25

43 79.01 82.72 83.95 82.72 82.72 76.54 77.78 81.48 75.31 83.95

44 80.25 77.78 80.25 83.95 81.48 85.19 80.25 83.95 83.95 85.19

45 97.53 96.30 97.53 96.30 96.30 95.06 96.30 96.30 97.53 97.53

46 95.06 98.77 97.53 97.53 97.53 98.77 98.77 97.53 97.53 98.77

47 95.06 95.06 95.06 95.06 95.06 95.06 95.06 95.06 95.06 95.06

48 95.06 96.30 96.30 96.30 96.30 96.30 96.30 96.30 96.30 96.30

49 85.19 82.72 85.19 85.19 87.65 81.48 83.95 87.65 83.95 87.65

50 72.84 71.60 77.78 80.25 81.48 81.48 81.48 81.48 79.01 81.48

Table C.11: Coverage rate (in %) associated with the best integer solutions for each of the
formulations. The grey background means that the instance has not been resolved. zBest

is the coverage rate (in %) of the best known integer solution for the considered instance
and the presence of an asterix means that it is the optimal solution. Detroit instance
group (2/4).
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Appendix C.3. Group 3: Island

Base Group 1

Instance M1 M2 M3 M4 M5 M6 M7 M8 M9 zBest

51 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33∗

52 27.78 27.78 27.78 27.78 27.78 27.78 27.78 27.78 27.78 27.78∗

53 32.22 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33∗

54 45.56 45.56 45.56 45.56 45.56 45.56 45.56 45.56 45.56 45.56

55 77.78 81.11 83.33 77.78 84.44 85.56 83.33 84.44 75.56 85.56

56 91.11 97.78 98.89 98.89 97.78 98.89 98.89 98.89 96.67 98.89

57 100.00 98.89 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00∗

58 84.44 84.44 91.11 84.44 91.11 92.22 88.89 90.00 86.67 92.22

59 81.11 78.89 92.22 93.33 92.22 93.33 88.89 93.33 93.33 93.33

60 94.44 93.33 95.56 97.78 96.67 96.67 92.22 97.78 96.67 97.78

61 84.44 92.22 94.44 95.56 95.56 94.44 95.56 94.44 94.44 95.56

62 86.67 95.56 97.78 97.78 97.78 98.89 98.89 97.78 96.67 98.89

63 98.89 98.89 100.00 98.89 98.89 100.00 98.89 100.00 100.00 100.00∗

64 68.89 77.78 77.78 75.56 77.78 77.78 77.78 77.78 77.78 77.78

65 86.67 84.44 86.67 87.78 87.78 88.89 86.67 87.78 88.89 88.89

66 92.22 93.33 91.11 86.67 93.33 93.33 93.33 92.22 94.44 94.44

67 95.56 98.89 98.89 98.89 98.89 98.89 98.89 97.78 97.78 98.89∗

68 58.89 58.89 57.78 58.89 58.89 58.89 57.78 58.89 57.78 58.89∗

69 95.56 95.56 95.56 95.56 95.56 95.56 95.56 95.56 95.56 95.56∗

70 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78∗

71 88.89 93.33 93.33 93.33 90.00 93.33 93.33 88.89 90.00 93.33∗

72 97.78 97.78 98.89 98.89 98.89 98.89 98.89 98.89 98.89 98.89∗

73 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78∗

74 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78∗

75 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78∗

Table C.12: Coverage rate (in %) associated with the best integer solutions for each of the
formulations. The grey background means that the instance has not been resolved. zBest

is the coverage rate (in %) of the best known integer solution for the considered instance
and the presence of an asterix means that it is the optimal solution. Island instance group
(3/4).
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Appendix C.4. Group 4: River

