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Sim-to-Real Transfer of Soft Robotic Navigation
Strategies That Learns from the Virtual

Eye-in-Hand Vision
Jiewen Lai†, Tian-Ao Ren†, Wenchao Yue, Shijian Su, Jason Y. K. Chan, and Hongliang Ren

Abstract— To steer a soft robot precisely in an uncon-
structed environment with minimal collision remains an
open challenge for soft robots. When the environments
are unknown, prior motion planning for navigation may
not be available for both simulation and operation. This
paper presents a novel Sim-to-Real method to guide a
cable-driven soft robot in a static environment under the
Simulation Open Framework Architecture (SOFA). The sce-
nario aims to resemble one of the steps during a simplified
transoral tracheal intubation process where a robotic endo-
tracheal tube is guided to the upper trachea-larynx location
by a flexible video-assisted endoscope/stylet. In SOFA, we
employ the quadratic programming inverse solver to obtain
collision-free motion strategies for the endoscope/stylet
manipulation based on the robot model and encode the vir-
tual eye-in-hand vision. Then, we associate the anatomical
features recognized by the virtual vision and the joint space
motion using a closed-loop nonlinear autoregressive ex-
ogenous model (NARX) network. Afterward, we transfer the
learned knowledge to the robot prototype, expecting it to
navigate to the desired spot in a new phantom environment
automatically based on its eye-in-hand vision only. Exper-
iment results indicate that our soft robot can efficaciously
navigate through the unstructured phantom to the desired
spot with minimal collision motion according to what it
has learned from the virtual environment. The results show
that the average R-squared coefficient between the closed-
loop NARX-forecasted and SOFA-referenced robot’s cable
and prismatic joint space motion are 0.963 and 0.997, re-
spectively. The eye-in-hand visions also demonstrate good
alignment between the robot tip and the glottis.

Index Terms— Soft Robotics, Robot Learning, Motion
Planning, Simulation.
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Fig. 1. Schematic diagram: Transferring the learned policies that actu-
ate the soft robot with an optimal motion from the SOFA environment to
a real-world system based on virtual and real eye-in-hand vision.

MANY soft robot manipulators and systems have been
designed and intended for the applications of medical

intervention in the past few decades [1]. They are ideal
candidates for robotic surgical tools when force transmis-
sion is a noncritical factor [2]. Inspired by biological com-
pliant structures, these soft continuum robots can navigate
or work in complex environments with the employment of
well-established kinematics, dynamics, and mechanics [3]–
[5]. Besides, due to the challenges in describing those highly
nonlinear compliant manipulators made from soft materials
with low Young’s Modulus and interaction [6], model-free
approaches like visual servoing [7], sensorimotor learning
[8], and finite element methods (FEM) [9] were widely
utilized in the soft/continuum robotic control. In general, a
flexible robotic medical intervention would request a 2D/3D
reconstruction of the device in an occlusive environment. The
used-to-be difficult reconstruction is now becoming convenient
because of the technological advances in sensors, such as
electromagnetic sensing [10], Fiber Bragg grating (FBG) [11],
and learning-based strain gauges-liked networks [8], but at a
relatively high cost. In addition, prototype-dependent sensory
systems often require re-calibration on every individual device,
as the multi-sensor assembly may differ from one to another.
For example, a learning-based embodied strain gauges array
system may become invalid when deployed to another iden-
tical flexible robotic system due to minor assembly errors in
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the real world, necessitating local black-box re-learning. We
expect that an approach with a minimal amount of sensors
and on-site calibration could significantly generalize these
novel soft devices to practical use with lower cost and higher
reproductivity.

Simulation-to-Reality (“Sim-to-Real” or “Sim2Real”) trans-
fer learning will meet our claimed expectations. Bonding
the linkage between simulation and reality is one of the
essential steps toward the metaverse. With extensive prior
study in simulation, one can reproduce the virtual result on
a physical soft robot. For example, with extensive studies
in kinematics, dynamics, mechanics, and morphology, model-
based simulators can be developed to contribute to different
control problems such as contact detection [12], soft materials
shrinkage upon actuation [13], hybrid rigid-soft robots [14],
soft parallel robots [15], etc. In addition to robot control,
simulators can sometimes help us to design better soft robots
to fit different applications [16]–[18].

Another stream of soft robotic simulations may include the
virtual world’s sensing, and the physical interaction [19]. A
cohort of researchers from French institutes developed a soft
robots plugin for the Simulation Open Framework Architecture
(SOFA) [20], [21], with physics-based soft body dynamics.
The soft robots plugin is capable of deriving the quantitative
relationship between the robot’s deformation and the changes
in the inputs of the actuators (i.e., joint space) based on a
real-time direct/inverse FEM solver that considers mechanical
parameters like material, geometry, and morphology. Such an
open-source toolkit has been useful for the community to
probe into the robots’ modeling, characterization, and inter-
action problems with plausible visualization before or during
the transfer to prototypes.

However, most of the reported applications are solely for
visualization without online deployment. In fact, a reliable
simulation can be utilized to advise a closed-loop control
strategy based on the robots’ perception in the virtual en-
vironment. By using different simulation techniques, sim-
to-real transfer learning was applicable to industrial robots.
For instance, [22] presents a sim-to-real learning method that
trains a rigid manipulator in MuJoCo to avoid colliding with
obstacles and then transfers to the physical world using 3D
bounding boxes estimated from RGB-D vision. In [23], a
sim-to-real transfer method is introduced for reinforcement
learning deployed on a KUKA LBR iiwa arm for a peg-
in-hole task with PyBullet. Due to the availability of the
well-developed simulation platform and mature robot models
in Unified Robotics Description Format (URDF), perception
beyond joint space is no longer a must in the closed-loop
feedback. As a result, the learned policy of rigid robots is
oftentimes and readily applicable in the real world. While sim-
to-real-based control policies are common in rigid robots (e.g.,
CoppeliaSim, MuJoCo, and RoboDK, to name a few), they
have rarely been reported on soft robots until recent years.

