
HAL Id: hal-04538091
https://hal.science/hal-04538091v1

Submitted on 9 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal control of a single drive car
Fatoumata Dao, Eric Busvelle

To cite this version:
Fatoumata Dao, Eric Busvelle. Optimal control of a single drive car. 11th IEEE International
Conference on Systems and Control (ICSC 2023), IEEE, Dec 2023, Sousse, Tunisia. pp.499-502,
�10.1109/ICSC58660.2023.10449873�. �hal-04538091�

https://hal.science/hal-04538091v1
https://hal.archives-ouvertes.fr


Optimal control of a single drive car

Fatoumata Dao, Éric Busvelle

Abstract— In this paper, we consider a two-wheel Dubins’ car
with only one motor. This motor drive both wheels in forward
direction but only one wheel, the freewheel, in backward
direction. We will calculate the time optimal synthesis. We built
such a robot in order to illustrate optimal trajectories...

I. INTRODUCTION

Pontryagin maximum principle (PMP) is an elegant
method to solve time optimal control problems, especially in
small dimensions. The problem has been completely solved
for systems in dimension 2 in [1] where authors provide a
general method to build the optimal synthesis. It is no more
the case in dimension 3 and many problems remain unsolved
from a practical point of view, even if PMP is supposed
to give all the necessary tools. In this paper, we consider
a three-dimensional system, close to the classical model
of the unicycle. The constant speed version, the Dubins’
car, introduced by Dubins [2] has been extensively studied
as a good non trivial example of nonholonomic system to
illustrate the use of Pontryagin maximum principle [4], [5].
In this article, another nonholonomic version of the unicycle
is considered. Even if we built such a robot (see Section II-D
for a short description of our conception and several ways to
test our solutions on existing robot), this problem should be
considered an academic problem. Nevertheless, the reduction
of dimension 3 to dimension 2 (similar to [3] where the idea
of this paper can be found) and the non convexity of the
control set are two difficulties that complicate the problem.
Therefore, the optimal synthesis (in dimension 2 and so also
in dimension 3) is not so obvious.

In the following, we will consider a two-wheel car with a
disk shape where one wheel (the left wheel in our case) is
completely attached to the motor axis and the second wheel
(the right wheel) is a freewheel (the rear wheel of a bike).
This last one is driven by the motor axis (practically, we use
a dual axis motor) in the forward direction but does not turn
in the backward direction.

We solve the problem consisting in reaching the origin in
minimal time. Reaching the origin means the barycenter of
the robot being at the origin, whatever its orientation. The
degree of freedom of this kind of robot is only one in a three
dimensional space (position and orientation) and the target
is of codimension one.

II. DEVELOPMENT OF THE MODEL

In this section, we develop the (very simple) model of our
robot. We will write the equations of motion of the robot
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Fig. 1: Coordinates of the two-wheel robot and its possible
moves

taking as coordinates the point of contact of the right wheel
of the robot (x̃, ỹ) (instead of the barycenter of the robot, as
usual) and its orientation θ.

We denote
• R the radius of each wheel;
• ω the rotation speed of the motor; ω ∈ [0, ωmax;
• L the distance between left and right wheel.
In the forward direction, both wheels are driven by the

motor at the same speed and the robot moves in a straight
line, as does the right wheel :

dx̃
dτ = Rω cos θ
dỹ
dτ = Rω sin θ
dθ
dτ = 0

In the backward direction, only the left wheel is driven
and the right wheel does not move. The robot turns around
its right wheel. 

dx̃
dτ = 0
dỹ
dτ = 0
dθ
dτ = 1

LRω

The following model summarize both modes using two
controls denoted u∗ and u−. Let us define the admissible
control space