Base Group 1

Instance M1 M2 M3 M4 M5 M6 M7 M8 M9 zBest

76 17.17 17.17 17.17 17.17 17.17 17.17 17.17 17.17 17.17 17.17∗

77 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20∗

78 31.31 29.29 32.32 32.32 32.32 32.32 32.32 32.32 32.32 32.32∗

79 50.51 50.51 51.52 52.53 51.52 52.53 52.53 52.53 51.52 52.53

80 43.43 44.44 45.45 45.45 45.45 44.44 44.44 45.45 44.44 45.45∗

81 46.46 44.44 50.51 50.51 50.51 50.51 49.49 50.51 50.51 50.51∗

82 65.66 65.66 67.68 68.69 67.68 67.68 66.67 64.65 69.70 69.70

83 83.84 89.90 90.91 91.92 91.92 91.92 89.90 90.91 91.92 91.92

84 82.83 88.89 88.89 90.91 88.89 90.91 87.88 88.89 89.90 90.91

85 90.91 86.87 90.91 90.91 91.92 91.92 89.90 90.91 91.92 91.92

86 91.92 95.96 98.99 98.99 98.99 98.99 97.98 98.99 98.99 98.99∗

87 96.97 97.98 98.99 98.99 98.99 98.99 98.99 98.99 98.99 98.99∗

88 97.98 97.98 98.99 98.99 98.99 98.99 98.99 98.99 98.99 98.99∗

89 95.96 92.93 98.99 98.99 97.98 98.99 98.99 98.99 98.99 98.99

90 96.97 98.99 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00∗

91 48.48 48.48 48.48 48.48 48.48 48.48 48.48 48.48 48.48 48.48∗

92 54.55 54.55 54.55 54.55 54.55 54.55 54.55 54.55 54.55 54.55∗

93 32.32 32.32 32.32 32.32 32.32 32.32 32.32 32.32 32.32 32.32∗

94 57.58 54.55 59.60 59.60 59.60 59.60 59.60 59.60 59.60 59.60∗

95 73.74 76.77 81.82 81.82 81.82 81.82 81.82 81.82 81.82 81.82∗

96 80.81 74.75 84.85 84.85 84.85 84.85 84.85 84.85 84.85 84.85∗

97 86.87 91.92 94.95 94.95 94.95 94.95 94.95 94.95 94.95 94.95∗

98 92.93 95.96 98.99 98.99 98.99 98.99 98.99 98.99 98.99 98.99∗

99 66.67 63.64 63.64 64.65 67.68 67.68 67.68 67.68 62.63 67.68

100 74.75 77.78 81.82 81.82 81.82 81.82 81.82 81.82 81.82 81.82∗

Table C.13: Coverage rate (in %) associated with the best integer solutions for each of the
formulations. The grey background means that the instance has not been resolved. zBest

is the coverage rate (in %) of the best known integer solution for the considered instance
and the presence of an asterix means that it is the optimal solution. River instance group
(4/4).
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Appendix D. Ranks