Soft robot-wise, sim-to-real transfer methods can assist the
robots design and fabrication [24]. The calibration of vision-
based 3D shape sensing of pneumatic soft robots can also be
trained in simulation and transferred to real-world deployment
[25]. In [26], an open-source sim-to-real transfer method is

put forward to predict the morphology of cube-based soft
robotic dice. The work is further extended to transfer the
simulated locomotion to reality [17]. By exploring planar kine-
matics, which can be geometrically simulated, [27] presents
the autonomous navigation task for soft growing robots in a
tortuous maze with an overhead view. However, 3D navigation,
a capability of soft manipulators that are often sought after and
competent in and which could have benefited from the sim-
to-real transfer, has yet to be reported.

This work proposes a SOFA-based sim-to-real method for
soft robotic navigation that learns from virtual eye-in-hand
vision. Based on the underlying principle of the simulator, we
assume that the SOFA’s results may be very likely to resemble
the real case scenarios. Aiming to navigate a cable-driven
soft robot in a confined environment, we first reconstruct a
simulation scene in the SOFA framework that resembles the
situation to perform collision-free path and motion planning
that could be useful for endoscopic manipulation. Then, we
employ the prior knowledge from the simulation to train a
closed-loop control policy for a soft robot’s navigation. By
learning what the robot “sees” and how it simultaneously
“moves” in the joint space according to a series of optimized
motions in the virtual world, we can transfer the learned policy
to the physical robot and teach it how to “move” depending
on what it “sees” in the real world – and the environment is
unknown to the robot except for regular anatomical features we
are intrigued in. A dynamic neural network called nonlinear
auto-regressive exogenous model (NARX) [28] is adopted for
virtual learning that features time-series modeling. Instead of
presenting a simple open-loop sim-to-real method, our closed-
loop policy can be directly transferred to the tangible robot
in a one-off manner, which can considerably reduce the on-
site calibration and multisensory employment for the naviga-
tion tasks. Experiments with further evaluation validate the
method’s feasibility and performance. This paper contributes
to the soft and medical robot communities

• A newly-presented 3D-printed cable-driven soft robotic
system featuring a miniature manipulator, soft material,
and mechatronic-decoupled design for soft robot-based
endoscopic manipulation;

• A novel SOFA-based sim-to-real method that learns from
the virtual eye-in-hand vision for simulated and real-
world soft robotic navigation relying on a light-weighted
NARX network;

• An interdisciplinary pilot study of autonomous soft robot-
based endoscopic manipulation powered by our sim-to-
real method; and

• A comprehensive experimental validation and evaluation
of our sim-to-real method for soft robots.

To the best of our knowledge, this is the first physical
simulation-based sim-to-real method that enables soft robotic
navigation that learns from virtual eye-in-hand vision. The
method enables the transfer of complicated soft robot motion
computed by a numerical solver in SOFA to a real-world robot
with additional visual perception to improve transfer fidelity.

This paper is structured as follows: Sec. II describes the
gist of (soft) robotic transoral tracheal intubation with its
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Fig. 2. Task description: the robot tip is automatically steered to
reach the upper glottis with the help of the selected anatomical features
obtained by its eye-in-hand vision. The soft body’s motion with a minimal
collision with the surrounding is realized by the control strategy that
learns from the simulation.

background introduction. Sec. III sketches out the design and
assembly of the robotic system that will be used in simulation
and experiment. Sec. IV demonstrates the kernels of how we
construct the soft robotic-based endoscope (stylet) manipula-
tion scene, motion planning, and generation of the dataset in
SOFA. Sec. V presents the implementation of learning. Sec.
VI shows the experimental validation of the proposed method
on a phantom. The last section concludes the paper.

II. TASK DESCRIPTION

We assume the primary task for the soft robot is that it
can automatically guide the soft robot’s tip to a reachable
3D spot in a confined environment with optimal body motion
throughout the navigation process. Here, we choose the robotic
endoscope/stylet manipulation in transoral tracheal intubation
(TI) as an example to investigate the feasibility and perfor-
mance of our proposed sim-to-real method. A stylet or flexible
bronchoscope is typically used to guide the endotracheal tube
(ETT) to reach the desired spot. Despite the conventional
“blind” stylets, video-assisted [29] and semi-robotic stylets
[30] were proposed to help with the transoral TI. However,
it comes to our attention that, except for pink tissues, the
endoscope fails to provide identifiable views for a good while
during the navigation. The situation poses major challenge in
deploying visual servoing for the task. Nonetheless, we see
the potential to overcome the challenge by using a soft robot
with sim-to-real capability.

To automate this procedure, as illustrated by Fig. 2, we
assumed that a vision-embedded soft robotic manipulator
would work as a steerable stylet to autonomously navigate
to the locations near the upper glottis with minimal robot-
environment collisions during the feeding. Along with feeding,
there are two major turnings for the soft body. The first
major turning, obviously, occurs near the palatine uvula that
separates the oral cavity and oropharynx. After a blackout
period when no key features can be perceived, the second
turning occurs near the arytenoid (corniculate) cartilage at the
hypo-pharyngeal area separating the trachea and esophagus
[31]: the former belongs to the respiratory system, whereas
the latter belongs to the digestive system. We can employ the

Control Box
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Fig. 3. (a) CAD schematic of the soft robot system in this work. A total
of six cable joints are enabled by the motors’ rotation that is transmitted
by the flexible shafts. (b) The outer diameter of the soft robot is 6.2 mm.
Notation of frames: {B}: base; {M}: middle; {T}: tip; {C}: camera.

null space motion of a multisegment soft robot with proper
motion planning to produce a dexterous motion that avoids
collisions as much as possible.

