
HAL Id: hal-04538238
https://hal.science/hal-04538238v1

Submitted on 9 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FedUP: Querying Large-Scale Federations of SPARQL
Endpoints

Julien Aimonier-Davat, Minh-Hoang Dang, Pascal Molli, Brice Nédelec, Hala
Skaf-Molli

To cite this version:
Julien Aimonier-Davat, Minh-Hoang Dang, Pascal Molli, Brice Nédelec, Hala Skaf-Molli. FedUP:
Querying Large-Scale Federations of SPARQL Endpoints. The ACM Web Conference 2024 (WWW
’24), May 2024, Singapore, Singapore. �10.1145/3589334.3645704�. �hal-04538238�

https://hal.science/hal-04538238v1
https://hal.archives-ouvertes.fr

FedUP: Querying Large-Scale Federations of SPARQL Endpoints
Julien Aimonier-Davat

julien.aimonier-davat@ls2n.fr

Nantes Université, CNRS, LS2N
F-44000, Nantes, France

Minh-Hoang Dang
minh-hoang.dang@ls2n.fr

Nantes Université, CNRS, LS2N
F-44000, Nantes, France

Pascal Molli
pascal.molli@ls2n.fr

Nantes Université, CNRS, LS2N
F-44000, Nantes, France

Brice Nédelec
brice.nedelec@ls2n.fr

Nantes Université, CNRS, LS2N
F-44000, Nantes, France

Hala Skaf-Molli
hala.skaf@ls2n.fr

Nantes Université, CNRS, LS2N
F-44000, Nantes, France

Abstract

Processing SPARQL queries over large federations of SPARQL endpoints is crucial for keeping the Semantic
Web decentralized. Despite the existence of hundreds of SPARQL endpoints, current federation engines only scale
to dozens. One major issue comes from the current definition of the source selection problem, i.e., finding the
minimal set of SPARQL endpoints to contact per triple pattern. Even if such a source selection is minimal, only a few
combinations of sources may return results. Consequently, most of the query processing time is wasted evaluating
combinations that return no results. In this paper, we introduce the concept of Result-Aware query plans. This
concept ensures that every subquery of the query plan effectively contributes to the result of the query. To compute
a Result-Aware query plan, we propose FedUP, a new federation engine able to produce Result-Aware query plans
by tracking the provenance of query results. However, getting query results requires computing source selection,
and computing source selection requires query results. To break this vicious cycle, FedUP computes results and
provenances on tiny quotient summaries of federations at the cost of source selection accuracy. Experimental results
on federated benchmarks demonstrate that FedUP outperforms state-of-the-art federation engines by orders of
magnitude in the context of large-scale federations.

1 INTRODUCTION

Context and motivation Processing SPARQL queries
over large federations of SPARQL endpoints is crucial for
keeping the Semantic Web decentralized. Despite the exis-
tence of hundreds of SPARQL endpoints [14, 24], current fed-
eration engines [6, 20, 21, 23] only scale to dozens [9]. This is
a severe issue for developing an effective, usable, and decen-
tralized Semantic Web based on federation engines and fed-
erations of SPARQL endpoints.

Related work and problem Federated query processing
has 3 conceptual steps [2]: (i) source selection and query de-
composition, (ii) query optimization, and (iii) query execution.

One major issue comes from the current definition of
the source selection problem, i.e., finding the minimal set of
SPARQL endpoints to contact per triple pattern [20]. Even if
such a source selection is minimal, only a few combinations of
sources may return results. Consequently, most of the query
processing time is wasted evaluating combinations that return
no results. To illustrate, Figure 1 presents the query q05 of the

©2024 Copyright held by the owner/author(s). Publication rights li-
censed to ACM. This is the author’s version of the work. It is posted
here for your personal use. Not for redistribution. The definitive Ver-
sion of Record was published in Proceedings of the ACM Web Con-
ference 2024 (WWW ’24), May 13–17, 2024, Singapore, Singapore,
https://doi.org/10.1145/3589334.3645704.

SELECT DISTINCT ?product ?localProdLabel WHERE {
?lProd rdfs:label ?lProdLabel . #tp1 @ rs6, rs0
?lProd bsbm:productFeature ?lProdFeature . #tp2 @ rs6, rs0
?lProd bsbm:productPropertyNumeric1 ?simProperty1 . #tp3 @ rs6, rs0
?lProd bsbm:productPropertyNumeric2 ?simProperty2 . #tp4 @ rs6, rs0
?lProd owl:sameAs ?product . #tp5 @ rs6, rs0
?lProdFeature owl:sameAs ?prodFeature . #tp6 @ rs6, rs0
?lProdXYZ bsbm:productFeature ?lProdFeatureXYZ . #tp7 @ v3, v3
?lProdXYZ bsbm:productPropertyNumeric1 ?origProperty1 . #tp8 @ v3, v3
?lProdXYZ bsbm:productPropertyNumeric2 ?origProperty2 . #tp9 @ v3, v3
?lProdXYZ owl:sameAs bsbm:Product136030 . #tp10@ v3, v3
?lProdFeatureXYZ owl:sameAs ?prodFeature . #tp11@ v3, v3
FILTER (...)} ORDER BY ?lProdLabel LIMIT 5

Figure 1: Cross Domain Query q05 of FedShop [9] along with
its optimal source selection over a federation of 20 shops.

FedShop benchmark [9], along with the optimal set of sources
to contact per triple pattern [20]. First, triple patterns that
share the same single data source are merged into exclusive
groups [23], e.g., tp7 − tp11 are grouped together to be exe-
cuted on v3.
Then, the objective of the optimizer is to generate an execu-
tion plan that minimizes the number of intermediate results
and the communication costs. Thanks to heuristics and/or
statistics, it can decide a particular join order and physical op-
erators. In order to avoid huge data transfer of general predi-
cates such as the sameAs predicate in tp5 and tp6, the query
optimizer may decide to use a BoundJoin [23].
Finally, during query execution, a physical query plan for q05
that is based on the relevant sources per triple pattern and

The ACMWeb Conference (WWW ’24) draft

julien.aimonier-davat@ls2n.fr
minh-hoang.dang@ls2n.fr
pascal.molli@ls2n.fr
brice.nedelec@ls2n.fr
hala.skaf@ls2n.fr
https://doi.org/10.1145/3589334.3645704

draft The ACMWeb Conference (WWW ’24)

Table 1: Execution times of q05 using FedShop’s reference, a
state-of-the-art federation engine, and our proposal FedUP.

20 shops 200 shops
FedShop’s reference RSA [9] 50ms 1.5s
CostFed [21] 2.45s > 1h
Our proposal (FedUP) 244ms 12.4s

BoundJoin operators will check every 64 combinations of
sources, while only 2 combinations effectively return results:

(1) [rs6, rs6, rs6, rs6, rs6, rs6, v3, v3, v3, v3, v3];
(2) [rs0, rs0, rs0, rs0, rs0, rs0, v3, v3, v3, v3, v3].

As the number of useless combinations increases with feder-
ation size, state-of-the-art federation engines suffer from se-
rious performance issues as reported in Table 1. While Fed-
Shop empirically demonstrates that an engine could evaluate
q05 in less than 2s (RSA), CostFed, the best federation en-
gine on FedShop, needs 3s to finish evaluating q05 with 20
sources and more than one hour with 200 sources1. Our pro-
posal, FedUP, processes q05 in 12.4s, even on the federation
comprising 200 endpoints.

