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LARGE EIGENVALUES OF THE INTENSITY-DEPENDENT RABI
MODEL

RANA ALSAYED HOUSSEIN1 AND LECH ZIELINSKI2

Abstract. We prove that the spectrum of the intensity-dependent Rabi Hamilton-
ian consists of two eigenvalue sequences (E+

m)∞m=0, (E
−
m)∞m=0 satisfying a three-term

asymptotic formula with the remainder estimate O(m−1 lnm) when m tends to
infinity. Using the three leading terms of this asymptotic formula, one obtains an
approximation analogous to the generalized rotating-wave approximation for large
eigenvalues of the usual quantum Rabi model.

Keywords: unbounded self-adjoint operators, discrete spectrum, asymptotic distribution of
eigenvalues, quantum Rabi model

Mathematics Subject Classification: 47A75, 81Q10, 47B25, 47B36.

1. Introduction

The quantum Rabi model (QRM) couples a two-level system (TLS) with a quantized
single-mode radiation and is considered as a particularly important model in quantum
electrodynamics: we refer to [9] concerning the historical aspects of the QRM and to
the review paper [33] for a list of research works and its experimental realizations.

The Hamiltonian of the QRM (see Definition 2.2), is a self-adjoint operator depending
on two real parameters: g (the coupling constant) and ∆ (the energy separation in
the TLS). Its spectrum is discrete and it is natural to consider methods of approxima-
tion of its eigenvalues. The earliest approximation method, called the rotating-wave
approximation (RWA), was introduced in the famous paper of E. T. Jaynes and F. W.
Cummings [20]. However, the RWA is a correct approximation only when g is close to 0
and ∆ close to 1 for the Hamiltonian given in Definition 2.2. The most popular idea of
going beyond the limitations of RWA, bears the name of the generalized rotating-wave
approximation (GRWA) after E. K. Irish [17]. The same idea was considered before by
I. D. Feranchuk, L. I. Komarov, A. P. Ulyanenkov [13], under the name of the zeroth
order approximation of the operator method (see also [14]).

According to the GRWA, the spectrum of the quantum Rabi model, is composed of
two eigenvalue sequences: (E+

m)∞m=0 and (E−
m)∞m=0, satisfying E±

m ≈ E±
m,GRWA and the

formula (25) in [13] claims that

E±
m,GRWA ≈ m− g2 ±

cos
(
4g

√
m− π

4

)√
2πg

√
m

as m → ∞

A high quality of this approximation for large m was confirmed by numerical calculations
performed by L. T. H. Nguyen, C. Reyes-Bustos, D. Braak and M. Wakayama [22]. It
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appears that if ε > 0 then one has the large m asymptotic formula

E±
m = m− g2 ± ∆

2

cos
(
4g

√
m− π

4

)√
2πg

√
m

+O(m−1/2+ε) (1.1)

(see [3]-[4]). Moreover, the three-term asymptotic formula (1.1) allows one to recover
the values of parameters of the model from its spectrum (see [5]) and was used by Z.
Rudnick [28] to investigate the Braak’s conjecture stated in [8].

Recent experimental developments have led to various generalizations of the model
by considering the non-linear interactions between the TLS and the quantum field. In
particular, a non-linear analogue of the Jaynes-Cummings approximation, was proposed
by B. Buck, C. V. Sukumar [10] and its generalization, called the intensity-changing
Rabi model, was considered e.g. in the works of B. M. Rodriguez-Lara [26] and L. Duan
[11]. The Hamiltonian of the intensity-changing Rabi model is given in Definition 2.3
and physical realizations of this model were considered e.g. by means of classically
simulated arrays of coupled waveguides in [25] or a trapped-ion setup driven by a
superposition of field modes in [32] (see also [21]).

The purpose of this paper is to investigate large eigenvalues of the intensity-changing
Rabi model. Our main result is the three-term asymptotic formula stated in Theorem
2.4. Its three leading terms describe an approximation analogous to the GRWA for
large eigenvalues of the usual quantum Rabi model. Moreover, the result of Theorem
2.4 can be used to recover the values of parameters of the model from its spectrum and
to investigate the spacing of consecutive eigenvalues similarly as in [22] and [28].

