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Abstract - Panoptic segmentation is a computer vision task that 

aims to identify and analyze all objects present in an image. While 

semantic segmentation focuses on labeling each pixel in an image 

with a category label, panoptic segmentation goes further by not only 

assigning semantic labels but also identifying and distinguishing 

individual instance of objects. This task is valuable for various 

applications, such as robotics, surveillance systems or autonomous 

vehicle navigation. In this work, we propose a new informed deep 

learning approach that combines the strengths of deep neural 

networks for panoptic segmentation with additional knowledge about 

spatial relationships between objects. This is particularly important 

as spatial relationships can provide useful cues for resolving 

ambiguities, distinguishing between overlapping or similar object 

instances, and capturing the holistic structure of the scene. We 

propose a novel training methodology that integrates knowledge 

directly into the deep neural network optimization process. Our 

approach includes a process for extracting and representing spatial 

relationships knowledge, which is incorporated into the training 

using a specially designed loss function. The effectiveness of the 

proposed method is evaluated and validated on various challenging 

urban driving datasets. 

Keywords: Hybrid AI, deep learning, panoptic segmentation, 

spatial relationships 

I. INTRODUCTION 

Panoptic segmentation, is a computer vision task designed to 

recognize and categorize all elements within an image by 

integrating information from both semantic and instance 

segmentation. Semantic segmentation divides an image into 

regions associated with non-quantifiable object classes, often 

referred to as “Stuff", which can include elements like the sky 

or the road. It is also able to categorize quantifiable objects, but 

it does not provide individual distinction. In contrast, instance 

segmentation, involves the precise identification of individual 

quantifiable objects in the image, referred to as “Things", such 

as cars or pedestrians. Panoptic segmentation ability to 

comprehensively describe and analyze images offers practical 

solutions across a range of applications. In the domain of mobile 

robotics, for example, it plays a pivotal role in the detection and 

tracking of moving objects [1]. Furthermore, this task 

significantly contributes to the field of autonomous driving, 

empowering vehicles to gain a deep understanding of their 

surroundings and make precise decisions [2] [3]. Since 2018, 

there has been a growing interest within the scientific 

community regarding the prediction of panoptic segmentation 

[4]. This approach is recognized as a collaborative one that 

combines the strengths of both the semantic and instance 

segmentation methods. Panoptic segmentation techniques find 

common use in image data, relying on various DL-based 

strategies. Some of these methods involve employing distinct 

neural sub-networks for semantic and instance predictions [4]. 

However, this dual-network approach can be complex and have 

limitations in terms of effectiveness, often necessitating 

complicated post-processing to merge the associated predictions 

[5]. To address these limitations, a novel category of panoptic 

segmentation techniques has emerged, based on the use of a 

shared backbone [5]. These approaches enhance the training 

PROCESS. Previous studies have demonstrated the significant 

impact of contextual information and object relationships in 

enhancing computer vision tasks, particularly in the domain of 

object detection [6] [7]. These investigations have primarily 

used post-processing techniques to reevaluate identified objects 

CONSIDERING object relationships, such as co-occurrence [8]. 

For example, certain objects, such as a sofa and a traffic sign, 

are not typically expected to co-exist within the same scene due 

to their associations with different environments, indoors and 

outdoors, respectively. It is worth noting that most of these 

studies were conducted before the widespread integration of DL 

techniques. Within the realm of DL research, there has been 

limited progress in employing object relations to enhance object 

detection tasks. Most current methods remain primarily focused 

on the recognition and identification of objects, regardless of 

their relationships [9]. One of the main challenges in this context 

lies in the complexity of modeling the spatial relations between 

objects, considering their potential disparities in position within 

an image, varying scales, and diverse shapes, to cite just a few. 

On the other hand, some research has demonstrated that 

Convolutional Neural Networks (CNNs) have certain abilities to 

learn contextual information automatically and implicitly during 
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training [10]. By using local receptive fields [11], CNNs capture 

contextual details within small local regions connected to each 

neuron. These outcomes highlight the importance of providing 

to deep neural networks explicit access to contextual 

information to further enhance their performance and accuracy. 