Approach and contributions In this paper, we introduce
the concept of Result-Aware query plans. It ensures that ev-
ery subquery of the query plan effectively contributes to the
results of the query. We propose FedUP, a new federation
engine that builds such plans by tracking the provenance of
query results. However, getting query results requires com-
puting source selection, while computing source selection re-
quires query results. To break this vicious cycle, FedUP com-
putes results and provenances on tiny quotient summaries [4]
of federations, but at the cost of source selection accuracy.
The contributions of this paper are the following:

• We define and formalize the concept of Result-Aware query
plans. Any federation query optimizer can safely use such a
query plan. The overall idea is to normalize the logical plan
and prune subexpressions that do not contribute to the final
results of the query.

• We describe an algorithm that computes Result-Aware
query plans while avoiding the combinatorial explosion of
normalizing logical plans. The proof of its correctness is
detailed in the appendix.

• We present the computation of quotient summaries and
detail the effective derivation of Result-Aware query plans
through the execution of our algorithm on these sum-
maries.

• We evaluate FedUP on LargeRDFBench [22] and Fed-
Shop [9]. Our experiments empirically demonstrate that:
(i) FedUP is on par with state-of-the-art federation en-
gines [21, 23] on small federations. (ii) FedUP drastically
outperforms state-of-the-art federation engines on large
federations of SPARQL endpoints.

1We stopped the execution after 1 hour.

This paper is organized as follows: Section 2 presents the
background and motivations. Section 3 defines the Result-
Aware source selection problem and presents our solution
to this problem. Section 4 presents our experimental results
conducted on federations of SPARQL endpoints. Section 5 re-
views related work about federation engines. Section 6 con-
cludes and outlines future work.

2 BACKGROUNDANDMOTIVATIONS

We assume that the reader is familiar with the concepts of
RDF and core SPARQL [12, 17], i.e., triple patterns (tp), basic
graph patterns (BGP), AND, UNION, FILTER, and OPTIONAL

graph patterns.

Definition 1 (SPARQL Federation [7, 13]). A SPARQL feder-
ation F is a set of federation members (G, Isparql) whereG
is an RDF graph and Isparql is a SPARQL endpoint interface
to accessG.

Definition 2 (Federated Query Evaluation [7]). The evalua-
tion JQKF of a federated queryQ over a federation F is a set
of solutions mappings defined as JQKF = JQKGunion where
Gunion =

⋃
(G, I)∈F G.

Example 1 (QueryS6over FederationF1). Consider the fed-
eration F1 in Figure 2 and the query S6 from FedBench [22].
S6 returns the names of artists located near the Federal Re-
public of Germany:
SELECT * WHERE {

?artist foaf:name ?name . #tp1 @ D1, D3
?artist foaf:based_near ?location . #tp2 @ D1, D3
?location geo:parentFeature ?germany . #tp3 @ D2, D4
?germany geo:name "Federal Republic of Germany" . } #tp4 @ D2, D4

The evaluation of S6 over F1 returns 2 solutions mappings:
?artist ?name ?location ?germany

µ1 http://D1/Scorpions Scorpions http://D2/Hanover http://D2/Germany
µ2 http://D1/Kraftwerk Kraftwerk http://D4/Berlin http://D4/Germany

To retrieve such results, one major challenge for federa-
tion engines consists in solving the source selection problem, i.e.,
finding the minimal set of federation members to contact for
each triple pattern of the query.

Problem 1 (BGP-Aware Source Selection [20]). Let Q be a
SPARQL query and F a federation, find the minimal set of
federation members R(tp) ⊆ F for each triple pattern tp ∈
Qwhere ∀(G, I) ∈ R(tp),∃µ ∈ JQKF such thatµ(tp) ∈ G.

The source selection result can be represented as a
FedQPL expression [7, 8]. FedQPL is a language to represent
logical query plans over heterogeneous federations.

Definition 3 (FedQPL expression [7, 8]). A FedQPL expres-
sion is an expression φ that can be constructed from the fol-
lowing grammar, in which req, filter, mj, mu, and leftjoin are
terminal symbols, tp is a triple pattern, f is a federation mem-
ber,R is a SPARQL filter condition, and Φ is a non-empty set
of FedQPL expressions.

φ ::= reqtpf | filterR(φ) | muΦ | mjΦ | leftjoin(φ,φ)

draft The ACMWeb Conference (WWW ’24)

http://D1 http://D2

“Scorpions” D1:Scorpions

foaf:name

D2:Hanover

foaf:based near

D2:Germany

geo:parentFeature

“Federal Republic
of Germany”

geo:names

http://D3
http://D4

“Kraftwerk” D3:Kraftwerk

foaf:name

D4:Berlin

foaf:based near

D4:Germany

geo:parentFeature

“Federal Republic
of Germany”

geo:names

#tp1 #tp2 #tp3 #tp4

Figure 2: Federation F1 with 4 endpoints storing information about Scorpions and Kraftwerk, 2 bands from Germany.

mj

mu

reqtp1D1
reqtp1D3

mu

reqtp2D1
reqtp2D3

mu

reqtp3D2
reqtp3D4

mu

reqtp4D2
reqtp4D4

Scorpions Kraftwerk

(a) S6j : The joins-over-unions logical plan fails to capture the rela-
tionship between bindings.

mu

mj

reqtp1D1
reqtp2D1

reqtp3D2
reqtp4D2

mj

reqtp1D3
reqtp2D3

reqtp3D4
reqtp4D4

Scorpions Kraftwerk

(b) S6u The unions-over-joins logical plan provides 2 subtrees ac-
curately capturing the 2 combinations required to create the results.

Figure 3: Logical plans for Query S6 over the federation F expressed in FedQPL Language.

Definition 4 (FedQPL semantics [7, 8]). Let φ be a FedQPL
expression, the solutions mappings obtained with φ, denoted
by sols(φ), is a set of solutions mappings that is defined recur-
sively as follows:
(1) If φ is of the form reqtpf , then sols(φ) = JtpKf
(2) If φ is of the form filterR(φ′), then

sols(φ′) = {µ | µ ∈ sols(φ′) ∧ µ ⊨ R}
(3) If φ is of the form mjΦ where Φ = {φ1, · · · , φn}, then

sols(φ) = sols(φ1) ▷◁ · · · ▷◁ sols(φn)
(4) If φ is of the form muΦ where Φ = {φ1, · · · , φn}, then

sols(φ) = sols(φ1) ∪ · · · ∪ sols(φn)
(5) If φ is of the form leftjoin(φ1, φ2), then

sols(φ) = sols(φ1)d|><| sols(φ2)

Example 2 (Joins-over-unions logical plans). The minimal
source selection of the query S6 over the federation F1 is
R(tp1) = {D1, D3}, R(tp2) = {D1, D3}, R(tp3) =
{D2, D4}, and R(tp4) = {D2, D4}. By default, such
a source selection is represented as a joins-over-unions
FedQPL expression as depicted in Figure 3a:

S6j = mj {mu {reqtp1D1
, reqtp1D3

},mu {reqtp2D1
, reqtp2D3

},

mu {reqtp3D3
, reqtp3D2

},mu {reqtp4D2
, reqtp4D4

}}

To evaluate S6j , federation engines generate at least as
many SERVICE queries as the number of req in S6j . Gather-
ing req in exclusive groups constitutes a major performance
improvement as it lowers the number of SERVICE queries,
pushing more computation on SPARQL endpoints. However,
federation engines cannot apply such an optimization onS6j .

