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Optimal Pricing Strategies for Charging Stations in the Frequency
Containment Reserves Market for Vehicle-to-Grid Integration

Guillaume Gasnier, Carlos Canudas-de-Wit

Abstract— Electric vehicles and the electric vehicle charging
station infrastructure play crucial roles in sustainable energy
systems. We propose an innovative approach that utilizes
aggregated electric vehicles for grid-balancing services in the
auxiliary market. Our model gives electric vehicle state of
charge (SoC) over time and space, considering factors like
driver behavior, state of charge levels, and charging/discharging
costs. This approach informs decisions about optimal charging
times. Charging station operators participate in the frequency
containment reserves market in collaboration with aggregators.
We introduce an optimization framework which establishes
pricing strategies to maximize profits for aggregators and
charging station operators while minimizing charging costs for
electric vehicle users. Our findings demonstrate the effectiveness
of this strategy in realistic simulations, integrating electric
vehicle mobility and the electricity frequency containment
reserves market.

I. INTRODUCTION

The future of electrification in transportation and use
of renewable energy sources are in a transformation
phase [1]. The global shift towards renewable energy
sources introduces challenges due to their intermittent
generation, requiring new energy storage solutions to address
supply-demand imbalances [2]. Electrical Vehicles (EVs),
with Vehicle-to-Grid (V2G) technology and rapid-response
capabilities, can play a pivotal role in grid management
[3]. This topics has gained attention recently. In [4],
authors suggest that EVs should participate in auxiliary
electricity markets. The primary reserve market, also known
as "Frequency Containment Reserve" (FCR) stands out as
one of the most natural markets for EVs [5], [6]. Numerous
studies in the literature have explored this potential. They
primarily vary in their approaches to forecasting energy
demand at the CSs and in the diverse optimization
formulations for their involvement in electricity markets.

For instance, [7] uses aggregated EVs in fast Charging
Stations (CSs) lead by a Charging Station Operator
(CSO) to participate in FCR market. Historical data from
the CSs is employed to forecast the vehicles’ charging
demands. Differences between prediction and real demands
are compensated by an additional battery energy storage
system located at the CSs. Their goal is to optimize their
participation to the electricity market while the prices of
EV charging services are kept fixed. Meeting charging
demands and bidding requirements are introduced here as a
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Fig. 1: Day-ahead, CSO declares capacity amount with price. FCR
market reports retained capacity and price. CSO decides charging
and discharging prices for EVs. Decision variables are in blue.

constraint in the optimization problem. In [8], the authors use
statistical data-based models to predict CSs occupancy. The
cost function minimize EV battery degradation and maximize
the operator earns from their participation to the electricity
markets. [9] employs a macroscopic mobility PDE model
and EV users behavior to forecast CSs occupancy. Authors
compare different CSs pricing strategies to maximize CSs
benefits when selling energy to EVs users. Participation in
the FCR market is set as a constraint in the optimization
formulation, but explicit frequency market models are not
include in the study. Vagropoulos and al. [10] use a
large EV fleet statistical patterns to design suitable energy
demand forecasting at the CSs. With this prediction, the
aggregator objective is energy purchased cost minimization
(in day-ahead and real-time market) while maximizing the
revenue from ancillary market participation. In [11] historical
vehicles charging profiles (including public and private CS)
are used to forecast energy charging demands. The study
addresses the Nordic market, where the EV aggregator
bids operate within a framework that separates FCR into
two markets for downward and upward regulation. The
optimization problem here aims at maximizing the expected
profits of EV aggregators on a day-ahead basis.

In this work, we introduce an innovative approach that
leverages aggregated electric vehicle charging station to
participate in the auxiliary market, enabling grid-balancing
services (see Fig.1). A significant contribution of this
work, distinct from prior related authors publications [12],
[13], and to the other approaches mentioned previously,
is the introduction of a new graph model to forecast
energy demand at the CSs. The proposed model is derived



under principles of mass conservation and energy balance
similar to our previous studies [12], [13], but incorporating
fresh elements related to charging stations, including CS
occupancy, average state of charge of electric vehicles at
CS locations, and power exchange with the grid. This
charging station model is seamlessly integrated with an
electric vehicle mobility model, which takes into account
various allocation ratios based on the average SoC of
vehicles near the charging stations and the energy price
at the charging station. Moreover, this model is connected
with the frequency containment reserves market operation,
enabling us to formulate a global optimization problem.
Within this framework, we design new pricing strategies
with the dual goals of maximizing profits for aggregators
and charging station operators, while also minimizing energy
charging costs for EV users. Our research findings highlight
the effectiveness of this pricing strategy in achieving these
objectives, as demonstrated through realistic simulations that
encompass EV mobility and the electricity FCR market.

