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Abstract

Radio frequency interference (RFI) have been an enduring concern in radio astronomy, particularly for the observations of pulsars
which require high timing precision and data sensitivity. In most works of the literature, RFI mitigation has been formulated
as a detection task that consists of localizing possible RFI in dynamic spectra. This strategy inevitably leads to a potential loss
of information since parts of the signal identified as possibly RFI-corrupted are generally not considered in the subsequent data
processing pipeline. Conversely, this work proposes to tackle RFI mitigation as a joint detection and restoration that allows parts
of the dynamic spectrum affected by RFI to be not only identified but also recovered. The proposed supervised method relies on a
deep convolutional network whose architecture inherits the performance reached by a recent yet popular image-denoising network.
To train this network, a whole simulation framework is built to generate large data sets according to physics-inspired and statistical
models of the pulsar signals and of the RFI. The relevance of the proposed approach is quantitatively assessed by conducting
extensive experiments. In particular, the results show that the restored dynamic spectra are sufficiently reliable to estimate pulsar
times-of-arrivals with an accuracy close to the one that would be obtained from RFI-free signals.

Keywords: Radio astronomy, pulsar, RFI mitigation, dynamic spectrum restoration, deep learning.

1. Introduction

Endpoint of a massive star evolution, a pulsar is a highly
magnetized, rapidly rotating neutron star, which emits beams
of radiation. Their primary interest lies in the fact that it is an
extremely dense and compact object with a remarkably regular
rotation period. Large decimetric radio telescopes are used to
study pulsars and to time the most stable ones. This intrinsic
extreme regularity can then be used to test gravitational theories
(Kramer et al., 2021) or detect very low frequency gravitational
waves (Agazie et al., 2023; Antoniadis et al., 2023; Reardon
et al., 2023).

Low frequency telescopes, such as the dutch Low-Frequency
Array (LOFAR) in the Netherlands (Stappers et al., 2011) or
the New extension in Nançay upgrading LOFAR (NenuFAR)
(Bondonneau et al., 2021) can be used to extend the pulsar pop-
ulation or to better understand the effects of interstellar propa-
gation, critical to get a reliable timing.

In the realm of pulsar observations, especially at low fre-
quency, radio frequency interference (RFI) pose a formidable
challenge since they may significantly degrade the quality of
astronomical data. They are emitted by man-made sources such
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as cell phones, Wi-Fi, communication satellites, and radar sys-
tems. This source diversity is reflected in the temporal and
spectral ranges of the measurements that may be affected by in-
terference, which makes their handling complex. Besides, RFI
signals typically exhibit higher amplitudes and distinct distri-
butions compared to astronomical signals.

These RFI corruptions can dramatically impair the study of
celestial objects, especially pulsar timing which requires ex-
tremely high precision and sensitivity of the data. Thus the
problem of RFI mitigation has already received considerable
attention in the literature. Researchers have explored a variety
of approaches, including traditional thresholding-based meth-
ods and more recent data-driven techniques capitalizing on re-
cent advances in machine (deep) learning. However, existing
RFI mitigation approaches face two main challenges. The first
obstacle is a lack of ground truth, i.e., the absence of prop-
erly labeled data required to train models within supervised
learning. Since manually labeling large data sets is infeasible,
thresholding-based methods (Lazarus et al., 2016) are gener-
ally employed to identify RFI in real measurements, which is
then considered as the labeled ground truth. However, follow-
ing such a naive strategy, the most advanced RFI mitigation
techniques will certainly not be able to perform better than the
unsupervised methods resorted to building the training sets, as
already highlighted by Berthereau (2023). The second issue is
the subsequent loss of information imposed by most of the ex-
isting methods, mainly due to the way the mitigation task is
generally formulated. Indeed, conventional thresholding-based
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and data-driven RFI mitigation methods cast RFI mitigation as
a binary classification or segmentation problem. In other words,
they only aim at identifying and labeling parts of the dynamic
spectra corrupted by RFI, also referred to as RFI flagging. How-
ever, once the parts of the dynamic spectrum corrupted by RFI
have been identified, they are generally discarded from any sub-
sequent analysis in the posterior data processing pipeline. This
leads to a possibly significant loss of information, depending on
the spectral and temporal ranges of the measurements affected
by interference.

This paper takes up the challenge of overcoming the two
aforementioned issues. It proposes a new supervised RFI miti-
gation method preceded by a dedicated data generation frame-
work that can be used to train this model. Indeed, to compensate
for the difficulty of having access to accurately labeled ground
truth data, this work first introduces a general framework to eas-
ily generate realistic dynamic spectra corrupted by RFI. Even if
previous works have considered similar strategies of data gener-
ation, none of them have been specifically designed for pulsar
observations (Akeret et al., 2017b; Asad et al., 2021; DeBoer
et al., 2017). This framework leverages a model-based gener-
ation of pulsar and RFI signals separately. Thanks to its ver-
satility, this framework can be instantiated to produce realistic
measurements that would have been made in various observa-
tional setups. In particular, this paper implements this general
framework to produce large data sets that mimic observations
by the NenuFAR telescope.

These data sets are subsequently used to train, validate and
test a new dedicated RFI mitigation method within a super-
vised framework. To go beyond simple RFI tagging, this pa-
per draws a parallel between RFI mitigation and a ubiquitous
task encountered in image processing, namely image denois-
ing. Contrary to most of the alternatives proposed in the litera-
ture, this method formulates this task as a supervised restoration
problem. Benefiting from the generation framework previously
introduced, the proposed approach has the ambition not only to
detect and remove the RFI from the dynamic spectra but also to
recover plausible signal values in place of the corrupted ones.
The model is chosen as a deep neural network whose architec-
ture inherits the performance reached by a recent yet popular
image-denoising model (Zhang et al., 2021).

The contributions reported in this paper can be summarized
as follows: i) the problem of RFI mitigation is envisioned as
a joint detection and restoration task, which opens the door to
capitalize on a recently proposed denoising-oriented deep neu-
ral architecture, ii) to overcome the difficulty of accessing to
large labeled training data set, a versatile framework to gen-
erate RFI-corrupted dynamic spectra is proposed and instanti-
ated to produce simulated signals compatible with real-world
pulsar observations performed by NenuFAR, iii) once trained
on data sets generated following the aforementioned simulation
protocol, the proposed deep network coined as RFI denoising
residual U-net (RFI-DRUNet) is tested through an extensive
set of numerical experiments to quantitatively assess its per-
formance and iv) one shows that the adopted strategy allows
pulsar time-of-arrival estimation to be efficiently conducted on
dynamic spectra restored by RFI-DRUNet, reaching an accu-

racy close to the one obtained on RFI-free signals.
The remaining of the paper is organized as follows. Ex-

isting RFI mitigation methods are reviewed and discussed in
Section 2. Section 3 presents a versatile framework to gener-
ate RFI-corrupted pulsar observation data. The problem of RFI
mitigation is envisioned from a restoration perspective in Sec-
tion 4. The architecture of the proposed deep neural network
designed to restore dynamic spectra is also detailed. Section
5 described the experimental setup followed to instantiate the
generation framework within the context of pulsar observed by
NenuFAR. The simulation parameters are specified, eight sim-
ulation scenarios are introduced and some implementation de-
tails regarding the network training are given. The experimental
results are reported in Section 6, with respect to two different
objectives, namely dynamic spectrum restoration and RFI de-
tection. In particular, the performance of RFI-DRUNet in terms
of RFI flagging is compared to those reached by state-of-the-art
algorithms. Finally, in Section 7, an application of the proposed
method to the estimation of pulsar time-of-arrival is presented.
Section 8 concludes the paper. For the sake of reproducibility
and to promote open science, the data and the codes associated
with this work are freely available online1.

2. Related works

In radio astronomy, numerous approaches have been pro-
posed to mitigate the RFI during the post-correlation stage. These
methods can be divided into two main categories, namely the
parametric methods, and the data-driven methods.