The main issue with the current definition of source se-
lection is that important information is missing. Based on the
results ofS6, the evaluation of the queryS6 only requires two
series of joins: {tp1 → D1, tp2 → D1, tp3 → D2, tp4 →

D2} for µ1, and {tp1 → D3, tp2 → D3, tp3 → D4, tp4 →
D4} for µ2. However, with unions (mu) under joins (mj), this
information is hidden from the query optimizer, preventing it
from considering other options, and potentially finding bet-
ter plans. All existing federation engines generate such joins-
over-unions plans [7]. By design, they remain blind to many
optimizations that their counterpart, unions-over-joins, can
perform.

Example 3 (Unions-over-joins logical plans). Using the re-
sults of S6 over F1, an alternative to S6j is the unions-over-
joins FedQPL expression S6u depicted in Figure 3b:

S6u = mu {mj {reqtp1D1
, reqtp2D1

, reqtp3D2
, reqtp4D2

},

mj {reqtp1D3
, reqtp2D3

, reqtp3D4
, reqtp4D4

}}

UsingS6u, federation engines only evaluate joins that actually
contribute to the final results of S6. Moreover, S6u allows
federation engines to identify more exclusive groups than
S6j . For example, triple patterns tp1 and tp2 are grouped
together, as well as tp3 and tp4:

S6′u = mu {mj {reqtp1,tp2D1
, reqtp3,tp4D2

},

mj {reqtp1,tp2D3
, reqtp3,tp4D4

}}

In summary, the current source selection definition hides
important information about which sources should be com-
bined to find results. With just a set of relevant sources per
triple pattern, it is impossible to know which combinations
of sources contribute to the final query results. Consequently,
many valuable query plans such asS6u remain invisible to the
query optimizer. This problem is at the origin of the poor
performance of current federation engines on the FedShop
benchmark [9]. Solving this problem requires defining a new
kind of source selection able to reveal the relevant combina-
tion of sources.

draft The ACMWeb Conference (WWW ’24)

3 FEDUP: ARESULT-AWAREQUERYENGINE

In this section, we introduce our approach to build a Result-
Aware federation engine. We consider a federation F and
a core SPARQL query Q composed of BGP patterns with
UNION, FILTER, OPTIONAL. In the following, we rely on set-
based semantics of SPARQL [17].

As stated in the previous section, the existing source selec-
tion does not reveal which combinations of relevant sources
effectively produce results. Without this information, some
classes of query plans cannot be explored, such as unions-
over-joins query plans. A first step to generate a unions-over-
joins query plan is to rewrite φ using equivalence rules.

Definition 5 (Equivalence rules [7, 17]). Let φ1, φ2, and φ3

be FedQPL expressions that are valid for F . It holds that2:

(R1) join(φ1, φ2)
F≡ join(φ2, φ1);

(R2) union(φ1, φ2)
F≡ union(φ2, φ1);

(R3) union(φ1, φ1)
F≡ φ1;

(R4) join(φ1, join(φ2, φ3))
F≡ join(join(φ1, φ2), φ3);

(R5) union(φ1, union(φ2, φ3))
F≡ union(union(φ1, φ2), φ3);

(R6) join(φ1, union(φ2, φ3))
F≡ union(join(φ1, φ2), join(φ1, φ3));

(R7) leftjoin(union(φ1, φ2), φ3)
F
≡ union(leftjoin(φ1, φ3), leftjoin(φ2, φ3)).

To illustrate, by applying the equivalence rules [R1−R7]
to S6j of Example 2, we generate a unions-over-joins query
S6′j :

S6′j = mu {mj {reqtp1D1
, reqtp2D1

, reqtp3D2
, reqtp4D2

},
. . .× 14

mj {reqtp1D3
, reqtp2D3

, reqtp3D4
, reqtp4D4

}}

However, only the first and last subexpressions contribute to
the results. When we remove the 14 useless subexpressions
that return empty results, we obtain the unions-over-joins
query plan S6u of Example 3 with only subexpressions con-
tributing to the final results of S6. Intuitively, we define the
Result-Aware source selection problem as the problem of find-
ing a unions-over-joins expression where every subexpres-
sion, i.e., expression under the root multi-union operator, re-
turns results. In that regard, both S6′j and S6u are unions-
over-joins plans but S6u is Result-Aware while S6′j is not.

Problem2 (Result-Aware source selection). Given a SPARQL
queryQ and a federationF , find a FedQPL expressionφ such
that φ is normalized (e.g., using [R1-R7] equivalences), and φ
is Result-Aware:

∀φ′ ⊆ φ,∃µ′ ∈ sols(φ′) such that µ′ ⊆ µ where µ ∈ JQKF

If we only consider SPARQL queries based on conjunc-
tive and disjunctive queries, the normal form of φ follows
a unions-over-joins grammar S∪(▷◁)

defined as S∪(▷◁)
=

mu {(mj {(reqtpD)
+})

+
}.

2leftjoin(φ1, union(φ2, φ3))
F
≡ union(leftjoin(φ1, φ2), leftjoin(φ1, φ3))

does not hold. See counter example in Appendix A.1.

In the presence of OPTIONAL clauses, we extend the grammar
of the unions-over-joins classS∪(▷◁)

to include the leftjoin op-
erator: 

au ::= aj | muΦu
aj ::= ab | mjΦb | leftjoin(aj , au)
ab ::= reqtpD

As a Result-Aware source selection is normalized, then
pruned of its useless subexpressions, some subexpressions
may appear several times in φ. We assume that the factor-
ization of such duplicated subexpressions is a task that falls to
query optimizers.

3.1 Providing Result-Aware Source Selection
The normalize-then-prune algorithm to implement Result-
Aware source selection introduces combinatorial explosions
as illustrated by S6′j . To alleviate this issue, we propose an
algorithm that iteratively builds relevant subexpressions in-
stead of pruning useless ones.

Algorithm 1: Result-Aware source selection A for
a SPARQL queryQ over a federation F .
1 FunctionA(Q,F): ▷ Root of the logical plan
2 return muA′(Q,F)

3 FunctionA’(Q,F): ▷ Explores every graph pattern Q
4 Φo ← ∅
5 if Q is a triple pattern tp then
6 Φo ← Φo ∪ {reqtpf | f ∈ F}
7 else if Q is (P1 AND P2) then ▷ P1 ▷◁ P2

8 Φ1,Φ2 ← A′(P1, F),A′(P2, F)
9 Φo ← Φo ∪ {mj {φ1, φ2} | φ1 ∈ Φ1 ∧ φ2 ∈ Φ2}

10 else if Q is (P1 UNION P2) then ▷ P1 ∪ P2

11 Φ1,Φ2 ← A′(P1, F),A′(P2, F)
12 Φo ← Φo ∪ {φ | φ ∈ Φ1 ∨ φ ∈ Φ2}
13 else if Q is (P1 OPTIONAL P2) then ▷ P1d|><| P2

14 Φ1,Φ2 ← A′(P1, F),A′(P2, F)
15 for φ1 ∈ Φ1 do
16 Φ

φ1
join ← {φ2 | φ2 ∈ Φ2 ∧ sols(mj{φ1, φ2}) ̸= ∅}

17 if Φφ1
join = ∅ then Φo ← Φo ∪ {φ1}

18 else Φo ← Φo ∪ {leftjoin(φ1,muΦφ1
join)}

19 else if Q is (P FILTERR) then
20 Φ← A′(P, F)
21 Φo ← Φo ∪ {filterR(φ) | φ ∈ Φ}
22 return {φ | φ ∈ Φo ∧ sols(φ) ̸= ∅}