II. AUXILIARY MARKETS

The Frequency Containment Reserve is a vital component
of the ancillary service sector. This ancillary service is
regulating grid frequency, safeguarding the stability of the
power network. Within this domain, there are three distinct
components: primary, secondary, and tertiary reserves. FCR
is in the primary reserve category, which is characterized
by its rapid response capability, acting in less than 15
seconds. Participation in the primary reserve market requires
the ability to adjust power consumption, both upward and
downward, ensuring a dynamic response to grid frequency
fluctuations. The FCR market operates at a European
level, featuring varying prices across individual countries,
determined by the matching of supply and demand. Market
resolution occurs on a day-ahead basis, segmented into six
four-hour time blocks.

Throughout the remainder of the paper, we will employ
the following upper index:

• M represents market.
• B represents bid.
• C represents CSO.
• D represents demand.
• S represents supply.

Fig. 1 illustrates two key time phases. In the Day ahead
phase, market prices for the next day are determined. In this
case the CSO is also a charging station. To participate in
the FCR market, it must submit available power quantity
PB ∈ N in MW and minimum compensation price πB ∈ R
in d/MW for every time block. Once the FCR market settles,
it returns the approved power quantity PM ∈ N in MW and
price πM ∈ R in d/MW. In the Intraday phase, the CSO sets
the charge prices πC ∈ R+ in d/kWh. When participating
in FCR, the CSO must be capable of both increasing and
reducing its charging power. The CSO must also set price
πC in a way that ensures there are always enough vehicles
available to meet the grid operator’s demands.

A. FCR market settlement process

Settling the FCR market involves solving two Linear
Programming (LP) problems. The first LP problem
maximizes the amount of power exchanged while ensuring
that the highest bid price is lower than the lowest asked
price. The second determines the buying/selling price for
all participants in the FCR market, ensuring an equitable
outcome for all.

Let PS ∈ NnS , and πS ∈ RnS represent vector of
proposed supply quantities by the energy suppliers in the
FCR market, and their associated prices. Where nS is the
number of supply offers. Without loss of generality, we
assume that the CSO makes only one offer and is ordered in
the first component of vectors PS , and πS i.e.

PS = [PB , P̄B ]T (1)

πS = [πB , π̄B ]T (2)
where P̄B ∈ NnS−1, and π̄B ∈ RnS−1 represent all other
operators offers (see Fig.1). Likewise, PD ∈ NnD and
πD ∈ RnD describe vectors of power demands by the
transmission system operators and their respective prices.
Here, nD represents the number of demand offers.

Let yS ∈ NnS and yD ∈ NnD represent the vectors
representing the energy proportions of each retained offer.
Then, the day-ahead market settlement process computes yS

and yD, by solving the following optimization problem for
each of the 4-hours time-sequences:

max
{yD

i },{yS
j }


nS∑
i

πD
i yDi −

nD∑
j

πS
j y

S
j

 (3)

under
nS∑
j

ySj −
nD∑
i

yDi = 0

0 ≤ yDi ≤ PD
i , i = 1, ..., nD

0 ≤ ySj ≤ PS
j , j = 1, ..., nS

The approved power quantity for the CSO is then,
PM = yS1 (4)

The approved price πM is obtained by the dual problem. Let
νS ∈ RnS and νD ∈ RnD represent Lagrange multipliers for
the unitary benefits associated with the various supply and
demand offers if the market is cleared at price πM .

min
πM ,{νD

i },{νS
j }


nD∑
i

νDi PD
i +

nS∑
j

νSj P
S
j

 (5)

under

πM − νSj ≤ πS
j , j = 1, . . . , nS

−πM − νDi ≤ −πD
i , i = 1, . . . , nD

νSj ≥ 0, j = 1, . . . , nS

νDi ≥ 0, i = 1, . . . , nD

Table I, illustrates organized offers in the FCR market for
a 4-hour time window. The price πM is determined by the
variable in problem (5). Fig. 2 depicts the market resolution



Fig. 2: FCR market price settlement based on Table I and Evolution
of FCR prices during a day. In yellow, the price settled on top.

