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ABSTRACT

Context. With the advent of large-scale astronomical surveys, such as the Zwicky Transient Facility (ZTF) and the forthcoming Vera
C. Rubin Observatory’s Legacy Survey of Space and Time (LSST), the number of alerts generated by transient, variable, and moving
astronomical objects is growing rapidly, reaching millions of alerts per night. Concerning the minor planets of the Solar System, their
identification requires linking the alerts for many observations over a potentially lengthy period of time, leading to a very large combi-
natorial number.

Aims. The goal is to demonstrate how a third-party module dedicated to the identification of new minor planets of the Solar System
can be integrated with the Fink alert broker real-time operations, which deals with massive alert data streams produced by large-scale
surveys.

Methods. Our analysis takes advantage of the scientific surplus brought on by the Fink alert broker classification capabilities to first
reduce the 111275 131 processed alerts from ZTF between November 2019 and December 2022 (755 observation nights) to only
389530 new Solar System alert candidates over the same period. We implemented a simple, yet pedagogical linking algorithm called
Fink-FAT to create trajectory candidates in real time from alert data and extract orbital parameters. The analysis was validated on ZTF
alert packets linked to confirmed Solar System objects from the Minor Planet Center (MPC) database. Finally, the candidates were
confronted with follow-up observations.

Results. Between November 2019 and December 2022, Fink-FAT extracted 327 new orbits from candidate Solar System objects at the
time of the observations, of which 65 had still remained unreported in the MPC database as of March 2023. After two late follow-up
observation campaigns of six orbit candidates, four were associated with known minor planets of the Solar System, and two still remain
unknown. In terms of performance, Fink-FAT took under 3 h to link alerts into trajectory candidates and to extract the orbital elements
over the three years of Fink data, using a modest hardware configuration.

Conclusions. Despite a much lower efficiency than present linking algorithms, Fink-FAT reaches a high level of purity in recon-
structing orbits and it runs fast, making it suitable for the real-time discovery of new minor planets. Fink-FAT is deployed in the Fink
broker and analyzes, in real time, the alert data from the ZTF survey by regularly extracting new candidates for Solar System objects.
Tests of scalability also show that Fink-FAT is capable of handling the even larger volume of alert data that will be sent by the Rubin
Observatory’s real-time difference image analysis processing.

Key words. surveys — methods: data analysis — minor planets, asteroids: general

1. Introduction

Recent optical surveys such as the Zwicky Transient Facility
(ZTF; Masci et al. 2019; Graham et al. 2019; Bellm et al. 2019;
Patterson et al. 2019) and Pan-STARRS (Denneau et al. 2013)
generate alerts by detecting differences from previous observa-
tions of the same areas of the sky. These alerts must be released
early on to enable a rapid response from follow-up facilities when
necessary; hence, they contain a minimal amount of information,
namely: the observation time, sky coordinates, and estimation
of the brightness. Among its many applications, the analysis of
these alerts by the scientific community enables the study of the
Solar System’s small bodies, which, in turn, allows for example
a better understanding of the dynamical evolution of the Solar

System (DeMeo & Carry 2014; Morbidelli et al. 2015). Every
night, new observations provide additional information to known
Solar System objects or lead to the discovery of new objects.
Naively, the identification of Solar System objects from dif-
ference imaging techniques requires linking the alerts of many
observations over a potentially large period of time, leading to
a very large combinatorial number. While we are already facing
technical challenges due to large volumes of data, the exponen-
tial increase in the volume of data driven by upcoming large
optical surveys such as Vera C. Rubin Observatory’s Legacy
Survey of Space and Time (LSST; LSST Science Collaboration
2009; Schwamb et al. 2023) will strengthen the challenges and
hinder the scientific exploitation of the data sets. To overcome
the challenges posed by the linkage problems in the context
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of large volumes of alert data, several methods have been pro-
posed over the last decade. For example, to make the problem
more computationally feasible, survey cadence strategy can be
adapted to systematically take observations of the same fields
spaced by a predefined time window, depending on the targeted
type of objects, and typically ranging from less than an hour for
inner Solar System objects to more spaced cadence for outer
objects (see e.g., Bannister et al. 2016). This design allows for
the construction of so-called tracklets for moving objects when
differencing the two observation images'. These tracklets, which
contain information on the direction and the rate of motion and
which are less numerous than the initial number of alerts, are
then linked to candidate orbits. This idea was first proposed and
implemented in the Moving Object Processing System (MOPS),
which produces automatic asteroid discoveries and identifica-
tion for the Pan-STARRS survey (Kubica et al. 2007; Denneau
et al. 2013). However, despite the success of the method, it suf-
fers many problems among which the number of orbit fits that
must be carried out scales as O(N?), where N is the number of
tracklets. For surveys producing millions of tracklets, this proce-
dure becomes almost intractable. Since then, many alternatives
have been proposed to improve the efficiency of the linking prob-
lem such as HelioLinC (Holman et al. 2018) and Heliolinc3D
(Heinze et al. 2022). HelioLinC is a method that operates a
change of the reference frame (topocentric to heliocentric) for
linking detections, and propagates tracklets to common epochs
to ease the identification of tracklets tracing the same underlying
Solar System object’s motion. In addition, HelioLinC reduces
the complexity of the linking problem to O(Nlog N), where
N is the number of tracklets, making it desirable in the con-
text of large surveys. A modified version of HelioLinC has
been successfully used in the context of HITS (Pefa et al.
2018, 2020). However, similarly to MOPS, HelioLinC relies
on the existence of tracklets, which put high constraints on
the survey strategy design. Other methods relying on tracklets
have been proposed such as CANFind (Fasbender & Nidever
2021), using a technique directly based on the Hough Transform
(Lo et al. 2020). Another popular alternative to MOPS is the
ZTF’s Moving Object Discovery Engine (ZMODE) developed
for the Palomar Transient Factory (PTF) and scaled to meet the
requirements of the ZTF survey (Masci et al. 2019). One of the
main difference with MOPS is the construction of stringlets,
which are a more flexible version of tracklets and better adapted
to the cadence strategy of ZTF. More recently, the Tracklet-less
Heliocentric Orbit Recovery (THOR; Moeyens et al. 2021) algo-
rithm proposed a solution inspired from HelioLinC, but without
the need for intra-night linking (tracklets or stringlets). In addi-
tion, they operate a different change of the reference frame to
linearize the motion of objects and use line-detection algorithm
to identify orbits. Finally, other methods make use of specialized
coprocessors such as graphics processing units (GPU) to accel-
erate the computation, such as the Kernel-Based Moving Object
Detection (KBMOD; Whidden et al. 2019) and its extension
(Smotherman et al. 2021).

In this work, we do not attempt to find a new or better linking
algorithm; rather, we describe how to easily extend an existing
alert broker to enable third-party scientists to deploy and apply
a small body linking code on alert streams in real time. The use
of a broker brings two major advantages: users can access alert
data without having to obtain special access from the upstream

1 A tracklet is a sequence of 2 or more spatially nearby detections taken
over a short time span and likely to be related to the same moving object.
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surveys and the broker provides a scientific surplus used to pro-
vide an initial classification of alerts, hopefully redirecting only
alerts of interest for new discoveries. These two leave more flex-
ibility to the users for the identification of new minor planets
in real-time. We use the Fink broker?, whose original goal is
to process large alert data streams, enrich them with informa-
tion from other surveys and catalogs as well as machine-learning
classification scores, and select the most promising events to
follow for a wide-variety of science cases (Moller et al. 2021).
As opposed to traditional broker analysis techniques operating
on commodity hardware, Fink implements a new technological
approach by operating in real time on large computing infrastruc-
tures to enable a systemic analysis of the transient and variable
sky from the Solar System objects to galactic and extra-galactic
events. Since 2019, Fink has been analysing the alert data stream
from the ZTF optical time-domain survey in real time, and it is
preparing to analyse the Rubin Observatory data stream in the
coming years>. It is important to note though that other similar
initiatives in this area exist, such as the SNAPS broker Trilling
et al. (2023) and the Asteroid Discovery Analysis and Map-
ping (ADAM*) platform. Yet one of the major advantages of
Fink is the global study of the transient sky by coupling mul-
tiple data sources and simultaneously studying various scientific
areas, which brings the scientific surplus necessary to seamlessly
classify the gigantic alert streams coming from deep and wide
field surveys.

The paper is organized as follows. In Sect. 2, we describe a
simple yet efficient linking algorithm, called Fink-FAT, used to
extract orbit candidate trajectories from alert data tagged as Solar
System candidates and the fitting procedure used to compute the
orbital parameters. We also describe how Fink-FAT integrates
within Fink. Section 3 describes the alert data from Solar System
objects collected by Fink from the ZTF alert stream. Section 4
presents the performance of Fink-FAT on ZTF alert data, both in
terms of computation time and recovery of known trajectories.
Finally in Sect. 5, we present two follow-up campaigns focus-
ing on previously unreported Solar System object candidates
selected by Fink-FAT.