At the end of this introduction, we give a brief overview of earlier results. We refer
to [29] and [13], for the earliest works on large eigenvalues of the QRM in physics. The
QRM has a parity property, allowing one to express its Hamiltonian as a direct sum
J− ⊕ J+ of two Jacobi operators, i.e. operators defined by infinite tridiagonal matrices
acting in ℓ2(N) (see [30], [5]). A mathematical study of large eigenvalues of Jacobi
matrices was initiated by J. Janas and S. Naboko in the paper [19], which contains
fundamental ideas of the method of approximate diagonalizations.

The question of the behaviour of large eigenvalues of Jacobi matrices J±, was first
posed by E. A. Tur [30]-[31] and it was mentioned by A. Boutet de Monvel, S. Naboko
and L. O. Silva in [1]-[2]. Due to the difficulty of the problem, the papers [1]-[2] give
the asymptotic estimates for a simpler class of operators ("modified Jaynes-Cummings
models"). However, using the ideas of [19], E. A. Ianovich [15] proved the two-term
asymptotic formula for large eigenvalues of J± with error O(n−1/16) and the three-term
asymptotic formula was proved in [4].

In [7] and [16], a three-term formula was obtained for large eigenvalues of another
non-linear Rabi model, the two-photon QRM. In this paper, we use a result from [7],
stated in Theorem 4.2.

2. Main result

Notations 2.1. (a) In what follows, Z is the set of integers and N := {n ∈ Z : n ≥ 0}.

(b) We denote by ℓ2(N) the complex Hilbert space of square-summable sequences
x : N → C equipped with the scalar product

⟨x, y⟩ℓ2(N) =
∞∑

m=0

x(m)y(m) (2.1)
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and the norm ||x||ℓ2(N) := ⟨x, x⟩1/2ℓ2(N). For s > 0 we denote

ℓ2,s(N) := {x ∈ ℓ2(N) :
∞∑

m=0

(1 +m2)s |x(m)|2 < ∞} (2.2)

(c) The canonical basis of ℓ2(N) is denoted {en}n∈N (i.e. en(m) = δn,m for n, m ∈ N).

(d) The annihilation and creation operators, â and â†, are the linear maps ℓ2,1/2(N) →
ℓ2(N) satisfying

â† en =
√
n+ 1 en+1 for n ∈ N (2.3)

â e0 = 0 and â en =
√
n en−1 for n ∈ N \ {0}. (2.4)

(e) Using (1, 0) ∈ C2 and (0, 1) ∈ C2 as the canonical basis of the Euclidean space C2,
we denote by σx, σz, I2, the linear operators in C2 defined by the matrices

σx :=

(
0 1
1 0

)
, σz :=

(
1 0
0 −1

)
, I2 :=

(
1 0
0 1

)
(2.5)

(f) The Hamiltonian of the single-mode radiation is the linear map N̂ : ℓ2,1(N) → ℓ2(N)
defined by the formula

N̂en = â†â en = nen for n ∈ N. (2.6)

Definition 2.2. Assume that g > 0 and ∆ ∈ R. The Hamiltonian of the QRM is the
linear map H : C2 ⊗ ℓ2,1(N) → C2 ⊗ ℓ2(N) given by

H = I2 ⊗ N̂ + gσx ⊗
(
â+ â†

)
+ ∆

2 σz ⊗ Iℓ2(N). (2.7)

Definition 2.3. Assume that κ ≥ 0, 0 < g < 1
2 and ∆ ∈ R. The Hamiltonian of the

intensity-changing QRM is the linear map Hκ : C2 ⊗ ℓ2,1(N) → C2 ⊗ ℓ2(N) given by

Hκ = I2 ⊗ N̂ + gσx ⊗
(
(N̂ + 2κ)1/2 â+ â† (N̂ + 2κ)1/2

)
+ ∆

2 σz ⊗ Iℓ2(N). (2.8)

Our main result is the following

Theorem 2.4. Assume that 0 < g < 1
2 , κ ≥ 0, ∆ ∈ R and Hκ is defined by (2.8).