Regarding the first type of approaches, Fridman and Baan
(2001) draw an overview of various types of RFI and RFI mit-
igation methods. Some RFI identification methods relying on
statistical analysis tools have been proposed by Fridman (2008),
Bhat et al. (2005), and Winkel et al. (2007). In an earlier work,
Maslakovic et al. (1996) applied a thresholding technique af-
ter modeling the temporal waveform signal thanks to a discrete
wavelet transform. Besides, thresholding has also motivated the
development of simple algorithms based on the general assump-
tion that RFI are characterized by higher amplitudes than astro-
nomical data. The popular cumulative sum method (CUSUM)
initially proposed by Page (1954) in the context of statistical
process control was first applied by Baan et al. (2004) to the
RFI detection task. Subsequently Offringa et al. (2010a) and
Offringa et al. (2012) have proposed several improvements re-
ferred to as VarThreshold, SumThreshold and AOFlagger. No-
tably, SumThreshold is a widely deployed algorithm for RFI re-
moval in various current pipelines of radio telescopes because
of its reliability and its efficiency (Offringa et al., 2010b; Peck
and Fenech, 2013; Akeret et al., 2017b). Athreya (2009) has
exploited the particular behavior of the fringe-stopped correla-
tor output of an interferometer baseline in presence of RFI to
remove spatially and temporally constant RFI sources. When
dealing with multibeam receiver systems, Kocz et al. (2010)
have applied spatial filtering to effectively identify and remove

1https://github.com/llxzhang/RFI-DRUnet
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RFI from the temporal signals. The technique relies on a sin-
gular value decomposition (SVD) of the empirical covariance
matrix computed from the Fourier representations of the in-
put signals. Pen et al. (2009) have also attempted to identify
RFI with the help of SVD, as well as Zhao et al. (2013) us-
ing a principal component analysis. More recently, Finlay et al.
(2023) have exploited the expected trajectories followed by RFI
to tackle the problem of their removal jointly with the calibra-
tion task. Finally, it is worth noting that Coastguard (Lazarus
et al., 2016) and Clfg (Morello et al., 2019) are two popular RFI
mitigation algorithms specifically designed to remove RFI from
pulsar data. They exploit the expected pulsar characteristics in
combination with various common statistical tools.

Conversely, data-driven approaches attempt to learn the main
characteristics or features of RFI from existing data sets. Once
adjusted, these models are deployed to identify the RFI. Such
techniques rely on conventional machine learning tools such
as K-nearest neighbors, Gaussian mixture models, and random
forest, as employed by Mosiane et al. (2017) and Wolfaardt
(2016). More recently, the last decade has been marked by
the advent of deep neural networks, initially to perform vision-
oriented tasks and then extended in various application domains.
In this context, Akeret et al. (2017a) first designed a specific
deep convolutional architecture, namely U-Net, to formulate
RFI identification as an image segmentation task. To improve
the model capability, Yang et al. (2020) introduce residual blocks
and batch normalization, leading to the so-called RFI-Net specif-
ically designed to identify RFI in data provided by the FAST
radio telescope. Yan et al. (2021) have investigated the rel-
evance of atrous convolution by proposing AC-UNet. R-Net
proposed by Vafaei Sadr et al. (2020) have demonstrated some
robustness on simulated and real data by using transfer learn-
ing. Chang et al. (2023) propose DAARE, a stacked autoen-
coder model, to remove RFI from auroral kilometric radiation
(AKR) spectrograms and to restore RFI-free astronomical data.
It is worth noting that the methods discussed above have been
proposed in a supervised framework, i.e., they rely on available
labeled data sets to train the designed networks. For instance
Hamid et al. (2022) have used the predictions provided by the
parametric methods Coastguard and Clfg as ground truth to
train PSRFINET for detection of the RFI in pulsar data. Other
approaches have been developed to tackle the RFI mitigation
problem in a semi- or non-supervised framework, i.e., when
the data sets are not (or only partially) accompanied by labels.
For instance, Ghanney and Ajib (2020) have compared the per-
formance of the supervised method YOLO3 to those reached
by an unsupervised method based on a convolutional autoen-
coder. Mesarcik et al. (2020) have adopted a convolution vari-
ational autoencoder (VAE) and a naive support vector machine
classifier to project high-dimensional time-frequency data into
a low-dimensional prescriptive space. Mesarcik et al. (2022)
have introduced an unsupervised method coined as nearest la-
tent neighbors (NLN) which relies on a generative adversarial
model to detect and identify RFI without direct observation of
the interference. Motivated by a reduction of the computational
cost, Kerrigan et al. (2019) have proposed a network referred to
as DFCN with comprehensible amplitude and phase informa-

tion. Further, Li et al. (2021) have proposed RFI-GAN based on
a generative adversarial network (GAN) and Vos et al. (2019)
have attempted to separate RFI signals from astronomical sig-
nals by using a source separation technique also based on a
GAN architecture. Wang et al. (2020) have implemented pseu-
doinverse learning autoencoders not only to remove RFI from
pulsar data but also to restore the pulsar data possibly masked
by RFI. Finally, Saliwanchik and Slosar (2022) have exploited
the expected differences between RFI and astronomical signal
with respect to their statistical representations and their result-
ing compressibility to propose a self-learning network able to
remove RFI.

3. A framework for generating RFI-corrupted dynamic spec-
tra

3.1. Observation model for dynamic spectra

NenuFAR (New extension in Nancay upgrading LOFAR)
is a new radio telescope built at the Nancay Radio Observa-
tory, which is designed to observe the largely unexpected fre-
quency window from 10 to 85MHz. NenuFAR currently oper-
ates according to several modes for the observation of pulsars,
including folded mode, single-pulse mode, waveform mode,
and dynamic spectra mode. In this work, we propose to iden-
tify and remove RFI from data acquired in the dynamic spectra
mode, which basically consists of the magnitude of the dis-
crete Fourier transform (DFT) of the raw data. Adopting a
discretized, windowed analysis, dynamic spectra can be repre-
sented as a time-frequency plane, whose time and frequency
resolutions are directly determined by the parameters of the
DFT. The signal S (n, k) recorded in the nth frequency channel
at the kth temporal bin is assumed to be decomposed as

S (n, k) = P(n, k) + R(n, k) + E(n, k) (1)

where P(n, k) is the pulsar signal, R(n, k) is a possible RFI com-
ponent and E(n, k) stands for the system noise and any mismod-
eling, for n ∈ {1, . . . ,N} and k ∈ {1, . . . ,K}. Within the partic-
ular applicative context of the work reported in this manuscript
(i.e., NenuFAR-like tied-array observations), the model derived
in Eq. (1) is expected to be a reliable approximation of the dy-
namic spectra. For other particular contexts, this model could
be enriched to account for various instrumental and acquisition
parameters. For instance, the simulator specifically developed
for the Hydrogen Epoch of Reionization Array (HERA) and
considered by Mesarcik et al. (2022) in the context of RFI miti-
gation offers the possibility of handling antenna cross-coupling
(Hera-Team, 2024). An example of dynamic spectrum gener-
ated according to the model in Eq. (1) is depicted in Fig. 1,
where the pulsar signature P(n, k) appears as exponentially de-
creasing curves and RFI R(n, k) take the form of vertical or
horizontal lines and small clustered-dots. The remaining of
this section will detail the procedures to generate each of these
three components of the recorded signals. The notations used
throughout this manuscript are summarized in Table 1.
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Figure 1: An example of the dynamic spectrum generated according to the
proposed model in Eq. (1).

3.2. Simulation of the pulsar signal

3.2.1. A template-based model
The signal P(n, k) associated with the pulsar is mainly char-

acterized by the so-called integrated pulse profile denoted A(n, k)
hereafter. This profile can be considered as the "fingerprint"
of a pulsar and is of primary interest to astronomers. Apart
from possible variations in terms of energy, this signal gener-
ally shows fairly high stability in its shape along the observa-
tion at the same radio frequency but may exhibit small varia-
tions across the observation frequency (Lorimer and Kramer,
2004). To illustrate, Fig. 2 depicts profiles associated with the
pulsar B1919+21 at different frequencies as observed by the
NenuFAR telescope. It shows that the integrated pulse profile
only slightly varies across frequencies
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Figure 2: Pulse profiles of the pulsar B1919+21 recorded at different frequen-
cies by NenuFAR. The total integration time for the observation is 19.5 minutes.