2. Fink-FAT: Fink Asteroid Tracker

Fink-FAT is a system dedicated to detect moving objects such
as asteroids from a set of alerts emitted at different epochs. As
a result, Fink-FAT returns a set of trajectories where alerts are
linked based on a set of criteria. The system is also able to fit for
an orbit based on these linked alerts. It is currently deployed and
used within the Fink broker (Moller et al. 2021). Each night, the
system produces either new trajectories or continues the exist-
ing trajectories by adding new alerts. Fink-FAT also comes with
an offline mode where the data from an arbitrary number of
previous nights can be analysed together. In this section, we
describe how the candidate trajectories are created in Fink-FAT
from generic alert data, and the fitting procedure used to compute
the orbital parameters.

2.1. Alert association

Fink-FAT works in two phases (see Appendix A for the pseudo-
code). The first phase is called the association and it forms a set

2 https://fink-broker.org
3 https://www.lsst.org/scientists/alert-brokers
4 https://adam.b612.ai/
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of trajectories by linking all the alerts between them. The pur-
pose of the association algorithm is not to find asteroids precisely
but a set of coherent trajectories that behave like moving objects.
To reduce the number of possible associations between alerts, the
association algorithm relies on a set of three conditions (apparent
motion, magnitude, and co-linearity) based on information from
the incoming alerts such as: the position in equatorial coordi-
nates (right ascension and declination), the apparent magnitude,
the filter band identifier used during the exposure and the Julian
date corresponding to the start exposure time.

2.1.1. Associating alerts

First, the association of two alerts is done by spatial proximity. A
KD-tree is used to efficiently perform the search of associations
between thousands of alerts. All the alerts with a sky angular
separation between them less than a specific threshold are asso-
ciated. This search can generate many associations per alert. We
let Ad be the separation between two alerts separated in time by
At, they are associated together by Fink-FAT if their separation
satisfies the following condition:

— <y, (condition 1)

At

where r; is a reference apparent motion rate (deg/day), and
its value mainly depends on the targeted Solar System object
population, and it is discussed in Sect. 3.

The second condition is based on the physical evolution of
the asteroid luminosity. From observations, we can set bound-
aries on the expected change in magnitude between two obser-
vations of the same object. We let Am be the difference in
magnitude between two alerts separated in time by Af, we
associate the two alerts if they satisfy the magnitude condition:

—\ <t (condition 2)

Am

=
where r,, is a reference magnitude rate (mag/day) depending on
the targeted population (see Sect. 3.1). We note that the value of
the rate also depends on the filter bands of each alert. In prac-
tice, this definition is only meaningful over a short period of
time as the observed magnitude of objects oscillates because of
their mostly non-spherical shape. The third condition is based on
the dynamic of the object. The algorithm computes an angle «
between the two last alert positions (in equatorial coordinates) of
a potential trajectory and the new associated alerts separated by
At days, and the new alert is associated with the trajectory only
if the following co-linearity condition is met:

< rg. (condition 3)

At
The choice for r, (deg/day) is discussed in Sect. 3, but we usu-
ally choose a small value (see, e.g., Table 1). Due to geometric
projection, Solar System objects can produce complex trajecto-
ries in equatorial coordinates. However, over a small period of
time (i.e., if frequent observations are performed), we suppose
that the trajectories evolves smoothly, and the three conditions
limit the number of false associations.

2.1.2. Starting a trajectory

We let Q be the set of all trajectories returned by Fink-FAT,
and ¢ € Q is a n-uplet of alerts linked together and supposedly

coming from the same Solar System object. Fink-FAT starts a
trajectory in two different ways. The first is the intra-night asso-
ciation step that defines a relation over the alerts coming from the
same night. If the telescope observes repeatedly the same area on
the sky (or adjacent areas), it allows us forming trajectories from
the same observation night.

We let A; be the set of alerts coming from the night i € N,
and a; € A; an alert. We define the intra-night relationship as:

Rinea = {(aj, ar) | Yaj, ar € A;, condition 1 A condition 2}. (1)

The intra-night relation is reflexive, symmetric, and more impor-
tant transitive, allowing the intra-night step to return trajectories
larger than just pairs of points. Consequently, the intra-night
association step returns a set of trajectories defined as:

Qinia = g = (ao, ay, ..., ar) | Yar € Ai, axRinralir1}- ()

The second way to start a trajectory is by associating alerts
between different observation nights. Depending on the cadence
of the telescope, and the motion of objects, there could be several
days between two subsequent observations of the same object on
the sky. We let O to be expressed as the set of old non-associated
alerts:

i—1
O=laac| JA\aQ. 3)

J=0

The inter-night association define a new relation call Rjp,:

Rinter = {(ai, aj)|¥a; € O,Ya; € A;, condition 1 A condition 2}.

“

The Riner relation is also reflexive, symmetric, and transitive,
but, unlike the Ri,a relation, the Rjer relation does not use
the transitivity and returns — only pairs of alerts. Consequently,
the inter-night association’s step returns a set of pairs of points
defined as:

Qineer = {(aj, a)Va; € O,Va € Aj, ajRinerai ). %)

2.1.3. Continuing a trajectory

The next goal of Fink-FAT is to extend trajectories with alerts
coming from new observations. There are three ways to continue
an existing trajectory, as summarized in Fig. 1.

The first is the addition of a new intra-night trajectory to an
existing trajectory. Two trajectories are merged by using their
extremity. The addition is done using all conditions defined
above. We let ¢; = (ag,ai,...,ar) € Q be an existing trajec-
tory, and g; = (bo, b1, ..., b) € Qinyra @ new intra-night trajectory.
The new resulting trajectory is g = (ao, ay, ..., ax, bo, b1, ..., by),
where ay_1,ax, by satisfy the predicate P(ay—1,ax,bo), P =
condition 1 A condition 2 A condition 3.

The second way of continuing a trajectory is by adding
a single alert to existing trajectories. As above, the addition
of a new alert to an existing trajectory is done with the alert
from the extremity of the existing trajectory. We let ¢g; =
(ag,ay, ...,ar) € Q be an existing trajectory and b; € A; be an
alert from the set of new incoming alerts. The resulting trajectory
is g = (ap,ay, ..., ax, b;), where ay_1, ar, b; satisfy the predicate
P(ay_1, ar, by).
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Fig. 1. Summary of the associations carried out by Fink-FAT. Each
night is represented by a vertical dashed night denoted N;. Alerts are
represented by colored circles. The color-coding describes a type of
association, shown in the legend of the plot. The association step in
Fink-FAT uses a sequential algorithm (1 — 2 — 3 — 4); therefore, the
association order is important, especially since the previous step will
remove the associated elements (trajectories, intra-night trajectories or
single alert) from the possible association for the next steps. The first
step (1) is the association between the trajectories built from the pre-
vious night’s alerts with the intra-night trajectories constructed during
the current night. The second step (2) is the association between the
trajectories and the remaining single alerts after the intra-night trajec-
tories creation. The third (3) and fourth (4) steps are similar, as they
associate past alerts with current ones. The third step associates the
intra-night trajectory’s extremity with the old alerts. The fourth step
associates current non-associated alerts with old alerts. The fourth step
is one of the ways to start a trajectory as the intra-night trajectory build-
ing step. Note: each step can produce internally different trajectories
including the same alert, as shown with the double association (3) at
the bottom.

Finally, the third and last way to continue a trajectory
is by adding a single point to an intra-night trajectory. The
purpose of this association is the same as above: adding a
single point if the telescope does not come back twice to
a field during the same night. Letting t;, = (ag,ay,...,ax) €

Tinea and b; € O, ag,ay,...,ar € A;, the resulting trajectories
are t = (b;,ap,ay, ...,ax), where b;,ay,a; satisfy the predicate
P(b;, a0, ay).

2.1.4. Time window

The formalism introduced above supposes to create trajectories
by using all the alerts of the surveys, at all steps of the process.
Despite the undeniable help brought by the broker system that
will provide only relevant alerts to Fink-FAT by filtering out
already classified alerts, the procedure above becomes compu-
tationally hard and inefficient for modern surveys such as the
ZTF or the forthcoming LSST, as the number of possible asso-
ciations each night grows exponentially. Therefore, Fink-FAT
allows alert associations and keeps the trajectories in memory
only during finite times (the impact is discussed in Sect. 4.3). In
practice, we used three time window parameters: the separating
time between the end of a trajectory and a new alert, the time to
keep an old alert as candidate, and the time to keep an intra-night
as candidate.
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2.2. Orbit fitting

The second step of Fink-FAT is the orbit fitting. This step allows
us to filter the trajectories that do not behave like asteroids from a
physical point of view and it returns a set of orbital elements that
describe the trajectory dynamics in the Solar System. Fink-FAT
uses the OrbFit Software from The OrbFit Consortium’.

Orbit determination is done in two steps. First, the initial
orbit parameters are extracted using Viisdld’s method to solve
Gauss’ problem of the orbit from three observations (Marsden
1985). The method uses sets of three RA/Dec measurements
and timings to determine an initial orbit, assuming a Keple-
rian motion. Once the parameters of the initial orbit have been
estimated (if possible), a full differential correction step is per-
formed to increase the accuracy of the initial computed orbital
elements and estimate the covariance of the parameters. If the
full differential corrections fail, we still retain the initial solution
for short term predictions. In addition, we note that the public
version of the software cannot compute the orbits of the satellites
of planets.