As the research on deep networks continues to explore their 

abilities to learn contextual information, it becomes evident that 

further enhancing their performance and accuracy can be 

achieved by incorporating explicit access to contextual 

knowledge. This is consistent with the concepts of hybrid 

intelligent systems which aim to combine the strengths of 

artificial intelligence with human expertise [12]. Within the field 

of hybrid Artificial Intelligence (hybrid AI), an outstanding 

approach is informed deep learning [13], which uses prior 

knowledge or domain expertise to enhance the learning 

performances of deep learning models. This knowledge can 

come in various forms, such as expert rules, ontologies, 

statistical information, to name but a few. By incorporating this 

prior knowledge, deep learning models can make more informed 

predictions, and improve the decision-making process. Based on 

the aforementioned analysis, incorporating contextual 

information into deep learning techniques should be 

advantageous for computer vision tasks. Contextual information 

can be globally defined as the surrounding cues in the 

environment that provide additional insights and understanding 

to aid in accurate estimations and predictions. In this context, we 

have observed that panoptic prediction in urban environments is 

particularly challenging due to the complex relationships 

between regions within an image. To address this issue, the key 

contributions of this paper are as follows: 

1. the extraction and integration of knowledge about 
spatial relationships into deep neural network for 
panoptic segmentation, 

2. the modeling of the spatial relationships as a loss 
function to optimize the network training, 

3. the validation and evaluation of the proposed approach 
on urban scene dataset. 

TO present our approach, the remainder of this paper is 

organized as follows. Work related to panoptic segmentation are 

introduced and discussed in Section 2. The considered spatial 

relationships are described in Section 3. The proposed 

methodology including the loss function modeling of spatial 

relationships is described in Section 4. Section 5 presents the 

performed experiments, the results analysis and comparison 

with the state of the art. Finally, the last section concludes the 

paper and provides directions for future work. 

II. STATE OF THE ART 

We provide an overview of the existing panoptic segmentation 
approaches, specifically those that are based on a shared 

backbone architecture. These methods use a single neural 
network backbone for both ``Stuff" and ``Things" segmentation 
to achieve a unified panoptic segmentation of the image. Over 
the years, many frameworks have been developed following 
different techniques for panoptic segmentation. One effective 
approach is to use a shared backbone to encode features [14], as 
it has shown to yield high performance on benchmark datasets 
[15]. Within this category of techniques, there are two main 
approaches. The first one involves sharing a backbone between 
the two heads of semantic and instance segmentation and 
merges the outputs for the final panoptic generation. In addition 
to the shared backbone, the second category includes explicit 
connections between the two heads. Many methods have been 
proposed in the state of the art that can be classified into one of 
these two categories. In this section, we review some of the most 
important methods in each category and present their 
contributions to the field of panoptic segmentation.  

The approach proposed in [16] performs instance and semantic 
segmentation separately and then applies the Non-Maximum 
Suppression (NMS) technique to obtain the Panoptic Quality 
(PQ) metric. The NMS procedure is used to produce non-
overlapped instance regions, which are then combined with the 
semantic segmentation. The Efficient Spatial Pyramid of dilated 
convolutions (ESPnet) was introduced in [17]. This method 
involves several stages, including a shared backbone that 
consists of a Fetaure Pyramid Network (FPN) [18] and a 
Residual Network (ResNet) [19]. To enhance the input features, 
the method uses a Cross-Layer Attention (CLA) fusion module, 
which combines multi-layer feature maps in the FPN layer. The 
approach proposed in [14] introduces the Efficient Panoptic 
Segmentation (EfficientPS) architecture for scene 
understanding. The general architecture of the network consists 
of a shared backbone that encodes and fuses semantically rich 
multi-scale features. It includes a new semantic head that 
aggregates fine and contextual features consistently. For the 
instance segmentation head, a new variant of Mask R-CNN [14] 
augmented with depth-wise separable convolutions [20] is 
considered. A new system called Panoptic-DeepLab for 
panoptic segmentation is presented in [21]. The approach based 
on a dual-Atrous Spatial Pyramid Pooling (ASPP) and dual-
decoder structure specific to semantic and instance 
segmentation respectively. The semantic branch follows the 
standard design of a semantic segmentation model, while the 
instance branch is class-agnostic and uses a simple instance 
center regression. 