Appendix D.1. Group 1: Peninsula

Base Group 1

Instance R1,j R2,j R3,j R4,j R5,j R6,j R7,j R8,j R9,j

01 8.0 9.0 2.0 1.0 4.0 3.0 5.0 6.0 7.0

02 9.0 8.0 3.0 2.0 7.0 5.0 6.0 1.0 4.0

03 9.0 8.0 4.0 5.0 6.0 3.0 1.0 2.0 7.0

04 8.5 8.5 6.0 7.0 1.0 3.0 4.0 2.0 5.0

05 9.0 8.0 6.0 1.0 5.0 2.0 4.0 7.0 3.0

06 9.0 8.0 3.0 1.0 2.0 5.0 4.0 7.0 6.0

07 7.0 6.0 3.0 5.0 2.0 1.0 9.0 4.0 8.0

08 8.5 8.5 1.0 2.0 3.0 5.0 7.0 6.0 4.0

09 9.0 8.0 7.0 1.0 3.0 2.0 6.0 5.0 4.0

10 9.0 8.0 2.0 5.0 1.0 3.0 4.0 6.0 7.0

11 9.0 8.0 1.0 7.0 4.0 3.0 6.0 2.0 5.0

12 9.0 7.0 3.0 8.0 2.0 1.0 4.0 5.0 6.0

13 8.5 8.5 6.0 2.0 1.0 7.0 3.0 5.0 4.0

14 8.5 8.5 1.0 4.0 3.0 2.0 5.0 7.0 6.0

15 8.0 8.0 1.0 8.0 2.0 3.0 5.0 4.0 6.0

16 8.5 8.5 3.0 2.0 6.0 7.0 5.0 1.0 4.0

17 8.0 9.0 5.0 4.0 3.0 6.0 1.0 2.0 7.0

18 7.5 9.0 4.0 7.5 4.0 4.0 1.0 4.0 4.0

19 8.5 7.0 2.0 4.0 1.0 3.0 8.5 6.0 5.0

20 8.0 9.0 7.0 6.0 2.0 1.0 3.0 5.0 4.0

21 9.0 7.0 5.0 4.0 3.0 1.0 6.0 8.0 2.0

22 9.0 8.0 5.0 6.0 4.0 2.0 1.0 7.0 3.0

23 8.0 9.0 1.0 6.0 2.0 3.0 4.0 5.0 7.0

24 8.5 8.5 2.0 5.0 6.0 1.0 4.0 3.0 7.0

25 8.5 8.5 6.0 3.0 5.0 2.0 4.0 1.0 7.0

#Winner 0 0 5 4 4 5 4 3 0∑
j Ri,j 212.50 203.50 89.00 106.50 82.00 78.00 110.50 111.00 132.00

Ri 8.50 8.14 3.56 4.26 3.28 3.12 4.42 4.44 5.28

Table D.14: Detail of the ranks for each of the formulations. Ri,j is the rank of model
i ∈ J1, 9K on instance j ∈ J1, 25K. Peninsula instance group (1/4).
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Appendix D.2. Group 2: Detroit

Base Group 1

Instance R1,j R2,j R3,j R4,j R5,j R6,j R7,j R8,j R9,j

26 8.5 8.5 2.0 4.0 3.0 1.0 6.0 5.0 7.0

27 7.0 9.0 4.0 4.0 4.0 1.0 8.0 4.0 4.0

28 9.0 6.0 3.0 6.0 6.0 1.5 6.0 1.5 6.0

29 8.0 9.0 1.0 2.0 4.0 5.0 6.0 7.0 3.0

30 8.0 9.0 2.0 3.0 6.0 5.0 7.0 4.0 1.0

31 8.0 9.0 2.0 1.0 3.0 6.0 4.0 5.0 7.0

32 8.0 7.0 9.0 1.0 3.5 5.0 6.0 3.5 2.0

33 9.0 8.0 1.0 2.0 4.0 3.0 6.5 5.0 6.5

34 9.0 6.0 7.0 4.0 2.0 1.0 3.0 8.0 5.0

35 8.0 8.0 2.5 5.5 2.5 2.5 8.0 5.5 2.5

36 7.0 9.0 2.0 1.0 4.0 3.0 5.0 6.0 8.0

37 9.0 4.0 2.0 5.0 6.5 1.0 6.5 8.0 3.0

38 8.0 6.0 2.0 4.0 3.0 5.0 7.0 1.0 9.0

39 9.0 5.5 7.0 8.0 2.5 1.0 2.5 4.0 5.5

40 8.5 8.5 7.0 4.0 3.0 6.0 2.0 1.0 5.0

41 7.0 8.0 9.0 2.0 3.0 1.0 6.0 5.0 4.0

42 4.5 4.5 4.5 4.5 1.0 4.5 4.5 9.0 8.0

43 6.0 3.0 1.0 3.0 3.0 8.0 7.0 5.0 9.0

44 7.0 9.0 7.0 3.0 5.0 1.0 7.0 3.0 3.0

45 2.0 6.0 2.0 6.0 6.0 9.0 6.0 6.0 2.0

46 9.0 2.0 6.0 6.0 6.0 2.0 2.0 6.0 6.0

47 1.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5

48 9.0 6.5 4.0 6.5 6.5 2.0 2.0 6.5 2.0

49 4.0 8.0 4.0 4.0 1.5 9.0 6.5 1.5 6.5

50 8.0 9.0 7.0 5.0 2.5 2.5 2.5 2.5 6.0

#Winner 2 1 5 3 4 12 3 5 4∑
j Ri,j 181.50 174.00 103.50 100.00 97.00 91.50 132.50 118.50 126.50

Ri 7.26 6.96 4.13 4.00 3.88 3.66 5.30 4.74 5.05

Table D.15: Detail of the ranks for each of the formulations. Ri,j is the rank of model
i ∈ J1, 9K on instance j ∈ J26, 50K. Detroit instance group (2/4).
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Appendix D.3. Group 3: Island

