
HAL Id: hal-04538264
https://hal.science/hal-04538264v1

Submitted on 9 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fediscount: Shopping Online at a Federated Store Using
FedUP as SPARQL Federation Engine

Julien Aimonier-Davat, Minh-Hoang Dang, Pascal Molli, Brice Nédelec, Hala
Skaf-Molli

To cite this version:
Julien Aimonier-Davat, Minh-Hoang Dang, Pascal Molli, Brice Nédelec, Hala Skaf-Molli. Fediscount:
Shopping Online at a Federated Store Using FedUP as SPARQL Federation Engine. The ACM Web
Conference (WWW ’24), May 2024, Singapore, Singapore. �10.1145/3589335.3651249�. �hal-04538264�

https://hal.science/hal-04538264v1
https://hal.archives-ouvertes.fr

Fediscount: Shopping Online at a Federated Store
Using FedUP as SPARQL Federation Engine

Julien Aimonier-Davat
julien.aimonier-davat@ls2n.fr

Nantes Université, CNRS, LS2N
F-44000, Nantes, France

Minh-Hoang Dang
minh-hoang.dang@ls2n.fr

Nantes Université, CNRS, LS2N
F-44000, Nantes, France

Pascal Molli
pascal.molli@ls2n.fr

Nantes Université, CNRS, LS2N
F-44000, Nantes, France

Brice Nédelec
brice.nedelec@ls2n.fr

Nantes Université, CNRS, LS2N
F-44000, Nantes, France

Hala Skaf-Molli
hala.skaf@ls2n.fr

Nantes Université, CNRS, LS2N
F-44000, Nantes, France

Abstract

Processing SPARQL queries over large federations of SPARQL endpoints is essential for maintaining the Se-
mantic Web decentralized. However, existing federation engines struggle to query more than a dozen of endpoints.
We recently proposed FedUP, a new type of federation engine based on unions-over-joins query plans that outper-
forms state-of-the-art federation engines by orders of magnitude on large federations. This demonstration paper
introduces Fediscount, a federated online shopping application based on the FedShop benchmark, illustrating the
capabilities of FedUP. The application is based on standard Semantic Web technologies, enabling end-users to shop
online in a virtual federated store comprising 20, 100, or even 200 SPARQL endpoints. This breakthrough opens
up promising new avenues for developing and deploying federated applications.

1 INTRODUCTION

Processing SPARQL queries over large federations of
SPARQL endpoints is crucial for maintaining the Semantic
Web decentralized. Unfortunately, despite the existence of
hundreds of SPARQL endpoints [5, 6, 11], existing state-
of-the-art federation engines [8, 9, 10] only scale up to
dozens [4].

FedUP [1] is a new type of federation engine that outper-
forms existing engines by orders of magnitude on the Fed-
Shop benchmark [4]. Unlike traditional federation engines,
which build joins-over-unions query plans [3], FedUP builds
unions-over-joins query plans where each subquery returns
results. When processing queries, unions-over-joins query
plans enable a drastic reduction in the size of intermediate
results through more intensive uses of exclusive groups [10].
While SPARQL federation engines were traditionally con-
fined to querying a dozen of knowledge graphs as in Larg-
eRDFBench [7], the performance improvements offered by
FedUP open new perspectives for federated query processing.

In this demonstration, we present Fediscount: a federated
online shopping application powered by FedUP. Fediscount
is based on the FedShop federated benchmark [4]. Like Fed-
Shop, Fediscount considers autonomous e-commerce ven-

©2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record
was published in Companion Proceedings of the ACM Web Conference
2024 (WWW ’24 Companion), May 13–17, 2024, Singapore, Singapore,
https://doi.org/10.1145/3589335.3651249.

dors who sell products using SPARQL endpoints as back-
ends. A federated store is a virtual store defined as a feder-
ation of vendor SPARQL endpoints. The federation engine
gives the illusion that all shops belong to the same virtual
store, enabling end-users to search and browse all products
supplied by all shops. During the demonstration, users can
explore a federated store of 20, 100 and 200 shops and ob-
serve the effect of changing the federation on the application.
We have also integrated a feature for visualizing unions-over-
joins query plans, allowing users to see the plans and execu-
tion times of all queries used in the application. To the best of
our knowledge, this is the first presentation of such a feder-
ated application. Fediscount represents just a single example
within a larger class of applications that can be realized using
federation engines.