Some alternative cooperative techniques for panoptic 
segmentation have been proposed [22]. These techniques are 
also based on a shared-backbone architecture in addition to 
explicit connections between the instance and semantic 
segmentation heads. The approach outlined in [22], involves 
using a ShuffleNet [23] for feature extraction, as well as 
establishing explicit connections between the instance and 
semantic segmentation stages. These steps are followed by 
combining the results to produce the final panoptic output. A 
deep panoptic segmentation method that relies on a bidirectional 
learning technique is presented in [24]. To capture the intrinsic 
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interaction between semantic and instance segmentation, the 
authors introduce a Bidirectional Aggregation Network called 
BANet [24]. This network performs panoptic segmentation by 
leveraging two modules that extract rich contextual features 
from semantic and instance segmentation for recognition and 
localization. Finally, the bidirectional paths are used for feature 
aggregation, enhancing the overall segmentation performance.  

On the other hand, the architecture proposed in [25] allows 
information exchange between the branches to leverage the 
benefits of both. Specifically, it involves leveraging semantic 
information to improve the instance segmentation. The output 
from the semantic segmentation branch is normalized and 
concatenated with the normalized features from the feature map. 
This concatenated information is passed through a convolutional 
layer and used as input to the instance segmentation branch. This 
allows relevant data from one branch to flow through the other, 
improving the performance of both semantic and instance 
segmentation branches.  

Based on the state-of-the-art works, it is difficult to definitively 
conclude that one architecture always outperforms the other in 
all aspects considering panoptic segmentation. The choice 
depends on various factors such as the specific deep neural 
network architecture, the characteristics of the dataset, etc. 
Different datasets, tasks, and contexts may favor one 
architecture over the other. Ultimately the selection should be 
based on a careful consideration of the trade-offs between 
simplicity, computational efficiency, integration, and 
performance, as well as the available resources for training and 
inference. 

III. QUALITATIVE SPATIAL RELATIONSHIPS  (QSR) 

The 3D objects of an urban scene are projected into acquired 2D 
images as geometric regions of different shapes, visual aspects, 
and sizes. To integrate information representing spatial 
relationships between these objects, we refer to Qualitative 
Spatial Relationships (QSRs) [26]. Our approach involves 
extracting all spatial relationships that exist between every pair 
of regions within an image and integrating this information into 
the training process of a deep neural network as extra 
knowledge. This integration of complementary relations is 
expected to enhance the model ability to better understand the 
spatial structure of the urban environment objects and improve 
the accuracy of panoptic segmentation prediction results. 
Specifically, we are interested in Region Connection Calculus 
(RCC) [27], which is a standardized set of spatial relations that 
are used to capture the possible connections and arrangements 
between regions, allowing for a comprehensive representation 
of their spatial interactions. There are many versions of these 
Region Connection Calculus such as RCC-5 and RCC-8. In our 
case, we considered the RCC-8 which describes 8 fundamental 
relations. It offers a fine level of detail that enables precise 
representation of relationships between two regions in an image. 
Consequently, it enables a more comprehensive spatial 
understanding of the environment. 