Demand
πD (e/MW) [48,47,47,46,41,41,39,37,33,28,28,26,25,16,13,9,4,4,1,0]
PD (MW) [31,22,36,17,1,16,38,17,22,12,22,28,16,8,13,31,23,4,27,34]

Supply
πS (e/MW) [2,5,5,8,8,9,12,13,13,15,16,17,18,20,22,29,32,42,45,46,46]
PS (MW) [33,1,10,40,23,18,2,18,1,22,3,38,30,32,21,36,3,16,18,39]

TABLE I: Demand and Supply Data

process. Offers positioned before the intersection point of the
demand curve and the supply curve are considered retained
offers. The point where these two curves intersect also
determines the price per MW. It is important to note that
the values provided in this example are fictional, provided
for clarity and comprehension of Fig. 2. Fig. 2 also displays
the evolution of the settled price in the FCR market for a
day across 6 time slots.

III. EVS MOBILITY AND STATE-OF-CHARGE MODELS

Symbol Description Domain Unit
N,N1, N2 Number of EVs at the CS, nodes 1 and 2 R+ veh

N̄, CS maximum EVs number R+ veh
ε, ε1, ε2 SoC at the CS, nodes 1 and 2 [0, 1] -

εl SoC EVs start leaving CS [0, 1] -
β Split ratio [0, 1] -

σ, σ1, σ2 Gating function for CS and nodes 1 and 2 [0, 1] -
φ1,2, φ2,1 Flow from nodes 1 to 2 and form 2 to 1, R+ veh/h
φin, φout Flows entering CS and exiting CS

φ̄CS , φ̄1, φ̄2 Flow maximum CS and nodes 1 and 2 R+ veh/h
ci Constants R -
D Demand function R+ veh/h
S Supply function R+ veh/h

∆1,∆2 Travel energy loss on portion 1 and 2 [0, 1] -
Pin, Pout Entering/exiting power R+ kW

PCS Maximum CS charging power R+ kW
P̃ CS charging power R+ kW
∆P Power regulation R kW

TABLE II: Notation summary of the model.

The studied system, illustrated in Fig. 3, consists of a
single route connecting two nodes, featuring road links in
both directions. A public charging station is positioned along
this route. The flow of EVs traveling on this road is divided
to access the charging station, based on factors such as the
EVs’ SoC and the prevailing charging/discharging prices.
In the model used, vehicles at the charging station are
interconnected. They can both charge and discharge. Once
the EVs have completed their charging, the outflow from the
charging station returns to the relevant node. Finally, and

N1, ε1, σ1(t) N2, ε2, σ2(t)

N, ε, σ(ε)

∆1 +∆2

Grid

φ1,2(1− β)

∆1 ∆2

φ2,1

φin(β)
ε1 −∆1

φout

ε

P̃

Fig. 3: Studied system mobility and energy visualisation. Yellow
circles represent nodes, while green circle symbolizes the dynamics
of the charging station.

without loss of generality, EVs return to their origin node to
complete the journey.

A. Mobility model

The aggregated mobility model used is based on a set
of coupled conservation Ordinary Differential Equations
(ODEs) for all time t. It can be easily generalized and
validated for a large number of nodes and CSs. Time is
implicit in all the following equations of number of vehicles
and SoC, N = N(t) and ε = ε(t).

The quantity of EVs at the CS, node 1 and node 2 at any
given time, denoted as N , N1 and N2, is defined by system
ΣN ,

ΣN :


Ṅ = φin − φout (6)
Ṅ1 = φ2,1 − φ1,2 − φin (7)

Ṅ2 = φ1,2 + φout − φ2,1 (8)
Here, φj,i represents the flow of EVs from node j to node

i. φin and φout are flows entering and exiting the CS. It is
important to note that vehicles leaving the CS directly merge
with the vehicles at node 2. Entering and exiting CS flows
are defined as follows.

φin = min {βD1, S} (9)
φout = min {D,S2} = D (10)
φ1,2 = min {(1− β)D1, S2} = (1− β)D1 (11)
φ2,1 = min {D2, S1} = D2 (12)

The demand functions D, D1, and D2 describe the flow of
EVs that would like to leave, while the supply functions
S, S1, and S2 represent the inflows that can be allowed to
enter. The split ratio β represents the proportion of vehicles
departing from node 1 and desiring to charge. For the sake
of simplicity, and except for the charging station node, we do
not consider congestion propagation in the origin/destination
nodes. The underlying assumption is that all demand can be
fully served in the nodes one and two. As a consequence,
at the exception of equation (9), the expression of (10),(11)
and (12) simplifies as described above, with:



Fig. 4: An example of the splitting ratio function as a function of
the state of charge for different charging station prices πC c1 =
0.83, c2 = 1.3 and c3 = 0.06.