Base Group 1

Instance R1,j R2,j R3,j R4,j R5,j R6,j R7,j R8,j R9,j

51 8.0 9.0 5.0 2.0 6.0 4.0 7.0 3.0 1.0

52 8.0 9.0 1.0 5.0 2.0 3.0 6.0 4.0 7.0

53 9.0 8.0 5.0 6.0 3.0 4.0 2.0 1.0 7.0

54 8.5 8.5 2.0 1.0 6.0 3.0 5.0 4.0 7.0

55 7.5 6.0 4.5 7.5 2.5 1.0 4.5 2.5 9.0

56 9.0 6.5 3.0 3.0 6.5 3.0 3.0 3.0 8.0

57 8.0 9.0 1.0 7.0 6.0 5.0 2.0 4.0 3.0

58 8.0 8.0 2.5 8.0 2.5 1.0 5.0 4.0 6.0

59 8.0 9.0 5.5 2.5 5.5 2.5 7.0 2.5 2.5

60 7.0 8.0 6.0 1.5 4.0 4.0 9.0 1.5 4.0

61 9.0 8.0 5.5 2.0 2.0 5.5 2.0 5.5 5.5

62 9.0 8.0 4.5 4.5 4.5 1.5 1.5 4.5 7.0

63 7.0 7.0 2.0 7.0 7.0 3.0 7.0 1.0 4.0

64 9.0 7.0 1.0 5.0 3.5 2.0 3.5 7.0 7.0

65 8.0 9.0 5.0 3.5 7.0 2.0 6.0 3.5 1.0

66 7.5 5.0 6.0 9.0 3.0 3.0 3.0 7.5 1.0

67 9.0 4.0 4.0 1.0 4.0 4.0 4.0 7.5 7.5

68 8.5 8.5 4.0 2.0 5.0 1.0 6.0 3.0 7.0

69 9.0 8.0 1.0 4.0 5.0 3.0 6.0 7.0 2.0

70 8.5 8.5 6.0 4.0 1.0 7.0 5.0 3.0 2.0

71 9.0 5.0 4.0 3.0 6.0 1.0 2.0 7.0 8.0

72 8.5 8.5 5.0 4.0 1.0 3.0 2.0 7.0 6.0

73 8.5 8.5 3.0 6.0 4.0 7.0 5.0 2.0 1.0

74 9.0 8.0 7.0 2.0 5.0 1.0 3.0 4.0 6.0

75 9.0 8.0 6.0 7.0 2.0 1.0 4.0 3.0 5.0

#Winner 0 0 5 6 3 9 3 5 5∑
j Ri,j 209.50 192.00 99.50 107.50 104.00 75.50 110.50 102.00 124.50

Ri 8.38 7.68 3.98 4.30 4.16 3.02 4.42 4.08 4.98

Table D.16: Detail of the ranks for each of the formulations. Ri,j is the rank of model
i ∈ J1, 9K on instance j ∈ J51, 75K. Island instance group (3/4).
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Appendix D.4. Group 4: River