OrbFit internally produces many files, and in the case of
large number of observations to process, the read and write oper-
ations on internally generated files (I/O) take a significant part
of the orbit fitting process. Choosing a RAM location can speed
up the processing and preserve the lifetime of disks, making the
orbit fitting essentially a CPU limited task. OrbFit takes 0.5 s
on average on one modern core to fit one trajectory, that is it
can process 1000 trajectories with a modern eight-core laptop in
about a minute with multiprocessing capabilities. While this is
an acceptable rate regarding the data from current surveys, this
will not be enough at the LSST era. Hence, Fink-FAT has also
been extended to use OrbFit on clusters of machines to fit orbits
of hundreds of trajectories simultaneously. This mode makes use
of the framework Apache Spark® to distribute the load and we
made extensive tests on the VirtualData cloud of the Paris-Saclay
University.

2.3. Integration within the Fink ecosystem

Fink-FAT is an independent package from the main Fink code
base’. It is installed as a dependency (version controlled) in
the platform where Fink is running and it is called within the
main schedule of the broker. At the end of each night, all alerts
satisfying the Solar System candidate criteria are processed
by Fink-FAT and results are automatically stored in the Fink
database. Dedicated tables in the database are used for storing
linked alerts and estimated orbital parameters and all results are
available to Fink users via the different Fink services (science
portal, REST API, data transfer service, and livestream service).
The additional value created by Fink-FAT is also used by other
scientific modules to improve their analysis, for inst the modules
focusing on optical counterparts to gravitational wave events or
gamma ray burst events are filtering out candidates selected by
Fink-FAT.

2.4. Reasons for implementing another linking code

As we explain in Sect. 4, Fink-FAT is not competitive in terms
of reconstruction performances with respect to the present link-
ing codes such as THOR Moeyens et al. (2021) or Heliolinc3D
Heinze et al. (2022). Our goal is to have a code pedagogical

5 http://adams.dm.unipi.it/orbfit/
¢ https://spark.apache.org/
7 https://github.com/FusRoman/fink-fat
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Fig. 2. Footprint of the ZTF alert stream from November 2019 to December 2022 associated with different subsets: the 15 381 246 alerts associated
with confirmed Solar System objects (left; see Sect. 3.1), the 389 530 alerts associated with Solar System object candidates (middle; see Sect. 3.2),
and the 2205 alerts associated with reconstructed orbits (right; see Sect. 5). The sky maps are in equatorial coordinates, and ZTF does not observe
for declination lower than ~—30 degrees. For each footprint, we use the HEALPix pixelisation algorithm with a resolution parameter equals to
Nside=32 (Gorski et al. 2005) and the color scheme displays the number of alert per arcminute square. The color scale for the rightmost footprint
has been inverted compared to the two others for a better readability. For reference, the ecliptic plane is shown with black triangles.

and simple enough to focus on the integration with Fink opera-
tions, leaving the optimization of performance for a future work.
Nevertheless Fink-FAT has the advantage of being open-source,
it has a simple and intuitive implementation in Python which
allows to appreciate the various challenges posed by the link-
ing problem, the documentation is available online, and it runs
fast with modest resources for our purpose. It ought to be noted
that Fink-FAT is still a work in progress and improvements are
foreseen (see Sect. 5.4).

3. Solar system objects in Fink

Each night, ZTF generates an unfiltered, 5 sigma alert stream
extracted from difference images. Alerts are generated after each
30-s exposure and sent shortly after. They contain basic infor-
mation such as the location of the transient on the sky or its
magnitude and error estimates, but also information about past
variations at the location of the transient (up to 30 days in the
past) or possible association with a known source from a few
external catalogs. Since 2019/11, Fink® receives and processes
the ZTF public alert stream. After reception by Fink, alerts go
through a series of treatments (science modules®) that try to
characterise the event from the factual information contained in
the alert using, for instance, machine and deep learning algo-
rithms, but also resorting to external catalogs to determine if
the objects is already known. These science modules are built
and provided by the community of users, allowing Fink to build
a broad knowledge from Solar System science to galactic and
extra-galactic science. As of 2023/01/01, Fink has processed
more than 110 million alerts from ZTF, and more than 50 million
alerts have already received a classification. All processed alerts
are available to the community'”.

3.1. Confirmed Solar System objects

A large majority of the transients seen by ZTF and classified
by Fink remains in the same position in the sky over the dura-
tion of the survey. It is not the case with SSOs as they quickly
move over time in the sky and produce alerts along their trajecto-
ries. For each exposure, ZTF performs a cross-match between the

8 https://fink-broker.org

9 https://fink-broker.readthedocs.io/en/latest/
science/added_values/

10 https://fink-portal.org

alert positions and a daily updated Minor Planet Center (MPC'!)
ephemeris file for all known Solar System bodies within a radius
of 30 arcseconds using astcheck'?, and returns the closer object
if any. The information about the association is stored in each
alert packet. In addition Fink deployed a science module that
refines the match by: (a) selecting alerts with a matching radius
provided by ZTF below 5 arcseconds, and (b) rejecting alerts
that are closer to an object from the Pan-STARRS1 (Chambers
et al. 2016; Flewelling et al. 2020) catalog than to the match from
the MPC ephemerides. We note that we currently solely rely on
these distance criteria, and we do not take into account other
association conditions such as the co-linearity with the expected
trajectory to not further delay the processing (see Sect. 5.4).

Between 2019-11-01 and 2022-12-29 (755 observation
nights), Fink processed 111,275,131 alerts and 15 828 997 alerts
were returned by ZTF with a MPC match (785221 unique
objects). It represents about 62% of all confirmed SSO contained
in the MPC database at the time of the analysis, making ZTF one
of the largest contributor to asteroid detection to date'. After
applying the filtering described above, Fink kept 15381 246
alerts (517 611 unique objects) as matching confirmed Solar Sys-
tem objects'*. The distribution of these alerts on the sky is shown
in Fig. 2, and as expected they are mostly located around the
ecliptic plane. The median night contains 17 681 alerts associ-
ated with confirmed Solar System objects, with a minimum of
29 alerts per night and a maximum of 77 832 alerts per night.
These variations are mostly due to the visibility of the ecliptic
plane from the ZTF observing site, but also the cadence of the
telescope.

These data set allow us to recover the orbital parameters of
the asteroids and, thus, place constraints on the orbit types of
the asteroids. For a review of the physical properties of asteroids
from ZTF alert data, we refer to Trilling et al. (2023). Overall,
ZTF is able to detect a wide range of asteroids from near-Earth
(about 1%) to main-belt (more than 90%) and trans-Neptunian (a
few %) asteroids. For reference, Fig. 3 displays the distribution
of eccentricities of confirmed Solar System objects as a function
of their semi-major axes. Each Solar System object generates
from one up to more than hundreds alerts over the duration of
the survey. This data set is also used to derive constraints on the

" https://www.minorplanetcenter.net/iau/mpc.html

12 https://www.projectpluto.com/astcheck.htm

3 https://sbnmpc.astro.umd.edu/mpecwatch/index.html

4 We also identified 44 comets in Fink’s database observed by ZTF
which are not included in this analysis.
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Fig. 3. Orbital distribution of the 517611 confirmed Solar System
objects in Fink, collected from the ZTF alert stream between 11/2019
and 12/2022. Objects are color-coded by their dynamical class as
defined in the ssoBFT table (Berthier et al. 2023) as of March 2023.
Markers denote groups: near-Earth asteroids (NEA, large circle), Mars
crosser (square), main-belt (MB, small circle), and outer Solar System
objects (triangle). Note: MB>IMO stands for inner, middle and outer
objects from the main belt.

Table 1. Parameters derived from ZTF alerts corresponding to con-
firmed Solar System objects and used in Fink-FAT to associate alerts
between different nights and form trajectories.

Inter-night
17 0.3 deg/day

rn (from same filter bands) 0.1 mag/day
rn (from different filter bands) 0.5 mag/day
T 1.0 deg/day
Intra-night

rq 0.03 deg

r,, (from same filter bands) 0.2 mag

7, (from different filter bands)

0.8 mag

Ta

parameters used in Fink-FAT to later perform the alert associa-
tion, as reported in Table 1. As we show later in this paper, the
trajectories are reconstructed assuming a maximum time win-
dow between two subsequent measurements (see Sect. 2.1.4).
We applied this time window when estimating constraints on the
parameters of Fink-FAT (defined in Sect. 2.1.1). The parameter
values are derived from the 90th percentile on their cumulative
distribution and for cadence reasons, we provide different set of
parameters for the inter-night and intra-night cases. Intra-night
parameters are normalised to one day for all alerts in the night,
and the co-linearity condition using r, is not checked for intra-
night trajectories (tracklets). We note that we are not taking into
account the orbit types; hence, this study is mainly driven by
the population of main-belt asteroids detected by ZTF which are
the most numerous (see also Appendix B for further discussion).
Furthermore, the parameter values derived from these distribu-
tions tend to be more stringent than typical values derived from
the literature (Carry 2018), but the rates are not only related to
the dynamics of each population; however, they should also be
interpreted in the light of instrument capabilities and its cadence,
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with two subsequent measurements often separated by a cou-
ple of days. The 90th percentile threshold was set to minimize
the false association numbers while keeping a large number of
objects for the analysis.

