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Abstract - The application of Connected and Automated Vehicles 

(CAVs) can significantly enhance traffic efficiency and reduce both 

traffic congestion and fuel consumption. Most existing studies on 

connected and automated vehicles focus on improving traffic 

efficiency rather than fuel consumption. This paper investigates the 

impact of different speed strategies adopted by CAVs on fuel 

consumption. Initially, a cooperative decision-making method for 

CAVs at unsignalized intersections based on the Predicted Inter-

Distance Profile (PIDP) is introduced. Subsequently, a vehicle fuel 

consumption model is proposed based on this method. The model 

compares vehicles' speed-priority and fuel-priority strategies, 

demonstrating that the approach can effectively alleviate urban 

traffic congestion and substantially reduce fuel consumption. Several 

random scenarios were executed in the simulation to demonstrate the 

reliability and energy efficiency of the proposed method. 
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I. INTRODUCTION 

 

    Over the past few decades, there has been a growing 

awareness of the importance of environmental issues. Reducing 

the consumption of fossil fuels is equally important as 

developing new renewable energy sources. As a critical 

infrastructure closely related to the economy and daily life, 

transportation leads to substantial fuel consumption and 

emissions [1,2]. Traffic congestion within the transportation 

system causes a significant amount of unnecessary fuel 

consumption, transportation emissions and time consumption, 

placing a severe burden on our environment and an unpleasant 

travel experience to travelers [3-5]. Therefore, reducing fuel 

consumption and emissions and traffic congestion in the 

transportation system is a highly meaningful and necessary area 

of research. 

In recent years, CAVs  have emerged as a significant research 

topic in the fields of autonomous driving and intelligent 

transportation. An increasing number of studies are focusing on 

how to utilize CAVs to enhance safety, stability, and efficiency 

in traffic. The widespread adoption of CAVs will effectively 

reduce the response delay of vehicles to changes in surrounding 

traffic conditions, and shorten the following distance between 

vehicles [9]. Consequently, CAVs have the potential to improve 

the inherent characteristics of traffic flow, leading to 

comprehensive breakthroughs in alleviating traffic congestion, 

saving energy, and reducing traffic emissions. 

Considering the initial queue length at intersections, [6] 

developed a multi-stage optimal speed control model for 

vehicles to reduce fuel consumption and greenhouse gas 

emissions. Numerical results indicate that the proposed method 

is highly efficient. To optimize the trajectories of multiple 

vehicles collectively, a dynamic programming model and 

integer programming based on a space-time lattice were 

proposed in [7]. This method offers a novel approach for 

forming compact and adaptive vehicle formations at capacity 

bottlenecks. 

A collision-free decision-making method for CAVs at 

unsignalized intersections, based on the Predicted Inter-

Distance Profile (PIDP) is introduced in section II A. 

Additionally, we have developed a fuel consumption model for 

vehicles and on the foundation of this model, the proposed 

algorithm is extended to a “Fuel-Saving Priority mode”, which 

is introduced in Section II B. Through a series of random 

scenario simulations, we have demonstrated the reliability and 

efficiency of the proposed approach to the performance of this 

method in reducing vehicle fuel consumption. 

 

II. METHODOLOGY 

A.   Principle of the algorithm 

 

1) Predicted Inter-Distance Profile (PIDP) 

 

The Predicted Inter-Distance Profile (PIDP) is used in [8] for 

the evaluation and execution of overtaking maneuvers on 
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highways or roundabouts, depicts how the distance between two 

vehicles or a vehicle and a dynamic obstacle will change over a 

future time frame. If the information of both vehicles' paths and 

speed profiles is known by each other, and assuming these 

factors remain constant during a certain time horizon of 

prediction, it becomes feasible to project the evolution of the 

inter-vehicle distance between them. The PIDP will be 

recalculated at the beginning of each optimization iteration.  