This paper is organized as follows: Section 2 presents
basic notions of federation engines and the key elements of
FedUP. Section 3 provides the necessary steps to create the
tiny quotient summaries on which is relying FedUP. Section 4
details the characteristics of Fediscount, i.e., its data, queries,
and different deployments. Section 5 concludes and outlines
future work and perspectives.

2 FEDUP: A SPARQL FEDERATION ENGINE

We illustrate the key idea of FedUP [1] on the federation
F1 with 4 SPARQL endpointsD1,D2,D3, andD4 as follows:

Companion Proceedings of The ACMWeb Conference (WWW ’24 Companion) draft

julien.aimonier-davat@ls2n.fr
minh-hoang.dang@ls2n.fr
pascal.molli@ls2n.fr
brice.nedelec@ls2n.fr
hala.skaf@ls2n.fr
https://doi.org/10.1145/3589335.3651249

draft Companion Proceedings of The ACMWeb Conference (WWW ’24 Companion)

http://D1/Scorpions foaf:name “Scorpions” @http://D1
http://D1/Scorpions foaf:based near http://D2/Hanover @http://D1
http://D2/Hanover geo:parentFeature http://D2/Germany @http://D2
http://D2/Germany geo:names “Federal...Germany” @http://D2
http://D3/Kraftwerk foaf:based near http://D4/Berlin @http://D3
http://D3/Kraftwerk foaf:name “Kraftwerk” @http://D3
http://D4/Berlin geo:parentFeature http://D4/Germany @http://D4
http://D4/Germany geo:names “Federal...Germany” @http://D4

The query S6 from LargeRDFBench [7] requests the
bands that come from the Federal Republic of Germany. It has
4 triple patterns tp1, tp2, tp3, and tp4. The notation tpi@Dj

means that the triple pattern tpi must be evaluated on the end-
point Dj :
SELECT * WHERE {

?artist foaf:name ?name . #tp1@D1,D3
?artist foaf:based_near ?location . #tp2@D1,D3
?location geo:parentFeature ?germany . #tp3@D2,D4
?germany geo:name "Federal...Germany" . } #tp4@D2,D4

The execution of such a query S6 over the federation F1 re-
turns 2 results comprising “Scorpions” and “Kraftwerk”:

?artist ?name ?location ?germany
µ1 http://D1/Scorpions Scorpions http://D2/Hanover http://D2/Germany
µ2 http://D3/Kraftwerk Kraftwerk http://D4/Berlin http://D4/Germany

To execute S6 over F1, a traditional federation engine
builds a logical joins-over-unions query plan composed of a
root multi-join operator (▷◁) with multi-union (∪) operators
as children. It produces the minimal query plan S6j where
removing any element of multi-unions suppresses a result of
S6:

S6j = ▷◁ { ∪ {tp1@D1, tp1@D3},
∪ {tp2@D1, tp2@D3},
∪ {tp3@D2, tp3@D4},
∪ {tp4@D2, tp4@D4}}

By applying the distributive property of joins over unions
on S6j , we obtain an equivalent Normalized unions-over-
joins query plan, named N(S6j):
N{S6j} = ∪{ ▷◁ {tp1@D1, tp2@D1, tp3@D2, tp4@D2},

▷◁ {tp1@D1, tp2@D1, tp3@D2, tp4@D4}, (is ∅)

▷◁ {tp1@D1, tp2@D1, tp3@D4, tp4@D2}, (is ∅)

▷◁ {tp1@D1, tp2@D1, tp3@D4, tp4@D4}, (is ∅)

▷◁ {tp1@D1, tp2@D3, tp3@D2, tp4@D2}, (is ∅)

▷◁ {tp1@D1, tp2@D3, tp3@D2, tp4@D4}, (is ∅)