Then there exists {v+m}m∈N ∪ {v−m}m∈N, an orthonormal basis of C2 ⊗ ℓ2(N), such that

Hκv
±
m = E±

mv±m, m = 0, 1, 2, . . .

and the eigenvalue sequences (E+
m)m∈N, (E−

m)m∈N, satisfy the large m estimates

E±
m =

√
1− 4g2 (m+ κ)− κ± rm +O(m−1 lnm) (2.9)

with

rm =
∆

2

(1− 4g2)
1/4

√
πgm

cos
(
4α(m+ κ) + π

(
1
4 − κ

))
, (2.10)

where

α := arctan

(√
1− 2g

1 + 2g

)
. (2.11)



4 RANA ALSAYED HUSSEIN AND L. ZIELINSKI

Our approach allows us to deduce the assertion of Theorem 2.4 from a slightly more
general result: Theorem 3.3 stated in Section 3 and proved in Section 5. In Section
3 we also describe some basic properties of the considered model. In Section 4 we
describe an auxiliary result from earlier papers [6], [7]. This result is used in Section 5
to prove Theorem 3.3. In Section 6 we state the Rozenblum’s estimate, which is one of
ingredients of our proof.

3. Remarks

3.1. The case ∆ = 0. The spectrum of the intensity-changing Rabi model is explictly
known if ∆ = 0. Indeed, if 0 < g < 1/2 and κ ≥ 0, then (see [26], [11]) the spectrum of

H0,κ = I2 ⊗ N̂ + gσx ⊗
(
(N̂ + 2κ)1/2 â+ â† (N̂ + 2κ)1/2

)
(3.1)

is composed of the sequence of double eigenvalues

E0
m =

√
1− 4g2 (m+ κ)− κ, m = 0, 1, 2, . . . (3.2)

We remark that Theorem 2.4 implies E±
m − E0

m = O(m−1/2) as m → ∞ in spite of
the fact that perturbation Hκ −H0,κ is not compact.

3.2. Parity decomposition. An important property of the intensity-changing Rabi
model, is the fact its Hamiltonian is similar to a direct sum of two Jacobi operators, i.e.
operators defined by infinite tridiagonal matrices acting in ℓ2(N). In what follows, we
introduce a class of operators which can be analyzed by our approach similarly as the
the intensity-changing Rabi model.

Notations 3.1. (a) If a : N → R, then a(N̂) = diag(a(j))j∈N denotes the self-adjoint
operator in ℓ2(N) satisfying

a(N̂)ej = a(j)ej for j ∈ N. (3.3)

(b) Assume that − 1
2 < g < 1

2 , ∆ ∈ R and a : N → R satisfies the estimate

a(j) ∼ gj1/2 as j → ∞. (3.4)

Then we define Ha as the linear map Ha : C2 ⊗ ℓ2,1(N) → C2 ⊗ ℓ2(N) given by

Ha = I2 ⊗ N̂ + σx ⊗
(
a(N̂) â+ â† a(N̂)

)
+ ∆

2 σz ⊗ Iℓ2(N). (3.5)

(c) Assume that − 1
2 < g < 1

2 , δ ∈ R and a : N → R satisfies (3.4). Then we define Ĵδ
a

as the linear map ℓ2,1(N) → ℓ2(N) given by{
Ĵδ
aej =

(
j + δ(−1)j

)
ej + a(j)

√
j + 1 ej+1 + a(j − 1)

√
j ej−1, j ≥ 1,

Ĵδ
ae0 = δe0 + a(0)e1.

(3.6)

We observe that the associated matrix
(
⟨ej , Ĵδ

aek⟩ℓ2(N)
)
j,k∈N

has the form

δ a(0)
√
1 0 0 0

a(0)
√
1 1− δ a(1)

√
2 0 0

0 a(1)
√
2 2 + δ a(2)

√
3 0

0 0 a(2)
√
3 3− δ a(3)

√
4

0 0 0 a(3)
√
4 4 + δ

. . .


(3.7)
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Lemma 3.2. Assume that − 1
2 < g < 1

2 and a : N → R satisfies (3.4).