III. SOFT ROBOTIC SYSTEM: DESIGN & ASSEMBLY

A soft robotic system and its manipulator parameters were
specially designed to validate our method. As shown in Fig. 3,
the cable-driven soft robot has two coupled flexible segments.
Three independent cables actuate each segment. The cables
(∅0.38 mm nylon wire) are threaded through their respective
∅0.8 mm channels that are isometrically distributed in a radius
of 2.1 mm. A 2-mm-diameter main channel is reserved at the
axial center. The robot base is mounted on a linear slide for
a feed motion along the axial direction. Our design features a
proximal segment of 60 mm and a distal segment of 70 mm in
length, with a unified diameter of 6.2 mm to imitate a stylet
or an endoscope and ease of fabrication and assembly. The
soft bodies were made from Agilus30 photopolymer using a
PolyJet 3D printer (J826 Prime, Stratasys).

Each cable is winded on a spool mounted on a bearing on
the fixture base. The spools can be rotated by the couplers that
are connected to the flexible shafts actuated by the respective
DC motor (1000:1 gear ratio, 6V) with an encoder for angular
feedback. The DC motors are PID-controlled by a low-cost
self-assembled motion controller equipped with three L293D
units and a general microcontroller. The linear slide is driven
by a stepper motor drive. With some step-down transformers,
all electronic components are well-fitted in a portable acrylic
box with a standard power cable (220V AC) and a USB port
for communication with the PC. Such spatial-mechatronic-
decoupled design reduces the footprint size, increases the
system’s portability, and facilitates the free space posing of
the robot base.

IV. SIMULATION: SOFA-BASED ROBOT MODELING

A. Virtual Environment
We configured the simulation in SOFA v22.06.99. To align

with the physical scene where the robot tip would be facing
toward the ground, we set the virtual gravity to be [0, 0, 9.81]⊤
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Fig. 4. This work is predicated on encountering a uvula with a Class-I
visibility in the Mallampati system and the vocal cords with a Grade-I
visibility in the Cormack–Lehane system.

m/s2. As the baseline, the current work is predicated on
ideal anatomic scenes with clear visibility of the airway
anatomic structures, with the uvula of class-I visibility in
Mallampati score [32] and vocal cords of grade-I classification
in Cormack–Lehane system [33]. The assumption is further
depicted in Fig. 4. It should be noted that unless extensive data
with various anatomic conditions are used, the reconstructed
and phantom environments we present may not fully reflect the
complexity and variety of real cases. The sim-to-real discrep-
ancy at the current visibility class/grade can be further reduced
by using Fourier domain adaptation [34] and style transfer [35]
to even achieve pixel-grade cross-domain (SOFA/phantom)
feature segmentation [36]. A modified oropharyngeal-tracheal
3D phantom [37] was directly imported into the scene in obj

format. To reduce the expensive finite element computation,
we trimmed some insignificant entities from the phantom, such
as teeth and miscellaneous muscles, leaving the phantom with
26,706 triangular surfaces, as shown in Figs. 5(a) and 5(b).

B. Robot Modeling

Distal Segment

Proximal Segment
Solidified

Cable Nodes

a

b

c

Fig. 5. Entities modeling in SOFA. (a) Meshed modified oral cavity, and
(b) meshed pharynx and trachea. Adapted from [37], [38] under CC BY-
NC-SA license. (c) Cables’ geometric constraints (exploded view) of the
meshed two-segment cable-driven robot.

In SOFA, robot modeling depends on the meshed solid
model of the soft bodies and their geometric constraints,
including cable distribution, actuation regulation, and partial
solidification. To do that, the soft robot was first sketched in
FreeCAD (a free and open-source software under the LGPL-
2.0-or-later license) and exported to brep or step format.
Then, we imported the model into Gmsh (a free software under
the general public license) for the meshing and exported it to

both vtk and stl format. The vtk was used to add the finite
element model in SOFA, and the stl was used to define the
visual model and collision model. After some trial-and-errors
with the consideration of computational cost and rationality,
we tetrahedrally meshed the soft segments into voxels with
4985 vertices, excluding any cable channels in the mesh.

Based on the prototype fact, we resembled the physical
properties in SOFA with the Young’s modulus E = 0.8 MPa,
Poisson’s ratio ν = 0.45, and the total mass msoft = 7 g. The
cable actuation mechanism was geometrically constrained in
the python script, which can be expressed as

Li,j,k =

(−1)
j · rc · sin

(
(j − 1)β

)
−rc · cos

(
(j − 1)β

)
(k − 1) d

 (1)

where i = 1 and i = 2 represents the proximal and distal
segment, respectively; j = {1, 2, 3} denotes the indexed
cable; and k = {1, 2, ..., Ni} indicates the kth node along
the soft body. Note that Ni varies from different segments,
and N2 > N1. For the constants, rc = 2.2 mm is the radius
for cable distribution, β = 2π

3 is the angular offset between
the neighboring cables of the same segment, and d = 5 mm
denotes the sampling distance along the soft body. As for the
rigid shaft, it has to be solidified as a rigid part. The working
range of the prismatic joint along the feeding axis was set to
be [0, 80) mm. Figure 5 gives an intuitive illustration of our
robot modeling in SOFA.