Base Group 1

Instance R1,j R2,j R3,j R4,j R5,j R6,j R7,j R8,j R9,j

76 8.0 9.0 7.0 3.0 4.0 1.0 2.0 5.0 6.0

77 8.0 9.0 6.0 2.0 4.0 1.0 3.0 5.0 7.0

78 8.0 9.0 5.0 4.0 6.0 2.0 3.0 7.0 1.0

79 8.5 8.5 2.0 1.0 6.0 5.0 7.0 4.0 3.0

80 9.0 8.0 2.0 1.0 5.0 4.0 6.0 3.0 7.0

81 8.0 9.0 1.0 2.0 3.0 4.0 7.0 5.0 6.0

82 8.5 8.5 1.0 3.0 4.0 5.0 6.0 7.0 2.0

83 9.0 8.0 5.0 3.0 1.0 4.0 7.0 6.0 2.0

84 9.0 8.0 5.0 2.0 4.0 1.0 7.0 6.0 3.0

85 8.0 9.0 5.0 6.0 2.0 3.0 7.0 4.0 1.0

86 9.0 8.0 4.0 2.0 6.0 1.0 7.0 5.0 3.0

87 9.0 8.0 4.0 6.0 1.0 3.0 2.0 7.0 5.0

88 8.5 8.5 7.0 4.0 2.0 3.0 1.0 6.0 5.0

89 8.0 9.0 3.5 3.5 7.0 3.5 3.5 3.5 3.5

90 9.0 8.0 7.0 5.0 3.0 1.0 6.0 4.0 2.0

91 8.0 9.0 2.0 1.0 3.0 4.0 6.0 5.0 7.0

92 8.0 9.0 3.0 1.0 2.0 5.0 7.0 4.0 6.0

93 9.0 8.0 5.0 2.0 7.0 4.0 6.0 3.0 1.0

94 8.0 9.0 7.0 4.0 5.0 6.0 2.0 3.0 1.0

95 9.0 8.0 2.0 3.0 7.0 6.0 4.0 1.0 5.0

96 8.0 9.0 1.0 2.0 4.0 6.0 7.0 3.0 5.0

97 9.0 8.0 3.0 5.0 7.0 1.0 6.0 2.0 4.0

98 9.0 8.0 7.0 6.0 3.0 2.0 4.0 1.0 5.0

99 8.0 9.0 6.0 4.0 3.0 2.0 5.0 1.0 7.0

100 9.0 8.0 6.0 7.0 4.0 3.0 2.0 1.0 5.0

#Winner 0 0 4 5 2 7 2 5 5∑
j Ri,j 212.50 212.50 106.50 82.50 103.00 80.50 123.50 101.50 102.50

Ri 8.50 8.50 4.26 3.30 4.12 3.22 4.94 4.05 4.09

Table D.17: Detail of the ranks for each of the formulations. Ri,j is the rank of model
i ∈ J1, 9K on instance j ∈ J76, 100K. River instance group (4/4).
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Appendix E. Two-way comparisons

Appendix E.1. Group 1: Peninsula

|Mi ≻ Mj | M1 M2 M3 M4 M5 M6 M7 M8 M9

∑
j |Mi ≻ Mj |

M1 - 5 0 0 0 0 1 0 1 7

M2 12 - 0 1 0 0 2 1 1 17

M3 25 25 - 14 10 13 15 15 17 134

M4 23 23 11 - 10 9 13 11 17 117

M5 25 25 14 15 - 10 16 17 19 141

M6 25 25 11 16 14 - 18 16 20 145

M7 23 23 10 12 9 7 - 14 16 114

M8 25 24 9 14 7 8 11 - 14 112

M9 24 24 7 8 5 4 9 10 - 91∑
i |Mi ≻ Mj | 182 174 62 80 55 51 85 84 105

Table E.18: Two-way comparisons for all formulations where Mi ≻ Mj means that the
formulationMi (strictly) dominates the formulationMj ∀i, j ∈ J1, 9K with i ̸= j.

∑
i |Mi ≻

Mj | accounts for the number of times that model j is strictly dominated and
∑

j |Mi ≻ Mj |
accounts for the number of times that model i strictly dominates. Peninsula instance group
(1/4).

Appendix E.2. Group 2: Detroit

|Mi ≻ Mj | M1 M2 M3 M4 M5 M6 M7 M8 M9

∑
j |Mi ≻ Mj |

M1 - 11 3 2 2 4 5 3 6 36

M2 10 - 5 3 2 3 3 5 4 35

M3 18 18 - 12 12 9 14 13 11 107

M4 21 16 8 - 9 11 15 12 14 106

M5 23 18 9 9 - 9 16 12 13 109

M6 20 19 13 12 13 - 15 14 16 122

M7 17 16 8 6 3 5 - 9 11 75

M8 22 17 9 6 5 8 13 - 11 91

M9 18 18 9 6 7 6 9 10 - 83∑
i |Mi ≻ Mj | 149 133 64 56 53 55 90 78 86

Table E.19: Two-way comparisons for all formulations where Mi ≻ Mj means that the
formulationMi (strictly) dominates the formulationMj ∀i, j ∈ J1, 9K with i ̸= j.