RCC-8 specifically defines eight distinct relationships. Let 𝑈 
denotes the set of non-empty regular closed sets, also known as 
regions. Within the RCC-8 algebra, there are 8 topological 
relations that serve as its foundation. The Disconnected (𝐷𝐶) 
relationship (FIGURE 1)  signifies that two regions have no 
shared points or boundaries. The Externally Connected (𝐸𝐶) 
relationship (FIGURE 4) denotes one region surrounding or 
enclosing another. The Tangential Proper Part (𝑇𝑃𝑃) 
relationship (FIGURE 7) implies that one region is entirely 
contained within another, with at least one shared boundary 
point. On the other hand, the Non-Tangential Proper Part 
(𝑁𝑇𝑃𝑃)  relationship (FIGURE 8) indicates complete 
containment without shared boundaries. The Partially 
Overlapping (𝑃𝑂) relationship (FIGURE 3) suggests that the 
regions have some common points or boundaries, without one 
region entirely encompassing the other. When both regions are 
identical in shape and size, they are considered Equal (𝐸𝑄) 
(FIGURE 2). Finally, the Tangential Proper Part Inverse (𝑇𝑃𝑃𝑖) 
(FIGURE 5) and Non-Tangential Proper Part Inverse (𝑁𝑇𝑃𝑃𝑖) 
(FIGURE 6) relationships mirror their respective counterparts but 
with the roles of the regions reversed.  
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The eight relations we have presented provide a comprehensive 
and detailed representation of spatial relationships between 
objects in the urban environment. These relations serve as a 
formal logic that captures essential spatial knowledge about the 
components within the environment. By combining this 
knowledge with the performances of a deep neural network, we 
can create an informed deep learning framework to enhance the 
network understanding and reasoning abilities.  

In the next section, we describe the methodology to extract the 
RCC-8 relations and integrate them into a deep neural network. 
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IV. SPATIAL RELATIONSHIPS INTEGRATION FOR PANOPTIC 

SEGMENTATION 

This section presents the proposed deep neural network 
architecture that integrates RCC-8 relations between objects 
perceived in images. It is important to mention that the proposed 
approach is general and can be applied to any two-head (one for 
semantic segmentation and the other for instance segmentation) 
panoptic segmentation model. As mentioned previously, the 
main idea of the proposed technique is to optimize and enhance 
the performance of panoptic segmentation models by 
incorporating additional knowledge on the spatial relationships 
between different objects in an urban scene directly during the 
model training. We aim to integrate this knowledge by 
introducing a novel loss function that captures and represents the 
spatial relationships between objects. By incorporating this loss 
function into the training process, the model gains a 
comprehensive understanding of the urban environment, 
improving its ability to accurately segment objects by 
considering their contextual interactions. To extract the RCC-8 
relations between the various object types of the image, 
including both ``Stuff" and ``Things", we integrated the 
proposed module in both heads during the training of the deep 
neural network (FIGURE 9). This module is designed to extract 
the RCC-8 relations between regions to define and compute the 
proposed 𝐿𝑅𝐶𝐶−𝑃𝑎𝑛𝑜 loss function. To do so, distinct image 
regions should be separated, and then the different regions 
should be approximated before extracting the RCC-8 relations. 

Separation of distinct regions: The proposed module takes as 
input the “Stuff” regions from the predicted semantic 
segmentation map and those from the ground truth (FIGURE 10). 
In the semantic map, “Stuff” regions belonging to the same class 
are labeled with a common label, even though they are not 
connected to each other. For example, in FIGURE 10, the two 
separate regions belonging to the class “Vegetation” were both 
labeled with the same label (V), despite being distinct and not 
connected. However, it is important in our case to consider 

each region independently of the others to accurately represent 
and integrate the spatial relationships between all the distinct 
regions in the scene. To solve this problem, we implemented 
an algorithm that separates all the distinct visible “Stuff” regions 
from the semantic maps. We also added some identifiers 
to reference the distinct regions belonging to the same label in 
both the prediction and the ground truth (FIGURE 10: Separation 
of distinct regions). Since the concept of instance segmentation 
itself involves identifying and separating individual objects 
within an image, we did not face the problem of identifying 
distinct regions regarding the “Things” regions related to the 
instance segmentation branch. Thus, each region belonging to 
an instance is basically segmented separately from the other in- 
stances of the same class. At the end of this step, we consider a 
set of distinct regions for each of the predicted maps (semantic 
and instance segmentation), along with their respective ground 
truths regions. 