Algorithm 1 builds a Result-Aware source selection plan
for a query Q over a federation F based on a set of recursive
rules. The algorithm is designed with 2 main ideas:
1. Build a unions-over-joins logical plan;
2. Keep only expressions that contribute to the final results

of the query.
To reach this objective, the algorithm evaluates the query on
the federation, extracts the provenance of solutions mappings,
and produces a Result-Aware FedQPL expression. To ensure
that every produced φ expression is based on results, it relies
on sols(φ) as a function that returns the mappings resulting
in the evaluation of the expression φ over F . Proofs of cor-
rectness, completeness, and result-awareness are available in
Appendix A.2.

draft The ACMWeb Conference (WWW ’24)

mu

leftjoin

reqtp1D1
mj

reqtp2D2
reqtp3D2

leftjoin

reqtp1D3
mj

reqtp2D4
reqtp3D4

Figure 4: Logical plan for Query S7 with OPTIONAL.

We illustrate this algorithm on Query S6 of Example 2
over the federation F1 of Figure 2. First, the algorithm
merges all upcoming subexpressions with a multi-union at
Line 1. Then, it enters Line 7 with (tp1 AND (tp2 AND (tp3
AND tp4))). Line 3 states that evaluating tp3 and tp4 both
returns {reqtpD2

, reqtpD4
}. Then, Line 22 checks that their in-

tersections return mappings. Here, mj {reqtp3D2
, reqtp4D2

} and
mj {reqtp3D4

, reqtp4D4
} indeed return mappings, but most impor-

tantly:

mj {reqtp3D2
, reqtp4D4

} = ∅

mj {reqtp3D4
, reqtp4D2

} = ∅

Only the former expressions are kept, the latter ones are dis-
carded. After applying the joining rule for every triple pattern
and simplifying nested multi-join expressions, we obtain Fig-
ure 3b’s expected plan:

mu {mj {reqtp1D1
, reqtp2D1

, reqtp3D2
, reqtp4D2

},

mj {reqtp1D3
, reqtp2D3

, reqtp3D4
, reqtp4D4

}}

The 4 exclusive groups are easily identified: tp1.tp2 at D1

andD3, tp3.tp4 atD2 andD4.

Example 4 (Optional Query S7 over Federation F1).
To illustrate Result-Aware query plan in the presence of
OPTIONAL, we consider the query S7:
SELECT * WHERE {

?artist foaf:based_near ?location . #tp1
OPTIONAL {

?location geo:parentFeature ?germany . #tp2
?germany geo:name "Federal Republic of Germany" }} #tp3

For such a query S7, and as depicted in Figure 4, Algorithm 1
produces a multi-union of two left joins:

S7u = mu {leftjoin(reqtp1D1
,mu {mj {reqtp2D2

, reqtp3D2
}}),

leftjoin(reqtp1D3
,mu {mj {reqtp2D4

, reqtp3D4
}})}

Line 16 ensures that expressions representing the OPTIONAL
clauses are Result-Aware. The evaluation of S7u on F1 re-
turns the expected results.

3.2 FedUP on Summaries
FedUP introduces a vicious cycle: its source selection requires
query results, and query results require computing source se-
lection. To tackle this issue, we execute Algorithm 1 and
sols(φ) on a tiny quotient summary [4, 5] of the federation.

Definition 6 (Quotient RDF summary [5]). Given an RDF
graph G and an RDF node equivalence relation ψ, the sum-
mary ofG by ψ, which is an RDF graph denoted ψ(G), is the
quotient ofG by ψ.

Quotient summaries have many interesting properties
that are relevant in the context of the source selection prob-
lem. First, queries that have answers on F also have answers
onψ(F), enabling FedUP to ensure complete results. Abusing
notation, ψ(F) is the quotient summary of F , i.e., the federa-
tion obtained by replacing all RDF graphsG in F by the quo-
tient summary of G. Second, quotient summaries are RDF
graphs. The source selection algorithm is the same whether
it is executed over the federation or a quotient summary of
the federation. Finally, quotient summaries preserve edges
in graphs, increasing source selection accuracy compared to
other summaries [20, 21].

Definition 7 (Summary representativeness [5]). Given a
SPARQL query Q, a federation F , and an RDF node equiv-
alence relation ψ, if JQKF ̸= ∅ then we have Jψ(Q)Kψ(F) ̸=
∅.

FedUP uses ψh as the RDF node equivalence relation to
summarize SPARQL federations. It is defined as follows:

ψh(node) =
{

authority(node) if node is an IRI
“any” if node is a literal

ψh is based on the HiBISCuS summary [20], and replaces IRIs
by their authority and literals by “any”. It can can be expressed
as a simple CONSTRUCT SPARQL query:
CONSTRUCT { ?ps ?p ?po } WHERE {

?s ?p ?o FILTER ISIRI(?s)
BIND(URI(REPLACE(STR(?s), "^(https?://?.*?)/.*", "$1")) AS ?ps)
BIND(IF(ISIRI(?o),

URI(REPLACE(STR(?o),
"^(https?://?.*?)/.*", "$1")),"any") AS ?po)}

To illustrate, the quotient summary of the federation F1 by
ψh is a federation ψh(F1) comprising 8 quads:

http://D1 foaf:based near http://D2 http://D1
http://D1 foaf:name any http://D1
http://D2 geo:parentFeature http://D2 http://D2
http://D2 geo:names any http://D2
http://D3 foaf:based near http://D4 http://D3
http://D3 foaf:name any http://D3
http://D4 geo:parentFeature http://D4 http://D4
http://D4 geo:names any http://D4

On this simple example, both F1 and ψh(F1) have the
same size. However, in practice,ψh generates summaries that
are orders of magnitude smaller than original federations as
shown in Table 2. Although very compact, experimental re-
sults demonstrate that quotient summaries generated by ψh
allows FedUP to find efficient query plans. The intuition be-
hind ψh is that authorities alone allow federation engines to
identify the endpoints hosting the triples.

To build Result-Aware source selection, on summaries,
FedUP applies the same summary function ψh to triple pat-
terns of the input query. As ψh projects all literals on one
constant, most query filters cannot be properly evaluated and
are removed. Our motivating query S6 remains identical, ex-
cept for the literal ‘‘Federal Republic of Germany’’

draft The ACMWeb Conference (WWW ’24)

Figure 5: Query execution time of federation engines for simple and complex queries of LargeRDFBench.

Table 2: The size of the summaries of the federation engines.

FedShop20 FedShop200 LargeRDFBench
Federation 5,167,810 quads 41,821,489 quads 1,004,491,996 quads
CostFed [21] 9MB 95MB 11MB
SemaGrow [6] 1,8MB 18MB
HiBISCuS [20] 892KB 9MB 539KB
FedUP 76KB (0.6K quads) 767KB (1K quads) 705KB (6K quads)

that becomes ‘‘any’’. As the Result-Aware property is
now ensured on the summary and not on the original fed-
eration, some subexpressions of the query plan may return
empty results on the federation. However, experimental re-
sults demonstrate that query plans generated using such sum-
maries remain very efficient.