3.2. Solar System object candidates

Between 2019-11-01 and 2022-12-29 (755 observation nights),
Fink processed 111 275 131 alerts and 5 807 587 alerts were sent
by ZTF with a single measurement or with up to two detections
separated by less than 30 min, from positive subtraction with the
reference image, and without a match with the MPC database.
This is what we would naively get in input of a linking code
for example without any other treatment. The Fink science mod-
ule that returns confirmed Solar System objects also provides
information about new Solar System object candidates.

An alert is considered as such a candidate if it satisfies the
following criteria: (1) the alert is not matched to a confirmed
Solar System object; (2) the alert is a newly detected object, or it
has up to two detections separated by less than 30 min; and (3)
the alert is not close to a star-like object (using the star-galaxy
separation score, sgscorel < 0.76) from the Pan-STARRSI
catalog (distance below 5”).

Within the same period of time, 389 530 alerts have received
the Solar System candidate tag, with a median of 308 alerts per
day, a minimum at 1 alerts in a night and a maximum at 12 889
alerts in a night. We note that the distribution varies over time,
but broadly follows the distribution of confirmed Solar System
objects. The location on the sky of the alerts satisfying the pre-
vious criteria is shown in Fig. 2. We can see a excess along
the ecliptic plane at zero right ascension and declination (albeit
two orders of magnitude smaller than the confirmed objects), but
there are also dense regions further away.

The SSO module gives a first estimation of the nature of
an alert. However, this first guess can quickly turn up to be
wrong as new incoming alerts are processed. Of the 389 530
alerts initially associated with Solar System candidates, 3772
have been associated with another alerts at the same location on
the sky emitted the next nights (~1%). These erroneously clas-
sified objects were mostly found later to be extra-galactic (e.g.,
supernova candidates) or remained unclassified. All Solar Sys-
tem candidate alerts can be accessed using the Fink REST API,
see Appendix C.

4. Validation of confirmed Solar System objects

Each night, Fink extracts about 300 new Solar System candidates
(median), and 18 000 confirmed Solar System objects (median).
Since Fink-FAT will be applied on Solar System candidates only
during operations (not the confirmed ones), if we run Fink-FAT
on ZTF confirmed Solar System objects, this would basically
mean a factor 60 in data volume; this is in line with what we
expect with LSST in terms of data volume (or, rather, pes-
simistic). Therefore in this section, we use the confirmed Solar
System objects data set to test the performances of Fink-FAT,
both in terms of technical capabilities and scientific results.

For this test, we used a subset of all the ZTF alerts associated
with confirmed Solar System objects running from 2020-09-01
to 2020-10-01 (24 observation nights). This period was chosen
based on the large number of confirmed Solar System alerts:
796 486 alerts in total with a median of 26 993 alerts per night,
a minimum of 3314 alerts, and a maximum of 69 831 alerts. This
high volume of alerts per night allows us to also test Fink-FAT
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with a number of alerts close to the expected LSST flow rate
for the Solar System object candidates, which is essential as one
of our objectives is to overcome the data rate challenge of the
LSST®.

In the following, all tests were performed on the Fink Apache
Spark Cluster deployed on the VirtualData cloud. The cluster
makes use of Intel Core processors (Haswell architecture) at
2.3 GHz. The association algorithm is fully sequential, so it uses
only one core during its execution, but it has access up to 36 GB
of RAM. The orbit fitting however is deployed on a cluster of
machines with the following configuration: a total of 24 cores
split in four cores per executor (so six executors) and 8 GB of
RAM per executor.

4.1. Time performance

The first experiment with Fink-FAT was to determine the compu-
tation time for the association and orbit fitting steps. On average,
Fink-FAT took 77 s (median) to perform the association step
each night. The minimum association time was 8 s and the max-
imum was 261 s. The median trajectory volume sent to OrbFit
each night was 3543, the minimum was 7 and the maximum was
10334. The orbit fitting step took on average 291 s each night
(median), with a minimum execution time of 35 s (7 trajectories),
and the maximum of 744 s (10 334 trajectories). The total execu-
tion time for the entire month of data (24 nights) on 24 cores was
about 168 min. The orbit fitting step takes a significant part of
the total computation time with about 119 min (70.83%), while
the association step takes about 40 min (23.81%) and the time
taken to retrieve all the alerts from Fink database is about 10 min
(5.95%).

In order to explore the complexity of Fink-FAT, we ran
several experiments. First we decoupled the association step
(described in Sect. 2.1) and the orbit fitting step (depending on
the OrbFit software; see Sect. 2.2).

For the association step, we chose a period of 16 consecu-
tive observing nights and we varied the number of Solar System
alerts sent each night to Fink-FAT from 6000 alerts/night to
30000 alerts/night by sampling the number of Solar System
alerts each night. Figure 4 shows the computational time as
a function of the alert rate (grey circles), with fixed allocated
resources (single core, with up to 35GB RAM). As the alert
rate increases, the time increases. We approximate the run-time
complexity of the algorithm by fitting multiple functions (lin-
ear, linearithmic, quadratic, cubic) to the data. The best-fitted
function (the smallest root mean square value) has a quadratic
dependency in the number of alerts per night, which makes
Fink-FAT no better than current algorithms (for example Heli-
oLinC (Holman et al. 2018) is linearithmic). Such a complexity
is probably not very encouraging as such; however, regarding
the computation time reaching a maximum of about 20 min over
a time window of 16 nights with on average 30000 alerts per
night (expected Solar System alert rate for LSST), we conclude
that it is already fast enough to be used in the context of the
forthcoming LSST survey'S.

For the orbit fitting step, where the computation is straight-
forwardly parallel and distributed over many machines, we
performed two experiments. First, we fixed the allocated hard-
ware resources (16 cores, 2 cores per executor, and 2 GB of RAM

5 https://1se-163.1sst.io

16 'We note though that the total time can vary within a factor of 1-1.25,
depending on the load of the cloud platform used. However, this always
remains fast enough overall.
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Fig. 4. Computational time taken by the association step as a function of
the nightly Solar System alert rate (average), for 16 consecutive nights
of ZTF alert data. Various functions have been fitted to the data to give a
hint on the run-time complexity of the algorithm described in Sect. 2.1,
with the root mean square value displayed in the legend.

Table 2. Performance of Fink-FAT on the reconstruction of the con-
firmed Solar System objects between 2020-09-01 and 2020-10-01.

Fink-FAT
a. Confirmed objects 87076
b. Detectable objects 43919
All orbits  Orbit with errors
c. Reconstructed orbits 39628 13252
d. + Pure 28719 12853
e. + Unique 19956 10755
Purity (d/c) 72.5% 97.0%
Efficiency (e/b) 45.4% 24.5%

per core) and we recorded the computation time as a function
of the number of trajectories generated by the association step.
We varied the number of trajectories from 100 to 10000 and we
observed a linear increase of computational time. Second, we set
the number of trajectories to 5000 and we recorded the compu-
tation time as a function of the number of allocated cores (from
2 cores to 128 cores). As expected, the computational time is
inversely proportional to the number of cores allocated in the
range of resources allowed. This behaviour is encouraging as,
even if the orbit fitting step is taking most of the computation
time of Fink-FAT, it scales linearly with the allocated resources.

4.2. Reconstruction performance

In this section, we explore the performance of Fink-FAT in cor-
rectly reconstructing trajectories. The results are summarised in
the Table 2. The first two lines are the description of the input
dataset: a. the number of confirmed Solar System objects; and
b. the number of detectable objects (Sect. 4.2.1); c. gives the
number of reconstructed orbits, that is, the set of trajectories
for which the orbit fitting step returns valid orbital elements
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(Sect. 4.2.1); d. and e. show the number of pure reconstructed
orbits and unique reconstructed orbits, respectively (Sect. 4.2.2).
Finally, we show the purity and the efficiency as two metrics to
assess the efficiency of the method. Each line also contains the
number of corresponding orbits with valid error estimates, that
is with full differential corrections applied.

4.2 1. Detectable and reconstructed orbits

There are 87076 confirmed Solar System objects in the test
dataset, and 43919 (50.44%) are detectable by Fink-FAT. We
defined two conditions to establish a detectable trajectory by
Fink-FAT: (1) the trajectory must have a number of alerts
greater or equal to the minimum number of alerts required to
be processed by OrbFitand (2) the number of separating nights
between each alert must be less than the time window param-
eters (see Sect. 2.1.4). For this test, the minimum number of
alerts for OrbFit was six, and the time window was set to
fifteen days.

After the association and the orbit fitting steps, Fink-FAT
output 39 628 trajectories with valid orbital parameters from
the detectable trajectories (i.e., initial orbit determination was
successful). The longer trajectories was made of 12 alerts, and
approximately 50% of the trajectories had the minimum of six
alerts. A large part of the trajectories (~80.3%) starts with an
intra-night association or a pair of alerts from different nights
(~12.3%). The remaining trajectories begin with the association
of an old alert with an intra-night association (see Fig. 1).