Region approximation: To identify the spatial relationships 
between regions, we initially extract the primary features and 
characteristics of each region. Specifically, the centroid 
coordinates and their principal and secondary axes are 
computed, which are used to generate a polygon approximation 
with a maximum of 50 vertices for each region (FIGURE 10: 
Region approximation). The polygons are used to establish the 
spatial relationships between each pair of regions. 

RCC-8 extraction: The computed regions properties are used 
to extract the RCC-8 relations (FIGURE 10: RCC-8 extraction). 
The goal is to introduce a new penalty term to the global loss 
function of the panoptic segmentation deep neural network by 
comparing the 8 RCC spatial relations in the semantic and 
instance segmentation prediction maps with their corresponding 
ground truths. To incorporate these comparative elements into 
the network training, we propose the addition of two new 
penalty terms to the loss function, namely 𝐿𝑅𝐶𝐶−𝑆 and 𝐿𝑅𝐶𝐶−𝐼  
which respectively correspond to the semantic and instance 
segmentation heads (FIGURE 9). These penalty terms aim to 
penalize the network errors made among the 8 RCC relations 
between the image regions during training. 

Figure 9 The proposed architecture for the integration of spatial relationships into a two-head panoptic segmentation deep neural 

network. The blue module is our contribution. 
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Mathematically, 𝐿𝑅𝐶𝐶−𝑆 and 𝐿𝑅𝐶𝐶−𝐼  represent the average of the 
8 penalty terms of the 8 RCC relations:  

𝐿𝑅𝐶𝐶−𝑆 =
1

8
(𝐿𝑃𝑂−𝑆 + 𝐿𝐸𝑂−𝑆 + 𝐿𝑇𝑃𝑃−𝑆 + 𝐿𝑁𝑇𝑃𝑃−𝑆 + 𝐿𝐷𝐶−𝑆+ 

𝐿𝐸𝑄−𝑆 + 𝐿𝑇𝑃𝑃𝑖−𝑆 + 𝐿𝑁𝑇𝑃𝑃𝑖−𝑆).  

For the instance segmentation, 𝐿𝑅𝐶𝐶−𝐼 =
1

8
(𝐿𝑃𝑂−𝐼 + 𝐿𝐸𝑂−𝐼 +

𝐿𝑇𝑃𝑃−𝐼 + 𝐿𝑁𝑇𝑃𝑃−𝐼 + 𝐿𝐷𝐶−𝐼+ 𝐿𝐸𝑄−𝐼 + 𝐿𝑇𝑃𝑃𝑖−𝐼 + 𝐿𝑁𝑇𝑃𝑃𝑖−𝐼). 

𝐿𝑅𝐶𝐶−𝑆 and 𝐿𝑅𝐶𝐶−𝐼 range between 0 and 1 and represent the 
ability of the neural network to verify the 8 𝑅𝐶𝐶 relationships 
between objects in images. The penalty terms corresponding to 
the 8 𝑅𝐶𝐶 relations are defined as the ratio between the errors 
made by the model in the corresponding RCC relation and the 
sum of the wrong and the correct matches of the same relation 
with the ground truth. For example, if we consider the RCC 
relation ``PO" (Partially Overlapping), the penalty term is 
defined as follow:  

𝐿𝑃𝑂 =
𝐸𝑟𝑟𝑜𝑟𝑠𝑃𝑂

𝐸𝑟𝑟𝑜𝑟𝑠𝑃𝑂 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑃𝑂

 