▷◁ {tp1@D1, tp2@D3, tp3@D4, tp4@D2}, (is ∅)

▷◁ {tp1@D1, tp2@D3, tp3@D4, tp4@D4}, (is ∅)

▷◁ {tp1@D3, tp2@D1, tp3@D2, tp4@D2}, (is ∅)

▷◁ {tp1@D3, tp2@D1, tp3@D2, tp4@D4}, (is ∅)

▷◁ {tp1@D3, tp2@D1, tp3@D4, tp4@D2}, (is ∅)

▷◁ {tp1@D3, tp2@D1, tp3@D4, tp4@D4}, (is ∅)

▷◁ {tp1@D3, tp2@D3, tp3@D2, tp4@D2}, (is ∅)

▷◁ {tp1@D3, tp2@D3, tp3@D2, tp4@D4}, (is ∅)

▷◁ {tp1@D3, tp2@D3, tp3@D4, tp4@D2}, (is ∅)

▷◁ {tp1@D3, tp2@D3, tp3@D4, tp4@D4}}

However, most N(S6j) multi-joins return empty results.
After Pruning empty multi-joins, we obtain the simplified
unions-over-joins query plan P (N(S6j)):

P (N(S6j) = ∪{ ▷◁ {tp1@D1, tp2@D1, tp3@D2, tp4@D2},
▷◁ {tp1@D3, tp2@D3, tp3@D4, tp4@D4}}

As several triple patterns share the same endpoints in multi-
joins, we apply the Exclusive Group optimization [10] and ob-
tain the final S6u = EG(P (N(S6j))) logical query plan:

S6u = ∪{ ▷◁ {▷◁ {tp1, tp2}@D1, ▷◁ {tp3, tp4}@D2}
▷◁ {▷◁ {tp1, tp2}@D3, ▷◁ {tp3, tp4}@D4}}

When we compare the number of calls to endpoints, S6j
makes 8 calls to endpoints, whereas S6u makes only 4 calls to
endpoints, i.e., S6u is a better logical query plan forS6 onF1.
Unfortunately, transforming S6j into S6u may generate an
exponential number of multi-joins that must be pruned. The
converse is false: transforming S6u into S6j is straightfor-
ward. This highlights the gap in information between a joins-
over-unions and the corresponding unions-over-joins query
plan. Unions-over-joins query plans encode more informa-
tion than joins-over-unions ones.

To avoid the costly normalise-and-prune step, FedUP
(i) evaluates S6 over the federation F1, (ii) tracks the prove-
nance of every result, (iii) and extracts the unions-of-joins log-
ical plan from the provenance of these results [1].

To illustrate, consider the 2 mappings resulting from the
execution of Query S6 on the federation F1, and replace
the values by their provenance and the variables by their
corresponding triple patterns, e.g., http://D1/Scorpions
comes from Endpoint D1 and ?artist is produced by tp1.
If we apply this simple rule to all results, we obtain a table
that indicates the endpoint where each triple pattern has to
be evaluated:

tp1 tp2 tp3 tp4
µ1 http://D1 http://D1 http://D2 http://D2
µ2 http://D3 http://D3 http://D4 http://D4

We observe that a row corresponds to the multi-joins of a
unions-over-joins query plan (P (N(S6j))), while a column
corresponds to the multi-unions of a joins-over-unions query
plan (S6j).

Although extracting query plans from results looks ap-
pealing, this introduces a vicious cycle: building the logical
plan requires query results, and getting query results requires
the execution of a logical plan. To tackle this issue, FedUP ex-
tracts query plan from results obtained over a tiny quotient
summary of the federation rather than the federation itself.