4.2.2. Pure and unique orbits

Each step of the association algorithm can produce internally
different trajectories including the same alert. Hence, some
trajectories in the sky may spuriously intersect when fitting
for orbits. Therefore, we defined the pure orbits as the tra-
jectories containing only the observations of the same Solar
System object. Fink-FAT returned 28 719 pure orbits. We define
the purity of Fink-FAT outputs as the ratio between the num-
ber of reconstructed orbits and the pure orbit, which is about
72.5% for this dataset. In addition, multiple disconnected tra-
jectories can come from the same Solar System object. It is a
direct consequence of the time window and the OrbFit limit
parameters. By taking only unique Solar System identifiers,
Fink-FAT returned 19956 asteroids. We define the efficiency
of Fink-FAT as the ratio between the number of detectable
SSO and the uniquely detected SSO, which is 45.4% for
this experiment.

Finally as the observational arcs are small, the orbit fitting
procedure does not always fully converges. In the case where
only the initial orbit determination is available, we have a set of
orbital parameters without associated errors (hence, it is rarely
accurate, but often enough for short term predictions), while
if the full differential corrections step has succeeded we have
a better estimation on the orbital parameters that includes the
estimated covariance for the parameters (hereafter, orbits with
errors). From Table 2, Fink-FAT reconstructs 39 628 orbits, but
only 13252 pass the full differential correction step and have
errors in their parameters (33.44%). However, the ratio between
the number of reconstructed orbits with an error and pure orbits
(purity) with an error is almost 97%. This means that despite
the relatively low efficiency, if we have an orbit with an asso-
ciated error estimate, we are almost certain that this orbit is
valid, which is a crucial information when planning follow-up
observations.
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Table 3. Detection performance of Fink-FAT between 2020-09-01 and
2020-10-01 by orbit dynamical classes.

Initial orbit distribution Reconstructed

Cybele 172 56 (32.56%)
Main belt 40533 10229 (25.24%)
Phocaea 401 97 (24.19%)
Jupyter trojan 1041 198 (19.02%)
Hilda 186 33 (17.74%)
Mars crosser 455 46 (10.11%)
Hungaria 700 63 (9.00%)
Amor 51 2 (3.92%)
Apollo 48 1 (2.08%)
KBO 8 0 (0.00%)
Aten 5 0 (0.00%)
Centaur 3 0 (0.00%)
Atira 0 0 (0.00%)

4.2.3. Orbit types

Table 3 shows the detection performance of Fink-FAT by orbit
dynamical class. The first column displays orbit dynamical
classes from the ssoBFT table (Berthier et al. 2023) as of March
2023 and present in the test dataset. The second column shows
the number of detectable Solar System objects per orbit class
in the test dataset. The third column displays the number of
pure and unique reconstructed orbits with error estimates recov-
ered by Fink-FAT. The percentage recovery with respect to the
initial orbit distribution is shown in parenthesis in grey. The best-
reconstructed objects are, not surprisingly, the objects from the
main belt (MB, Hungaria, Phocaea, Hilda) and the Jupiter tro-
jan as the Fink-FAT association parameters were derived mostly
from main-belt objects. On the other hand, the closest and the
farthest objects are not detected. The almost zero efficiency for
NEO and KBO is directly related to the reason behind the overall
low efficiency. Near-Earth asteroids (Amor, Apollo, Aten, Atira)
and KBO associations would have occurred in later steps in the
association pipeline (mainly in the last step, when we associate
single measurements from different nights together), but their
elements were already discarded by previous association steps.

We note that the sum of the “initial orbit distribution” col-
umn in Table 3 does not match the number of detectable objects
in Table 2 due to a mismatch in names between ZTF and MPC.
The difference between the two is 316 objects. The asteroids can
have up to four identifiers in the MPC database (number, name,
principal designation, and other designations) that we use for
the correlation, but as the MPC database is frequently updated,
names can change over time. To reduce the confusion, Fink-
FAT is now using the Virtual Observatory Solar System Open
Database Network (SsODNet) services (Berthier et al. 2023),
notably available from rocks'’.

We also used the cross-match with the MPC orbit database
to assess the quality of the orbits computed by OrbFit. For
each orbital parameter, the median of the residue distribution
was below 1%. The best reconstructed orbital parameters are
the semi-major axis, eccentricity and inclination. As expected,
the three others parameters (longitude of the ascending node,
argument of periapsis, and mean anomaly) had a long tail in
their residue distribution, due to the small number of observa-
tions per object input to OrbFit (and the corresponding arcs

7 https://rocks.readthedocs.io
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Fig. 5. Histogram for the deviation (in arcminute) between the
ephemerides generated using the orbital parameters estimated from
Fink-FAT trajectories (pure trajectories from full orbit determination),
and the ephemerides generated using the orbital parameters taken from
MPC for the corresponding objects. We vary the time from the last
observation to the computed ephemeris for each trajectory: At = 7 days
after the last observation (blue), A = 30 days (orange), At = 120 days
(green), and Ar = 360 days (red). The median of each distribution is
shown as dashed vertical line.

have a median of nine days). In order to translate this residue in
terms of useful information for the follow-up of these objects, we
computed the deviation (in arcminute) between the ephemerides
generated using the orbital parameters from Fink-FAT pure and
unique trajectories, and the ephemerides generated using the
orbital parameters from MPC for the corresponding objects,
after several days from the last observation of each trajectory.
The results are displayed in Fig. 5. Seven days after the last
observation of each trajectory, the median deviation between the
predictions is about 1 arcminute. This means for any follow-
up telescope with a field of view greater than 1 arcminute,
most of the objects should be detectable by pointing to Fink-
FAT predictions. However, as time goes on (and assuming no
new observations are added to Fink-FAT), the median devi-
ation between Fink-FAT predictions and the predictions from
the MPC-based orbital parameters increases: 7 arcminutes after
30 days, 38 arcminutes after 120 days, and 577 arcminutes
(9.6 degrees) after one year. This means that without any new
information, Fink-FAT predictions on object trajectories can be
considered as useful for follow-up observations over a month
(note: the initial arc lengths used for predictions have a median
value of nine days).

4.3. Time window impact

In the previous sections, we set fixed the time window parame-
ters to associate alerts when forming trajectories: the separation
time between the end of a trajectory and a new alert was set
to 15 days, the time to keep an old alert as candidate was set
to 2 days, the time to keep an intra-night as candidate was
set to 2 days. We also increased these time window parame-
ters to assess the impact on the orbit recovery. We observe a
decrease in efficiency when the time windows increase. During
the experiments with the largest time windows, the association
step generated a larger number of trajectories than the base-
line case, but fewer trajectories ended with orbital elements in
the orbit fitting step. The reduction in efficiency was explained
by a higher rate of false positives (especially in the pure orbit

step) as many trajectories were crossing each other due to
high density of objects from the main belt near the ecliptic
plane.

4.4. Comparison with present linking software

To consider a trajectory as detectable, Fink-FAT requires a min-
imum of six observations with no more than 15 days between
two observations. Compared to MOPS or HelioLinC which rely
on tracklets, this strategy gives more flexibility with respect
to the choice of cadence for a survey. However, in practice,
Fink-FAT performances still rely heavily on the presence of
tracklets, which makes it more prone to cadence effects than
purely tracklet-less algorithm such as THOR.

The efficiency of Fink-FAT, defined as the ratio between
the number of detectable SSO and the unique detected SSO
remains rather low (25-45%). We note that this result is obtained
on ZTF observations, including all the real life effects such as
unequally spaced cadence. THOR (Moeyens et al. 2021) on a
similar dataset (ZTF alerts from 2018), but with a different crite-
rion to define detectable trajectories (five observations instead of
six in the case of Fink-FAT), reports a overall completeness for
the main-belt objects and beyond of 97.4%, while other works
(e.g. Holman et al. 2018) also report high efficiencies despite dif-
ferent detectable definition. The low efficiency for Fink-FAT can
mainly be explained by the fact that the alert association steps are
sequential: previous steps will remove the associated elements
(trajectories, intra-night trajectories, or single alert) from the
possible association for the next steps (see Sect. 2). Hence, a true
association that would show up only in a later step could never
be considered because its elements would have been mismatched
to other elements in a previous step.

The purity reached by Fink-FAT is as high as 97% after full
orbit fitting. This is comparable to what THOR and others cur-
rently report. This result is encouraging as, while Fink-FAT is
missing many of detectable objects, it provides a low rate of
false trajectories, which is crucial when optimizing the limited
follow-up time, for example.

For the set of parameters chosen, Fink-FAT computational
performances are dominated by the orbit fitting step (see
Sect. 4.1), and not the association steps. This is mainly due to
the fact that the association steps are applied sequentially (with
the same fact giving rise to the low efficiency). The end-to-end
running time (for equivalent computing resources) from associ-
ating alerts to extracting orbital parameters is lower than other
(more precise) software. For example, in the previous experi-
ment using one month of ZTF alert data, Fink-FAT returned full
results in about 168 min on six nodes of four cores each, while
THOR, based on two weeks of ZTF alert data, reported a com-
putational time of about 18 hours using 23 nodes with 28-cores
per node. This represents a factor of ~350 in speed-up (assuming
linear scaling with the data volume for THOR). We note though
that for an extended choice of parameters (i.e., giving more
flexibility to associate elements), we observe a degradation of
the Fink-FAT computational performances by a factor of 5 (see
Appendix B).

5. Application on candidate Solar System objects

In this section, we describe how we applied Fink-FAT on the
set of Solar System object candidates from Fink. We also report
the results from two follow-up campaigns performed to further
validate the results.