(a) If δ ∈ R and Ĵδ
a is defined by Notation 3.1(c), then Ĵδ

a is self-adjoint, bounded from
below and has discrete spectrum.
(b) If ∆ ∈ R and Ha is defined by Notation 3.1(b), then Ha is similar to the direct sum
Ĵ
−∆/2
a ⊕ Ĵ

∆/2
a .

Proof. (a) It suffices to prove the statement for δ = 0. The off-diagonal entries of
the matrix (3.7) are of the form b(j) = a(j)

√
j + 1 and the assumption (3.4) ensures

b(j) ∼ gj as j → ∞. Therefore

lim
j→∞

j2

b(j)2 + b(j − 1)2
=

1

2g2
(3.8)

and − 1
2 < g < 1

2 ⇒ 1
2g2 > 2. Since the value of the limit (3.8) is strictly greater that 2,

the criterion of Janas-Naboko (see e.g. [19, Section 1]) implies that Ĵ0
a is self-adjoint,

bounded from below and has discrete spectrum.
(b) We can write the basis of C2 ⊗ ℓ2(N) in the form B− ∪ B+ with

B− = {(0, 1)⊗ e2j : j ∈ N} ∪ {(1, 0)⊗ e2j+1 : j ∈ N}
B+ = {(1, 0)⊗ e2j : j ∈ N} ∪ {(0, 1)⊗ e2j+1 : j ∈ N}

and introduce the corresponding orthogonal decomposition C2 ⊗ ℓ2(N) = H− ⊕H+, i.e.
B± is a basis of H±. Let U± : ℓ2(N) → H± denote the unitary operator defined by

U−e2j = (0, 1)⊗ e2j , U−e2j+1 = (1, 0)⊗ e2j+1,

U+e2j = (1, 0)⊗ e2j , U+e2j+1 = (0, 1)⊗ e2j+1.

It remains to observe that Ha = H−
a ⊕H+

a holds with H±
a = U±J

±∆/2
a U−1

± . □

3.3. Three-term asymptotic formula for Ha. In Section 5 we will prove

Theorem 3.3. Let ∆ ∈ R, κ ≥ 0 and 0 < g < 1
2 . Assume that Ha is defined by (3.5)

with a : N → R satisfying the estimate

a(j) = gj1/2
(
1 + κj−1 +O(j−2)

)
as j → ∞. (3.9)

Then there exists {v+m}m∈N ∪ {v−m}m∈N, an orthonormal basis of C2 ⊗ ℓ2(N), such that

Hav
±
m = E±

mv±m, m = 0, 1, 2, . . .

and the eigenvalue sequences (E+
m)m∈N, (E−

m)m∈N, satisfy the large m estimates (2.9)
with rm given by (2.10)-(2.11).

Since a(j) = g(j+2κ)1/2 satisfies (3.9), it is clear that Theorem 3.3 is a generalization
of Theorem 2.4.

4. An auxiliary problem in ℓ2(Z)

Notations 4.1. (a) We denote by ℓ2(Z) the complex Hilbert space of square-summable
sequences x : Z → C equipped with the scalar product

⟨x, y⟩ℓ2(Z) =
∑
k∈Z

x(k)y(k) (4.1)

and the norm ||x||ℓ2(Z) := ⟨x, x⟩1/2ℓ2(Z). For s > 0 we denote

ℓ2,s(Z) := {x ∈ ℓ2(Z) : ||x||ℓ2,s(Z) < ∞}
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where
||x||ℓ2,s(Z) :=

( ∑
k∈Z

(1 + k2)s |x(k)|2
)1/2

(4.2)

(b) The canonical basis of ℓ2(Z) is denoted {ẽj}j∈Z (i.e. ẽj(k) = δj,k for j, k ∈ Z).