C. Collision Avoidance Motion Planning

With all the preparations ready, we then defined a relative
position between the soft robot’s base and the environment.
For the sake of convenience and valid computation, we located
the robot base frame {B} at Ptarget = [0,−55, 160]⊤ mm
with respect to the target site as a basic status (also refer to
Figs. 1, 9). The relative frames relationship can also be found
in the weak registration in the real-world deployment which
will be discussed in Sec. VI.

The built-in QPInverseProblemSolver was used for the
collision avoidance motion planning. The cost function is
a quadratic function that minimizes the actuation and the
distance between robot meshes (a function of the actuation)
and the environment. The solver implements the QP problem
with linear complementarity constraints (QPCC) [20] based
on the qpOASES library to inversely compute the corrected
FEM-based robot model in response to the actuators, actuator
constraints, and surroundings. Different primitives, including
point, line, and triangle, were utilized in the narrow phase in-
tersect detection. A local minimum distance proximity method
was used to evaluate the anticipation of contact with an
alarming distance of 2 mm and a contact distance of 0.5
mm. The pseudo-code in algorithm 1 depicts the collision-free
navigation deployment workflow in SOFA. Fig. 6 demonstrates
two resultant examples in collision avoidance and evaluation
with the said proximity method. As the robot moves, the
objective values from the QP formulation converge.

Since we would be interested in the eye-in-hand vision, a
camera frame {C} was additionally attached at the robot’s tip
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Algorithm 1 ESTABLISH ENVIRONMENT & ROBOT MODEL IN
SOFA TO COMPUTE COLLISION-FREE MOTION FOR NAVIGATION
1: procedure ROOTNODE()
2: requiredPlugins ▷ SOFA SoftRobots Plugin
3: defaultVisualManagerLoop & freeMotionAnimationLoop
4: visualStyle & gravity ▷ Robot appearance; G = 9.8 m/s2
5: collisionPipeline: alarmDistance = 2, contactDistance = 0.5
6: QPInverseProblemSolver (epsilon = 1e-1) ▷ Compute Inverse
7: simulationNode()

- solversForDeformation: OdeSolver, linerSolver, SparseLDLSover,
GenericConstraintCorrection ▷ Compute soft object deformation

- softRobot: FEM, visual, collisionModel ▷ vtk, stl
◦ rigidify() ▷ Rigid shaft
◦ deformablePart: cableActuators ▷ Cable nodes using Eq. (1)
◦ rigidPart: slidingActuator ▷ Linear slide

- mechanicalMatrixMapper (rigidAndDeformableCoupling)
8: phantomModel(visual, collisionModel) ▷ obj
9: define frames: target & end-effector

10: recordedCamera: orientation & position from myAnimation
11: animate(myAnimation)
12: return

a b
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Fig. 6. Simulation snapshots of the collision avoidance motion planning
of our soft robot in different SOFA scenes using the built-in QP solver
and the local minimum distance-based proximity method, interacting
with (a) a 90-deg pipe, and (b) the phantom in Sec. IV-A. The respective
objective values are given. The default initial objective values are 250.

to provide an endoscopic view. For simplicity, we ignored that
offset between the camera and the tip frame and coincided with
them, i.e., {C} ≈ {T}. Given that there are no available tools
to acquire the endoscopic view, we defined a fixed frame on the
plane perpendicular to all cable ends – based on trigonometry
– as the camera frame. The coordinates of three cable ends
can be indicated w.r.t. the robot base as pj = L2,j,N2 ∈ R3×1

where j = {1, 2, 3}. Then, the plane formulated by those
coordinates can be calculated by[

α β γ
]⊤

= (p1 − p2)× (p3 − p2) . (2)

Thereby, the orientation of camera frame can be computed by

C =


arccos

√
α2+γ2

α2+β2+γ2

arctan
(

α
γ

)
0




⊗

·Rx (π) ·Rz (π) , (3)

where (·)⊗ denotes the operations that convert an Euler angle
to a rotation matrix, and Rx (θ), Rz (θ) represent the rotation
matrices of θ on the subscripted axis. The rotation matrix
C was then converted to a quaternion for use. The frame
origin was located at 1

3 (p1 + p2 + p3)
⊤. With the specific

definition of viewport coordinate and focal length, the eye-in-
hand view can be acquired from the QtViewer using OpenGL.
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Fig. 7. Performance metrics of the YOLOv5s for anatomical recognition.
Early stopping was triggered at epoch 481 as no improvement was
observed in the last 100 epochs. Best results observed at epoch 380.

This method would grant us theoretically unlimited virtual
endoscopic image data of anatomical features/organs, as long
as we can build in SOFA, without concerning privacy issues.

V. LEARNING FROM THE VIRTUAL VISION

In this work, the learnings can be divided into two parts
and will be introduced in this section. Sec. V-A describes
the use of primarily SOFA-generated images (i.e., eye-in-
hand viewport) with a small number of phantom pictures
blended for anatomical feature recognition. While Sec. V-B
depicts the recurrent learning between the SOFA-generated
joint space motion – subjected to the QP-constraints for
collision avoidance – and the resulting labels of recognized
features in the virtual environment.