To provide a clear illustration, consider the example provided in 
FIGURE 10. We have an image with its corresponding semantic 
segmentation ground truth, which contains the following 
pairwise object ``EC" relations: (𝐵0, 𝑉0) and (𝑉0, 𝑆0). On the 
other hand, the semantic segmentation map prediction of the 
same image does not include these relations and instead it 
contains the pairwise object ``NTTP" relation: (𝑆1, 𝐵0). From 
the comparison, we can identify two types of errors made by the 
model. The first error is the presence of the ``NTTP" relation for 
the pairwise (𝑆1, 𝐵0), which does not exist in the ground truth. 
This can be considered as a false positive since the model 
incorrectly identified a relationship between the region 𝑆1 and 
the region 𝐵0. The second error is the failure to detect the 
(𝐵0, 𝑉0) and (𝑉0, 𝑆0) relations, where the model did not 
recognize the ``EC" connections between each pair of regions. 
These errors can be seen as a false negative since the model 
missed a true relation that should have been identified. 

Following the same methodology, all penalty terms for the 8 
RCC relations are computed. 

In general, deep learning models for panoptic segmentation that 
follow an architecture with two heads-one for semantic 
segmentation and the other for instance segmentation- typically 
employ a global loss function. The global loss function for these 
models is commonly defined as the sum of two individual loss 
functions: 𝐿𝑆𝑒𝑚, which optimizes the semantic segmentation 
head, and 𝐿𝐼𝑛𝑠𝑡, which optimizes the instance segmentation 
branch (FIGURE 9). Therefore, the general form of the loss 
function for such models can be expressed as: 𝐿𝑃𝑎𝑛𝑜 = 𝐿𝑆𝑒𝑚 +
 𝐿𝐼𝑛𝑠𝑡 . Using the proposed penalty terms, the new global loss 
function for optimizing the whole network while considering the 
integration of the spatial relationships knowledge between the 
objects is defined as follows : 𝐿𝑅𝐶𝐶−𝑃𝑎𝑛𝑜 = 𝐿𝑆𝑒𝑚 + 𝐿𝐼𝑛𝑠𝑡 +
𝐿𝑅𝐶𝐶−𝑆 + 𝐿𝑅𝐶𝐶−𝐼 . 

V. EXPERIMENTS AND RESULTS 

To validate, evaluate and demonstrate the performance of 
integrating spatial relationships knowledge into a deep neural 
network for panoptic segmentation, we consider a state-of-the-
art panoptic segmentation network (EfficientPS [14]) as our 
base network. EfficientPS is a robust model that demonstrates 
exceptional performance in panoptic segmentation compared to 
other state-of-the-art approaches. It is also highly extensible, 
making it suitable for making modifications and adding modules 
to implement the proposed approach.  

5.1. Architecture of the EfficientPS model 

 

The EfficientPS architecture [14] includes a shared backbone 

with a 2-way FPN. The shared backbone is based on the 

EfficientNet architecture [28], which uses mobile inverted 

bottleneck units [29] and compound scaling to enhance its 

representational capacity with fewer parameters compared to 

other similar networks. EfficientPS incorporates a 2-way FPN 

that effectively fuses multi-scale features in both directions. 

This is achieved by spreading information flow in multiple 

Figure 10 Methodology to extract the 8 RCC relationships between ``Stuff" regions. The upper block presents the process considering 

the semantic segmentation ground truth, and the bottom block represents the process for prediction. In the final step, the green 

relationships indicate correct matches between the ground truth and prediction, the red ones represent false positives, and the red 

transparent ones represent false negatives. 
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directions. After the 2-way FPN, two heads work in parallel: the 

semantic segmentation head and the instance segmentation 

head. To produce the panoptic segmentation output, EfficientPS 

employs a panoptic fusion module that combines the outputs 

from the semantic and instance heads. This module integrates 

the predictions from both heads to yield the final panoptic 

segmentation result. 

 

5.2. Implementation details 

 

Regarding the implementation of the algorithm for the 

extraction of the RCC-8 spatial relationships between objects 

(Section 3), we used the Measure Region Properties module of 

the Scikit-image library. Additionally, we considered the 

QSRLIB Library [30] to infer the RCC-8 spatial relationships. 