(c) If γ, δ and g are fixed real numbers, then we define J̃δ
γ as the linear map ℓ2,1(Z) →

ℓ2(Z) given by the formula

J̃δ
γ ẽj =

(
j + δ(−1)j

)
ẽj + g(j + γ)ẽj+1 + g(j − 1 + γ)ẽj−1 for j ∈ Z. (4.3)

The associated matrix
(
⟨ẽj , J̃δ

γ ẽk⟩ℓ2(Z)
)
j,k∈Z

has the form

. . .
−2 + δ g(−2 + γ) 0 0 0

g(−2 + γ) −1− δ g(−1 + γ) 0 0
0 g(−1 + γ) δ gγ 0
0 0 gγ 1− δ g(1 + γ)
0 0 0 g(1 + γ) 2 + δ

. . .


If δ = 0, then the operator J̃0

γ belongs to the class of operators studied in Edward
[12]. In particular, Edward proofs that if − 1

2 < g < 1/2, then the spectrum of J̃0
γ is

composed of the eigenvalue sequence {βj + (γ − 1
2 )(β − 1)}j∈Z, where

β :=
√
1− 4g2. (4.4)

Our proof of Theorem 3.3 (and 2.4) will use the following result from [6]:

Theorem 4.2. Let J̃δ
γ be given by (4.3). If 0 < g < 1/2 then the spectrum of J̃δ

γ is
composed of a non-decreasing sequence of eigenvalues {λj(J̃

δ
γ)}j∈Z which can be labeled

so that
λj(J̃

δ
γ) = βj +

(
γ − 1

2

)
(β − 1) + rδγ(j) +O(j−1 ln j) as j → ∞ (4.5)

and
rδγ(j) = δ

( β

2πgj

)1/2
cos

(
4αj + θ̂γ

)
, (4.6)

where β is given by (4.4), α by (2.11) and

θ̂γ =
(
γ − 1

2

)
(4α− π) +

π

4
. (4.7)

Proof. See [7, Theorem 2.3]. □

5. Proof of Theorem 3.3

5.1. Step 1 of the proof of Theorem 3.3.

Notations 5.1. Let γ, δ be real numbers and 0 < g < 1/2.

(a) We define Ĵδ
γ as the linear map ℓ2,1(N) → ℓ2(N) given by{

Ĵδ
γej =

(
j + δ(−1)j

)
ej + g(j + γ)ej+1 + g(j − 1 + γ)ej−1 for j ≥ 1,

Ĵδ
γe0 = δe0 + gγe1.

(5.1)
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(b) We observe that Ĵδ
γ = Ĵδ

a if Ĵδ
a is defined by (3.6) with a(j) = g(j + γ)(j + 1)−1/2.

Therefore Ĵδ
γ is self-adjoint, bounded from below and has discrete spectrum. The

non-decreasing sequence of eigenvalues of Ĵδ
γ will be denoted {λn(Ĵ

δ
γ)}n∈N.

Lemma 5.2. Let γ, δ be real numbers, 0 < g < 1/2 and let Ĵδ
γ be given by (5.1).

(a) If δ = 0 and N ≥ 1, then the estimate

λn(Ĵ
0
γ ) = dn,γ +O(n−N ) as n → ∞ (5.2)

holds with

dn,γ := βn+
(
γ − 1

2

)
(β − 1), (5.3)

where β is given by (4.4), i.e. β =
√
1− 4g2.

(b) If Ĵδ
a is defined by (3.6) and a satisfies (3.9), then

λn(Ĵ
δ
a) = λn(Ĵ

δ
κ+1/2) +O(n−1) as n → ∞ (5.4)

Proof. (a) See J. Janas, M. Malejki [18, Theorem 3.4].
(b) Assume that a satisfies (3.9) and denote b(j) := a(j)

√
j + 1. Then

b(j) = gj1/2
(
1 + κj−1 +O(j−2)

)
j1/2

(
1 + 1

2j
−1 +O(j−2)