As shown in Figure 1, the safety distance 𝑑𝑠𝑎𝑓𝑒𝑡𝑦  is the 

minimum distance between two vehicles without collision: 

𝑑𝑠𝑎𝑓𝑒𝑡𝑦 =  𝑟𝑖 + 𝑟𝑗 + 𝑀𝑎𝑟𝑔𝑖𝑛 

Where 𝑟𝑖 is the safety radius of vehicle i, Margin is a certain 

distance guaranteed to account for various uncertainties linked 

to the system as well as the capacity of maximum braking of the 

vehicles. 

mPIDP is the minimum value of the PIDP curve, which 

represents the shortest distance between the two vehicles in the 

future. If mPIDP is smaller than the safety distance 𝑑𝑠𝑎𝑓𝑒𝑡𝑦 , it 

means that if neither speed changes, the two vehicles will 

collide. For convenience, we define ePIDP as the difference 

between mPIDP and 𝑑𝑠𝑎𝑓𝑒𝑡𝑦  (cf. Figure 1): 

ePIDP = mPIDP − dsafety  

If ePIDP is positive, it indicates no collision risk, and if it 

is negative, it signifies the presence of collision risk. 

 
Figure 1. PIDP curves and the corresponding mPIDP and ePIDP 

 

2) Multi-Risk Management Cooperative Optimization 

(MRMCO) 

 

The core of the MRMCO algorithm is to select the 

acceleration or deceleration behavior of the vehicles based on 

PIDP curve features. When the current ePIDP with another 

vehicle is negative, which means that the current solution is not 

feasible (a collision will happen if no new action is performed). 

If the collision type is not a rear-end collision in the intersection, 

both accelerating to pass the intersection quickly and 

decelerating to allow another vehicle to pass the intersection are 

viable solutions. However, the goal is to find the optimal 

solution while avoiding the collision. Therefore, it is necessary 

to assess the current state to determine whether accelerating or 

decelerating for each vehicle is the most suitable to cross the 

intersection. 

Based on the current speed profile, select the increased speed 

profile and the decreased speed profile, and calculate the PIDP 

curve according to the conflicted vehicle. The decision to 

accelerate or decelerate is determined based on the numerical 

values of both obtained ePIDP. An example is shown in the 

Figure 2. 

We always select the strategy with a positive value of ePIDP. 

If both are positive or negative, the strategy with the ePIDP close 

to zero will be selected as the current best strategy because they 

have less action to do to change their strategies. 

 

 
Figure 2 PIDP-based decision-making 
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Let us consider a scenario that most of vehicles around the 

intersection are at risk of collision with more than one other 

vehicle, we may face to the following special situation: the 

output of PIDP-based risk management between a CAV and the 

first collision vehicle is to accelerate, but the output of the 

second collision vehicle is to decelerate.  

In order to deal with this problem, the PIDP-based risk 

management is extended to multi-risk management method. The 

final decision of vehicle 𝑖 is represented as 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖: 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =  ∑(|𝑒𝑃𝐼𝐷𝑃𝑖𝑗
𝑜𝑝𝑡

| ∗ 𝑠𝑖𝑗)

𝑖∈𝐶𝑖

 

Where 𝐶𝑖 is the set of vehicles who can collide with vehicle 𝑖. 
If 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖  is positive, the increased speed profile will be 

selected as the current favorite strategy, otherwise the decreased 

speed profile will be selected as the current favorite strategy. 

𝑃𝐼𝐷𝑃𝑖𝑗
𝑜𝑝𝑡

 is the optimized 𝑒𝑃𝐼𝐷𝑃 between vehicle 𝑖 and vehicle 

𝑗. 𝑠𝑖𝑗  indicates the motion of 𝑒𝑃𝐼𝐷𝑃𝑖𝑗
𝑜𝑝𝑡

, if the optimized speed 

profile is the increased speed, 𝑠𝑖𝑗 = 1, otherwise 𝑠𝑖𝑗 =  −1. 