The official implementation code is available online. The 

EfficientPS model is implemented using Pytorch 1.7 Neural 

Network Libraries with CUDA GPU Toolikit 11.2. The hyper 

parameters set by the authors have remained unchanged. 

However, on the EfficientPS paper, the training was performed 

on 16 NVIDIA Titan X 12GB GPUs. The batch size was set to 

1 and the number of epochs to 160. Due to our less powerful 

GPU resources available (2 NVIDIA GeForce RTX 2080 Ti 

11GB GPUs), we were unable to train the model under the same 

conditions. To address this technical challenge, we chose to use 

the ``EfficientNet-b4" as the shared backbone instead of the 

``EfficientNet-b5" used in [14]. Indeed, the b4 version is lighter 

than the b5 version, allowing us to train the model based on 

available computational resources. 

 

5.3. Dataset and evaluation metrics 

 

We use the standard Panoptic Quality metrics of the state of the 

art [16] to evaluate the performance of the proposed approach. 

These metrics are presented below. The Panoptic Quality (PQ) 

metric quantifies the accuracy of object instance segmentation 

as well as the correct prediction of ``Stuff" class. It is calculated 

as follows: 𝑃𝑄 =
∑ (𝐼𝑂𝑈(𝑝,𝑔))(𝑝,𝑔)∈𝑇𝑃

|𝑇𝑃|+
1

2
|𝐹𝑃|+

1

2
|𝐹𝑁|

, where  

∑(𝑝,𝑔)∈𝑇𝑃  represents the sum over all pairs of prediction and 

ground truth objects that belong to the set TP, which represents 

the True Positives. FP, and FN, respectively, represent False 

Positives and False Negatives. IOU denotes the Intersection 

Over Union (IOU) ratio.  

 

The Segmentation Quality (SQ) metric indicates the accuracy of 

the predicted segments in comparison to the ground-truth. It is 

calculated by averaging the IOU scores of all the TP segments. 

The SQ metric is defined as: 𝑆𝑄 =
∑ (𝐼𝑂𝑈(𝑝,𝑔))(𝑝,𝑔)∈𝑇𝑃

|𝑇𝑃|
.  

To consider the impact of incorrect predictions, the Recognition 

Quality (RQ) is introduced as a metric that combines precision 

and recall. The RQ metric is defined as: 𝑅𝑄 =
|𝑇𝑃|

|𝑇𝑃|+
1

2
|𝐹𝑃|+

1

2
|𝐹𝑁|

. 

Following the standard benchmarking criteria for panoptic 

segmentation, we calculate PQ, SQ and RQ for all the dataset 

classes, and report them separately for ``Stuff" classes 

(𝑃𝑄𝑠𝑡 , 𝑆𝑄𝑠𝑡  𝑎𝑛𝑑 𝑅𝑄𝑠𝑡) and ``Things" classes 

(𝑃𝑄𝑡ℎ , 𝑆𝑄𝑡ℎ  𝑎𝑛𝑑 𝑅𝑄𝑡ℎ). 

 

To evaluate the effectiveness of the proposed approach, we 

considered the CityScapes Dataset [15] that consists of diverse 

urban street scenes from more than 50 European cities, captured 

under different conditions. Recently, the CityScapes dataset 

introduced a benchmark for panoptic segmentation, with pixel-

level annotations for 19 object classes, including 11 ``Stuff" 

classes and 8 ``Things" classes. The dataset contains 5000 finely 

annotated images captured using a stereo camera with a 

resolution of 2048𝑥1024 pixels. These images are divided into 

2975 images for training, 500 images for validation, and 1525 

images for testing. 

 

5.4. Evaluation on CityScapes dataset 

In this section, we present a comparative analysis of the 

proposed approach against current state-of-the-art panoptic 

segmentation methods. We evaluate our technique on 

Cityscapes dataset [15] and report the performance metrics in 

Table  as mentioned in the corresponding papers of the state-of-

the-art methods. 