S = min{ω(N̄ −N), φ̄CS} (13)
D = σ(ε)min{vcN, φ̄CS} (14)
D1 = σ1(t)min{v1N1, φ̄1} (15)
D2 = σ2(t)min{v2N2, φ̄2} (16)

where N̄ is the maximum CS capacity, φ̄CS the maximum
inflow/outflow (we assume they are equal) to enter or to leave
the CS, and ω the "speed" of filling of the CS. σ(ε) ∈ [0, 1]
is a gating function depending on the average charge level ε
of all vehicles parking at the CS. We propose the following
function

σ(ε) =

{
0, ε < εl
ε−εl
1−εl

, ε ≥ εl
(17)

Our hypothesis allows vehicles to leave (linearly) only after
the SoC reaches the average value of εl < 1. The constant
vc > 0 defines the "charging speed" depending on the
average power of the charging stations. For nodes 1 and 2,
v1 and v2 define the speeds at which vehicles leave their
respective nodes, and φ1 and φ2 represent the maximum exit
flows of nodes 1 and 2, respectively. Finally, σ1(t) ∈ [0, 1],
and σ2(t) ∈ [0, 1] are the time-depending gating functions as
defined in [12]. They provide operational time profiles during
the journey for the considered case. The last parameter is the
split ratio β that defines the EVs flow proportion that want to
charge as defined in [9]. We assume that this utility function
will depend on both: the state of charge ε1, and the charging
station price πC .

β(ε1, π
C) = 1− (1 + e−

ε1−c1+c2πC

c3 )−1 (18)
where ci are constants. c1 > 0 allows to change the position
of the sigmoid’s inflection (decaying) point. c2 > 0 weights
the influence of the variation in πC on the inflection point,
and c3 > 0 tunes the sigmoid’s slope.

B. Energy model

Let E, E1 and E2 denote the aggregated energy in the CS
and in each node, respectively, then

E = cεN (19)
E1 = cε1N1 (20)
E2 = cε2N2 (21)

where ε, ε1, ε2 ∈ [0, 1] describe the state of charge at each
node, and c is the average battery capacity of vehicles. Now
from energy balance at each node we have:

Ė = Pin − Pout + P̃ (22)

Ė1 = Pin,1 − Pout,1 (23)

Ė2 = Pin,2 − Pout,2 (24)
The power vehicle flows (with units kW·vehicles) are defined
as the product of the vehicle flows [vehicles/hr], the state
of charge at the inputs/outputs of each node, and the mean
battery capacity [kWh].

Pin = cεinφin = c(ε1 −∆1)φin (25)
Pout = cεφout (26)
Pin,1 = c(ε2 −∆1 −∆2)φ2,1 (27)
Pout,1 = cε1φ1,2 (28)
Pin,2 = c((ε−∆2)φout + φ1,2(ε1 −∆1 −∆2)) (29)
Pout,2 = cε2φ2,1 (30)

where ∆1 and ∆2 represent the traveling losses between
nodes (see Fig. 3). P̃ is the injected/extracted power Kw
from the grid at the CS. It is defined as follows

P̃ =

{
0, ε = 1

PCSN + (∆P − PM ) ε < 1
(31)

The first terms PCSN indicate the "nominal" power injected
per charge station point, with PCS being the average power
per charging station point. The terms within the parenthesis
represent the difference between the approved power PM

as settled in the day-ahead and intraday market, and
∆P , representing the power that the Transmission System
Operator (TSO) requests the CSO as a consequence of the
mismatch between the power supply and the load demand.
By definition, ∆P falls within the range of [−PM , PM ] and
changes every 15 minutes. For the purpose of this study, we
assume that ∆P is a random variable with |∆P |≤ PM .