Time-frequency representation
N Number of spectral bins (channels)
n Index of the spectral bin (channel)
K Number of temporal bins
k Index of the temporal bin
δt Temporal resolution
δ f Spectral resolution
S (n, k) Dynamic spectrum (full signal)
P(n, k) Pulsar signal
R(n, k) RFI signals
E(n, k) System noise

Pulsar modeling
D Number of periods in the observation window
d Index of the period in the observation window
ρ Pulsar period
A(n, k) Integrated profile
γP(·;σ2) 1D Gaussian kernel
SNRd Signal-to-noise ratio in the dth period
τn Dispersion delay
DM Dispersion measure
L Number of Gaussian kernels
aℓ Amplitude of the ℓth Gaussian kernel
σℓ Width of the ℓth Gaussian kernel
µℓ Location of the ℓth Gaussian kernel

RFI modeling
J Number of RFI
SNR j Signal-to-noise ratio of the jth RFI
M j(n, k) Binary mask to locate the jth RFI
γR(·, ·;σ2

T, σ
2
F) Separable 2D Gaussian kernel

α Probability of occurrence of nbct and bbt RFI
β Granularity parameter to generate nbt RFI

Table 1: Notations used to describe the RFI-corrupted dynamic spectra gener-
ated by the simulation protocol.

Without loss of generality of the method developed through-
out this manuscript, the pulsar profile is assumed to be fully de-
scribed by a unique template that does not vary across frequen-
cies. This template is chosen as a weighted linear combination
of L Gaussian-shaped components

A(n, k) =
L∑
ℓ=1

aℓγP(k − µℓ;σ2
ℓ ) (2)

where L is the number of Gaussian components composing
the profile, aℓ, µℓ, and σ2

ℓ stand for the amplitude, location
and width of the ℓth component, respectively, and γP(t;σ2) =
exp
(
− t2

2σ2

)
. Observing the pulsar over D periods leads to a

time-periodic pulsar signal written as

P(n, k) =
D∑

d=1

SNRd × A(n, k − τn − dρ) (3)

where SNRd adjusts the signal-to-noise ratio in the dth period, ρ
is the pulsar period and τn is the frequency-varying delay result-
ing from the dispersion phenomenon. This quantity is discussed
in the following paragraph.
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3.2.2. Dispersion measurement
As radio pulses propagate through the interstellar medium

and possibly the intergalactic medium, they are affected by a
dispersive delay. The dynamic spectra mode operated by the
radiotelescope can follow a so-called de-dispersion process to
mitigate the impact of this delay through the frequency. How-
ever, for the sake of generality, the proposed simulated model
for the pulsar signal is designed such that it accounts for this
phenomenon. In this case, the dispersion measurement should
be adjusted and, for frequency bin n, is given by

τn = 4.15 ×
DM

n2δ f 2δt
(4)

where δ f and δt are the spectral and temporal resolutions of the
dynamic spectrum. The dispersion measure (DM) is the elec-
tron column density through which the pulse has propagated.

3.3. Simulation of RFI

Within the framework of acquisitions operated by Nenu-
FAR, RFI can be roughly classified into three distinct types ac-
cording to their respective shape along the frequency and the
time domains: i) narrow-band transient (nbt) RFI, ii) narrow-
band continuous-time (nbct) RFI and iii) broad-band transient
(bbt) RFI. To reflect this diversity in terms of RFI spatial and
spectral patterns, the approach adopted in this work consists
of decomposing the whole RFI signal R(n, k) as the superim-
position of J individual RFI signatures. Each signature is de-
scribed by a unique 2-dimensional Gaussian-shaped template

γR(t, f ;σ2
T, σ

2
F) ≜ exp

(
− t2

2σ2
T

)
exp
(
−

f 2

2σ2
F

)
whose variances σ2

T

and σ2
F adjust the temporal and the spectral spread of the pat-

tern, respectively. RFI is assumed to be not affected by the
dispersion effect, i.e., DM = 0pc cm−3. The whole RFI signal
can be written as

R(n, k) =
J∑

j=1

SNR j × γR(n − n j, k − k j;σ2
n j
, σ2

k j
) (5)

where SNR j adjusts the power of the jth RFI, n j and k j lo-
cate the spectral and temporal positions of the center of the jth
RFI whose spectral and temporal spreads are driven by σ2

n j
and

σ2
k j

, respectively. To randomly locate the RFI over the dynamic
spectra, the RFI model in Eq. (5) can be conveniently rewritten
by explicitly introducing binary masks that are randomly drawn
with prescribed statistical characteristics to mimic the diversity
of the time-frequency shapes of the RFI. It yields

R(n, k) =
J∑

j=1

SNR j × M j(n, k) ∗ γR(n, k;σ2
n j
, σ2

nk
) (6)

where ∗ stands for the 2-dimensional convolution operator and
the binary mask

M j(n, k) = δ(n − n j, k − k j) =

1, if n = k j and k = n j

0, otherwise
(7)

takes the value 1 in case of a RFI centered at the time instant
k j in the frequency bin n j, and 0 otherwise. Two different ap-
proaches have been followed to randomly generate these masks,
each associated with particular types of RFI. These generation
procedures are discussed in what follows.

3.3.1. Spectrally and temporally extended RFI
Narrow-band continuous-time and broad-band transient RFI

is two kinds of RFI that are ubiquitous in real observations. For
instance, in observations made by NenuFAR, the 36-37MHz
frequency band is often affected by such types of interference.
Since these instances of RFI are generally mutually indepen-
dent, it seems reasonable to assume that the entries of the corre-
sponding masks M j(n, k) can be randomly generated according
to a Bernoulli distribution with probability α, i.e.,

P[M j(n, k) = ϵ] = αϵ(1 − α)1−ϵ

with ϵ ∈ {0, 1}. It is worth noting that α = E[M(n, k)] is the
probability of RFI occurrence in the dynamic spectra. Thus,
this parameter directly adjusts the average number αNK of such
spectrally and temporally extended (nbct and bbt) RFI.

3.3.2. Narrow-band transient RFI
To allow nbt RFI to affect the dynamic spectra in a clustered

manner, the entries of the corresponding masks are not indepen-
dently generated. Instead, they are assigned a Markov random
field (MRF) which introduces structure correlation across the
dynamic spectra. More precisely, this MRF is a multilevel lo-
gistic model (also known as an Ising model) and is defined as
(Li, 2009)

P
[
M j(n, k) = ϵ | M j(n, k)

]
∝ αϵ(1 − α)1−ϵ exp

β ∑
m∈M j(n,k)

δ (m − ϵ)

 (8)

where ϵ ∈ {0, 1} and

M j(n, k) =
{
M j(n − 1, k),M j(n + 1, k),

M j(n, k − 1),M j(n − 1, k)
}

denotes the set of neighbors of the mask entry M j(n, k) in the
time-frequency plane according to a 4-order neighboring struc-
ture. In Eq. (8), the so-called granularity parameter β adjusts the
correlation between neighboring entries in the mask. In partic-
ular, when β = 0, no correlation is imposed and the model in
Eq. (8) reduces to the independent Bernoulli distributed model
adopted for spectrally and temporally extended RFI (see Sec-
tion 3.3.1). Simulating masks according to this MRF can be
easily conducted thanks to Gibbs sampling (Li, 2009, Chap. 2).

3.4. Generation of simulated data sets
Thanks to the particular decomposed form of the proposed

dynamic spectrum model in Eq. (1), the two main components
associated with the pulsar signature and the RFI can be first gen-
erated independently and then combined to form the simulated
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Figure 3: Architecture of the proposed RFI-DRUnet network. It takes as inputs RFI-corrupted dynamic spectra and provides as output restored (i.e., RFI-free)
dynamic spectra. Details about the layers are provided in Table 2.

signals. For instance, a given generated pulsar signal P(n, k)
can be combined with several RFI signals R(n, k), or recipro-
cally, to produce an extended set of dynamic spectra S (n, k).
Thus, in a nutshell, the proposed simulation framework consists
in i) generating a pulsar database P composed of pulsar sig-
nals, ii) generating an RFI database R composed of RFI signals
from three subsets, Rnbt, Rnbct and Rbbt, corresponding to three
types of RFI, iii) randomly selecting a pulsar signal from the
database P and a RFI signal from the database R and iv) com-
bining them according to Eq. (1) to build one RFI-corrupted dy-
namic spectra of data set S. The main benefit of this simulation
strategy is to significantly reduce the amount of required com-
puting. Indeed, let |P| and |R| denote the sizes of the pulsar and
RFI databases, respectively. By coupling these two databases,
the possible number of distinct generated dynamic spectra is
|S| = |R| × |P|. In other words, only |R| + |P| independent com-
putations are necessary to generate |S| dynamic spectra, with
|R| + |P| ≪ |S|.