Al7, page 9 of 16



Le Montagner, R., et al.: A&A, 680, A17 (2023)

1.0+

0.8

Eccentricity

0.2

0.0

W er Ma(\\‘-e
L %\Q‘(@f‘ eQe. 12{"\“
*va” e o

Orbit candidates
® Initial orbit only
@ Full orbit estimate
Y¢ Jupiter satellites

100

10!

102

Semi major axis (AU)

Fig. 6. Distribution of the 327 orbit candidates returned by Fink-FAT. The orbit candidates that only pass the initial orbit determination step for
orbit fitting are shown with dark blue circles. The orbit candidates that also successfully pass the full orbit determination are shown in orange
circles. In addition, we show orbit candidates that were later associated with Jupiter satellites with star symbols (see Sect. 5.3.3). For reference, we

overplot in grey all the objects from the MPC database as of March 2023.

5.1. Reconstructed orbits

Fink database contains 389,496 alerts classified as Solar System
candidates between 2019-11-01 and 2022-12-29. These alerts
were not matched with the minor planet ephemerides generated
from MPC at the time of the observations and we provide them
to Fink-FAT for the association and orbit fitting. While the total
number of observations is comparable to the number of con-
firmed objects used to validate Fink-FAT (one month of data,
see Sect. 4), the nightly rate becomes much smaller as the time
spanned is greater, with a median rate of 292 alerts per night, a
minimum of 0 alert (only one night) and a maximum of 12 889
alerts per night.

We give to Fink-FAT the same parameters as the previous
experiences done with the confirmed Solar System objects. Fink-
FAT took 138 min to finish its computation over the three years
of Fink’s data. The time to associate the alerts became the short-
est (9 min) compared to the other tests, and the request time is
no longer negligible (39 min). The orbit fitting is still the most
significant part of the computation time (90 min). This experi-
ment uses the same hardware configuration than the experiments
with the confirmed asteroids, except the orbit fitting, which is
performed locally on three cores as the volume of data is small.

Fink-FAT sucessfully linked 2025 observations (0.5% of
all the candidates) to form a total of 327 trajectories with an
orbit estimate, including 182 orbits with error estimates on the
orbital parameters (55%). Overall, 271 trajectories have six mea-
surements (83%) and the longer trajectory (only one) has nine
measurements. The distribution on the sky of these alerts is
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shown in Fig. 2, and they are all located around the ecliptic plane,
at zero declination.

The distribution of magnitudes of the alerts in the trajectories
linked by Fink-FAT is similar to the distribution of magnitudes
for confirmed Solar System objects. The distributions of the
orbital parameters and error estimates follow the same trend as
for the confirmed and pure orbits described in Sect. 4.2. Hence,
according to Table 2, this points towards a high purity and it
lends confidence to the fact that the orbit candidates with error
estimates might be valid unreported Solar System candidates in
the MPC database at the time of the observations. In Fig. 6,
we show the distribution of orbital parameters estimated from
reconstructed trajectories. Trajectories that pass the full orbit
determination are mainly located in the main belt, while those
from only initial orbit determination tend to lie more often on
extreme regions of the parameter space, with a perihelion at
1 AU, which is likely a sign of ill-defined orbit solutions driven
by the initial conditions used in the solver. This is probably a con-
sequence of the fact that Fink-FAT linkage parameters estimated
from the set of confirmed objects are mainly representative of
main-belt objects (see Sect. 3.1).

5.2. Accounting for updates

When selecting the Solar System object candidates, we rely on
the fact that ZTF did not find any counterparts when cross-
matching with the ephemerides provided by the MPC. In addi-
tion, we did not attempt to check for data elsewhere when
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Fig. 7. Examples of spurious trajectories returned by Fink-FAT in the RA-Dec space. In all panels, the initial trajectory is in solid black line.
FF2023aaaaakz: the two top-right corner alerts were matched to 2001 SY178, but the epheremides of this object is not compatible with the
position of the remaining alerts (which are at about 5.2 arcseconds from 2004 NE13). FF2023aaaaaaq: the top-right corner alerts were matched
to 2013 SA105, while the bottom left alert was matched to 2015 PR141. FF2023aaaaaba: the top-right corner alerts were matched to 2012 RF32,
the middle alerts (intra-night) was due to the passing of 1997 AB13, and the middle left alert was matched to 2015 WX9.

associating alerts to form trajectories. Yet as more observations
are performed, more Solar System objects are discovered and
eventually added to the MPC database or available somewhere
else. Therefore, to check if any of our alerts from candidate
trajectories could be associated with a currently known aster-
oids, we perform an association by ephemerides with the SkyBot
cone-search tool (Berthier et al. 2006) with an up-to-date version
of the Solar System object data. To perform the association, we
used a cross-match radius up to five arcseconds between the Sky-
Bot predictions and candidate alerts, as well as a threshold on the
variation with respect to the predicted magnitude at 0.3 mag.

We found 1284 (63%) alerts with a previously unreported
counterpart. Out of the 327 candidate trajectories that pass the
orbit fitting, 92 (28%) had all their alerts associated with the
same Solar System object (pure orbit like). Then, 170 trajectories
(52%) had associations coming from multiple asteroids (orbit
is not pure). In this case, there are two types: trajectories for
which most of the observations are matched to the same aster-
oid (or to no asteroids) but one and the trajectories for which
most of the observations are from different asteroids (see Fig. 7).
Unfortunately, the high density of asteroids in the main belt con-
tributes to this false associations. Finally 65 trajectories (20%)
were not associated with any known objects and were used for
the follow-up campaigns. We note that for most of those compos-
ite trajectories, OrbFit failed to return orbital parameter error
estimates, which is only the initial orbit determination step was
successful and we can easily discard them.

5.3. Follow-up campaigns

In order to further validate the candidate trajectories from Fink-
FAT, we organised two follow-up observation campaigns using
the telescope network of the Las Cumbres Observatory (LCOGT,
1 meter; Brown et al. 2013) and the Observatoire de Haute
Provence (OHP, 1.2 meter), France. The first campaign took
place in July 2022 with trajectories candidates detected by Fink-
FAT in 2021. The second campaign took place in late September
2022 with candidates trajectories from August 2022. To guide
our decision for the follow-up, the trajectories candidates are
sorted based on the best error estimate on the three first orbital
parameters (semi-major axis, eccentricity, and inclination); how-
ever, due to technical problems with the LCOGT northern

telescopes at the time of observations, we were restricted to ZTF-
derived trajectories visible from the southern hemisphere only
which left only few candidates (and these are not necessarily
the best).

5.3.1. First observation campaign

Initially, no trajectories were visible from the Cerro-Tololo
(W8T7) site for the first observation campaign (2022-07-05). We
decided to increase the time window parameter of Fink-FAT
from two days to eight days for inter-night association in order
to get candidates and not lost the observing time. Two trajecto-
ries were finally visible from the site and one was selected for
a follow-up study. The trajectory was detected by Fink-FAT in
2021 (last alert emission date after extension by ephemerides
in 2021-05-22, that is, more than a year before the follow-up
observations), with an arc of 46 days. The orbital parame-
ters were estimated to (a[AU], e, i[deg]) = (3.0593, 0.22603,
16.66617). The observations confirmed the position of a mov-
ing object in the exposure (about 9 arcminutes away from the
predicted ephemeris). However this object was already known
and contained in the MPC database (MPC number: 525570) with
orbital parameters (a[AU], e, i[deg]) = (3.0652517, 0.2243976,
16.77083). The asteroid was unknown in Fink initially because
the alerts must fall within 5 arcseconds of a known asteroids to
be associated (see Sect. 3.1) and it was just beyond the threshold
for association (~6 arcseconds). Despite this, it remains a con-
firmation of the ability of Fink-FAT to detect valid trajectories,
but we were rather lucky that the predictions were only 9 arcmin-
utes away from the correct orbit more than a year after the last
observations, as according to Fig. 5, this object would be in the
leftmost tail of the Ar = 360 days distribution.

5.3.2. Second observation campaign

For the second observation campaign, we ran Fink-FAT with its
default parameters. Unlike the first campaign, the trajectories
were predicted about one month before the follow-up observa-
tions, so we would expect deviations in the predictions around
a dozen of arcminutes (see Fig. 5). We selected six trajecto-
ries of six observations each from ZTF observations taken in
August 2022. The follow-up data was acquired from the LCOGT
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site on 2022-09-25 and 2022-10-01 and from the OHP site on
2022-09-26. Five trajectories have received follow-up, three tra-
jectories were found to be Jupiter irregular satellites (J9 Sinope
and J8 Pasiphae) and for two, no counterparts were found.
In the following, we detail each trajectory and the follow-up
observations.

FF2023aaaaama. The last alert emission date was on
2022/08/28, and the observations were performed on 2022/10/01
from the LCOGT site. The total arc is 6 days, and the orbital
parameters were estimated to (a[AU], e, i[deg]) = (8.085766,
0.404250, 4.198385). There were three moving objects nearby
the ephemerides predicted from Fink-FAT estimates. Two were
known asteroids (2012 XF166 and 549 752), whose positions
were not compatible with the initial Fink-FAT trajectory. The
remaining object was an irregular moon of Jupiter, Jupiter
VIII Pasiphae (=23 arcseconds from the Fink-FAT predictions).
We found Pasiphae was also compatible with the initial Fink-
FAT trajectory (<1 arcseconds distance from all alerts) and we
concluded that FF2023aaaaama was an observation of Pasiphae.