4 EXPERIMENTAL STUDY

This experimental study aims to empirically answer two ques-
tions:
(1) Does FedUP perform better than existing engines on

LargeRDFBench [19] where the federation comprises a
dozen of endpoints?

(2) Does FedUP perform better than existing engines when
the size of the federation grows up to 200 endpoints?
To conduct the experimental study, we implemented

FedUP on top of FedX [23], i.e., FedUP produces Result-
Aware source selection plans that are optimized and exe-
cuted by FedX. Similarly to many state-of-the-art federa-
tion engines [21, 23], FedUP performs an additional prun-
ing step by performing ASK queries in the presence of general
predicate with constants. The summary and ASK queries al-
low FedUP to build accurate logical plans even in large-scale
federations. Code, configurations, queries, and datasets are
available on the GitHub platform athttps://github.com/
GDD-Nantes/fedup-experiments.

4.1 Experimental Setup
We evaluated FedUP on 2 benchmarks:
(1) LargeRDFBench [19] is the most commonly used bench-

mark to evaluate the performance of federation engines [1,

6, 20, 21, 23]. The benchmark is explicitly designed to rep-
resent federated SPARQL queries on real-world datasets.
In our experiments, the workload comprises 14 simple
queries (S) and 10 complex queries (C). Each dataset is
loaded into a separate endpoint, resulting in a total of 14
endpoints. These queries cover all types of core SPARQL
operators such as UNION, OPTIONAL, and FILTER. How-
ever, LargeRDFBench cannot scale on the number of
sources.

(2) FedShop [9] is a recent benchmark that enables scaling on
the number of sources. It provides queries and datasets
from 20 endpoints up to 200 endpoints. The queries
cover all types of core SPARQL operators. The query
workload consists of 10 instances for each of the 12 tem-
plates, resulting in 120 instances. Each instance is gen-
erated by replacing placeholders in the template with ran-
domly selected values. Query templates are organized into
3 levels of source selection difficulties: Single-Domain
(SD), Multi-Domain (MD), and Cross-Domain (CD).
SD queries are restricted to a single source with no global
join variables and bound triple pattern subjects. MD
queries are assessed on multiple sources without global
join variables and unbound subjects. CD queries must be
broken down into subqueries, each evaluated on different
sources, requiring global join variables.

To run FedUP, we computed the quotient summaries for
LargeRDFBench and FedShop. Table 2 represents the size of
the summaries for each federation engine. The summaries of
FedUP remains very compact, although multiplying the size
of the federation by 10 increases the size of FedUP’s summary
by a multiplicative factor of 10 in FedShop.

For the two experiments, all federation graphs are stored
as named graphs in a single Virtuoso endpoint (Version
7.2.7.3234-pthreads).

To run our experiments, we used a local cloud instance
with Ubuntu 20.04.4 LTS, a AMD EPYC 7513-Core processor
with 16 vCPUs allocated to the VM, 1TB SSD, and 64GB of
RAM. The Virtuoso endpoint hosting the data, as well as the
federation engines, ran on the same machine.

https://github.com/GDD-Nantes/fedup-experiments
https://github.com/GDD-Nantes/fedup-experiments

draft The ACMWeb Conference (WWW ’24)

Figure 6: Query execution time of federation engines on FedShop queries for 20 and 200 endpoints.

4.2 LargeRDFBench: Parity Among Engines
In this experiment, we compared FedUP with FedX [23], Hi-
BISCuS [20] (Ask dominant), and CostFed [21] (Ask domi-
nant). We also included the SPARQL 1.1 Service queries avail-
able in the LargeRDFBench that we executed with Apache
Jena. These queries are hand-crafted with predefined source
selection.

Figure 5 presents the performance of the different en-
gines. The x-axis represents the competitors for each query,
and the y-axis displays the execution time on a logarithmic
scale. This execution time is defined as the time spent by each
federation engine from source selection to federated query ex-
ecution. Each query underwent 5 runs, and the reported mea-
surements in Figure 5 are the averages of these runs. We set a
20-minute timeout before stopping the federated query exe-
cution.

Figure 5 shows that most of the time, federation engines
yield comparable execution time. Federation engines build
logical plans that are equivalent. This is attributed to either
the simplicity of queries (20 out of 24 queries require a sin-
gle combination of sources), or their low selectivity regarding
source selection for FedUP to make a difference.

Figure 5 shows that, most notably on QueryS13, CostFed
outperforms its competitors by orders of magnitude, which
highlights the need for better join ordering: when disabled,
CostFed executes Query S13 in 10s instead of 50ms.

Overall, FedUP does not provide significant improve-
ments over state-of-the-art on LargeRDFBench. In the Larg-
eRDFBench context, joins-over-unions query plans are also
Result-Aware query plans.

4.3 FedShop: FedUP Outperforms the Others
In this experiment, we compared FedUP with FedX [23],
Semagrow [6], and CostFed [21] (Ask Dominant). Fedshop
comes with RSA queries written as SPARQL 1.1 Service
queries that we executed with Apache Jena. These queries
are hand-crafted with predefined source selection that fol-
lows unions-over-joins logical plans.

Figure 6 reports the performance of federation engines in
terms of execution time. We run the 10 configurations of Fed-
Shop but only reported results for the 20 and 200 endpoints
configurations. The x-axis denotes the query templates.

For each templated query, each bar on the x-axis repre-
sents the evaluated engine, while its height represents the av-
erage execution time of the templated queries on a logarith-
mic scale. On the left, the federation comprises 20 endpoints,
while on the right, the federation comprises 200 endpoints.
The timeout is configured for 120 seconds to align with Fed-
Shop’s focus on interactive eCommerce use cases, where end-
users expect quick answers.

Figure 6 shows that, for all queries, FedUP outperforms
its competitors from 1 to 3 orders of magnitude in terms of
execution time. On SD queries, FedUP’s summary allows it to
efficiently find the best logical plan comprising a single exclu-
sive group. FedUP built its quotient summary using the au-
thority of URIs, and since SD queries stay on a single domain,
evaluating the source selection query on this summary is fast
and accurate. Competitors find the same plan but spend most
of the time in source selection. For instance, CostFed spends
1s of source selection for 10ms of actual execution on tem-
plate q12 when there are 200 endpoints.
On MD queries, FedUP remains close to the baseline except
for q04 with 200 endpoints. Similarly to SD queries, FedUP’s
summary allows it to efficiently find the minimal set of com-
binations, each comprising a single exclusive group. The base-
line and FedUP prove that a federation engine could execute
these queries under 2s, however, competing engines present
drastically worse execution times, even reaching the 2-minute
timeout on occasions when 200 endpoints are involved. Their
source selection process is fast but builds joins-over-unions
plans that cannot be transformed into efficient physical plans:
not only do they fail to identify exclusive groups, but they cre-
ate combinations without results that still need to be checked
at execution time, hence wasting resources. For q04, FedUP
and CostFed build equivalent plans that need to check nu-
merous combinations without results, hence providing sim-
ilar performance.
On CD queries, FedUP remains close to the baseline as well.
It extensively uses ASK queries to kickstart its source selec-
tion query execution, restricting the research space of solu-
tions mappings to build its logical plans. For q07, its plans
are equivalent to the SPARQL 1.1 baseline. However, for q05,
FedUP creates plans of 200 combinations while the baseline
needs 17 combinations on average, hence spending more time
to evaluate the federated query.

draft The ACMWeb Conference (WWW ’24)

Figure 6 shows that half of the time, FedUP performs bet-
ter than the RSA SPARQL 1.1 queries. Indeed, FedUP benefits
from parallel execution, where up to 8 FedX instances are in
charge of executing subparts of the logical plan. The baseline
uses Apache Jena to evaluate its SERVICE queries and, there-
fore, does not benefit from such a feature.