A. Recognizing Anatomical Features using YOLO
We employed YOLO (You Only Look Once) [39], a real-

time object detection algorithm, for the online anatomical
feature recognition task. Due to the limitation in available
virtual 3D models, the SOFA environment is over-animated,
which fails to satisfy the feature recognition task in the real
world. To bridge the gap between simulation and reality
in this regard, we blended the simulated endoscopic dataset
with some pictures of the phantoms. The dataset size is
given in Table I. The images in the dataset were labeled
using bounding boxes with corresponding feature tags. The
dataset was arbitrarily divided into training (80%), validation
(10%), and test set (10%). Among the four released models
(https://github.com/ultralytics/yolov5), namely the 5s, 5m, 5l,
and 5x, we opted for the most lightweight YOLOv5s model.
The model was set to be trained for 800 epochs with a batch
size of 4, and the early stopping (patience at 100) was triggered
at the 481st epoch, meaning that the best results were observed
at epoch 380. The network performance is given by Fig. 7
and Table II, showing that it can classify the three classes
with a high precision of 0.989, 1, 0.989, for uvula, epiglottis,
and glottis, respectively. As an indicator metric for object
detection, Table II also explicitly provides the mean average
precision (mAP) for intersection over union (IoU) greater than
0.5 and from 0.5 to 0.95. Figures 8 and 9 demonstrate the
effectiveness of the trained feature recognition model in both
simulation and reality scenes, where the recognized features
could be parameterized into the respective category (see the Z-
axis of Fig. 11) with coordinated bounding boxes in real-time.
The generalization of feature recognition can be improved
further by taking into account anatomic appearances with
varying visibility grades introduced in Sec. IV-A.

https://github.com/ultralytics/yolov5
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Fig. 11. With variable targets, 20 groups of feature sequences obtained
by the SOFA’s eye-in-hand vision were utilized for the NARX training.

TABLE I
SIZE OF THE BLENDED DATASET FOR FEATURE RECOGNITION

(UNIT: FRAME)

Uvula Epiglottis Glottis
SOFA’s Virtual Images 601 395 507
Colored Real Images 119 69 82

B. Eye-Hand Learning using NARX

Since the virtual endoscopic images and the robot actuation
(“eye-hand”) are temporal dependents, the nonlinear autore-
gressive exogenous (NARX) model [40] was used for the
learning. NARX is a class of discrete-time nonlinear models
that are often utilized as an open-loop or closed-loop form
multistep predictor in times series modeling. The advantage of
using the NARX is that the whole operation can be involved by
a single model. Such a model can be algebraically represented
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TABLE II
MODEL SUMMARY OF YOLOV5S-BASED FEATURE RECOGNITION

Class Test Images
/Instances Precision Recall mAP

@0.5
mAP

@0.5:0.95
All 140 / 181 0.993 0.993 0.995 0.921

Uvula 140 / 72 0.989 1 0.995 0.877
Epiglottis 140 / 51 1 0.980 0.994 0.928

Glottis 140 / 58 0.989 1 0.995 0.957

by [28]:

y (t+ 1) = f [y (t) , y (t− 1) , · · · , y (t− ny + 1) ,

u (t) , u (t− 1) , · · · , u (t− nu + 1) ]
(4)

where y (t) and u (t) are, respectively, the output and the
input sequence of the network at the discrete time step of
t. Meanwhile, ny and nu are the delays in output and input,
respectively, subject to nu ≥ ny ≥ 1. The dependant output
value at the next time step y (t+ 1) is regressed on its previous
output and previous independent exogenous input.

Since we cannot provide a perfect driver sequence y(t) in
prior to the NARX network for prediction, we need to train the
network in a closed-loop way, i.e., using the newly predicted
driver sequence as part of the input, then combining it with
the visually recognized labels for the next prediction. Besides,
we improved the training process regarding the model gener-
alization and overfitting avoidance by using the early stopping
method with automated regularization under the Bayesian
framework [41]. The model training was implemented using
the Neural Network Toolbox of Matlab. In the NARX network,
d1 and d2 denote non-negative input delays and output (feed-
back) delays, respectively. These hyperparameters must be
tuned based on the specific problem and data characteristics,
and no reference values exist. Here, we empirically initialized
the input delays as d1 = [1 : nu] and the output delays as
d2 = [1 : ny], where nu = 7 and ny = 5. For the initialization
of network training, we found that the NARX network would
produce more stable initial predictions if the input delay were
replenished with some small non-zero values at the first seven
timesteps, which is in response to the input delay. In our
work, we supplemented the SOFA-generated joint motion with
arbitrary small values as

yinit = 10−4

 | | . . . |
1 2 . . . 7
| | . . . |

 (5)

for each training. It has been tested that using other small val-
ues for initialization would not cause a significant difference.
Whereas, the initial amended labels can be uinit ∈ R1×7 as
long as it does not interpret any executable features.

After training a total of 300 NARX networks, we kept the
network with the most satisfactory performance. The selection
was made by feeding each network with 10 sets of new label
data from YOLO and driven data from SOFA exclusive from
the original dataset for training, validation, and testing, and
obtaining the mean squared error performance for comparison.
To diversify the simulation data, we added a cohort of offsets
of [±3,±3,±5]

⊤ ∈ Z in millimeter on the target position
Ptarget in three axes, resulting in 20 groups of simulation paths

in SOFA. Using offset targets for the training could contribute
to weak robot-patient registration in a real-world deployment.
The offsets were also selected to fulfill the consequence that
each path would correspond to a unique endoscopic view and
QP-solved actuation. Figure 11 illustrates the sequences of
feature(s) captured by the eye-in-hand vision in SOFA. The
variable target positions affect the virtual visual perception in
terms of timing, duration, and recognized features, enriching
the simulation data. Such variation mimics the slight individual
difference in physiological appearance among people, which
would benefit the model’s adaption to new oropharyngeal
environments.