3 FEDUP’S SUMMARIES

FedUP’s summaries are inspired by HiBISCuS’ [8]: for
each triple (subject, predicate, object) of the federation, FedUP
only keeps the authority of subject or object IRIs (e.g.,
http://vendor1/Product2 becomes http://vendor1),
and replaces any literal by “any” (e.g., “Federal Republic of
Germany” becomes “any”). FedUP builds its quotient sum-
mary by executing the queryQs over the federation members:
CONSTRUCT { ?ps ?p ?po } WHERE {

?s ?p ?o . FILTER ISIRI(?s)
BIND(URI(REPLACE(STR(?s), "^(https?://?.*?)/.*", "$1")) AS ?ps)
BIND(IF(ISIRI(?o),

URI(REPLACE(STR(?o),
"^(https?://?.*?)/.*", "$1")),"any") AS ?po)}

draft Companion Proceedings of The ACMWeb Conference (WWW ’24 Companion)

g
user1

share-nothing

g
user2

share-summary

g
user3

share-all

vendor1
2

vendori
2

vendor200
2

Fediscount

 Summary 3 FedUP

Fediscount

3 FedUP Fediscount

 Summary 3 FedUP

Figure 1: Some application deployments of Fediscount. Dot-
ted arrows represent construct queries of summaries. Dashed
arrows represent remote queries or subqueries.

By executing Qs on each SPARQL endpoint of F1, FedUP
builds the summary S(F1):

http://D1 foaf:name any http://D1
http://D1 foaf:based near http://D2 http://D1
http://D2 geo:parentFeaturehttp://D2 http://D2
http://D2 geo:names any http://D2
http://D3 foaf:based near http://D4 http://D3
http://D3 foaf:name any http://D3
http://D4 geo:parentFeaturehttp://D4 http://D4
http://D4 geo:names any http://D4

To evaluate S6 on S(F1), FedUP first applies the same sum-
mary function to triple patterns of S6, e.g., S(S6) turns tp4
of S6 into ?germany geo:name "any".

Using quotient summaries introduces inaccuracy, i.e.,
some multi-joins that return results on the summary may not
return results on the federation. However, the converse is
false; if there is no result in the summary, there is no result
in the federation.

4 FEDISCOUNT: FEDERATED SHOPPING

For this demonstration, we propose Fediscount1: a federated
Web application based on the use case of the FedShop bench-
mark [4]. It involves a customer navigating through a vir-
tual shop defined as a federation of SPARQL endpoints rep-
resenting vendors and rating sites. The navigation is powered
by federated SPARQL queries evaluated over the federation.
This federation gives the illusion of one single endpoint host-
ing all the different vendors. The federated SPARQL queries
retrieve products based on certain criteria, obtain more infor-
mation about products, compare products, find similar prod-
ucts, and locate product reviews. The overall schema of the
application involves vendors offering products for a price, a
time span, and delivery conditions. Rating sites provide re-
views with user comments and ratings for products. Products
themselves are described using features, product types, and
producers.

1Fediscount’s name comes from a popular French e-commerce Website.

Fediscount data We filled the vendors and rating sites end-
points using the synthetic data of FedShop2002, i.e., a config-
uration of FedShop made of 200 endpoints: 100 vendors and
100 rating sites. The dataset comprises 43,165,055 quads.
Vendors and rating sites choose products at random from a
Gaussian distribution in a shared catalog of 200,000 prod-
ucts. The full description of products with features, product
type, and producer description are replicated to all vendors to
ensure that vendors are fully autonomous.

Fediscount queries We integrated in Fediscount the 12
template queries of FedShop, i.e., we build all forms required
to instantiate template queries. For example, the “explore” use
case starts by searching for products given a product type, 2
product features and a filter parameter, as shown in the query
Q1:
SELECT DISTINCT ?product ?label WHERE {

?product rdfs:label ?label .
?product rdf:type ?localProductType .
?localProductType owl:sameAs %ProductType% .
?product bsbm:productFeature ?localProductFeature1 .
?localProductFeature1 owl:sameAs %ProductFeature1% .
?product bsbm:productFeature ?localProductFeature2 .
?localProductFeature2 owl:sameAs %ProductFeature2% .
?product bsbm:productPropertyNumeric1 ?value1 .
FILTER (?value1 > %constValue1%)

} ORDER BY ?label LIMIT 10

Once Q1 retrieved the matching products from the federa-
tion, the reference of each of these products may be used to
call the next query of the FedShop use case (e.g., provide de-
tailed information about the targeted product, or recommend
similar products).