Finally, to derive the time variation of the state of charge
equations at the CS (a similar procedure can be followed for
the other nodes), we first take the time derivatives of E,

Ė = c(Ṅε+Nε̇) (32)
then, we insert (22), and (6) in the above equation, yielding

(φin − φout)ε+ ε̇N = (ε1 −∆1)φin − εφout +
P̃

c
(33)

from which we get

Σε :


ε̇ = 1

N

[
(−ε+ ε1 −∆1)φin + P̃

c

]
(34)

ε̇1 = 1
N1

[−ε1 + ε2 −∆1 −∆2]φ2,1 (35)

ε̇2 = 1
N2

[(ε− ε2 −∆2)φout+ (36)
(ε1 − ε2 −∆1 −∆2)φ1,2]

where (35) and (36) are obtained following the same
procedure that (34).

IV. MODEL INSTANTATION

In this section, we assemble the full model and provide
detailed explanations of how all the components depicted in
Fig. 1 are interconnected.

A. mobility and SoC model

We rewrite the mobility and SoC model in a compact form,
by defining x ∈ R6 as

x = [N,N1, N2, ε, ε1, ε2]
T (37)

and

ẋ=

[
fN (x, πC , t)
fε(x, π

C , PM ,∆P, t)

]
=f(x, πC , PM ,∆P, t) (38)



Here, fN (x, πC , t) and fε(x, π
C , PM ,∆P, t) represent the

right-hand functions of systems ΣN and Σε, respectively. It
is important to note that πC serves as our control variable
to be optimized by the CSO, which will be defined in
the following section in connection with the optimization
problem. Additionally, πC is assumed to remain constant
for the duration of a day.

B. FCR market model

The CSO proposes a pair of bids (PB
k , πB

k ) every 4 hours,
at time instants tk = 4(k − 1) [hr], where k ∈ Zk ≜
1, 2, . . . , 6. Subsequently, the FCR market settlement returns
the corresponding approved power and prices (PM

k , πM
k ).

The CSO’s objective is to maximize PB
k to increase its

potential power bid based on the predicted power of the
connected EVs to the charging stations: PCSN(τ), where
τ represents the relevant time instance.

PB
k = Φ(N(τ)) ≜ min

tk<τ<tk+1

{
PCSN(τ)

2

}
(39)

Here, Φ is a function dependent on N that maximizes the
allocated capacity (EVs flexibility) to enter the FCR market.
We take half of this capacity to participate in the entire
upward/downward regulation mechanism, allowing the CSO
to offer ±PB

k power regulation.
The bid price πB

k is generally set through complex
economic mechanics beyond the scope of this study. For the
purposes of this work, we assume πB

k = 0, ensuring that
the entirety of the bid offer PB

k will be retained during the
market settlement process. Therefore, we have:

PM
k =PB

k ∀k ∈ Z (40)
Finally the returned price from the FCR market is given by:

πM
k = Ψ(PB

k , πB
k ) (41)

where Ψ represents the map associated to the optimisation
problem (3)-(5).

C. TSO power requests

The last component to be defined in the model, which
introduces time-dependence in the right-hand side of
equation (38), is ∆P (t) ∈ [−PM , PM ]. This term describes
the real-time power requested by the TSO from the CSO. It
is related to the mismatch between power supply and load
demand, primarily caused by uncertainty in renewable energy
sources (RES) production, among other factors. Here, we
model ∆P (t) as a discrete function with time steps tl:

∆Pl ≜ RandlPM
k (42)

where Randl represents a random number uniformly
distributed between [−1, 1]. Each realization of Randl occurs
every 15 minutes at time instants tl = (l− 1)/4 [hr], where
l ∈ Zl ≜ 1, 2, . . . , 96, as mandated by the TSO during
real-time operation (see [5]).

D. Integrated model

Integrating the previous components into the general
model (38), we have, ∀τ ∈ Ik ≜ [tk, tk+1), ∀k ∈ Zk and
l ∈ Zl.

ẋ(t) = f(x(t), πC ,Φ(x(τ)),∆Pl, t) (43)

where Φ(x(τ)) = Φ(N(τ)) = PM
k .

Remark 1: Unlike conventional players in the FRC
market, who have backup power from generators under their
control, the power supply for a CSO depends on the mobility
of EVs and their presence at the charging station. Therefore,
it is crucial for the CSO to have an electromobility model
that can forecast the potential occupancy at the CS. This
prediction, in turn, enables the calculation of the variable
PM to participate in the day-ahead market.