 

3) Objective function and optimization process 

 

In the initial approach, the Multi-Risk Management of 

Cooperative Optimization (MRMCO) was employed to find the 

solution that minimizes the travel time for CAVs passing 

through unsignalized intersections without any hindrance. To 

achieve this objective, we constructed an objective function 

consisting of three components: safety consumption, speed 

consumption, and a penalty function. The first two components 

were used to find the fastest method to pass through the 

intersection, while the penalty function ensured that this method 

was collision-free. Therefore, the objective function is written 

as: 

𝐽(𝑆) = ∑{𝑊𝑠𝑎𝑓𝑒𝑡𝑦 ∑ 𝑐𝑖𝑗 ∗  𝑒𝑃𝐼𝐷𝑃𝑖𝑗

𝑗≠𝑖

𝑁𝑣

𝑖

   

+ 𝑊𝑐𝑟𝑜𝑠𝑠 ∑ (𝑣𝑚𝑎𝑥 − 𝑣(𝑡))

𝑡𝑚𝑎𝑥

𝑡=𝑡0

 

+𝑊𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ∑ 𝑐𝑖𝑗|𝑒𝑃𝐼𝐷𝑃𝑖𝑗
𝑛𝑒|

𝑗≠𝑖

} 

 

Where 𝑆  is the combined strategy set. 𝑐𝑖𝑗  is the collision 

relationship between vehicle 𝑖  and 𝑗 , if their paths have no 

crossing point, 𝑐𝑖𝑗  is 0, otherwise, 𝑐𝑖𝑗  is 1. 𝑣𝑚𝑎𝑥 is the maximum 

legal velocity in the designed road near the intersection. 

𝑒𝑃𝐼𝐷𝑃𝑖𝑗
𝑛𝑒  is the value of 𝑒𝑃𝐼𝐷𝑃𝑖𝑗 if and only if it is negative. If 

𝑒𝑃𝐼𝐷𝑃𝑖𝑗  is positive, 𝑃𝐼𝐷𝑃𝑖𝑗
𝑛𝑒  is 0. 𝑁𝑣  is the number of CAVs 

near the intersection. 𝑊𝑠𝑎𝑓𝑒𝑡𝑦 , 𝑊𝑐𝑟𝑜𝑠𝑠  and 𝑊𝑝𝑒𝑛𝑎𝑙𝑡𝑦  are weight 

coefficients and all of them are positive, and 𝑊𝑝𝑒𝑛𝑎𝑙𝑡𝑦  

approaches positive infinity. 

The main optimization process of MRMCO based on PIDP 

(MRMCO-PIDP) is shown in Algorithm 1. It will be run by each 

vehicle in the CAV at each iteration. In the negotiation part, each 

CAV proposes their current favorite joint strategy. The best one 

will be selected to compare with the current best joint strategy, 

the best one will be accepted as the new current best joint 

strategy and proposed to all the CAVs. The convergence criteria 

are: the already defined number of iterations is reached, or a 

better solution was not found within the past few iterations. 
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B.   Model of fuel consumption 

 

Currently, mainstream vehicle emission models include 

MOBILE5a, MOBILE6, and the Virginia Tech microscopic 

energy and emission model (VT-Micro). They provide 

comprehensive models for fuel consumption and emissions of 

vehicles in motion. However, these models are quite complex, 

and for the purpose of our study, which focuses solely on the 

energy efficiency of vehicles, such complexity is not necessary. 

Therefore, building upon these existing models, we have 

abstracted the primary factors of fuel consumption in vehicles 

into two parts: 1. Fuel loss related to speed, including factors 

like air resistance; 2. Fuel loss related to acceleration, including 

acceleration or deceleration. The magnitude of air resistance is 

directly proportional to the square of the vehicle's speed, and the 

resistance coefficients vary between different vehicle models. 

However, when considering the relationship between driving 

speed and fuel consumption, it is essential to account for a 

concept known as the "economical speed". This concept 

suggests that each vehicle, based on its physical parameters, has 

an optimal speed at which the average fuel consumption is 

minimized, it is marked below as 𝑣𝑒𝑐𝑜. Therefore, the model of 

fuel consumption we proposed is: 

 

𝐹 = 𝑊𝑠𝑝𝑑 ∫ ((𝑣(𝑡) − 𝑣𝑒𝑐𝑜)2 + 𝑐𝑣)𝑑𝑡
𝑡𝑒𝑛𝑑

𝑡0

+  𝑊𝑎𝑐𝑐 ∫ |𝑎(𝑡)|
𝑡𝑒𝑛𝑑

𝑡0

𝑑𝑡 

 

𝐹  is the fuel consumption of vehicle, 𝑣(𝑡) and 𝑎(𝑡) denote 

the velocity function and the acceleration function. Wspd, Wacc 

and 𝑐𝑣 are positive coefficients, related to the vehicle model. 