4. Proposed RFI-DRUnet network for RFI mitigation

4.1. Formulating RFI mitigation as image restoration

As stated in Section 1, most of the methods proposed in the
literature have formulated the RFI mitigation problem as a de-
tection or segmentation/classification task. In other words, they
only aim at localizing the time-frequency bins of the dynamic
spectra possibly affected by RFI, distinguishing RFI-corrupted
bins from RFI-free bins. Conversely, we propose to go be-
yond this crude RFI detection by formulating the problem of
RFI mitigation as a restoration task. Our main rationale is that
recent advances in machine learning offer the possibility of re-
covering clear (i.e., RFI-free) dynamic spectra from the RFI-
corrupted measurements directly. To do so, we interpret the
RFI mitigation objective as image denoising enounced in the
time-frequency plane. Image denoising, a particular instance of
image restoration, consists of recovering a clean image X from
the degraded image Y corrupted by a specific (measurement)
noise. When this noise is assumed to be additive and denoted

Ẽ, the clean and corrupted images are related through the ob-
servation model

Y = X + Ẽ. (9)

It is worth noting that this generic formulation of the denoising
task under the model in Eq. (9) perfectly matches the objective
of recovering RFI-free spectra from dynamic spectra under the
model in Eq. (1). To draw this connection, the observed im-
age Y (resp. clean image X) in Eq. (9) can be associated with
the measured dynamic spectra S (resp. RFI-free spectra P + E)
in Eq. (1) while the noise term Ẽ writes Ẽ = R in the con-
text of RFI mitigation. In other words, RFI mitigation consists
of restoring the dynamic spectrum corrupted by a particularly
type of structured noise. As a benefit of translating RFI mitiga-
tion into image denoising, one can easily capitalize on recently
proposed powerful deep convolutional neural networks such as
those proposed by Zhang et al. (2017), Jiang et al. (2018) and
Zhang et al. (2020). The architecture of the proposed network,
hereafter referred to as RFI-DRUnet, is detailed in what fol-
lows.

4.2. RFI-DRUnet architecture

Image denoising is an archetypal image-to-image transla-
tion task, which can be efficiently addressed using deep net-
works with encoder-decoder architectures since they consistently
deliver exceptional results. The encoder of the network is able
to extract input image features at various levels while reducing
the data size, and the decoder reconstructs data with the aid of
features at different levels provided by so-called skip connec-
tions. In this work, we have customized the popular network
referred to as DRUNet (Zhang et al., 2021) to be in agreement
with the targeted RFI mitigation task. DRUNet is a deep con-
volutional network that follows an encoder-decoder architec-
ture and utilizes a residual module that notably enhances the
network capacity of feature extraction. Conventional DRUNet
implementations are able to handle different noise levels in the
data. Indeed, during the training stage, the noisy image and
a corresponding noise map are jointly provided as the inputs
of the network. For the RFI mitigation task considered in this
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work, since interference to be removed from the dynamic spec-
tra can be of any intensity level, such a flexibility is not re-
quired. Thus the RFI-DRUnet architecture is designed such that
only RFI-corrupted dynamic spectra are provided as inputs dur-
ing the training stage. In other words, no noise map is jointly
provided as input to the proposed network during training.

More specifically, the architecture of the proposed RFI-DRUNet
is sketched in Fig. 3. Its backbone consists of three parts, namely
the encoder, the decoder, and the middle connection layer. The
encoder and decoder networks are mirrored, i.e., each module
in the encoder has an associated counterpart in the decoder and
is connected by skip-connection. After passing a 64-channel
convolutional (head) layer, the encoder comprises three mod-
ules, each consisting of 4 residual blocks and a stridden con-
volution (stride 2 × 2) as the downsampling layer. The mid-
dle connection layer is stacked by 4 residual blocks, which are
followed by a decoder structurally symmetrical to the encoder
whose modules are sequentially composed of a transposed con-
volution (stride 2 × 2, padding 2 × 2) as the upsampling layer
and 4 residual blocks. After the decoder, the network ends with
a convolutional (tail) layer with one channel.

All residual blocks in the network are composed of 2 resid-
ual layers connected by a ReLU activation function. Further-
more, as in the conventional implementation of DRUNet, there
is no activation function except in the residual blocks. From
an overall perspective, the number of channels starts from 1
and increases to 64 after the first convolutional layer, then it is
doubled with each downsampling layer and halved for each up-
sampling layer until 64 then becomes 1 through the last con-
volutional layer. The details of each layer of the network are
summarized in Table 2.

5. Experimental framework

Extensive experiments have been conducted to assess the
performance of the proposed RFI-DRUNet method. More pre-
cisely, the network designed in Section 4 will be trained on
several synthetic data sets generated following the simulation
framework outlined in Section 3. The parameters of the model
are specified in Section 5.1 and the simulation scenarios as well
as associated data sets are described in Section 5.2. Finally,
implementation details are provided in Section 5.3.

5.1. Simulation parameters

Parameters of the time-frequency representation – The parame-
ters of the dynamic spectra are chosen to match the main char-
acteristics of the signals observed by NenuFAR. The dynamic
spectra is assumed to be characterized by N = 1024 frequency
channels ranging from 35MHz and 85MHz with a spectral res-
olution of δ f = 48.828kHz and K = 1024 temporal bins of
resolution of δt = 0.05s.

Parameters of the pulsars – The signal of the pulsar P(n, k)
is fully described in Eq. (3) by its integrated profile A(n, k),
defined in Eq. (2) by the template γP(·, ·), and its periodiza-
tion over the observation time. The values of the pulsar period

ρ and the dispersion factor DM are uniformly and randomly
drawn over specific ranges chosen to mimic realistic signals.
The power levels SNRd (d = 1, . . . ,D) of the pulsar defined on
the D periods are selected according to a log-uniform rule. The
number L of Gaussian defining the template is at most equal to
2, localization µℓ and width σ2

ℓ of each Gaussian shape are uni-
formly drawn over pre-defined sets. The admissible ranges of
the parameters are reported in Table 3.

Parameter Notation Value range
Period ρ (20, 40) [bins]
Dispersion DM (10, 40) [pc cm−3]
Number of components L {1, 2}
Amplitude aℓ (0.2, 1)
Localization µℓ (0, ρ)
Width σ2

ℓ (0.01, 0.04)
Power SNRd (0.01, 20)

Table 3: Parameters of the simulation associated with the pulsar signal.

Parameters of the RFI – The three types of RFI, namely nbt, bbt
and nbct, are generated following the same simulation protocol.
It consists in drawing binary masks according to a Bernoulli
distribution (bbt and nbct RFI) or a Markov random field (nbt
RFI). These binary masks are then convolved with a 2-dimensional
separable Gaussian kernel whose spectral σ2

F and temporal and
σ2

T spreading are randomly drawn over predefined sets chosen
according to the type of generated RFI. The admissible ranges
of the parameters involved in the Gaussian kernel as well as
the parameters adjusting the statistical properties of the binary
masks are reported in Table 4 for the three types of RFI.

Type of RFI SNR j σ2
F σ2

T α β

bbt (1, 10) (600, 1024) (1, 10) (0, 0.01) N/A
nbct (1, 10) (1, 10) (600, 1024) (0, 0.01) N/A
nbt (0, 1) (1, 11) (1, 11) 0.8 40

Table 4: Parameters of the simulation associated with the RFI signal.

5.2. Simulation scenarios

As described in Section 3.4, the generated dynamic spectra
are combinations of pulsar signals from data set P and multiple
RFI signals from data set R. This simulation protocol is instan-
tiated to produce three distinct data sets, namely the training
set, the validation and the testing set. The training and valida-
tion sets share the same pulsar and RFI databases, but differ by
the size of S. The testing set is built from different pulsar and
RFI sets. The sizes of these sets are reported in Table 5, where
the RFI set R contains three subsets matching three types of
RFI, each of the same size.