Uadm =
{
(u+, u−) ∈ [0, 1]× [−1, 0]; u+u− = 0

}
where the condition u+u− = 0 means that either u+ = 0 or
u− = 0. The system can be written

dx̃
dτ = u+Rωmax cos θ
dỹ
dτ = u+Rωmax sin θ
dθ
dτ = − 1

Lu
−Rωmax

Next, we perform a change of time by setting t = Rωmaxτ
in order to remove the velocity constant Rωmax. The system



can be written more friendly
dx̃
dt = u+ cos θ
dỹ
dt = u+ sin θ
dθ
dt = −

1
Lu

−

Let us express the target in these coordinates. Clearly,
the robot reach the target if the right wheel is on the circle
centered at the origin, with diameter L, the left wheel being
on the opposite point on the circle. More explicitely, the
target is defined by

Ñ =

{
(
L

2
sin θ,−L

2
cos θ, θ), θ ∈ [0, 2π[

}
A. Change of coordinates

Our problem is stated in the three-dimensional space
(x̃, ỹ, θ) but we will see that it can be reduced as a problem
in two-dimension by considering the following change of
coordinates : (

x
y

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x̃
ỹ

)
This change of coordinates means that we will consider

all the moves with respect to a frame attached to the robot.
In these coordinates, the system becomes{

dx
dt = u+ − 1

Lu
−y

dy
dt = 1

Lu
−x

so that x and y does not depend on θ anymore.
In these new coordinates, the target can be written hope-

fully

Ñ =

{
(0,−L

2
)

}
B. Optimal control problem

u+

u−

0 1

-1

Fig. 2: Admissible control (thick line) and convexified con-
trol set

Thanks to our change of coordinates, the problem is now
a two-dimensional problem and the target is a single point.
However, the set of admissible controls is still not convex. In
order to apply the classical Pontryagin maximum principle,
we will use the new control set :

conv(Uadm) =
{
(u+, u−) ∈ [0, 1]× [−1, 0]; u+ − u− ≤ 1

}

The Hamiltonian of the problem is

H(x, y, px, py) = px(u
+ − 1

L
u−y) + py(

1

L
u−x)

= pxu
+ +

1

L
(xpy − ypx)u− (1)

and the adjoint system is{
dpx
dt = − 1

Lu
−py

dpy
dt = 1

Lu
−px

(2)

We will apply the Pontryagin maximum principle for the
set of controls in conv(Uadm).

It is almost clear that optimal trajectories for the initial
system are a concatenation of forward arc f:(u+, u−) =
(1, 0) and backward arc b:(u+, u−) = (0,−1). Indeed, ad
absurdum, an arc which would not be traveled at maximum
speed could be replaced by the same arc at maximum speed
so that the length of the trajectory will be shorter. This
remark is less obvious if we only suppose u in the convex set.
Therefore, our first result is a necessary preliminary result.

Proposition 1: The system has no optimal singular arc,
and optimal trajectories are concatenation of arc such that
(u+, u−) = (1, 0) or (u+, u−) = (0,−1)

Proof: First of all, we prove that extremals are restricted
to the three vertices of the triangle Uadm, see Fig. 2.

Denoting q = 1
L (xpy − ypx), let us remark that:

dq

dt
=

1

L

d

dt
(xpy − ypx) =

1

L
u+py

Using (1), a singular arc is such that either px = 0 or
q = 0 or px = −q

1) First case : px = 0. Along the singular axe, using (2),
and since py can not be zero, it means that u− = 0.
Since q = 1

Lxpy and dq
dt = −u

+py with py 6= 0, either
u+ = 0 or u+ = 1.

2) Second case : q = 0. Since dq
dt =

1
Lu

+py , we have two
subcases:

• py = 0 which implies u− = 0 and px 6= 0 and
therefore u+ is bang bang, 0 or 1.

• u+ = 0 so either u− = 0 or u− 6= 0 and in the
last case, (px, py) is rotating and then d

dtpx 6= 0
so u+ is bang bang.

3) Third (and last) case : px = q

d

dt
(px + q) =

1

L
py(u

+ − u−)

so either py = 0 and we are back to the second case,
either u+ − u− = 0⇒ u+ = u− = 0

We find three possible extremals but (u+, u−) = (0, 0) is
clearly not optimal.