Remark 2: It is important to note that solving equation
(43) is not a straightforward task, primarily due to
non-causal components arising from the computation of
PM
k . Additionally, it contains random elements resulting

from ∆Pl. Nevertheless, we can address this challenge by
transforming equation (43) into two optimization problems
with associated constraints, as demonstrated below.

Problem 1: Solving the differential equation (43) is
equivalent to solve the following optimization problem. P1:
Given ∆Pl, solve ∀k ∈ Zk:

PM
k =max

λk≥0
λk (44)

under

ẋ(t) =f(x(t), πC , λk,∆Pl, t) (45)

0 ≤ λk ≤min
τ∈Ik

{
PCSN(τ)

2

}
(46)

E. Numerical model evaluation: study case

For a numerical evaluation of the proposed model, we
consider a highly aggregated representation of mobility in
a mid-sized city in France, specifically Grenoble. By 2030,
it is expected that there will be approximately 30% of EVs,
corresponding to a total of N + N1 + N2 = 100, 000 EVs
in circulation within the metropolitan area. Let’s assume
that there is one public charging station for every 10 EVs,
resulting in an aggregated CS capacity of N̄ = 10, 000.
The nominal charging cost is defined based on current
rates as πC

n = πC = 0.40 d/kWh. The average battery
capacity of the vehicles is c = 40 kWh, and the average
maximum charging station power for one vehicle is PCS =
40 kW. We assume that the average round trip between
origins/destinations results in a daily energy loss of 20% of
the battery capacity, i.e., ∆1 = ∆2 = 0.05. All parameters
for the model are given in Table III. The initial values of the
system are N(0) = 500, N1(0) = 79, 500, N2(0) = 20, 000,
ε(0) = 0.8, ε1(0) = 0.36, and ε2(0) = 0.47.

Symbol Value Unit Symbol Value Unit

w 50 km/h εl 0.9 1
vc 50 km/h PCS 40 kW
v1 50 km/h c 40 kWh
v2 50 km/h ∆1 0.05 1
N̄ 10000 veh ∆2 0.05 1

φCS 20000 veh/h c1 0.83 1
φ1 20000 veh/h c2 1.3 1
φ2 20000 veh/h c3 0.06 1

TABLE III: Simulation parameters and their values.



(a) Gating functions σ1(t) and σ2(t). (b) Charging power P̃ . (c) Maximum bid capacity PM = PB .

Fig. 5: Numerical results from problem P1. a) Time-profiles of the used mobility gating functions σ1(t) and σ2(t), b) resulting charging power, and
c) Maximum bid capacity PB = PM , as a function of different prices πC = 0.2, 0.4, 0.6 d/kWh.

Traffic flow profiles represent typical ring road flows,
allowing us to define the gating functions σ1(t) and σ2(t)
as shown in Fig. 5a. These time-profiles reflect minimal
night traffic, with significant peaks occurring during morning
and evening rush hours, as expected, and smaller peaks
during the midday break. Fig. 5b illustrates the injected
energy at the charging station throughout the day, defined
as P̃ . Additionally, Fig. 5b provides information about the
number of vehicles at the charging station. The three mobility
peaks during the day are reflected in the charging station.
The number of vehicles directly affects the capacity that a
charging station can offer for sale in the FCR market, as
shown in Fig. 5c.

V. OPTIMAL ENERGY-PRICE STRATEGY

In this section, we start by introducing the utility function
earmarked for optimization. Next, we present a feasible
forecasting model, along with an upper limit on utility to
guide the optimization procedure. Finally, we outline and
propose a solution for the optimal energy-price optimization
problem.

A. Utility function

For each day, the CSO must set πC while seeking to
maximize the gains achieved during the day. The CSO has
two different sources of revenue. The first source is the
earnings from selling energy to EVs, given by

∫ t

0
πC P̃ dt,

while the second source is the earnings from selling capacity
in the FCR market, calculated as

∑6
k=1 π

M
k PM

k for each
4-hour block k. Therefore, we have the function J that
calculates the total earnings for the full day, i.e., t ∈ [0, T ],
with T = 24 hrs:

J(x, πC , PM , πM ) =

∫ T

0

πC P̃ dt+

6∑
k=1

πM
k PM

k (47)

The ideal optimization problem aims to find the values of πC

that maximize the earnings given by the function J under the
system dynamics (43), or equivalently, under the solution of
P1, i.e.