According to this generation protocol, two experimental sce-
narios are considered to assess the robustness of the proposed
method with respect to system noise. More precisely, so-called
Scenario 1 (shortened as S1 hereafter) considers dynamic spec-
tra composed of pulsar signal and RFI, i.e., free of system noise,
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Layer Block Operation Kernel size Stride Padding Input size Output Size
head Conv2d Conv2d 3 × 3 × 64 (1, 1) (1, 1) (64, 64, 1) (64, 64, 64)

down-1
Residual ×4 (Conv2d+ReLu+Conv2d) ×4 3 × 3 × 64 (1, 1) (1, 1) (64, 64, 64) (64, 64, 64)

Strided Conv2d Conv2d 2 × 2 × 128 (2, 2) (1, 1) (64, 64, 64) (32, 32, 128)

down-2
Residual ×4 (Conv2d+ReLu+Conv2d) ×4 3 × 3 × 128 (1, 1) (1, 1) (32, 32, 128) (32, 32, 128)

Strided Conv2d Conv2d 2 × 2 × 256 (2, 2) (1, 1) (32, 32, 128) (16, 16, 256)

down-3
Residual ×4 (Conv2d+ReLu+Conv2d) ×4 3 × 3 × 256 (1, 1) (1, 1) (16, 16, 256) (16, 16, 256)

Strided Conv2d Conv2d 2 × 2 × 512 (2, 2) (1, 1) (16, 16, 256) (8, 8, 512)
bottleneck Residual ×4 (Conv2d+ReLu+Conv2d) ×4 3 × 3 × 512 (1, 1) (1, 1) (8, 8, 512) (8, 8, 512)

up-3
Transposed Conv2d Conv2d 3 × 3 × 256 (2, 2) (2, 2) (8, 8, 512) (16, 16, 256)

Residual ×4 (Conv2d+ReLu+Conv2d) ×4 3 × 3 × 256 (1, 1) (1, 1) (16, 16, 256) (16, 16, 256)

up-2
Transposed Conv2d Conv2d 3 × 3 × 128 (2, 2) (2, 2) (16, 16, 256) (32, 32, 128)

Residual ×4 (Conv2d+ReLu+Conv2d) ×4 3 × 3 × 128 (1, 1) (1, 1) (32, 32, 128) (32, 32, 128)

up-1
Transposed Conv2d Conv2d 3 × 3 × 64 (2, 2) (2, 2) (32, 32, 128) (64, 64, 64)

Residual ×4 (Conv2d+ReLu+Conv2d) ×4 3 × 3 × 64 (1, 1) (1, 1) (64, 64, 64) (64, 64, 64)
tail Conv Conv 3 × 3 × 1 (1, 1) (1, 1) (64, 64, 1) (64, 64, 1)

Table 2: Details of the layers of the proposed RFI-DRUnet network. The size of input data and output data are (H ×W × C), where H, W and C stand for height,
width and the number of channels, respectively. Sizes of the input can vary depending on the needs; an input data size of 64 × 64 is chosen here as an example.

Size of P Size of R Size of S
Training set 20 300 1800
Validation set 20 300 200
Testing set 10 60 200

Table 5: Size of the generated training, validation and testing sets.

E = 0 in Eq. (1). Conversely, Scenario 2 (shortened as S2 here-
after) considers dynamic spectra generated according to the full
model in Eq. (1), i.e., composed of a pulsar signal, RFI and a
system noise modeled as an additive white Gaussian variable
with variance σ2

E = 1, corresponding to an average value of
signal-to-noise ratio (SNR) of −5.6dB over the test set. It is
worth noting that Scenario 1 has been considered in addition
to Scenario 2 to assess the impact of the system noise on the
performance of the proposed restoration method. This scenario
will be also of interest to evaluate the best restoration perfor-
mance that could be reached by an oracle RFI detector (see
Section 6.2). Moreover, to further investigate the model ca-
pacity to manage various types of RFI, for each scenario, we
consider 4 cases that differ by the composition of the RFI set R.
These cases, denoted as CA to CD, are defined as follows

• CA: nbt RFI (pulse-like RFI)

• CB: nbt RFI + nbct RFI (narrow-band RFI)

• CC: nbt RFI + bbt RFI (transient RFI)

• CD: nbt RFI + nbct RFI + bbt RFI (all RFI types)

To summarize, a total of 8 simulation scenarios are considered,
denoted as S□C△, with □ ∈ {1, 2} and △ ∈ {A,B,C,D, }, de-
pending on the presence/absence of system noise and depend-
ing on the type of RFI corrupting the pulsar signal. To illustrate,
Fig. 4 displays one generated dynamic spectrum for each case
in scenario S2.
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Figure 4: Examples of the dynamic spectrum generated according to the pro-
posed protocol for the 4 cases of S2

5.3. Implementation and training details

A distinct RFI-DRUNet model has been trained on each
data set associated with the 8 simulation scenarios, leading to
8 instances of the proposed network. For all models, the train-
ing parameters are the same. During training, the generated dy-
namic spectrum from the data set S has been randomly cropped
to a patch of size 64 × 64. Data augmentation is then applied,
including flipping and rotating. The ℓ1-norm has been used to
define the loss function. The Adam optimizer with a mini-batch
size of 64 has been employed with a learning rate starting from
10−4 and halved after every 100k iterations until it reaches the
value 5 × 10−7. The training takes about 40 hours with 10000
epochs for an implementation in Pytorch and equipped with an
Nvidia RTX 3080 GPU. This choice in terms of batch size and
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number of epochs has been driven by technical constraints im-
posed by the available computing resources. A similar strategy
has been adopted by Zhang et al. (2017).

6. Experimental results

The experiments conducted following the framework de-
scribed in the previous section mainly follow two objectives.
Firstly, they have been designed to demonstrate the feasibil-
ity of restoring RFI-corrupted dynamic spectra. Appropriate
denoising-inspired quantitative performance measures will thus
be detailed in Section 6.1. Secondly, we will show that the pro-
posed restoration method can be easily simplified to perform
only an RFI detection task. It consists of converting the out-
puts of the proposed RFI-DRUNet method into binary masks
locating the RFI-corrupted time-frequency bins. This allows
the proposed approach to be compared to state-of-the-art meth-
ods such as U-Net (Akeret et al., 2017a) and RFI-Net (Zhang
et al., 2020) which have formulated RFI mitigation as a seg-
mentation/classification task. When interpreted in this way, the
methods can be compared with respect to detection-oriented
figures-of-merit also defined in Section 6.1. The quantitative
results are then reported and discussed in Sections 6.2 and 6.3
with respect to the two aforementioned tasks, namely restora-
tion and detection. An illustration on a real observation is pre-
sented in Section 6.4. Finally, in light of these results, Section
6.5 discusses the relevance of the restoration paradigm with re-
spect to the conventional RFI mitigation approaches, namely
detection/flagging. It also mitigates these encouraging results
by highlighting some cases of recovery failures experienced by
RFI-DRUNet.

6.1. Quantitative figures-of-merit

As suggested above, the performance of the proposed method
will be evaluated with respect to two main objectives, namely
dynamic spectrum restoration and RFI detection (also referred
to as RFI flagging in the literature). Regarding the restoration
task, a conventional figure-of-merit encountered in image pro-
cessing is the peak signal-to-noise ratio (PSNR) defined as

PSNR = 10 log10
max X2

MSE(X, X̂)
(10)

where max X2 is the (squared) maximum value of the RFI-free
signal, and MSE(X, X̂) quantifies the mean square error between
the ground truth RFI-free signal X = S−R and its restored coun-
terpart estimated by the algorithm X̂. In particular, in the noise
free case (E = 0, Scenario 1), the observation model in Eq. (1)
simplifies to S = P+R and this metric boils down to measuring
the quality of the restored pulsar signal, i.e., X̂ = P̂.

Regarding the detection task, since it can be formulated as
a binary classification problem, the performance of the miti-
gation method can be evaluated by resorting to conventional
classification-oriented figures of merit. It requires to first com-
puting the so-called confusion matrix which summarizes the
numbers of correct and bad classifications with respect to the

presence of a given target. For the RFI mitigation task of inter-
est, we define the presence of an RFI as a positive instance and,
conversely, an RFI-free signal as a negative instance. The con-
fusion matrix reports the estimated probabilities of positive and
negative samples being classified correctly or incorrectly, which
leads to the definition of four indicators named true positive
(TP), true negative (TN), false positive (FP) and false negative
(FN). Once the confusion matrix has been computed, standard
metrics can be derived, which include precision, recall, and F1
score.