Overall, FedUP outperforms state-of-the-art federations
engines by orders of magnitude. Thanks to its summary and
ASK queries, FedUP quickly produces better logical plans.
Consequently, FedUP can execute the federated query before
reaching the timeout even on large-scale federations compris-
ing up to 200 endpoints.

5 RELATEDWORK

Given a federation of SPARQL endpoints, federation engines
process SPARQL queries in three steps [2]: (i) Source selec-
tion and query decomposition, (ii) query optimization, and
(iii) query execution. In this paper, we focused on the source
selection and query decomposition step.

The source selection aims to identify the set of sources to
contact per triple pattern [21] in order to generate a logical
plan representing the federated query [7]. To perform source
selection, some federation engines such as FedX [23] or Lu-
sail [1] are “zero-knowledge” as they only require a catalog
of SPARQL endpoints to contact through ASK queries. How-
ever, most often, federation engines require the existence of
summaries computed over the federation of SPARQL end-
points [3, 6, 10, 11, 15, 16, 18, 20, 21, 25].

Without summaries, federation engines [23] are limited
to triple-pattern-wise source selection where every triple
pattern is independently associated with its list of relevant
sources to contact. Using summaries, federation engines such
as HiBISCuS [20] or CostFed [21] further reduce the size of
relevant sources by performing BGP-aware (or join-aware)
source selection, i.e., they detect and prune sources that do not
contribute to the final results of the query. FedUP operates in
a similar fashion using its tiny HiBISCuS-like summary. How-
ever, both triple-pattern-wise and BGP-aware source selec-
tion are expressed as a mapping from a triple pattern to a set
of sources. By default, they produce joins-over-unions logi-
cal plans [7]. By default, some optimal plans are unavailable to
them [7].

To alleviate this issue, we refined the source selection
problem to keep the relationship between operators and
sources. A Result-Aware source selection produced by FedUP
is a tree where every subtree under the root union produces
results. Result-Aware source selection plans provide addi-
tional interesting features: (i) the subexpressions in unions
are independent and therefore, easily parallelized for im-
proved performance as shown in Section 4.3; and (ii) triple
patterns that share a same source can be gathered in exclusive
groups [23] which is more likely to happen in Result-Aware
query plans, as shown in Figure 3b compared to Figure 3a. It is
worth noting that Lusail [1] improves the grouping of sources
by determining when join variables are local or global using
online set differences, i.e., by executing simple FILTER NOT

EXISTS queries. The Lusail grouping approach can be applied

on top of any existing source selection technique, including
Result-Aware source selection.

6 CONCLUSION

In this paper, we refined the problem of source selection
by proposing a new Result-Aware source selection problem.
Result-Aware query plans ensure that all combinations of rel-
evant sources contribute to the final results of the query. To
avoid the combinatory explosition induced by a normaliza-
tion phase of joins-over-unions query plans, we proposed to
iteratively build such Result-Aware query plans.

Building a Result-Aware query plan is driven by results;
however, query results are unavailable during source selec-
tion. We solved this issue by computing a Result-Aware query
plan on quotient summaries. Of course, summaries introduce
inaccuracies; however, the results of benchmarks demon-
strate huge performance improvements, especially when the
size of the federation grows. On the FedShop benchmark,
Result-Aware query plan outperforms traditional approaches
by an order of magnitude, offering new perspectives for fed-
erated query processing.

In future work, we plan to support other challenging
SPARQL clauses such as MINUS, and NOT EXISTS. There is
also important room for improvement for optimizing unions-
over-joins query plan. Better factorization, and better join or-
dering could improve the performance and fill the remaining
gap with RSA queries in the FedShop benchmark.

Acknowledgments This work is supported by the French
ANR project DeKaloG (Decentralized Knowledge Graphs)
ANR-19-CE23-0014, and the French Labex CominLabs
project MiKroloG (The Microdata Knowledge Graph).

REFERENCES

[1] I. Abdelaziz, E. Mansour, M. Ouzzani, A. Aboulnaga, and
P. Kalnis. Lusail: A system for querying linked data at
scale. Proc. VLDB Endow., 11(4):485–498, 2017.

[2] M. Acosta, O. Hartig, and J. Sequeda. Federated RDF query
processing, pages 1–8. Springer, Cham, 2018.

[3] M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and
E. Ruckhaus. ANAPSID: An adaptive query processing
engine for SPARQL endpoints. In 10th International Se-
mantic Web Conference (ISWC), pages 18–34, Berlin, Hei-
delberg, 2011. Springer.

[4] Š. Čebirić, F. Goasdoué, H. Kondylakis, D. Kotzinos,
I. Manolescu, G. Troullinou, and M. Zneika. Summariz-
ing semantic graphs: A survey. VLDB J., 28(3):295–327,
2019.

[5] Š. Čebirić, F. Goasdoué, and I. Manolescu. A frame-
work for efficient representative summarization of RDF
graphs. In Proceedings of the ISWC 2017 Posters & Demon-
strations and Industry Tracks co-located with 16th Inter-
national Semantic Web Conference (ISWC), volume 1963

draft The ACMWeb Conference (WWW ’24)

of CEUR Workshop Proceedings, page 4, Vienna, Austria,
2017. CEUR-WS.org.

[6] A. Charalambidis, A. Troumpoukis, and S. Konstan-
topoulos. SemaGrow: Optimizing federated SPARQL
queries. In Proceedings of the 11th International Confer-
ence on Semantic Systems, pages 121–128, New York, NY,
USA, 2015. ACM.

[7] S. Cheng and O. Hartig. FedQPL: A language for log-
ical query plans over heterogeneous federations of RDF
data sources. In the 22nd International Conference on Infor-
mation Integration and Web-Based Applications & Services,
page 436–445, New York, NY, USA, 2021. ACM.

[8] S. Cheng and O. Hartig. Towards query processing
over heterogeneous federations of RDF data sources. In
The Semantic Web: ESWC 2022 Satellite Events, pages 57–
62, Crete, Greece, 2022. Springer.

[9] M.-H. Dang, J. Aimonier-Davat, P. Molli, O. Hartig,
H. Skaf-Molli, and Y. L. Crom. FedShop: A benchmark
for testing the scalability of SPARQL federation engines.
In International Semantic Web Conference (ISWC), pages
285–301, Athens, Greece, 2023. Springer.

[10] K. M. Endris, M. Galkin, I. Lytra, M. N. Mami, M. Vi-
dal, and S. Auer. MULDER: Querying the linked data
web by bridging RDF molecule templates. In Interna-
tional Conference on Database and Expert Systems Applica-
tions (DEXA), pages 3–18, Lyon, France, 2017. Springer.

[11] O. Görlitz and S. Staab. SPLENDID: SPARQL endpoint
federation exploiting VOID descriptions. In Proceed-
ings of the Second International Conference on Consuming
Linked Data, volume 782, pages 13–24, Aachen, DEU,
2011. CEUR-WS.org.

[12] S. Harris and A. Seaborne. SPARQL 1.1 query language,
2013.