π∗C = max
πC∈ΠC

J(x, πC , PM , πM ) (48)

under P1

The optimization is mathematically solvable under the
condition that we possess the following information: 1)
the results of the FCR market settlement, which provide
PM and πM , and 2) the grid’s regulation demands ∆Pl.
However 1) and 2) are unknown when we want to solve
P1, it is important to note that πM becomes known only
after the market clears and cannot be predicted in advance.
Additionally, real-time knowledge is required for ∆Pl.
Hence, to make the optimization problem feasible within the
constraints of day-ahead market deadlines, we must rewrite
the "ideal" optimization problem.

To accomplish this, we initially introduce a modified
model that supports forecasting and optimization, where
problem P1 is modified through the incorporation of
bounds on ∆Pl, resulting in additional inequality constraints.
Subsequently, we present a quantifiable upper limit on J .
This process allows us to form the practical and achievable
optimization problem.

B. Model for forecasting and optimization

Given that ∆Pl ≤ PM is unknown, but upper bounds are
known by construction, expressed as |∆Pl|≤ PM , Problem
P1 can then be modified by explicitly incorporating these
bounds, resulting in additional inequality constraints.

Problem 2: The only feasible solution, considering both
the upper and lower bounds of the random variable ∆Pl, for
solving the differential equation (43), is given by the solution
of the following optimization problem.
P2: For all k ∈ Zk, l ∈ Zl solve:

P̂M
k =max

λk≥0
λk (49)

under
˙̂x(t) =f(x̂(t), πC , λk,∆P̂l, t) (50)

0 ≤ λk ≤ min
τ∈Ik

{
PCSN̂(τ)

2

}
(51)

∆P̂l ≤ λk (52)

∆P̂l ≥ −λk (53)



where ∆P̂l acts here as a slack variable. Note that for
each run of k, we consider all possible values of ∆Pl in
the corresponding time slot Ik. A solution with reduced
complexity could alternatively be found by assuming that
∆Pl is constant in the time interval Ik, albeit at the cost of
some conservatism in the solutions.

C. Computable utility upper bound

From the definition of P̃ , and the fact that−PM ≤ ∆P ≤
PM , we have

P̃ = PCSN + (∆P − PM ) ≤ PCSN (54)
Therefore,

J =

∫ T

0

πC P̃ dt+

6∑
k=1

πM
k PM

k (55)

≤
∫ T

0

πCPCSNdt+

6∑
k=1

πM
k PM

k (56)

≤
∫ T

0

πCPCSNdt+ πM
max

6∑
k=1

PM
k (57)

where πM
max is an upper bound on πM

k . Based on this upper
bound, we introduce the utility Ĵ , which depends only on
computable quantities derived from the forecasting model.,
i.e.

Ĵ(x̂, πC , P̂M ) =

∫ T

0

πCPCSN̂dt+ πM
max

6∑
k=1

P̂M
k (58)

where N̂ , and P̂M
k are obtained from Problem P2. We are

now in position to formulate our final optimal energy-price
strategy.

Problem 3: The computable optimal energy-price strategy
consist in solving the following optimal problem. P3: For all
k ∈ Zk, l ∈ Zl solve:

π̂∗C = max
πC∈ΠC

Ĵ(x̂, πC , P̂M ) (59)

under P2

Note that the evaluation of the actual revenues needs to be
done using the true cost function J . This involves replacing
the computed optimal prices π̂∗C and P̂M obtained from P3

in the ground truth equation (43), i.e.

ẋ∗(t) = f(x∗(t), π̂∗C , P̂M ,∆Pl, t) (60)

Finally, we use this ground truth solution to evaluate the
effective utility revenues J(x∗, π̂∗C , P̂M , πM ). Note that
this value will depend on the particular sequence ∆Pl,
resulting from the difference between power demand and
power production variability in the daily profile.

VI. SIMULATION RESULTS

In this section, we showcase two simulation scenarios.
The first is devoted to evaluating the distance to the optimal
solution, while the second intends to evaluate the cost
revenue for the EV users and the CSO resulting from
participation in the FCR market.

Fig. 6: Comparisons are made between Ĵ (red curve) and Jk (black
curve). The vertical red line represents π̂∗C = 0.34, while the
black dashed lines represent various π∗C

m ∈ 0.33, 0.34 obtained.
The green dashed line represents the nominal price πC

n = 0.4. The
purple bar plot illustrates the distribution of π∗C

m .