Remark 1: From now and thanks to Proposition 1, we
suggest a new parametrization of the control, by introducing
the control set U = [−1, 1] and for any u ∈ U :

u+ =

{
u if u > 0

0 otherwise
and u− =

{
u if u < 0

0 otherwise



An arc with control u = 1 is called a forward arc (f) and an
arc with control u = −1 is called a backward arc (b).

We will now calculate the optimal synthesis and prove this
using reverse time integration.

C. Optimal synthesis

We consider the system in reverse time and we denote the
derivative in reverse time using dot notation{

ẋ = −u+ + 1
Lu

−y

ẏ = − 1
Lu

−x

starting from the target (x, y) = (0,−L2 ) and we set
(px(t), py(t)) = (cosβ(t), sinβ(t)) where β(0) = β0 and
β0 is a parameter, β0 ∈ [0, 2π[. Using (2) in reverse time,
we obtain

β̇ = − 1

L
u−

hence (px, py) is a counterclockwise rotating vector if u− 6=
0 and remains constant if u− = 0.

Recall that q(0) = 1
2px(0) and q̇ = − 1

Lu
+py . We also

denote C = px + q, we have C(0) = 3
2 cosβ0 and Ċ =

− 1
Lpy(u

+ − u−) = − 1
Lpy (see (3)).

Considering (1) and Proposition 1 , u = 1 iff C > 0 and
u = −1 otherwise (using notation from Remark 1).

Proposition 2: Depending on β0, optimal trajectories in
direct time are either f, b, fb, bf or fbf (see Figure 3):

• If 0 < β0 <
π
2 , the optimal control is u = 1 followed

by u = −1 followed by u = 1 (in reverse time), arcs in
direct time are fbf or bf (second case) or f (third case).

• If π
2 < β0 < 3π

2 , the optimal control is u = −1
followed by u = 1 (in reverse time), arcs are bf or
b.

• If 3π
2 ≤ β0 < 2π, the optimal control is u = 1 and

there is no commutation (arc f).

bf , fbf

fb, b

f

Fig. 3: Different cases depending on β0, β̇ = − 1
Lu

−

Proof: Let us begin by the simplest case 3π
2 < β0 < 2π.

Hence px(0) = cosβ(0) > 0, q(0) = 1
2 cosβ(0) > 0 and

u = 1. Since ṗx = ṗy = 0 (since u− = 0) we deduce q̇ =
− 1
Lu

+py = − 1
Lu

+ sinβ(0) > 0 so there is no commutation.
If β(0) = 3π

2 then u = 0 is an extremal which is not optimal.
The corresponding trajectory is simply the negative abscissa
axis.

The second case is π
2 < β0 < 3π

2 so that C(0) =
3
2 cosβ0 < 0 and therefore u = −1. Moreover, Ċ =
− 1
Lpy = ṗx and therefore C − C(0) = px − px(0) ⇒ C =

cos(β0 +
t
L ) +

1
2 cosβ0. There exists t1 such that C(t1) = 0

and Ċ(t1) = − 1
L sin(β0+t/L) > 0. t1 is a commutation, the

control u switches to +1, then β̇ = 0 and Ċ = − 1
Lpy(t1) > 0

and will no more nullify itself since py remains constant.
In positive time, trajectories are straight horizontal lines

from minus infinity (corresponding to dx
dt = 1 and dy

dt = 0)
to the circle of radius 1 (corresponding to dx

dt = − 1
Ly and

dy
dt = 1

Lx)
The third case is 0 ≤ β0 < π

2 . Since C(0) = 3
2 cosβ0, we

begin by u = 1. Therefore, β̇ = 0 so by simple integration,
C(t) = 3

2 cosβ0 −
1
L t sinβ0. Clearly, t1 = 3L

2 cotβ0 is the
time of the first commutation since C(t1) = 0 and Ċ(t1) < 0.
After time t1, we have u = −1. As in the previous case,
we remark that Ċ = ṗx hence C(t) = px(t) − px(t1) =
px(t)− px(t0) = cos(β0 +