Given that our optimization method is based on the 

optimization of an objective function, we established a new 

objective function on the foundation of our fuel consumption 

model. This objective function is designed to describe the fuel 

consumption scenario of CAVs’ strategies. Considering that 

collision avoidance is a mandatory component of our speed 

planning algorithm, we retained the penalty function for 

collision detection in our originally “Time-Saving Priority” 

objective function, while altering other parts to accommodate 

the fuel consumption model. The new objective function is 

formulated as follows: 

𝐽(𝑆) = ∑(𝑊𝑠𝑝𝑑 ∫((𝑣(𝑡) − 𝑣𝑒𝑐𝑜)2 + 𝑐𝑣)𝑑𝑡 + 𝑊𝑎𝑐𝑐 ∫|𝑎(𝑡)| 𝑑𝑡

𝑁𝑣

𝑖

+ 𝑊𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ∑ 𝑐𝑖𝑗|𝑒𝑃𝐼𝐷𝑃𝑖𝑗
𝑛𝑒|

𝑗≠𝑖

) 

 

III. SIMULATION RESULTS 

All the experiments were run by a program developed in 

MATLAB with a computer of Core i7-12700H, 2.30GHz and 

16GB RAM. All the scenarios are generated by random 

scenarios generator, which includes: initial position, initial 

speed, final direction. For each scenario, it will be run by “Fuel-

Saving Priority” model and “Time-Saving Priority” mode. 

Parameters of the simulation are given in Table 1. 

 
Table 1 Parameters of vehicles and simulation 

Parameter Value Parameter Value 

amax 2 m/s2 𝑊𝑠𝑎𝑓𝑒𝑡𝑦 0.1 

[vmin, vmax] [0.1,10]m/s 𝑊𝑐𝑟𝑜𝑠𝑠 0.9 

rsafety  1.5 m 𝑊𝑝𝑒𝑛𝑎𝑡𝑙𝑦 1000 

cv 1 𝑊𝑎𝑐𝑐 3 

veco 8 m/s 𝑊𝑠𝑝𝑑  0.1 

An example of the 4 vehicles simulation is given as Figure 3 

and 4. All those vehicles cooperate to find a global optimal 

solution, and the final speed approaches the economical speed 

𝑣𝑒𝑐𝑜. Videos are given in: 

https://youtu.be/GqBHluV2hmU 

 

 

Figure 3 Intersection model 

https://youtu.be/GqBHluV2hmU
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Figure 4 Speed Profiles of CAVs 

 

    Figure 5 and 6 are boxplots of 100 times simulation with 

random scenarios by two modes, we can find that the proposed 

"Fuel-Saving Priority" mode is more energy efficiency 

compared to the "Time Saving Priority" mode. The overall 

energy efficiency is improved by 15-18%. It is important to note 

that this better energy efficiency is the result of the CAVs 

adopting fuel efficiency strategies. The improvement in fuel 

efficiency relative to traditional non-CAVs vehicles is even 

more significant. 

 

IV. CONCLUSION AND PROSPECTS 

    This paper proposed a multi-vehicle cooperative method for 

unsignalized intersections based on PIDP. This method can 

swiftly find feasible solutions for collision problems at 

unsignalized intersections. Building upon this algorithm, we 

further propose an energy-saving mode aimed at conserving 

fuel. We demonstrate that the fuel-saving mode can further 

enhance efficiency by 15-18% for CAVs compared to the 

strategy given in [11]. 

    In our future research, we will extend this method to mixed 
intersection models that include both CAVs and human-driven 

vehicles. We aim to explore further methodological expansions 

based on this foundation. 
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