The architecture diagram in Fig. 10 summarizes our pro-
posed method. The robot modeling and the feature recog-
nition were implemented in Python and YOLOv5 (PyTorch
framework), respectively, while the eye-hand learning using
the NARX network was performed in Matlab R2020a. The
networks were trained on an NVIDIA GeForce RTX 3060
GPU. Since multiple platforms were involved, we employed a
user datagram protocol (UDP) socket that allows the Python
program to stream the real-time recognition to where the
Matlab host on the actuator side could receive it.

VI. EXPERIMENT

A. Experiment Setup
A simplified robotic TI scene was set for the experi-

ments. A CMOS image sensor (OV6946, OmniVision, CA,
USA) was used to provide eye-in-hand vision. The 1.8-mm-
diameter LED-equipped image sensor can capture 400 × 400
resolution video stream at a 30 fps frame rate. To show
the generalization of the proposed method, in the experi-
ment, we used a commercially-available clinical oropharyngeal
phantom, which was different from the simulated scene that
produced the eye-hand dataset for NARX network training.
The experiment setup is shown in Fig. 12. The linear slide
that holds the manipulator was vertically installed with the
robot tip pointing toward the ground and fixed on an adjustable
holder. A permanent magnetic-based tracking system was used
to obtain the 3D position of a magnet attached to the robot tip.
A tiny NdFeB magnet was used to avoid excessive payload.
Based on the magnet’s size, the valid measurement range of
the tracking system is about 100 mm above the array.

Before configuring the sim-to-real method, we tested the
robotic system with open-loop control. As shown in Fig. 12,
two tip paths were imported to the SOFA to derive the inverse
solution in joint space. The paths (in mm) for the circle and ∞-
shape are, in t = 0 : π/500 : 2π time steps, xref,o = 16·sin(t),
yref,o = 16 · cos(t), and xref,∞ = 22 · sgn(cos(t)) ◦ (cos(t) ◦
cos(t)), yref,∞ = 22 · sgn(cos(t)) ◦ sin(t) ◦ (cos(t) ◦ cos(t)),
respectively, with a height of 52 mm above the magnetometer
array. The ◦ operator denotes the element-wise (Hadamard)
product. Due to the unit problem, the SOFA-generated inputs
necessitate an overall amplification to fit the prototype setup,
such as spool sizes and the minor transmission losses of using
flexible shafts. The measured results show that our setup can
reproduce the desired path with an average spatial positioning
error below 2 mm in open-loop mode, which is adequate for
using the latter sim-to-real validation with closed-loop control.
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Fig. 12. Experiment setup and the open-loop control tests. The robot
joint space motions are computed by the QP solver of the SOFA
framework. The tip positions are captured by the magnetometer array.

B. NARX Performance

We performed a prior experiment in the simulation to
evaluate the closed-loop NARX network performance in our
joint space motion forecasting task. Initially, three new tar-
get positions proximate to the upper glottis were randomly
selected in SOFA. Notably, the selected target position was
intentionally excluded from the training, validation, and testing
datasets to prevent biases. After running the simulations, we
obtained the SOFA-generated joint space motion with a time-
series feature sequence observed by the endoscopic vision in
the virtual scene. After that, we tried to feed the recorded
feature to the trained NARX in sequence – imitating a real-
time feature sequence that the actual camera vision would
attain – and examined the alignment between the forecasted
and SOFA-generated joint space motion. The result is given
in Fig. 13. It can be seen that the endoscopic vision would
observe the features differently in terms of time and the ROI
of features. Such variant observed features and the closed-loop
mechanism would result in NARX-forecasted joint motions
that are deviated from the reference joint motions computed
by the QP solver of SOFA. However, the deviations are
insignificant for the overall robot motion. As shown in Fig.
13, the cable joint of the proximal segment, joints 1–3, are
nearly merged with only minor differentiation. The resultant
task motion showed that such joint motion would stiffen the
proximal motion to antagonistically resist the passive bending
motion caused by the distal segment, which conforms to the
literature [42], [43] and simulation. Table III demonstrates the
R-squared coefficient of determination of the motion of each
joint for the above experiments. The R-squared coefficient is
given by

R2 = 1− SSres

SStot
,

where SSres and SStot denote the residual sum of squares
and the total sum of squares, respectively. It measures how
well the NARX network forecast can fit the SOFA-generated
outcomes. Based on the above three experiments, the table
shows that the average R2 coefficient for the cable joints is
0.963, with the lowest performance shown in joint 3 (one of
the cable joints for the proximal segment). In contrast, joint 7
(the prismatic joint) has an average R2 coefficient of 0.997.
The prior results validate the fidelity between what the trained
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Fig. 13. Closed-loop NARX-forecasted joint space motions based
on only the virtual eye-in-hand vision, compared with the ideal SOFA-
generated joint space motion. Three examples are given in (a), (b), and
(c), with variant target positions of [0,−55, 155]⊤, [3,−55, 155]⊤,
and [0,−58, 155]⊤ mm, respectively. The resultant observed features
are shown in the right column.

TABLE III
R-SQUARED FITNESS FOR FIG. 13

Joint 1 2 3 4 5 6 7 (P)
Exp. (a) 0.981 0.978 0.909 0.965 0.992 0.981 0.998

R2 Exp. (b) 0.972 0.975 0.926 0.962 0.990 0.978 0.998
Exp. (c) 0.962 0.959 0.894 0.960 0.985 0.972 0.997

NARX network produces and the computation from the SOFA.
It supports the closed-loop sim-to-real implementation in the
following Sec. VI-C.