Precision measures the proportion of predicted positives that
are true positives

prec =
TP

TP + FP
.

Recall is the percentage of correctly identified RFI

rec =
TP

TP + FN
.

The F1 score, which strikes a balance between precision and
recall, is calculated as the harmonic mean. This metric is espe-
cially valuable when analyzing data sets with unbalanced classes,
i.e., when the number of samples in a given class is significantly
larger than the number of samples in the other class, which is
expected to be the case for moderately corrupted dynamic spec-
tra. It is defined as

F1 =
2 × prec × rec

prec + rec
.

Following the evaluation protocol also adopted by Mesarcik
et al. (2022), the performance has been also evaluated in term
of the area under the precision-recall curve (AUPRC), which
quantifies the overall discriminatory ability of the compared
models. This metric is also particularly valuable in scenarios
with imbalanced datasets, where the number of negative in-
stances significantly outweighs the positive ones. AUPRC em-
phasises the ability of the model in correctly identifying posi-
tive examples while maintaining accuracy. Finally, the evalua-
tion of the model performance has been conducted in light of
the receiver operating characteristics (ROC), which provides a
comprehensive description of the performance of any detector
faced to a binary hypothesis testing. ROC curves plot the true
positive rate (TPR or probability of detection) as a function of
the false positive rate (FPR or probability of false alarm). The
area under the ROC (AUROC) sometimes referred to as the c-
statistic (Hastie et al., 2009) has been considered as a figure-of-
merit.

6.2. Restoration results
As described in Section 5.2, 8 simulation scenarios have

been considered depending on the presence or absence of sys-
tem noise and depending on the type of RFI corrupting the
dynamic spectra. The proposed RFI-DRUNet model has been
trained separately on 8 data sets associated with each of these
scenarios. For each scenario S1 or S2, the restoration perfor-
mances of the RFI-DRUNet trained for a given case (CA to CD)
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are evaluated not only on a testing data set generated accord-
ing to the same case but also on data sets corresponding to the
other cases. This will help to understand the impact of the type
of RFI on the model performance and its possible limitations.
With a slight abuse of notations, the models will be denoted
as S□C△ by shortening the denomination of the data set they
have been trained on, where the two indices □ ∈ {1, 2} and
△ ∈ {A,B,C,D, } refer to the considered scenario and case, re-
spectively.

Noise-free data set – Table 6 reports the results of the restora-
tion in terms of average PSNR and standard deviations com-
puted over the test set for the 4 models trained for the scenario
S1. To appreciate the performance gain in term of restoration,
this table also reports the PSNR computed from the data itself
(first row). This is the cheapest strategy that would consist in
not performing any restoration of the data. It also provides a
quantitative proxy of the difficulty of the RFI-mitigation task
(the lower SNR, the more difficult task). Finally, the second
row of the table reports the PSNR computed from the noise-
free pulsar signal recovered by an oracle detector that would
be able to perfectly identify the RFI and would replace the cor-
rupted time-frequency bins by zeros. These results show that
the model S1CA performs quite differently, since it provides
very good results only when tested on the data set S1CA. This
can be explained by the limited variety of RFI (only of type nbt)
in the training set. Other types of RFI are hardly identified and
corrected by the algorithm. The models S1CB to S1CD perform
well not only on the test sets corresponding to their training set
but also show comparable restoration ability when handling the
other cases. These three later cases contain pulse-like (i.e., nbt)
RFI but differ substantially since they contain either nbct RFI
or bbt RFI, or both. These two types of RFI share some shape
similarities but differ in the direction of spreading. The data
augmentation used during the training phase, which consists of
rotations and flips, can explain this robustness to handle both
nbct and bbt RFI when only one of them is present in the train-
ing set.

Model
Data set

S1CA S1CB S1CC S1CD

Data
43.17 35.02 35.87 31.92
±0.93 ±3.14 ±2.99 ±1.33

Oracle
59.27 54.43 54.24 51.94
±6.37 ±6.11 ±5.61 ±5.51

R
FI

-D
R

U
N

et

S1CA
70.58 56.59 59.75 53.82
±10.86 ±10.04 ±8.96 ± 8.10

S1CB
73.33 72.38 71.74 70.80
±8.70 ±8.24 ±8.30 ± 7.80

S1CC
72.65 70.94 71.45 69.85
±9.00 ±8.32 ±8.65 ± 7.93

S1CD
72.09 71.44 71.31 70.72
±9.23 ±8.87 ±8.92 ± 8.61

Table 6: Scenario 1: restoration performance in terms of average PSNR and
standard deviations computed over the test data sets.

Noisy data sets – Similar findings can be drawn when consider-

ing the 4 models trained and tested on noisy data sets (scenario
S2), as shown in Table 7. Note that, in this case, the time-
frequency bins identified by the oracle have been replaced by
random values drawn according to the noise statistical model,
i.e., N(0, σ2

E). The overall values of PSNR are significantly
lower than obtained with scenarios S1, owing to the presence
of system noise. However, the PSNR values are sufficiently
high to guarantee correctly restored dynamic spectra, in regard
to standard restoration measures encountered in the image pro-
cessing literature but also to the performance reached by the
oracle detector.

Model
Data set

S2CA S2CB S2CC S2CD

Data
43.17 35.02 35.87 31.92
±0.93 ±3.14 ±2.99 ±1.33

Oracle
48.89 44.60 44.48 42.27
±0.97 ±1.98 ±1.68 ±1.52

R
FI

-D
R

U
N

et

S2CA
59.43 36.38 37.77 32.89
±6.54 ±4.88 ±4.27 ±1.69

S2CB
60.15 59.81 59.88 59.22
±5.08 ±4.91 ±5.02 ±4.73

S2CC
60.36 60.01 60.12 59.51
±4.34 ±4.40 ±4.27 ±4.25

S2CD
60.41 60.18 60.19 59.95
±4.49 ±4.55 ±4.47 ±4.53

Table 7: Scenario 2: restoration performance in terms of average PSNR and
standard deviations computed over the test data sets.

Validation – The restoration performance (in terms of PSNR) as
a function of the number of epochs during the validation stage
is depicted in Fig. 5. This figure shows that the validation re-
sults are consistent with the results obtained during the testing
stages. The model S2CA reaches a higher validation result com-
pared to the other models since it uses less variety of RFI during
the training stage. Conversely, the models S2CB and S2CC have
almost identical validation results, and the model S2CD shows
slightly lower validation results due to the fact that it has to han-
dle with all types of RFI. In the sequel of the paper, for brevity
and unless otherwise specified, only the model S2CD, which is
expected to be more robust to any type of RFI, will be consid-
ered.

Out-of-distribution data sets – To assess the robustness of the
proposed RFI-DRUNet to experimental conditions that go be-
yond those encountered during the training stage, we now in-
vestigate the generalization ability of the model when analyz-
ing out-of-distribution (OOD) data. This model mismatch is
envisioned with respect to two aspects. First, the performance
of the model S2CD, trained on dynamic spectra corrupted by
an instrumental noise of SNR ≈ −5dB (σ2

E = 1), is evaluated
when restoring data corrupted by noises of higher levels, i.e.,
SNR ∈ {−8.6,−10.4,−12.6,−15.6} [dB]. Second, since RFI
emitters may produce interference of more complex temporal
and spectral profiles than those prescribed in Section 3.3, in-
stances of RFI with sinusoidal shapes are also considered. More
precisely, instead of generating RFI signals with the Gaussian
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Figure 5: Validation: restoration performance (in terms of PSNR) as a function
of the number of epochs.