Fediscount deployment There are several ways to deploy
Fediscount with different trade-off as depicted in Figure 1.

share-nothing: user1 runs Fediscount on the user side;
she composes her own federation, manages her summary, and
independently runs federated queries.

share-summary: user2 shares summaries with a Fedis-
count provider but runs federated queries independently. She
is not limited by Fediscount provider’s processing resources.

share-all: user3 trusts a Fediscount provider to com-
pose the federation, manage summaries, and run federated
queries. Query processing is limited by Fediscount provider’s
resources.

Fediscount summaries Summaries are computed as de-
scribed in the previous section. We provide 3 federations: one
with the first 20 endpoints, a second one with 100 endpoints,
and the last with all 200 endpoints. These summaries are ex-
tremely compact:

#quads size
FedShop200 43,165,055 12GB
10 vendors + 10 ratings 1420 261KB
50 vendors + 50 ratings 2916 520KB
100 vendors + 100 ratings 5800 1MB

2https://zenodo.org/records/8059913

draft Companion Proceedings of The ACMWeb Conference (WWW ’24 Companion)

(a) Fediscount’s keyword search Q06 returns 17 products. (b) FedUP’s plans to retrieve similar products (Q05).

Figure 2: Fediscount screenshots to search products related to “pyrenees” in a federation comprising 100 endpoints.

4.1 Live Demonstration
The demonstration code is available at https:

//github.com/GDD-Nantes/fediscount-website.
The code of FedUP is available at https://github.

com/GDD-Nantes/fedup. The datasets and queries of
FedShop are available at https://zenodo.org/records/
8339384.

A single Virtuoso server emulates the federation by host-
ing the 200 virtual endpoints representing the shops and rat-
ing sites. FedUP’s summaries are managed by Apache Jena.
The whole demonstration can run on a single computer.

From the end-user point of view, Fediscount behaves as
conventional e-commerce websites, i.e., searching for prod-
ucts, compare prices, see reviews, etc. However, when users
select larger federations of vendors and rating sites, they in-
crease the number of available offers and reviews coming
from more Fediscount shops.

Once launched, the main screen of the demonstration
looks like Figure 2. The first step is to choose which feder-
ation we explore the federated shop, i.e., 20, 100 or 200 end-
points. Next, the users have several ways to search for prod-
ucts, with keywords, product type and features, etc. For in-
stance, Figure 2a shows the result of a keyword search for
“pyrenees”. These queries return products with offers and/or
reviews from different shops and rating sites. Once a product
is selected, more detailed information is printed.

As shown in Figure 2b, we integrated into this demonstra-
tion the possibility of displaying the query plan of all queries
executed during the live performance. This allows observing
the real unions-over-joins query plans computed by FedUP
over the federation. Users can observe the different kinds
of federated queries used by Fediscount and their evolution
when the federation increases.

5 CONCLUSION

In this demonstration, we introduced Fediscount, a pioneer-
ing federated e-commerce application capable of managing
a federation of 200 shops while maintaining reasonable re-
sponse times. Fediscount is the first federated application to

exploit a federation of SPARQL endpoints, a breakthrough
facilitated by FedUP, allowing scalability across federation
sizes. This advancement demonstrates the practical feasibil-
ity of such applications and paves the way for a whole range
of new applications for federation engines.

Keeping the federation up requires obtaining and main-
taining summaries of the federation. For this demonstration,
summaries were generated through SPARQL queries target-
ing the SPARQL endpoints of vendors and rating sites. How-
ever, the practical application of this method faces challenges
due to quotas forced on public SPARQL endpoints for fair us-
age of resources. These restrictions often result in summary
queries timing out, leading to incomplete data retrieval from
public endpoints such as DBPedia or Wikidata. Nevertheless,
the support for sampling emerges as a promising direction for
computing and maintaining summaries [2].

Future work also includes better optimizations of unions-
over-joins plans. Fediscount’s visualisation tool depicts in-
credibly complex plans with many subqueries to factorize,
cache, and rank.