The baseline approach ``EfficientPS-b4" yields a PQ of 60.6, a 

SQ of 80.3 and a RQ of 74.3, with a 𝑃𝑄𝑡ℎ and a 𝑃𝑄𝑠𝑡 of 56.3 

and 63.8 respectively. However, the proposed approach, which 

incorporated additional knowledge about spatial relationships 

between objects in the loss function during model training, 

achieved higher scores. Specifically, it provided a PQ of 64.2, a 

SQ of 81.6 and a RQ of 77.5. The 𝑃𝑄𝑡ℎ and the 𝑃𝑄𝑠𝑡 also 

respectively improved to 59.8 and 67.6. Furthermore, in    

comparison with prior state-of-the-art works, the proposed 

approach demonstrates superior performances regarding the 

panoptic evaluation metrics. These results highlight the 

effectiveness of integrating spatial relationships into the 

panoptic segmentation neural network. The improved PQ, SQ, 

and RQ scores signify that the proposed approach outperforms 

the baseline in terms of overall panoptic, segmentation, and 

recognition quality. More specifically, the improved RQ score 

indicates an enhanced recognition quality, suggesting that the 

proposed approach is better at accurately identifying and 

classifying objects in the scene. This means that the model 

developed a higher ability to recognize and assign correct labels 

to instances and semantic classes within the image thanks to the 

integrated RCC knowledge. 
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Table 1 Comparison of panoptic segmentation performance on the CityScapes validation set. (st) and (th), respectively, denote “Stuff” 

and “Things” classes. “–”indicates unreported metric for the corresponding method 

Similarly, the higher SQ score indicates improved segmentation 

quality. This suggests that the proposed approach achieves more 

precise and accurate object boundaries, resulting in a better 

overall representation of the scene. To conclude, the integration 

of spatial relationships in the loss function during the training of 

EfficientPS model likely facilitated the model ability to capture 

contextual information, mainly the spatial layout of scene 

objects, which enhanced its panoptic segmentation accuracy. 

This additional knowledge enabled the model to better 

understand and use the spatial context of objects in the image, 

resulting in improved performance in terms of PQ, SQ and RQ 

metrics. In addition to the global PQ metric that has been 

increased thanks to our approach, the RQ and SQ metrics were 

also improved. This means that incorporating the 8 RCC 

relationships into the model loss function has also increased the 

model ability to accurately recognize and distinguish between 

instances of different objects, leading to higher RQ scores. 

Furthermore, the models ability to precisely segment objects 

have significantly enhanced as indicated by the SQ metric. 

VI. CONCLUSION 

In conclusion, we propose a new informed deep learning 

approach as part of hybrid AI, aiming to enhance the 

performance of deep neural networks for panoptic segmentation. 

By integrating prior knowledge into the deep learning networks, 

specifically focusing on spatial relationships between objects, 

our approach offers significant improvements. The integration 

of this additional knowledge allows the models to gain a deeper 

understanding of the scene beyond the visual cues present in the 

images. This integration enhances the models performance and 

accuracy by enabling them to capture complex object 

relationships, resolve ambiguities, and overcome panoptic 

segmentation challenges. Our approach offers several 

contributions, including the introduction of a new training 

methodology, the development of a new loss function, and the 

validation and evaluation of the proposed approach on urban 

scene dataset. The results of our experiments and evaluations 

consistently show that the proposed approach outperforms the 

state of the art and achieves better results regarding Panoptic 

Quality metrics. By incorporating meaningful knowledge during 

the training process, the proposed approach enables the model 

to better understand the context of the target environment. This 

leads to better performances and accurate decision-making. The 

significance of integrating additional knowledge is not limited 

to panoptic segmentation alone, it extends to other computer 

vision tasks where understanding context is important. As part 

of our future work, we aim to enhance the panoptic segmentation 

results by introducing a local loss function that specifically 

targets problematic regions. The goal is to provide the network 

with more precise and explicit knowledge transfer. Additionally, 

we aim to integrate other type of knowledge, beyond RCC-8, to 

further enhance the panoptic segmentation. 
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