Moreover, a comparison was made between the performance
of the NARX network and the Long Short-Term Memory
(LSTM) network, which is frequently employed for learn-
ing time-series sequential data. The trained networks were
assigned a new target position of [0,−55, 155]⊤ mm for
joint motion predictions, and the outcomes were subsequently
contrasted with the joint motion computed by the QP solver
in SOFA. Fig. 14 presents a side-by-side comparison of the
network predictions. The R2 coefficients for the LSTM and
open-loop NARX networks are 0.983 and 0.997, respectively,
and the training time for these open-loop models take respec-
tively about 120 seconds and 10 seconds with an Intel i9
12th-gen CPU using Matlab. Nevertheless, when fitting the
predicted and referenced outputs based on such a single trial,
the NARX network exhibited a mean square error (MSE) that
was 15.7% lower than LSTM. These results suggest that the
NARX network outperforms LSTM in terms of performance
with less training time. Furthermore, the NARX network has
a simpler architecture, requires less computation, and exhibits
better generalization and robustness to input changes than
LSTM especially when only small amounts of training data
are available [44]. Here, training a usable closed-loop NARX
network for 3,000 epochs takes about 12 minutes on the same
PC configuration. And thanks to the relatively short training
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Fig. 14. Given a target position of [0,−55, 155]⊤ mm, the above
provides joint space motions predicted by (a) an LSTM; and (b) an open-
loop NARX. The former demonstrates an R2 coefficient of 0.983 and an
MSE of 0.4419, while the latter shows an R2 coefficient of 0.997 and an
MSE of 0.3820, respectively.

time, we could explicitly test the training effect, adjust the
hyper-parameters promptly, and select the optimal model in
due course.

C. Validating the Sim-to-Real Transfer on Phantom

An overview of our sim-to-real-driven deployment is shown
in Fig. 15. A video is also available in the supplementary
material. Using a phantom different from the simulation, the
soft robot’s tip was placed about 15 mm above the uvula to
resemble the initial scene of the SOFA’s as much as possible.
When operated, the robot would navigate to the upper glottis
location based on only its real-time eye-in-hand vision. The vi-
sion underwent the YOLO algorithm for feature detection, and
the recognized feature sequences were decoded into executable
joint space motion by the trained-NARX network. Fig. 16
demonstrates the selected video sequence from the eye-in-hand
vision of two experiments with slightly different initial settings
of the relative positions between the robot and phantom. Their
corresponding recognized features are also given in Fig. 16.
Even with different initial placements, it can be observed that
the robot can efficaciously navigate to the desired location
without significant collision with the environment, which is
unstructured in any of our simulations. The measured tip paths
during the navigation are available in Fig. 17, which also
indicate the variability of the network’s decision depending on
what the eye-in-hand vision receives in real time. As we have
planned in the SOFA scene, the soft robotic endoscope/stylet
manipulation should

1) avoid colliding with the uvula at the beginning;
2) perform the first major bending at the oropharynx; and
3) distinguish esophagus and glottis, then align to the latter.

To evaluate the above criteria, (1) can be visually examined,
(2) can be verified by post-evaluation of tip position mea-
surement, and (3) can be visually evaluated by the real-world
endoscopic view.

The experiment results showed that the robot could conduct
the given navigation task automatically based on what it
had learned from the simulations. Due to the different initial
settings, the robot “saw” different feature sequences, resulting
in diverse NARX-forecasted joint space motions as shown
in Fig. 18 – both of them are capable of driving the robot
to fulfill the task. The stiffening effect on the proximal soft
segment due to the antagonistic actuation was also realized
on the prototype as planned in the physical simulation. As

TABLE IV
SIM & REAL PERFORMANCE – SUCCESS RATE OF REACHING THE

UPPER GLOTTIS

SOFA Sim. Real

Phantom Used Modified 3D-modeled
Phantom [37]

Commercially-available
Phantom

Success Rate 20/20 17/20

designed in the simulation, the proposed method allows a
relative malpositioning between the robot and the phantom.
The experimental observation suggested an error tolerance of
[0 ± 5,−55 ± 5, 160 ± 5]⊤ mm of Ptarget in {B}, which
surpasses to the simulation. The success rate of sim-to-real
transfer has usually been one of the indicators to evaluate
deploying performance [45]. Table IV shows the success rate
of the sim-to-real transfer in reaching the upper glottis in our
phantom experiments. Here, a success reach was judged by
whether it could provide a clear endoscopic view showing the
vocal cords or not. While the simulation can always obtain
a viable view at the end, a high success rate of 17 out of
20 consecutive trials were found capable of delivering the
camera into the spots in real-world phantom experiments.
In our observation, failed trials were primarily accused of
overexposure due to the intense LED light (can tell from Exp.
2 in Fig. 16), which interferes with YOLO-detection when
acquiring valid features for closed-loop feedback.