FF2023aaaaamb. The last alert emission date for this trajec-
tory was on 2022/08/28, and the observations were performed
on 2022/09/25 from the LCOGT site. The total arc is four days
and the orbital parameters were estimated to (a[AU], e, i[deg])
= (6.657587, 0.337133, 2.500486). There were three moving
objects nearby the ephemerides predicted from Fink-FAT esti-
mates. Two were known asteroids (426 612 and 274 218), whose
positions were not compatible with the initial Fink-FAT trajec-
tory. The remaining object was an irregular moon of Jupiter,
Jupiter IX Sinope (=5.5 arcminutes from the Fink-FAT predic-
tions). We found Sinope was also compatible with the initial
Fink-FAT trajectory (<1 arcseconds distance from all alerts)
and we concluded that FF2023aaaaamb was an observation of
Sinope.

FF2023aaaaalx. The last alert emission date for this trajec-
tory was on 2022/08/22, the observations were performed on
2022/09/25 from the OHP site and 2022/10/01 from the LCOGT
site. The total arc is 12 days, and the orbital parameters were esti-
mated to (a[AU], e, i[deg]) = (50.430875, 0.926643, 2.796635).
In the OHP observations, there were two moving objects nearby
the ephemerides predicted from Fink-FAT estimates. One was
a known asteroid (426612), whose position was not compatible
with the initial Fink-FAT trajectory. The remaining object was an
irregular moon of Jupiter, Jupiter IX Sinope (=9 arcminutes from
the Fink-FAT predictions). In the LCOGT observations, there
were three moving objects nearby the ephemerides predicted
from Fink-FAT estimates. Two were known asteroids (152295
and 425019), whose positions were not compatible with the
initial Fink-FAT trajectory. The remaining object was an irreg-
ular moon of Jupiter, Jupiter IX Sinope (10 arcminutes from
the Fink-FAT predictions). We found Sinope was also compati-
ble with the initial Fink-FAT trajectory (<1 arcseconds distance
from all alerts), and concluded that FF2023aaaaalx was an
observation of Sinope.

FF2023aaaaamc. The last alert emission date for this trajec-
tory was on 2022/08/29, and the observations were performed
on 2022/10/01 from the LCOGT site. The total arc is eight days
and the orbital parameters were estimated to (a[AU], e, i[deg]) =
(2.358976, 0.251121, 5.275541). There was one moving object
nearby the ephemerides predicted from Fink-FAT estimates, but
it was a known asteroid (394919), whose position was not com-
patible with the initial Fink-FAT trajectory. Hence, we have no
confirmation for this object.
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Table 4. Orbital parameters estimated from the three trajectories of
the second follow-up campaign corresponding to Jupiter satellites,
considering Jupiter as the center of mass.

a [AU] e i [deg] U
1 0233+270 0941 +0235 97.7+29 102
2 0.103+198 0.341 £0.198 153.2+0.28 102
3 0168 +£0.448 0.225 +4.18 159 + 23 13.1

FF2023aaaaamd. The last alert emission date for this trajec-
tory was on 2022/08/31, and the observations were performed
on 2022/10/01 from the LCOGT site. The total arc is nine
days, and the orbital parameters were estimated to (a[AU], e,
i[deg]) = (6.525971, 0.783301, 4.540030). There were five mov-
ing objects nearby the ephemerides predicted from Fink-FAT
estimates. There were all known asteroids (363563, 435953,
339694, 52703, 2015 BH451), whose positions were not com-
patible with the initial Fink-FAT trajectory. Hence, we have no
confirmation for this object.

We note that during the processing of the observations
at LCOGT of FF2023aaaaalx, four new moving objects
previously unreported were also found (and not present
in Fink as there were no ZTF observations at the same
moment). These observations were sent to the Minor Planet
Center.

5.3.3. Including planet satellites

We were not expecting to observe irregular satellites of Jupiter,
but their ephemerides were not included in the MPC data files
used by ZTF to associate alerts, so it is not surprising after-
wards. Knowing this, we took all 65 unknown trajectories by
Fink-FAT, and search for associations with Jupiter satellites com-
patible in terms of magnitude range (from JV Amalthea to JXX
Taygete). We found seven trajectories associated with Sinope:
four to Carme, three to Pasiphae, two to Ananke, one to Elara,
and one to Himalia.

Knowing this, the orbital elements estimated by the default
configuration of OrbFit are not correct, as these objects orbit
around Jupiter. Not surprisingly, this is confirmed by Fig. 6
where all trajectories associated with Jupiter satellites have out-
liers values with respect to the rest of the trajectories where
we mainly expect to recover main-belt asteroids with Fink-FAT.
For completeness, we re-estimated the orbital elements from
these observations but taking into account their relationship with
Jupiter. As this functionality is not available in the publicly
available OrbFit code source, we used the on-line Find_Orb
tool'8. We provided the alert measurements in the PSV ADES
format, and selected Jupiter as the element center to obtain
the orbital elements. The results are summarized in Table 4,
where the rows correspond to FF2023aaaaama (1: Pasiphae),
FF2023aaaaamb (2: Sinope), and FF2023aaaaalx (3: Sinope),
respectively. Estimates are provided by the on-line Find_Orb
tool. The parameters are poorly constrained, as confirmed by
the uncertainty parameter U provided by the software for which
values greater than nine denote an object’s orbit extremely uncer-
tain. One would need more observations to obtain more precise
estimates.

8 https://www.projectpluto.com/fo.htm
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5.4. Limitations

[ Confirmed [ Candidates Trajectories
In this section, we summarize the various limitations in the use
of Fink-FAT that we identified over the course of this work: 10°% i
— Upon receiving the alert, Fink refines the association with ~ » 104
a potential confirmed Solar System object by relying only 2 3
on distance criteria (see Sect. 3.1). We plan to take into 5 1o3é il
account in real time other association conditions, such as the 8 25
co-linearity or magnitude difference using SkyBot. E 103
Fink-FAT association steps (see Fig. 1) are sequential. The < 1014
associations found during a step are removed for the next E
step. Within a step, one trajectory can be extended with mul- 10%4 T T T T T T T T T T
2020 May Sep 2021 May Sep 2022 May Sep 2023

tiple measurements, but a measurement is only associated
with one trajectory, and the association are also sequen-
tial. As a result, spurious associations can take over valid
ones, which drastically lowers the efficiency of Fink-FAT.
The inaccuracy of the association algorithm mainly drives
this limitation. Using an algorithm that improves the associa-
tion accuracy such as the Kalman filter is a solution (Kalman
1960) that we are presently investigating.

Fink-FAT parameters to search for new objects are based
on the entire population of confirmed Solar System
objects, without distinctions between dynamical classes (see
Sect. 3.1). As aresult, this study is mainly driven by the pop-
ulation of main-belt asteroids detected by ZTF which are the
most numerous. As we collect more objects over time, we
plan to tune Fink-FAT for the search of other classes.

As we were not initially expecting to find alerts related to
planet satellites, the orbit fitting step assumes an heliocen-
tric system (see Sect. 5.3.3). While the orbital solutions
are somehow valid over a short period of time (we could
retrieve the objects based on the predictions), we plan to
systematically check for these in the future.

One of the limitation of Fink-FAT is the size of initial
trajectories in terms of time and number of observations.
Fink-FAT returns trajectories with a small number of points
to limit the combinatorial, but also to quickly enable follow-
up observations, but it does not try to aggregate more data
in the future and refine the orbital parameters when possi-
ble. In our experiments with candidate Solar System objects,
the largest trajectories had only nine observations and the
smallest had six observations. The time between these obser-
vations is also very short (about nine days), and on average,
the time between two subsequent observations was only two
days. Due to these limitations, the orbits computed from
these trajectories are often inaccurate, enabling an efficient
follow-up only for a limited period of time. An extension of
Fink-FAT is being considered to keep aggregating more data
in the future and refine the initial orbital parameters as more
data are processed.

We found that the detection of the trajectories is not uni-
formly distributed over a single year, and most alerts from
trajectory candidates are emitted in the period between
August and December, as shown in see Fig. 8. First the
ecliptic plane is higher in the sky from the ZTF observing
site at this period (higher in the sky so longer visibil-
ity, and observations with lower air mass). Second, due to
weather condition at the observing site, the period of Jan-
uary to March is less suitable for observations (see, e.g.,
the alert coverage'®). Third, there were long maintenance
periods of the ZTF camera during December and April of
2022, reducing the number of observations. We also suspect

Y https://fink-portal.org/stats

Date

Fig. 8. Number of alerts from confirmed Solar System objects (green),
Solar System candidates (blue), and alerts from trajectory candidates
(orange) as a function of time. The bin width corresponds approximately
to one week of data.

60°

Alert/arcmin?

Fig. 9. Footprint of the ZTF alert stream from November 2019 to
December 2022 associated with confirmed Solar System objects (as in
Fig. 2), that also satisfy the detectability criterion (see Sect. 4.2.1). We
see an excess of alerts at (RA, Dec) = (0, 0), similarly to trajectory can-
didates. For reference, the ecliptic plane is shown with black triangles.

a correlation with the method, but we cannot firmly conclude
at this stage, as this pattern is not as strong in the confirmed
objects nor in the Solar System candidates (there is some
oscillation, but the range between extrema in the number of
alerts selected is smaller). We are still investigating.