A. Distance to optimal

Let πC ∈ ΠC ≜ {0.2, 0.21, 0, 22, . . . , 0.6}, with ΠC being
the admissible set for πC . Let us also consider a set, ΛP ≜
{∆Pm

l ,∀m = 1, 2, . . . 10}, of realizations for ∆Pl that will
be used for this evaluation. Note that ∆Pm

l is stochastic in
our simulations. We consider the following experiment.

1) For all πC ∈ ΠC , and for each realization ∆Pm
l ∈

ΛP , solve P1 (i.e. compute π∗C
m ,∀m), and record the

resulting ideal cost Jm(xm, πC , PM
m ,∆Pm

l , ).
2) For all πC ∈ ΠC solve P3 (i.e. compute π̂∗C), and

record the resulting cost uperbound Ĵ(x̂, πC , P̂M ).

Fig. 6 shows the results. From this figure we can first
observe that the optimization problem is indeed convex. We
can also see that the upper bound Ĵ results in a tight bound
for J , and allows us to obtain a value for π̂∗C = 0.34 which
is very close to those of π∗C

m obtained from solving the
"ideal" optimal problem. Finally, note that all the resulting
π∗C
m are concentrated in only two values, {0.33, 0.34} for the

10 random realization of ∆Pl, and that the value π∗C
m = 0.34

repeats 9 times out of 10. Therefore, 90% of the time,
π∗C
m = π̂∗C , and 10% of the time, there is a 0.01d difference.
Finally, note that the electricity price to be sold to the EV

users with this optimisation strategy is substantially lower
than the one of the "nominal" (without entering the FCR
market) electricity price πC

n = 0.4d. Specifically, π̂∗C is
15% lower than πC

n , resulting in:
0.34d = π̂∗C < πC

n = 0.4d (61)

B. FCR market profit evaluation

Let us now evaluate the profits incurred by the CSO
thanks to its participation to the FCR market. Consider the
previous realization set ΛP for ∆Pl. Assume that the CSO
sells electricity at the nominal price πC

n = 0.4d without
participating to the FCR market. The CSO revenues are:

Jn =

∫ T

0

πC
n P̃ndt (62)



Fig. 7: Numerical results for CSO revenues from equation (64)
and number of vehicles charged by the charging station.

where P̃n results from solving problem P1 with πC = πC
n .

However, when the CSO enters the market, the CSO optimal
revenues are:

J∗ =

∫ T

0

π̂∗C P̃ ∗dt+

6∑
k=1

πM
k P̂M

k (63)

where π̂∗C comes from solving problem P3, and P̃ ∗(x∗)
from solving the ground true system (60), with the optimal
value π̂∗C . Revenues for the CSO are then computed:

$CSO =J∗ − Jn (64)
The total profit generated by the CSO $profit can be
determined by deducting the electricity purchase cost from
the revenue earned :

$profit =

∫ T

0

(π̂∗C − πspot)P̃ ∗dt+

6∑
k=1

πM
k P̂M

k

Where πspot refers to the fluctuating electricity purchase
price throughout the day.

An EV is considered charged when it leaves the charging
station. We compute the number of EVs served (charged) at
the CS during a 24hr day period, N ,N ∗ for nominal price
πC
n , and optimal price π̂∗C , respectively.

N =

∫ T

0

φout,ndt, N ∗ =

∫ T

0

φ∗
outdt (65)

φout,n and φ∗
out results from solving (60) for πC

n and π̂∗C .
Fig. 7 illustrates the respective revenues as a function of

the different realizations. The average profit increase for the
CSO, denoted as $CSO

k , is 22, 700d, with 1, 476.80d coming
from the sale of capacity on the FCR market. The remainder
of the profit increase is attributed to a higher influx of
EVs due to the more attractive pricing, as depicted by the
comparison between N and N ∗.

VII. CONCLUSIONS

In this study, we have presented an approach for
integrating CSO into the FCR market using a mobility model,
an aggregated charging station model, and an FCR market
model. Despite the challenge of predicting the FCR market
settlement price, we have proposed a bidding strategy for

CSO in the FCR market and an energy pricing strategy. Our
findings suggest that CSO participation in the FCR market
leads to increased revenue for CSO while simultaneously
reducing charging costs for EV users. Future research could
extend this work by considering competition among multiple
charging stations and exploring the applicability of this
strategy to larger-scale mobility models. Additionally, further
investigation into the impact of CSO participation on grid
stability and overall market dynamics would be valuable.
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