Simulation parameters PSNR

OOD
with respect to

noise level

σ2
E = 1 SNR = −5.6dB 59.95 ±4.53

σ2
E = 2 SNR = −8.6dB 59.24 ±0.81

σ2
E = 3 SNR = −10.4dB 57.81 ±0.61

σ2
E = 5 SNR = −12.6dB 54.86 ±1.56

σ2
E = 10 SNR = −15.6dB 50.84 ±2.15

OOD
with respect to

RFI profile

nbct-sin RFI 59.90 ±3.22

bbt-sin RFI 59.91 ±3.17

nbct-sin RFI + bbt-sin RFI 59.59 ±3.11

Table 8: Out-of-distribution data sets: restoration performance in terms of av-
erage PSNR and standard deviations over the test data sets.

shapes described in Eq. (5), nbct and/or bbt RFI signals are gen-
erated according to an oscillating profile and included into the
testing sets. These additional RFI profiles are denoted nbct-sin
and bbt-sin, depending on their temporal and spectral spread-
ing. These complementary experiments aims at enriching the
diversity of interference patterns and the range of noise levels
during testing. Note that the model S2CD evaluated in what fol-
lows has not be re-trained on these newly generated data sets.
Thus this experimental protocol ensures a more thorough as-
sessment of the model adaptability to unforeseen interference
conditions. Table 8 reports the restoration results of the model
when faced to these OOD data sets. It clearly appears that the
restoration performance is weakly impacted by the noise level,
up to a reasonable mismatch. Similarly, the presence of sinu-
soidal shaped RFI in the test sets barely affect the restoration
performance, which confirms the robustness of the proposed
method.

6.3. Detection results

The proposed method is now simplified to turn it into a sim-
ple RFI detector whose performance can be compared to those
reached by competitive methods from the literature. To do so,
a binary mask M̂(·, ·) deciding the presence of possible RFI can

Method prec rec F1-score AUROC AUPRC

RFI-DRUNet
0.972 0.961 0.966 0.995 0.986
±0.398 ±0.0157 ±0.024 ±0.002 ±0.016

U-Net
0.858 0.987 0.917 0.991 0.926
±0.048 ±0.005 ±0.029 ±0.003 ±0.027

RFI-Net
0.864 0.988 0.921 0.987 0.926
±0.047 ±0.005 ±0.029 ±0.004 ±0.026

Table 9: Detection performance of compared algorithms in terms of precision,
recall, F1-score, AUROC and AUPRC. The results are reported with mean and
standard deviation computed over the test data sets.

be easily computed as

M̂(n, k) =

1, if |Ŝ (n, k) − S (n, k)| > η
0, otherwise

(presence of RFI)
(absence of RFI)

where Ŝ (·, ·) and S (·, ·) are the restored dynamic spectrum pro-
vided by RFI-DRUNet and the input dynamic spectrum, respec-
tively, and η is a threshold balancing the probability of detec-
tion and the probability of false alarm. This threshold has been
fixed to η = 0.15 such that it maximizes the F1-score of RFI-
DRUNet to ease the comparisons to the other methods, as also
done by Kerrigan et al. (2019) and Mesarcik et al. (2022). In
particular, the performance of the proposed method is compared
to the detection ability of two alternative deep learning-based
RFI mitigation methods. The first considered network archi-
tecture is a U-Net, initially proposed to perform medical image
segmentation tasks and later adapted for RFI mitigation tasks
(Akeret et al., 2017a). The second compared model is RFI-Net
(Yang et al., 2020), based on an encoder-decoder architecture
with residual blocks and batch normalization. These two mod-
els have been trained on the data sets corresponding to scenario
S2CD. More precisely, during the training stage, the binary
masks defined by Eq. (7) and randomly drawn during the data
generation process are given as output labels to the models.

As explained in Section 6.1, the methods are compared in
terms of standard classification scores, namely precision, re-
call, F1-score, AUROC and AUPRC since they provide a com-
prehensive performance assessment of a binary classification
model. These metrics are reported in Table 9. Although the
primary objective of the proposed RFI-DRUNet model is not to
detect RFI but rather to restore dynamic spectra, these results
demonstrate that its ability to flag RFI is comparable to those of
state-of-the-art methods specifically designed to perform this
task. It is worth noting that, contrary to RFI-DRUNet, U-Net
and RFI-Net are unable to restore RFI-free dynamic spectra.

To conduct a qualitative comparison of the results, outputs
provided by the compared methods are depicted in Fig. 6, as
well as the spectrum restored and the RFI identified by RFI-
DRUNet, for a particular signal.

6.4. Illustration on a real observation
Since the proposed method has already demonstrated out-

standing restoration and detection performance on the simu-
lated data sets, we now illustrate this performance on a real ob-
servation data from the NenuFAR telescope. A dynamic spec-
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Figure 6: Visual comparison of the results for simulated spectrum from S2CD
provided by the compared methods.

trum over the spectral range 74 − 80MHz of duration of 5s
extracted from an observation for pulsar B1919+21 is consid-
ered, as depicted in Fig. 7 (top left panel). The compared mod-
els RFI-DRUNet, RFI-DRUnet and U-Net have been trained
as in Section 6.3, i.e., using the synthetic data set S2CD gen-
erated following the protocol described in Section 5.2. This
experiment somehow challenges the generalization ability of
the compared models. Indeed here they are tested on a real
signal whose content is expected to substantially depart from
the simplifying modeling assumptions underlying the simula-
tion framework described in Section 3. Figure 7 (top right
panel) shows the restored dynamic spectrum achieved by RFI-
DRUNet, as well as a comparison results of the RFI detected by
RFI-DRUNet and U-Net (bottom panels). The results provided
by RFI-Net are not reproduced in this manuscript since they
are not of sufficient quality to be informative. The poor results
exhibited by RFI-Net may be explained by its weak generaliza-
tion ability. In these panels, RFI mostly appear as a form of
nbct corruptions around 78MHz and persist from 0.2s to 1.5s.
Both RFI-DRUnet and U-Net are proficient in detecting most
of the RFI, but clearly, RFI-DRUNet provides higher accuracy,
especially for the RFI around 78MHz between 0.2s and 1s.
RFI-DRUNet also detects several instances of pulse-like RFI,
while U-Net hardly detects any. This result confirms the abil-
ity of RFI-DRUNet to detect RFI with accuracy, whatever their
shapes, and also to restore the corrupted dynamic spectra while
preserving most of the signal of interest.

6.5. Discussion

Restoration vs. detection – As stated earlier, it is worth not-
ing that U-Net and RFI-Net have been designed to achieve an
RFI-flagging task, i.e., to identify and locate the time-frequency
bins possibly affected by RFI in the dynamic spectra. The ex-
perimental results demonstrate exceptionally good performance
achieved by these methods, which can be explained by the well-
documented ability of convolutional neural networks to extract
relevant features from 2-dimensional data, i.e., images in gen-
eral and dynamic spectra in particular. Once RFI signals have
been identified, several strategies can be envisioned to handle
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Figure 7: Visual comparison of the results for a real data set provided by RFI-
DRUNet and U-Net.

them in a subsequent pipeline of astronomical data processing.
The most common strategy consists of throwing away the mea-
surements corresponding to the pulsar period corrupted by in-
terference. Hence these pixel-level segmentation methods ap-
pear to be suboptimal since they conduct to the loss of sig-
nificant information. Conversely, the proposed RFI-DRUNet
method is able not only to correctly flag the RFI but also to
restore the corrupted time-frequency bins with reliable signal
values.

To illustrate this loss of information and also the relevance
of restoring plausible values, one considers the strategy that
would consist in replacing time-frequency bins corrupted by
RFI by plausible values. Such a strategy has been already con-
sidered in Section 6.2 while reporting the restoration perfor-
mance of the so-called oracle, assumed to perfectly know the
RFI locations. Hereafter, the analysis goes one step further by
considering realistic detectors, namely U-Net and RFI-Net, in
addition to the oracle detector. In the noisy scenario (S2CD),
these bins are filled with random values drawn according to the
instrumental noise statistical model,N(0, σ2

E). Table 10 reports
the restoration results and also recalls the performance reached
by the proposed RFI-DRUNet model. These results show that
there is a significant gap in the quality of the data between the
compared strategies.

Interestingly, while it has not been specifically designed to
perform this task, RFI-DRUNet also reaches results comparable
to those obtained by U-Net and RFI-net when conducting RFI
detection/flagging. These significant improvements may come
from several technical aspects adopted in this work. First, the
architecture of RFI-DRUNet is different from those of the com-
pared methods. Inherited from DRUNet, it is known to provide
better results when facing a denoising task. This improvement
does not systematically result from a higher complexity since
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Method
PSNR

Detection Filling value

S
2C

D

Data 31.91 ±1.33

RFI-DRUNet 59.95 ±4.53

Oracle N(0, σ2
E) 42.27 ±1.52

U-Net N(0, σ2
E) 41.64 ±1.33

RFI-Net N(0, σ2
E) 41.69 ±1.32

Table 10: Restoration performance of compared algorithms in terms of average
PSNR and standard deviation computed over the test data sets.