∑
i |Mi ≻

Mj | accounts for the number of times that model j is strictly dominated and
∑

j |Mi ≻ Mj |
accounts for the number of times that model i strictly dominates. Detroit instance group
(2/4).
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Appendix E.3. Group 3: Island

|Mi ≻ Mj | M1 M2 M3 M4 M5 M6 M7 M8 M9

∑
j |Mi ≻ Mj |

M1 - 6 0 1 0 0 1 0 1 9

M2 12 - 1 2 1 0 1 3 4 24

M3 25 23 - 11 12 8 13 10 15 117

M4 21 21 12 - 11 7 11 10 14 107

M5 24 21 9 11 - 6 12 11 16 110

M6 25 24 14 16 16 - 15 15 15 140

M7 23 22 9 11 8 6 - 10 16 105

M8 24 21 12 10 12 7 14 - 13 113

M9 24 20 9 10 8 7 9 8 - 95∑
i |Mi ≻ Mj | 178 158 66 72 68 41 76 67 94

Table E.20: Two-way comparisons for all formulations where Mi ≻ Mj means that the
formulationMi (strictly) dominates the formulationMj ∀i, j ∈ J1, 9K with i ̸= j.

∑
i |Mi ≻

Mj | accounts for the number of times that model j is strictly dominated and
∑

j |Mi ≻ Mj |
accounts for the number of times that model i strictly dominates. Island instance group
(3/4).

Appendix E.4. Group 4: River

|Mi ≻ Mj | M1 M2 M3 M4 M5 M6 M7 M8 M9

∑
j |Mi ≻ Mj |

M1 - 11 0 0 0 0 0 0 0 11

M2 11 - 0 0 0 0 0 0 0 11

M3 25 25 - 8 12 8 14 12 12 116

M4 25 25 16 - 17 11 17 16 13 140

M5 25 25 13 8 - 10 15 13 13 122

M6 25 25 16 13 15 - 19 14 15 142

M7 25 25 10 7 10 5 - 7 10 99

M8 25 25 12 8 12 10 17 - 12 121

M9 25 25 12 11 12 9 14 12 - 120∑
i |Mi ≻ Mj | 186 186 79 55 78 53 96 74 75

Table E.21: Two-way comparisons for all formulations where Mi ≻ Mj means that the
formulationMi (strictly) dominates the formulationMj ∀i, j ∈ J1, 9K with i ̸= j.

∑
i |Mi ≻

Mj | accounts for the number of times that model j is strictly dominated and
∑

j |Mi ≻ Mj |
accounts for the number of times that model i strictly dominates. River instance group
(4/4).
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Appendix E.5. Synthesis

|Mi ≻ Mj | M1 M2 M3 M4 M5 M6 M7 M8 M9

∑
j |Mi ≻ Mj |

M1 - 33 3 3 2 4 7 3 8 63

M2 45 - 6 6 3 3 6 9 9 87

M3 93 91 - 45 46 38 56 50 55 474

M4 90 85 47 - 47 38 56 49 58 470

M5 97 89 45 43 - 35 59 53 61 482

M6 95 93 54 57 58 - 67 59 66 549

M7 88 86 37 36 30 23 - 40 53 393

M8 96 87 42 38 36 33 55 - 50 437

M9 91 87 37 35 32 26 41 40 - 389∑
i |Mi ≻ Mj | 695 651 271 263 254 200 347 303 360

Table E.22: Two-way comparisons for all formulations where Mi ≻ Mj means that the
formulationMi (strictly) dominates the formulationMj ∀i, j ∈ J1, 9K with i ̸= j.

∑
i |Mi ≻

Mj | accounts for the number of times that model j is strictly dominated and
∑

j |Mi ≻ Mj |
accounts for the number of times that model i strictly dominates. All instances.
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Appendix F. Instances

Appendix F.1. Group 1: Peninsula

nTxRx nTx nRx

Grid Instance AHF BLF CHF DLF EHF FHF GLF HLF

01 - - 1 - 1 1 - -

02 - - 1 - 2 1 - -

03 - - 1 - 2 2 - -

04 - - 2 - 2 2 - -

05 - - 1 1 2 1 1 -

06 - - 1 1 2 1 1 1

07 1 - - 1 2 - 1 -

08 1 - 1 - 2 1 - -

09 2 - 1 - 2 2 - -

10 1 1 - - 1 1 - -

11 - - 1 1 1 1 1 1

12 1 1 - - 2 2 - -

13 1 - 2 - 3 3 - -

14 1 - - 1 2 2 1 -

15 - 1 2 - 4 4 - -

16 - - 2 - 2 4 - -

17 - - 1 1 2 2 2 1

18 1 - 1 1 2 2 1 -

19 1 - 2 - 2 4 - -

20 - - 3 - 3 3 - -

21 1 - - 1 - - 1 1

22 1 - - 1 - - 1 2

23 1 - - 1 - - 2 2

24 - 1 - 1 - - 1 2

25 - 1 - 1 - - 1 1

Table F.23: Tour d’horizon of the instance library: peninsula group (1/4).
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Appendix F.2. Group 2: Detroit