[13] L. Heling and M. Acosta. Federated SPARQL query pro-
cessing over heterogeneous linked data fragments. In
Proceedings of the ACMWeb Conference 2022, pages 1047–
1057, New York, NY, USA, 2022. ACM.

[14] P. Maillot, O. Corby, C. Faron, F. Gandon, and F. Michel.
Indegx: A model and a framework for indexing RDF
knowledge graphs with sparql-based test suits. J. Web
Semant., 76:100775, 2023.

[15] G. Montoya, H. Skaf-Molli, and K. Hose. The Odyssey
approach for optimizing federated SPARQL queries. In
International SemanticWebConference (ISWC), pages 471–
489, Vienna, Austria, 2017. Springer.

[16] G. Montoya, H. Skaf-Molli, P. Molli, and M.-E. Vidal.
Decomposing federated queries in presence of replicated
fragments. Journal of Web Semantics, 42:1–18, 2017.

[17] J. Pérez, M. Arenas, and C. Gutiérrez. Semantics and
complexity of SPARQL. ACM Transations on Database
Systems, 34(3):16:1–16:45, 2009.

[18] B. Quilitz and U. Leser. Querying distributed RDF data
sources with SPARQL. In Extended Semantic Web Confer-
ence (ESWC), pages 524–538, Tenerife, Canary Islands,
Spain, 2008. Springer.

[19] M. Saleem, A. Hasnain, and A. N. Ngomo. LargeRDF-
Bench: A billion triples benchmark for SPARQL end-
point federation. J. Web Semant., 48:85–125, 2018.

[20] M. Saleem and A.-C. N. Ngomo. HiBISCuS:
Hypergraph-based source selection for SPARQL
endpoint federation. In European Semantic Web Confer-
ence (ESWC), pages 176–191, Anissaras, Crete, Greece,
2014. Springer.

[21] M. Saleem, A. Potocki, T. Soru, O. Hartig, and A.-C. N.
Ngomo. CostFed: Cost-based query optimization for
SPARQL endpoint federation. In 14th International Con-
ference on Semantic Systems (SEMANTICS), pages 163–
174, Vienna, Austria, 2018. Elsevier.

[22] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte,
and T. Tran. FedBench: A benchmark suite for federated
semantic data query processing. In 10th International Se-
mantic Web Conference (ISWC), Lecture Notes in Com-
puter Science, pages 585–600, Bonn, Germany, 2011.
Springer.

[23] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and
M. Schmidt. FedX: Optimization techniques for feder-
ated query processing on linked data. In International
Semantic Web Conference (ISWC), pages 601–616, Bonn,
Germany, 2011. Springer.

[24] P. Vandenbussche, J. Umbrich, L. Matteis, A. Hogan, and
C. B. Aranda. SPARQLES: monitoring public SPARQL
endpoints. Semantic Web, 8(6):1049–1065, 2017.

[25] M. Vidal, S. Castillo, M. Acosta, G. Montoya, and
G. Palma. On the selection of SPARQL endpoints to effi-
ciently execute federated SPARQL queries. Trans. Large
Scale Data Knowl. Centered Syst., 25:109–149, 2016.

A APPENDIX

A.1 The Eighth Equivalence Rule
Let φ1, φ2, and φ3 be FedQPL expressions that are valid for
F . In a federation context, it does not hold that:

(R8) leftjoin(φ1, union(φ2, φ3))
F≡

union(leftjoin(φ1, φ2), leftjoin(φ1, φ3))

To illustrate, let us consider the query Qo with an
OPTIONAL and two triple patterns:
SELECT * WHERE {

?artist foaf:based_near ?location . #tp1
OPTIONAL { ?location geo:parentFeature ?germany }} #tp2

The federation F comprises 2 members f1 and f2 with 3
triples as follows:

draft The ACMWeb Conference (WWW ’24)

http://f1 http://f1/Scorpions foaf:based near http://f1/Hanover
http://f1 http://f1/Kraftwerk foaf:based near http://f2/Berlin
http://f2 http://f2/Berlin geo:parentFeature http://f2/Germany

With such a federation F and query Qo, the FedQPL expres-
sion is:

φo = leftjoin(reqtp1f1 ,mu {req
tp2
f1
, reqtp2f2 })

The evaluation JφoKF of φo over F returns:
?artist ?location ?germany

µ1 http://f1/Scorpions http://f1/Hanover
µ2 http://f1/Kraftwerk http://f2/Berlin http://f2/Germany

However, after applying the equivalence rule R8 on φo, we
get the following expression φo′ :

φo′ = mu {leftjoin(reqtp1f1 , req
tp2
f1

), leftjoin(reqtp1f1 , req
tp2
f2

)}

The evaluation of φo′ over F returns unexpected results:

?artist ?location ?germany
µ1 http://f1/Scorpions http://f1/Hanover
µ2 http://f1/Kraftwerk http://f2/Berlin http://f2/Germany
µ3 http://f1/Kraftwerk http://f2/Berlin

A.2A Returns Complete Results
Proof. Let Q be a SPARQL query and F be a federation,
A(Q,F) returns complete results if and only if ∀µ ∈
JQKF , µ ∈ sols(A(Q,F)). To demonstrate that A returns
complete results, we use the FedQPL equivalences with the
SPARQL algebra as defined in Definition 6 [7]. We proceed
by contradiction assuming that ∃µ /∈ sols(A(Q,F)), µ ∈
JQKF .
(1) IfQ is a triple pattern tp then µ /∈ sols(A(Q,F))

⇔ µ /∈
⋃
f∈F sols(reqtpf)

⇔ µ /∈
⋃
f∈F JtpKf

⇔ µ /∈ JQKF
(2) IfQ is P1 AND P2 then µ /∈ sols(A(Q,F))

⇔ µ /∈
⋃
φ1,φ2∈Φ1,Φ2

sols(mj {φ1, φ2})
⇔ µ /∈ (

⋃
φ1∈Φ1

sols(φ1)) ▷◁ (
⋃
φ2∈Φ2

sols(φ2))
⇔ µ /∈ JP1KF ▷◁ JP2KF
⇔ µ /∈ JQKF

(3) IfQ is P1 UNION P2 then µ /∈ sols(A(Q,F))
⇔ µ /∈ (

⋃
φ1∈Φ1

sols(φ1)) ∪ (
⋃
φ2∈Φ2

sols(φ2))
⇔ µ /∈ JP1KF ∪ JP2KF
⇔ µ /∈ JQKF

(4) IfQ is P1 FILTERR then µ /∈ sols(A(Q,F))
⇔ µ /∈

⋃
φ∈Φ sols(filterR(φ))

⇔ µ /∈ {µ′ | µ′ ∈
⋃
φ∈Φ sols(φ) ∧ µ′ ⊨ R}

⇔ µ /∈ {µ′ | µ′ ∈ JP1KF ∧ µ′ ⊨ R}
⇔ µ /∈ JQKF

(5) IfQ is P1 OPTIONAL P2 then µ /∈ sols(A(Q,F))
⇔ µ /∈

⋃
φ1∈Φ1

leftjoin(φ1,Φ
φ1

join)
⇔ µ /∈ (X ∪ ((

⋃
φ1∈Φ1

sols(φ1)) \X))
⇔ µ /∈ (Y ∪ ((

⋃
φ1∈Φ1

sols(φ1)) \ Y))
⇔ µ /∈ (JP1 ▷◁ P2KF ∪ (JP1KF \ JP1 ▷◁ P2KF))
⇔ µ /∈ JQKF
Φφ1

join = {φ2 | φ2 ∈ Φ2 ∧ sols(mj {φ1, φ2}) ̸= ∅}

X =
⋃
φ1∈Φ1

sols(mj {φ1,mu {Φφ1

join}})
Y =

⋃
φ1∈Φ1

sols(mj {φ1,mu {φ2 | φ2 ∈ Φ2}})
Therefore, A returns complete results.