Acknowledgments This work is supported by the French
ANR project DeKaloG (Decentralized Knowledge Graphs)
ANR-19-CE23-0014, and the French Labex CominLabs
project MiKroloG (Microdata Knowledge Graph).

REFERENCES

[1] Julien Aimonier-Davat, Minh-Hoang Dang, Pascal Molli,
Brice Nédelec, and Hala Skaf-Molli. Fedup: Querying
large-scale federations of sparql endpoints. In The Web
Conference 2024 (WWW’2024), Singapore, May 2024.

[2] Julien Aimonier-Davat, Brice Nédelec, Minh-Hoang
Dang, Pascal Molli, and Hala Skaf-Molli. RAW-JENA:
Approximate query processing for SPARQL endpoints.
In The Semantic Web - ISWC 2023 - 22th International
Semantic Web Conference, Athens, Greece, November 6-10,
2023, Proceedings, 2023.

https://github.com/GDD-Nantes/fediscount-website
https://github.com/GDD-Nantes/fediscount-website
https://github.com/GDD-Nantes/fedup
https://github.com/GDD-Nantes/fedup
https://zenodo.org/records/8339384
https://zenodo.org/records/8339384

draft Companion Proceedings of The ACMWeb Conference (WWW ’24 Companion)

[3] Sijin Cheng and Olaf Hartig. FedQPL: A language for
logical query plans over heterogeneous federations of
RDF data sources. In the 22nd International Conference
on Information Integration and Web-Based Applications &
Services, page 436–445. Association for Computing Ma-
chinery, 2021.

[4] Minh-Hoang Dang, Julien Aimonier-Davat, Pascal Molli,
Olaf Hartig, Hala Skaf-Molli, and Yotlan Le Crom. Fed-
Shop: A benchmark for testing the scalability of SPARQL
federation engines. In The Semantic Web - ISWC 2023
- 22th International Semantic Web Conference, Athens,
Greece, November 6-10, 2023, Proceedings, 2023.

[5] Ali Hasnain, Qaiser Mehmood, and Syeda Sana
e Zainab ang Aidan Hogan. SPORTAL: profiling the
content of public SPARQL endpoints. Int. J. Semantic
Web Inf. Syst., 12(3):134–163, 2016.

[6] Pierre Maillot, Olivier Corby, Catherine Faron, Fabien
Gandon, and Franck Michel. IndeGx: A model and a
framework for indexing RDF knowledge graphs with
SPARQL-based test suits. J. Web Semant., 76:100775,
2023.

[7] Muhammad Saleem, Ali Hasnain, and Axel-

Cyrille Ngonga Ngomo. LargeRDFBench: A billion
triples benchmark for SPARQL endpoint federation. J.
Web Semant., 48:85–125, 2018.

[8] Muhammad Saleem and Axel-Cyrille Ngonga Ngomo.
HiBISCuS: Hypergraph-based source selection for
SPARQL endpoint federation. In European Semantic Web
Conference (ESWC), pages 176–191. Springer, 2014.

[9] Muhammad Saleem, Alexander Potocki, Tommaso Soru,
Olaf Hartig, and Axel-Cyrille Ngonga Ngomo. CostFed:
Cost-based query optimization for SPARQL endpoint
federation. In 14th International Conference on Semantic
Systems (SEMANTICS), pages 163–174. Elsevier, 2018.

[10] Andreas Schwarte, Peter Haase, Katja Hose, Ralf
Schenkel, and Michael Schmidt. FedX: Optimization
techniques for federated query processing on linked
data. In International Semantic Web Conference (ISWC).
Springer, 2011.

[11] Pierre-Yves Vandenbussche, Jürgen Umbrich, Luca Mat-
teis, Aidan Hogan, and Carlos Buil-Aranda. SPARQLES:
Monitoring public SPARQL endpoints. Semantic web,
8(6):1049–1065, 2017.

	Introduction
	FedUP: A SPARQL Federation Engine
	FedUP's Summaries
	Fediscount: Federated Shopping
	Live Demonstration

	Conclusion