nTxRx nTx nRx

Grid Instance AHF BLF CHF DLF EHF FHF GLF HLF

26 1 1 1 - 2 2 - -

27 1 - - 1 2 1 1 -

28 1 - - 1 2 1 1 1

29 - - 1 - 1 1 - -

30 - - 1 - 2 1 - -

31 - - 1 - 2 2 - -

32 1 - 1 - 2 2 - -

33 1 - 1 - 3 2 - -

34 1 - 1 - 3 3 - -

35 1 - 2 - 3 3 - -

36 1 - - - 2 2 - -

37 1 - - 1 1 1 1 -

38 1 - - 1 2 1 1 2

39 - - 1 1 2 1 1 1

40 - - 1 1 2 1 2 1

41 - - 1 1 2 2 2 2

42 - - 2 1 1 1 - 1

43 - - 2 1 2 1 - 1

44 - - 2 1 2 2 - 1

45 2 - - 1 1 - - 1

46 2 - - 1 1 1 - 1

47 1 - - 2 1 - 1 -

48 1 - - 1 1 1 1 1

49 - - 3 1 2 1 - 1

50 - - 3 1 1 1 - 1

Table F.24: Tour d’horizon of the instance library: detroit group (2/4).
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Appendix F.3. Group 3: Island

nTxRx nTx nRx

Grid Instance AHF BLF CHF DLF EHF FHF GLF HLF

51 - - 1 - 1 1 - -

52 - - 1 - 1 2 - -

53 - - 1 - 2 2 - -

54 - - 2 - 2 2 - -

55 1 - 2 - 2 2 - -

56 2 - 2 - 2 2 - -

57 2 - 2 - 3 3 - -

58 1 - 2 - 2 4 - -

59 1 - 2 - 3 3 - -

60 1 - 2 - 4 4 - -

61 2 - 1 - 1 2 - -

62 2 - 1 - 2 3 - -

63 2 - 1 - 4 4 - -

64 - - 1 1 1 1 1 1

65 - - 1 1 2 1 2 1

66 - - 1 1 2 2 2 2

67 - - 2 1 3 3 2 2

68 1 - 1 - 1 - - -

69 - 1 - 1 - - 1 -

70 - 1 - 1 - - 1 1

71 1 - - 1 1 1 1 -

72 - 1 - 1 - - 2 1

73 - 1 - 1 - - - 2

74 1 1 - - 2 - 1 -

75 1 1 - - 2 - 2 -

Table F.25: Tour d’horizon of the instance library: island group (3/4).
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Appendix F.4. Group 4: River

nTxRx nTx nRx

Grid Instance AHF BLF CHF DLF EHF FHF GLF HLF

76 - - 1 - 1 1 - -

77 - - 1 - 2 1 - -

78 - - 2 - 2 2 - -

79 1 - 2 - 2 2 - -

80 1 - 1 - 2 2 - -

81 1 - 1 - 3 3 - -

82 2 - 1 - 3 3 - -

83 2 1 1 - 3 3 - -

84 2 1 1 - 2 1 2 1

85 2 1 1 - 2 2 2 1

86 2 1 1 1 2 2 2 2

87 3 1 - 1 2 2 2 2

88 2 2 - 1 2 - - 2

89 - - 3 3 2 4 4 2

90 - - 3 3 4 4 4 4

91 1 - - 1 - - 1 -

92 1 - - 1 - - 1 1

93 - - - 1 - - 1 1

94 1 - - 1 2 1 1 1

95 - 1 1 1 1 1 2 2

96 - 1 1 1 1 1 3 3

97 - 1 1 2 1 1 3 3

98 - 2 1 2 1 1 3 3

99 - - 2 2 2 - 2 -

100 - - - 3 - - 3 3

Table F.26: Tour d’horizon of the instance library: river group (4/4).
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