D. Discussion

The major novelty of our visual-dependent sim-to-real
method for soft robots can be highlighted as the following
when compared with:

1) General Eye-in-Hand Visual Servoings: In general, visual
servoing (VS) requires detected features in the loop at all
times. But oftentimes, the endoscope sees nothing or invalid
frames (this has been verified in simulation and real phantom),
which is inadequate for valid closed-loop feedback. In contrast,
our sim-to-real method can refer to the “memories” that the
robot learns from the virtual world, allowing its navigation
without relying on a continuous eye of sight of features.
If we use an eye-in-hand VS method in our task, it may
require many feature labels along the navigation to determine
the next step, whereas ours only requires a few, significantly
reducing the time-consuming training in feature recognition.
Furthermore, compared to the traditional VS method, a sim-
to-real method reduces the onsite calibration of the visual
system’s extrinsic and intrinsic matrices [46], initial Jacobian
estimation between the joint and task space [47], and position-
configuration measurement [48]. In addition, general eye-in-
hand VS may not be able to control the whole-body motion of
a multisegment soft robot, which is essentially required for the
navigation task in a tortuous environment, while our method
is capable of whole-body motion control. Due to privacy and
ethical concerns, the medical dataset used to deploy visual
servoing is typically inaccessible. However, simulation scenes
are more accessible and customizable. Computer graphics
experts might contribute to more realistic virtual scenes for
future sim-to-real deployment. Therefore, as supplementary to
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Fig. 15. (a–f) Snapshots of the robot motion generated by the proposed sim-to-real method. The joint space motions were automatically computed
based on the endoscopic vision and the closed-loop NARX algorithm. (g) Weak robot-patient registration.
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the VS methods, a vision-based sim-to-real method like ours
will be meaningful for the developers and roboticists.

2) Model-Based Simulation Frameworks: Our soft robot
simulation is based on the open-source SOFA framework,
instead of model-based simulators. Due to its physics engine,
the framework is friendly to deformable entities of soft ma-
terials with multiple collision models and collision detection
methods, providing a rich source of simulation data for the

sim-to-real transfer. The use of embedded eye-in-hand vision
in the virtual environment, which is not available in general
model-based simulators, improves transfer fidelity as well.

3) Deep Learning Frameworks: A light-weighted network
like NARX is more suitable for our desired application. There
are only a few anatomical features in the human oropharynx
structure, which can be handily covered by the permutation of
explainable feature labels. However, a deep learning network
requires more expensive computational overhead as it would
also account for the voided vision that further challenges the
sim-to-real discrepancy. Also, the explainable feature labels
with pathologies/defectives can be added to further enrich the
simulation dataset in a separate recognition training process.

4) Possible Extension to Real-World Anatomy: We have also
explored the possibility of further extending part of this work
to real anatomical application. One of the critical parts will
be reducing the discrepancy between simulation and reality
regarding the YOLO-based feature recognition. Following a
similar strategy, we blended the datasets with some real
medical images from open access sources [49], [50] to train
a model applicable in simulation, phantom, and anatomical
environment. Detailed configuration of the datasets is given
in Table V, indicating a comparative mAP to the model
that was trained using only SOFA’s and phantom images.
To further verify the newly introduced model, we input new
video clips (i.e., excluded from the learning process) into the
model after some necessary trimming (4:21–4:32 and 4:57–
5:51) for the recognition test. As shown in Fig. 19, the model
was able to recognize the intended features, even though the
real anatomical images only account for 7.61% of the dataset.
The preliminary results reveal the possibility of applying the
proposed sim-to-real transfer strategy in future real-world
trials.
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TABLE V
COMPARISON OF DATASET THAT BLENDS WITH PHANTOM IMAGES

ONLY & WITH ADDITIONAL MEDICAL IMAGES FROM

Dataset
(#)

# of Blends
(%)

mAP
@0.5

mAP
@0.5:0.95

SOFA (1194)
Phantom (203) 203/1397 (14.53%) 0.995 0.925

SOFA (1194)
Phantom (203)
Medical (115)

115/1512 (7.61%) 0.995 0.910

Fig. 19. Recognizing real-world anatomical features from open accessi-
ble clips [51] using a model trained with mostly (i.e., 92.39%) simulation
and phantom data.

5) Limitation: We acknowledge that there are also some
limits to our current work. For instance, the method lacks
perceptual/control mechanisms to deal with possible collisions
in different real-world environments. Such drawbacks can be
further improved by employing additional haptic sensors and
including them in the simulations to diversify the virtual
sensing (other than only vision) in future works. Moreover,
the proposed method can be further completed by introducing
variations on virtual scenes to reduce the discrepancy among
patients.

VII. CONCLUSION

This work proposes a SOFA-based sim-to-real method for
soft robotic navigation that learns from the virtual eye-in-hand
vision using the NARX network. Motivated by the soft robotic
endoscope/stylet manipulation procedure before the transoral
TI, this work firstly presents a two-segment 3D-printed cable-
driven soft robotic system featuring a miniature manipulator,
soft material, and mechatronic-decoupled design. Based on
the prototype and open-source 3D phantom models, a virtual
environment that resembled the soft robot navigation during
stylet manipulation was reconstructed in SOFA. The SOFA’s
built-in QP solver was used to compute the minimal collision
motions in both task space and joint space. Meanwhile, eye-in-
hand visions in the virtual world were obtained. The YOLOv5
algorithm was configured to recognize the observed anatomical
features, namely, the uvula, glottis, and epiglottis, with a high
precision of over 98.9% in virtual and phantom environments.

Then, using only the simulation data, a closed-loop NARX
network was trained to associate the time series anatomical
features sequence with the SOFA-generated joint space mo-
tion. After that, the trained network was employed in the real-
world soft robotic system. Equipped with eye-in-hand vision,
the soft robot with the NARX network could compute the

joint space motion in real-time based on what it observes,
despite the diverse environment and robot-phantom setting,
and autonomously navigate to the desired spot with minimal
collision to the environment. The experiment results show
that the soft robot can efficaciously navigate through the
unstructured phantom to the desired spot near the upper glottis
with minimal collision motion according to what it has learned
from SOFA. The average R-squared coefficient between the
closed-loop NARX-forecasted and SOFA-referenced robot’s
cable and prismatic joint space motion are 0.963 and 0.997,
respectively. The eye-in-hand visions demonstrate good align-
ment between the robot tip and the glottis.
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