RFI-DRUNet embeds a smaller number of network parameters
to be adjusted when compared to the RFI-Net, which signifi-
cantly reduces the computational burden during the training and
testing stages. To illustrate, the number of parameters defining
the compared models are reported in Table 11. Second, the
pretext (denoising-like) task chosen to design the training loss
function minimized by RFI-DRUNet is much more demanding
than the ones adopted by U-Net and RFI-Net. When finally
simplified, the proposed method is able to solve a easier task.
Conversely, U-Net and RFI-Net may reach even better RFI flag-
ging performance after adapting their architecture and their loss
functions to be trained on a restoration task. In other words, the
capacity of those models may be under-exploited by a too sim-
ple training strategy.

RFI-DRUNet RFI-Net U-Net
♯ parameters

(×106) 32.65 48.21 17.26

Table 11: Number of parameters of the compared models.

Failure situation – To provide a fair analysis of the potential
brought by the proposed method, one finally wants to point out
the fact that RFI-DRUNet may behave quite poorly in some
particular situations. Indeed, a careful (empirical) inspection
of the restoration results obtained by the network shows that
some restoration scores are significantly lower than the overall
score averaged over the whole data set. Figure 8 shows one
archetypal example of failure. It clearly appears that the method
erroneously treats the part of the pulsar signal as a possible RFI
signal and tends to decrease its amplitude. This phenomenon
typically arises at high frequencies where the pulsar signal is
slightly affected by dispersion. The pulsar signal is then almost
vertical and has a shape that is very similar to nbt RFI, i.e.,
temporally localized but spectrally spread interference.

7. Application to estimation of pulsar TOAs

Pulsars have a highly stable period of rotation, so the sig-
nals received from their emissions have a consistent period as
well. The study of pulsars by precisely measuring their so-
called times-of-arrival (TOAs) is known as chronometry. By
investigating the pulsar TOAs, one can deduce various physical
parameters intrinsic to pulsars and other astronomical quantities
associated with various problems such as cosmic clocks and the
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Figure 8: Example of a failure situation from data set corresponding to scenario
S2CD. The amplitude of the part of the pulsar signal (framed in the red box)
has been incorrectly reduced by RFI-DRUNet.

detection of gravitational waves. In what follows, we show that,
thanks to its ability to detect RFI and restore dynamic spectra,
the proposed RFI-DRUNet method is able to contribute to the
improvement of the TOA estimation.

To estimate the pulsar TOA, the profile of a pulsar observed
over a short time observation interval is generally assumed to
deviate only slightly from the shape computed by integrating
over a long period of time, hereafter referred to as the pulsar
template. Leveraging this assumption, the observed signal pul-
sar P(n, k) can be modeled as a noisy, scaled, and temporally
shifted version of the template signal denoted P̄(n, k), i.e.,

P(n, k) = u + vP̄(n, k − ∆t) + E(n, k)

where u is an amplitude offset, b is a scaling factor, ∆t is the
temporal shift between the observed signal and the template,
and E(k, n) is a term accounting for modeling errors. Taylor
(1992) introduced a least squares method to estimate the offset
∆t between the observed signal and the template signal. The op-
timization problem is formulated in the Fourier domain. It pro-
vides an estimation with an accuracy of 0.1δt, which is better
than what can be obtained in the time domain. To illustrate the
relevance of the proposed RFI-DRUNet method, we consider
synthetic signals generated according to the scenario S2CD with
a pulsar template P̄(·, ·) fully described by Eq. (2) and a pulsar
period fixed to ρ = 64 [bins]. Then Taylor’s estimation method
was applied to the RFI-free signal, the RFI-corrupted signal and
the signal restored by RFI-DRUNet. In this controlled experi-
mental setup, the true value of ∆t is perfectly known. Thus the
accuracy of the estimation conducted on the 3 types of signals
can be qualitatively assessed by computing a mean square error
(MSE) and a mean absolute deviation (MAE).

It is worth noting that Taylor’s method grants its TOA esti-
mation with an uncertainty measure denoted σ∆t. This uncer-
tainty is related to the difficulty of the estimation task and, for
instance, is driven by the SNR level: lower the SNR, higher
the uncertainty. This finding is illustrated in Fig. 9 where each
dot is associated to a particular signal generated according to
the scenario S2CD for a wider range of SNR (from 10−1 to
103). Each signal is characterized by its SNR (x-axis) and
the uncertainty measure provided by the estimation method (y-
axis). In this log-log scatter plot, the uncertainty is clearly (in-
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versely) proportional to the SNR. As reported in Section 5.1,
the maximum SNR value in the generated data set S2CD is
20, which empirically corresponds to an uncertainty measure
lower-bounded by σ∆t = 0.05. This complementary informa-
tion provided by Taylor’s method can be used to throw away all
estimates accompanied by an uncertainty measure higher than
a given threshold since they are considered as unreliable.
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Figure 9: Scatter plot of the TOA estimation uncertainty vs. SNR. The red
dashed lines point out the maximum SNR value which is 20, considered in
Scenario S2CD and the corresponding uncertainty value adjusted by empirical
linear regression (in the log-log space).

Figure 10 depicts the estimation errors (in terms of MSE
and MAE) as functions of the uncertainty threshold. They have
been obtained when the Taylor’s method has been applied to
the RFI-free signals, the RFI-corrupted signals and the signals
restored by RFI-DRUNet. As a follow-up of the discussion in
Section 6.5, the Taylor’s method has been applied on the sig-
nals retrieved by three alternative approaches: RFI signals are
located/flagged by the oracle detector, U-Net or RFI-Net, and
the time-frequency bins identified as corrupted are replaced by
random values. As expected, the lowest errors are obtained
when estimating the TOAs from the RFI-free dynamic spec-
tra. When the estimation is conducted on RFI-corrupted dy-
namic spectra, it yields a large discrepancy with the theoretical
TOA, which is quite understandable since the pulsar signal is
exposed to RFI contamination. The errors obtained from the
dynamic spectra restored by RFI-DRUNet are close to those
obtained by the RFI-free spectrum. This confirms that the pro-
posed method significantly improves the estimation of the pul-
sar TOA when RFI-corrupted dynamic spectra have been re-
stored beforehand. U-Net and RFI-Net both exhibited errors
higher than those of the the oracle method. It is also important
to highlight that the three alternative methods result in signif-
icantly larger errors compared to the TOA estimations derived
from the RFI-corrupted signal. Again, this finding supports the
idea that a substantial loss of information occurs when flagging
and replacing corrupted bins with random values. On the con-
trary, the proposed RFI-DRUNet restoration model consistently

provides reliable estimations.
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Figure 10: TOA estimation errors in terms of MSE (top) and MAE (bottom) as
functions of the uncertainty threshold obtained from RFI-free (blue line), RFI-
corrupted (orange line) and restored (green line) dynamic spectra.

8. Summary and conclusions

This paper formulated the problem of radio frequency inter-
ference mitigation (RFI) as a restoration task, to go beyond con-
ventional approaches which aimed only at detecting and local-
izing RFI in dynamic spectra. To conduct this task, a new deep
neural network, coined as RFI-DRUNet, was designed by lever-
aging and customizing a popular network proposed in the com-
puter vision literature. To train this new model, a whole frame-
work was designed to produce simulated RFI-free and corre-
sponding RFI-corrupted dynamic spectra. This framework was
instantiated in the specific context of pulsar observations and
relied on physics-inspired and statistical models of the pulsar
signals and of the RFI. The relevance of the approach adopted in
this paper was assessed thanks to an extensive set of numerical
experiments which demonstrated the ability of RFI-DRUNet
not only to identify RFI but also to restore the corrupted dy-
namic spectra. The interest of the method was illustrated by
monitoring the expected gain in the accuracy reached when es-
timating pulsar time-of-arrivals. Future works include taking
the phase information into account during the restoration pro-
cess. They will be also devoted to the compression of the deep
network to reduce its computational complexity, with the aim
of its integration into a real-time processing chain.
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