1
L (t− t1))− cosβ0. There exists

a second commutation time t2 defined by C(t2) = 0 and we
obtain easily 1

L (t2 − t1) = 2π − 2β0. From t2, Ċ = − 1
Lpy

which is a negative two-wheels so this is the last switch.
To summarize, in positive time, these optimal trajectories

are described by a horizontal straight line followed by an arc
and then we are back to the first case. In order to describe
explicitly the optimal synthesis, we still have to calculate the
only not trivial commutation curve which is crossed at time
t2. We just have to integrate the system (in reverse time) from
(x(0), y(0) = (0,−L2 ))) to x(t2), y(t2) as a parametrized
curve with respect to the parameter β0 ∈ [0, π2 ].

A tedious but straightforward calculation gives{
x(β0) =

L
2

(
4 cosβ0 sinβ0 − 3 cos β0

sin β0

)
y(β0) =

L
2

(
4 cos2 β0 + 1

) (3)

with 0 < β0 ≤ π
2 .

The 2D optimal synthesis is plotted Figure 4.
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Fig. 4: Two dimensional optimal synthesis (L = 27.1cm)



D. Practical implementation

Figure 4 and equations (3) are sufficient to calculate the
time minimum trajectory for any initial position of the robot.
Indeed, the negative part of the abscissa axes (green line), the
semi circle in the right part of the plane of diameter L and
the curve (3) (black curves) split the plane in two domains
where the left part corresponds to forward arcs and the right
part to backward arcs. Therefore, at any time, if the target is
at (x?, y?) (the right of the robot being (0, 0)), we have the
following optimal strategy :

1) fb If −L2 ≤ y? ≤ L
2 and x? < 1

2

√
L2 − 4y?2 then

goes forward until x? = 1
2

√
L2 − 4y?2 and then goes

backward until the target. See Figure 5a.
2) fbf If L

2 < y? < 5L
2 and x < ψ(y∗) (ψ being defined

below, (4)) then goes forward until x = ψ(y∗) then
move on to step 3)

3) bf Otherwise, goes backward until the target is pointed
and then goes forward until reaching the target.

where ψ is obtained by eliminating the parameter β0 in (3)
:

ψ(y) =
√
12yL− 5L2 − 4y2

L− y
5L− 2y

(4)

(a) fb (b) fbf (c) bf

Fig. 5: Three optimal paths : bf, fbf and bf

In order to illustrate this algorithm with an actual robot,
we can use any robotic platform such as a Turtlebot which
has two wheels with two independant motors. Just ban one of
the motor from running in one direction. Another solution
is to use your child’s Dickie Toys Rc Single Drive 1:32,
which is the only car satisfying our control constraints (it is
dedicated to young children and the RC has only two buttons
: straight forward and turn backward). The last solution is
to build a robot with a freewheel and a dual axes motor as
explained in the beginning. This is what we have done using
a Raspberry Pi for implementing the algorithm and a camera
in order to find the target of the floor, see Figure 6. When
the target is not in the camera field, the optimal strategy is
to go backward until the robot point on the target.

III. CONCLUSION

Although the initial problem is a three-dimensional prob-
lem, we proved that it can be reduced to a two-dimensional
problem. The set of admissible control is non convex and
this difficulty can be solved by considering the convexified

Fig. 6: The single drive robot built with the support of the
department of electrical engineering and industrial comput-
ing of the university institute of technology of Toulon (IUT
GEII)

control set and by verifying that the optimal control remains
in the control set. A simpler choice would be to admit
that optimal controls are a concatenation of forward and
backward arcs so that the convexified control set is a segment
instead of a triangle. This extra assumption is natural and will
be presented during the talk in the conference.
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