— We found that most of the trajectory candidates are concen-

trated around (RA, Dec) = (0, 0) in the sky (see Fig. 2).
This is typically linked to the seasonal variations mentioned
above, but we also found a correlation with our method to
select valid alerts to form trajectories. For example, we took
all alerts associated with confirmed Solar System objects,
we kept only those satisfying the criterion of detectability
(as defined in Sect. 4.2.1), and we project these alerts on the
sky. The results are shown in Fig. 9, where we clearly see
an excess of alerts around (RA, Dec) = (0, 0). It is not clear
whether the cadence of the survey also plays a role here and
we are still investigating this aspect.

6. Conclusion and perspective for LSST

The use of an alert broker to overcome the challenges posed by
the linkage problems in the context of large volumes of alert data,
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by reducing the initial number of inputs to link, has proven use-
ful for the real-time identification of Solar System object. Based
on this approach, we developed a new component in Fink, Fink-
FAT, to detect potential new asteroids. Fink-FAT works in two
steps: the association step which relies on a linking algorithm
using simple dynamical consideration (co-linearity, magnitude
evolution, and apparent motion) and the orbit fitting step which
relies on the OrbFit software.

Fink-FAT has been successfully applied on the Solar Sys-
tem alert data stream produced by Fink from the ZTF alert data
stream. The parameters of the algorithm were tuned using con-
firmed Solar System objects in the ZTF alert stream, and applied
to Solar System candidate alerts selected by Fink. The low effi-
ciency (25-45%) of Fink-FAT remains its main bottleneck. This
is due to the fact that we sequentially apply the association steps,
discarding the associated elements from the possible association
for the next steps. On the other hand, the purity of the algorithm
reaches 97% after full orbit estimates, which is a requirement for
performing efficient follow-up observations.

Fink-FAT has been also tested for LSST-like alert stream, and
it demonstrated that it is particularly well adapted in the context
of large alert data streams for Solar System candidates: it requires
modest hardware resources to operate, while having a relatively
low computational time. We note though that if Fink-FAT is less
prone to cadence effect than MOPS for example (as it does not
only rely on tracklets), it is not as cadence-independent as other
recent more sophisticated association algorithms might be, such
as THOR (Moeyens et al. 2021).

The two follow-up campaigns enabled to test some aspects
of Fink-FAT operations. Despite the rather large delay between
the initial trajectories and the follow-up observations (more than
a month), four trajectories out of six turned out to be associ-
ated with real objects from the Solar System based on Fink-FAT
predictions on small arcs. The distances of the objects to their
predictions were within the expectations shown in Fig. 5. For the
two remaining trajectories, we can speculate that if they were
initially associated with real moving objects, the deviation of the
prediction from the true position would have been beyond the
field of view of the telescope (27 arcminutes for the LCOGT).
Overall, even if no new Solar System object was reported from
Fink-FAT trajectories for these two observation campaigns, it
confirms the ability of Fink-FAT to form coherent trajectories.

Fink-FAT is deployed as a real-time component in Fink since
2022. Each night, the system creates or extends the pool of
trajectories and fits orbits for those that exceed a certain num-
ber of points. Finally, the Solar System candidate alerts, the
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trajectories, and their orbital parameters are entered into the
Fink database. All outputs are publicly available via the differ-
ent interoperable services of Fink?°. In addition, a new area in
the Fink Science Portal is being developed to allow users to per-
form further analyses directly in their browser and easily plan
follow-up observations.
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Appendix A: Fink-FAT pseudo-code

Algorithm 1 Intra-night association algorithm

1: function INTRA_NIGHT_ASSOCIATION(A))

2: Timra «0
3: Tinra < {(aj, ar)Vaj, ax € A;, 6d < sep_limit} > using a
KD-tree

4 Tinga < Tinga \ {(aj’ ar)|~cut_2)

5: Tintra < Tintra \ {(aj, Clk)l—lCMZ_3}

6: for each 7y = (ag,ay),t; = (bo, b1) € Tinya do
7

8

9

if alRintrabO then
Timra — Tintra \ o, 11
t < (ao,ay, by, by)

10: Tintra < Tintra U {1}
11: end if

12: end for

13: return 7,

14: end function

Algorithm 2 Fink-FAT algorithm

1: function FINK-FAT(T, O, A;)
2: Tinger < 0

3: Tinwa < intra_night_association(A;)
4: A; « Ai\{al¥a; € Tinga}
5: for each r = (ay,...,a;) € T do
6: for each v = (b, ..., by) € Tiyya do
T if P(ay_1, ax, by) then
8: T «—T\{t}
9: Tinga < Tinga \ {t')
10: Lnerge < (ag, ...,ax, by, ..., by)
11: T « T U {tmerge)
12: end if
13: end for
14: for each b € A; do
15: if P(ay_1, ax, by) then
16: T «—T\{t}
17: A; — A\ {b}
18: tmerge < (ao, ..., ax, b)
19: T — T U {timerge}
20: end if
21: end for
22: end for
23: for each t = (by, ..., by) € Tipga do
24: for each 0 € O do
25: if P(o, by, by) then
26: Tintra < Tinwa \ {1}
27: O « 0\ {0}
28: Lnerge < (0, by, ...,by)
29: T « T U {terge)
30: end if
31: end for
32: end for
33: Thew < {(a_i,ak)la_jRinterak, Vaj € O,VYa, € A}

34: O « O\ {ajlVa; € Tyew}
35: A; — A\ {arlVay € Tpew)
36: T «— T UTinga Y Thew

37: 0O« OUA;

38: return 7, O

39: end function

Table B.1: Same as Table 1, but using only the objects matched to near-
Earth asteroids from the confirmed SSO dataset.

Inter-night

rq 1.0 deg/day

rn (from same filter bands) 0.1 mag/day
r» (from different filter bands) 0.8 mag/day
Ty 0.6 deg/day

Intra-night

rq 0.05 deg

7, (from same filter bands) 0.2 mag

rn (from different filter bands) 0.6 mag

1 -

Appendix B: Extending parameters used in
Fink-FAT

As described in Sect. 3.1, the parameters used in Fink-FAT are
derived from the alerts returned by ZTF with a MPC match
without taking into account the orbit types. Hence, the values
of the parameters are mainly driven by the population of main
belt asteroids detected by ZTF, which are the most numerous.
To better probe the impact of such a choice in the recovery of
objects in different groups, we re-estimated Fink-FAT parame-
ters but based only on objects from the near-Earth asteroid group
(see, e.g., Table B.1, derived from 1,970 objects in the confirmed
SSO dataset between 2019 and 2023). As the Fink-FAT param-
eters are set from their cumulative distribution, we effectively
extend the targeted group to NEA, but main-belt objects are still
included (as they typically evolve slowly).

The total Fink-FAT runtime increased significantly compared
to the case with the default set of parameters (user time of
15 hours, using the cluster mode for the orbit fitting step with
the same hardware configuration than in Sect. 4). This increase
of time is due to the higher number of associations formed
and trajectories to fit, allowed by the extended Fink-FAT input
parameters. Conversely, there are fewer trajectories with an orbit
estimate (213 compared to 327) for a total of 1,316 linked obser-
vations. The decrease of the number of trajectories is due to a
higher false positive rate when associating alerts: Fink-FAT pro-
duces many trajectories intersecting, which are then discarded
(see discussion on the efficiency in Sect. 4.4). We note though
that the trajectory with the smaller arc length reaches 0.1 day (six
alerts in the same night).

The orbital parameter distributions are however similar to
the distribution of parameters estimated from the default case
described in Sect. 5 and shown in Fig. B.1; especially as there is
no excess of objects with a small semi-major axis in the extended
case. Our interpretation is that even if the Fink-FAT parameter
space has been extended, the results are still driven by the main
bulk of objects from the main belt, and we would need to include
more objects from the NEA group when estimating Fink-FAT
parameters to efficiently reconstruct similar trajectories.
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Fig. B.1: Distribution of orbital parameters from reconstructed trajectories with full orbit estimate using the default Fink-FAT parameters (blue
histograms; see Table 1), and the extended set of parameters estimated from the NEA group (orange histograms; see Table B.1). The left panel
shows the distribution of the semi-major axis parameter, the middle panel shows the distribution of the eccentricity parameter, and the right panel
shows the distribution of the inclination parameter.

Appendix C: Cataloguing and data availability

All new Solar System object candidates found by Fink-FAT are
stored permanently in the Fink database, and publicly avail-
able as soon as the observing night is finished. We deployed
an endpoint in the Fink REST API that lets users query this
information?'. Users can retrieve the photometry of objects
related to candidate orbits (kind=1ightcurves) and the orbital
parameters for orbit candidates (kind=orbParams). We propose
an example of a query to retrieve all the orbital parameters,
formulated in the Python programming language, as follows:

import requests

r = requests.post(
"https://fink-portal.org/api/vl/ssocand’,
json={

’kind’: ’orbParams’
}
)

2l See https://fink-portal.org/api for more information
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