A.3A Returns Correct Results
Proof. Let Q be a SPARQL query and F be a federa-
tion, A(Q,F) returns correct results if and only if ∀µ ∈
A(Q,F), µ ∈ JQKF . The proof of correctness is analogous
to the proof of completeness in Appendix A.2.

A.4A Returns Result-Aware Expressions
Proof. Let Q be a SPARQL query and F be a federation such
that JQKF ̸= ∅. Let φ = A(Q,F) be a FedQPL expression
that is not Result-Aware. Consequently, there exists φ′ ⊆ φ
such that φ′ does not contribute to JQKF .

(1) IfQ is a triple pattern tp,φ is not Result-Aware if there ex-
istsφ′ inΦTP such that sols(φ′) = ∅, which is impossible
by definition of ΦTP . Consequently, φ is Result-Aware.

(2) IfQ is P1 AND P2, φ is not Result-Aware if:
(A) there existsφ′ inΦJOIN such that sols(φ′) = ∅, which

is impossible by definition of ΦJOIN.
(B) there exists φ1 in Φ1 such that φ1 does not con-

tribute to JQKF . If φ1 ⊂ φ, there exists φjoin =
mj {φ1, φ2} in ΦJOIN. By definition, if sols(φjoin) ̸=
∅, both φ1 and φ2 contribute to sols(φjoin). As φjoin
contributes to JQKF , φ1 also contributes to JQKF .

(C) there exists φ2 in Φ2 such that φ2 does not con-
tribute to JQKF . For the same reason as φ1, if φ2 ⊂
φ, φ2 contributes to JQKF .

(D) there exists φ′ ⊂ φ1 where φ1 ∈ Φ1 such that φ1

contributes to JQKF but φ′ does not. By induction,
we assume that A(P1, F) generates a Result-Aware
FedQPL expression. As A(P1, F) = mu Φ1, all
FedQPL expressions and subexpressions in Φ1 con-
tribute to JP1KF . As φ1 contributes to JQKF , all
subexpressions φ′ ⊂ φ1 also contributes to JQKF .

(E) there exists φ′ ⊂ φ2 where φ2 ∈ Φ2 such that φ2

contributes to JQKF , butφ′ does not. Using the same
reasoning as for φ′ ⊂ φ1, we demonstrate that all
subexpressions φ′ ⊂ φ2 contributes to JQKF .

As a result, ifQ is P1 AND P2, there does not exist φ′ ⊂ φ
such that φ′ does not contribute to JQKF , consequently,
φ is Result-Aware.

(3) IfQ is P1 OPTIONAL P2, φ is not Result-Aware if:
(A) there existsφ′ inΦOPT such that sols(φ′) = ∅, which

is impossible by definition of ΦOPT.
(B) there exists φ1 ∈ Φ1 such that φ1 does not con-

tribute to JQKF . If φ1 ⊂ φ, there are two cases:
i. φ1 ∈ ΦOPT \ Φ1. In this case, there exists
φopt = leftjoin(φ1,mu Φ

φ1

join) in ΦOPT. By definition,
if sols(φopt) ̸= ∅, φ1 contributes to JQKF . ii. φ1 ∈
ΦOPT ∩ Φ1. In this case, φ1 contributes to JQKF by
definition of ΦOPT.

draft The ACMWeb Conference (WWW ’24)

(C) there exists φ2 ∈ Φ2 such that φ2 does not con-
tribute to JQKF . If φ2 ⊂ φ, there exists φopt =
leftjoin(φ1,muΦ

φ1

join) inΦOPT such thatφ2 ∈ Φφ1

join. By
definition, ifφ2 ∈ Φφ1

join then sols(mj {φ1, φ2}) ̸= ∅,
and φ2 contributes to sols(φopt). Consequently, φ2

contributes to JQKF .
(D) there exists φ′ ⊂ φ1 where φ1 ∈ Φ1 such that φ1

contributes to JQKF butφ′ does not. Using the same
reasoning as for φ′ ⊂ φ1 when Q is P1 AND P2, we
demonstrate that all subexpressions φ′ ⊂ φ2 con-
tributes to JQKF whenQ is P1 OPTIONAL P2.

(E) there exists φ′ ⊂ φ2 where φ2 ∈ Φ2 such that
φ2 contributes to JQKF but φ′ does not. We use the
same reasoning as for φ′ ⊂ φ1.

As a result, if Q is P1 OPTIONAL P2, there does not exist
φ′ ⊂ φ such that φ′ does not contribute to JQKF , conse-
quently, φ is Result-Aware.

(4) IfQ is P1 FILTERR, φ is not Result-Aware if:
(A) there exists φ′ in ΦFILTER such that sols(φ′) = ∅,

which is impossible by definition of ΦFILTER.
(B) there exists φ′ in Φ such that φ′ does not contribute

to JQKF . If φ′ ⊂ φ, there exists φfilter = filterR(φ′)
in ΦFILTER. By definition, if sols(φfilter) ̸= ∅, φ′ con-
tributes to sols(φfilter). Consequently, φ′ contributes
to JQKF .

(C) there exists φ′′ ⊂ φ′ where φ′ ∈ Φ such that φ′
contributes to JQKF butφ′′ does not. Using the same
reasoning as for φ′ ⊂ φ1 whenQ is P1 AND P2, we
demonstrate that all subexpressions φ′′ ⊂ φ′ con-
tributes to JQKF whenQ is P FILTERR.

As a result, ifQ is P FILTERR, there does not exist φ′ ⊂
φ such thatφ′ does not contribute to JQKF , consequently,
φ is Result-Aware.

(5) IfQ is P1 UNION P2, φ is not Result-Aware if:
(A) there exists φ′ in ΦUNION such that sols(φ′) = ∅,

which is impossible by definition of ΦUNION.
(B) there exists φ′ ⊂ φ1 where φ1 ∈ Φ1 such that φ1

contributes to JQKF butφ′ does not. Using the same
reasoning as for φ′ ⊂ φ1 when Q is P1 AND P2, we
demonstrate that all subexpressions φ′ ⊂ φ2 con-
tributes to JQKF whenQ is P1 UNION P2.

(C) there exists φ′ ⊂ φ2 where φ2 ∈ Φ2 such that
φ2 contributes to JQKF but φ′ does not. We use the
same reasoning as for φ′ ⊂ φ1.

As a result, ifQ isP1 UNIONP2, there does not existφ′ ⊂
φ such thatφ′ does not contribute to JQKF , consequently,
φ is Result-Aware.

Therefore, A returns Result-Aware expressions.

	Introduction
	Background and motivations
	FedUP: A Result-Aware Query Engine
	Providing Result-Aware Source Selection
	FedUP on Summaries

	Experimental Study
	Experimental Setup
	LargeRDFBench: Parity Among Engines
	FedShop: FedUP Outperforms the Others

	Related Work
	Conclusion
	Appendix
	The Eighth Equivalence Rule
	A Returns Complete Results
	A Returns Correct Results
	A Returns Result-Aware Expressions