)
= g

(
j + κ+ 1

2

)
+O(j−1) as j → ∞

If j ≥ 1 then (Ĵδ
a − Ĵδ

κ+1/2)ej = r(j)ej+1 + r(j − 1)ej−1 holds with

r(j) = b(j)− g
(
j + κ+ 1

2

)
= O(j−1)

and implies that the operator Ĵδ
a − Ĵδ

κ+1/2 is bounded ℓ2(N) → ℓ2,1(N). Assume that
c ∈ R is not in the spectrum of Ĵδ

a or Ĵδ
κ+1/2. Then

|Ĵδ
a − c|(Ĵδ

a − Ĵδ
κ+1/2) and |Ĵδ

κ+1/2 − c|(Ĵδ
a − Ĵδ

κ+1/2)

are bounded operators in ℓ2(N) and applying the Rozenblum’s theorem with α = −1
(see Section 6), we obtain

λn(Ĵ
δ
a)− λn(Ĵ

δ
κ+1/2) = O(|λn(Ĵ

δ
κ+1/2)− c|−1) as n → ∞ (5.5)

However, (5.2)-(5.3) and the min-max principle imply

λn(Ĵ
δ
κ+1/2) = βn+O(1), (5.6)

hence the right-hand side of (5.5) is O(n−1). □

5.2. Step 2 of the proof of Theorem 3.3.

Notations 5.3. (a) If J ⊂ Z then ℓ2(J ) is identified with the closed subspace of ℓ2(Z)
generated by {ẽj}j∈J , i.e. with {x ∈ ℓ2(Z) : x(k) = 0 for k ∈ Z \ J }. Thus we can
write

ℓ2(Z) = ℓ2(Z \ N)⊕ ℓ2(N). (5.7)

(b) If J ⊂ Z then ΠJ denotes the orthogonal projection ℓ2(Z) → ℓ2(J ).
(c) We identify ẽj and ej for j ≥ 0.
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Lemma 5.4. Let γ, δ be real numbers and 0 < g < 1/2. Let J̃δ
γ and Ĵδ

γ be given by
Notations 4.1 and 5.1. If {λn(Ĵ

δ
γ )}n∈N is the non-decreasing sequence of eigenvalues of

Ĵδ
γ and {λj(J̃

δ
γ )}j∈Z is the non-decreasing sequence of eigenvalues satisfying (4.5), then

there exists ζ ∈ Z such that

λn(Ĵ
δ
γ) = λn+ζ(J̃

δ
γ) +O(n−1) as n → ∞.

Proof. Denote J̌δ
γ := ΠZ\NJ̃

δ
γ |ℓ2(Z\N). Then, reasoning as in the proof of Lemma 3.2(a),

we find that −J̌δ
γ is self-adjoint, bounded from below and has discrete spectrum.

Moreover the operator Rδ
γ := J̃δ

γ − (J̌δ
γ ⊕ Ĵδ

γ) is self-adjoint and satisfies Rδ
γ ẽj = 0 if

|j| > 1. Assume that c ∈ R is not in the spectrum of J̃δ
γ or J̌δ

γ ⊕ Ĵδ
γ . Then

|J̃δ
γ − c|Rδ

γ and |J̌δ
γ ⊕ Ĵδ

γ − c|Rδ
γ

are bounded operators in ℓ2(Z) and applying the Rozenblum’s theorem with α = −1

(see Section 6), we can find an eigenvalue sequence {λj(J̌
δ
γ ⊕ Ĵδ

γ)}j∈Z such that

λj(J̃
δ
γ)− λj(J̌

δ
γ ⊕ Ĵδ

γ) = O(|λj(J̃
δ
γ)− c|−1) as |j| → ∞ (5.8)

and the right-hand side of (5.8) is O(j−1) due to (4.5). We observe that the spectrum
of J̌δ

γ ⊕ Ĵδ
γ is composed of eigenvalues of J̌δ

γ and Ĵδ
γ . Moreover, the spectrum of J̌δ

γ is
included in a certain half-line (−∞, C0]. Therefore, choosing n0 ∈ N large enough, we
ensure λn0

(Ĵδ
γ) = λn0+ζ(J̌

δ
γ ⊕ Ĵδ

γ) for a certain ζ ∈ Z and

n ≥ n0 ⇒ λn(Ĵ
δ
γ) = λn+ζ(J̌

δ
γ ⊕ Ĵδ

γ). (5.9)

We complete the proof, combining (5.8) and (5.9). □

5.3. Step 3 of the proof of Theorem 3.3.

Lemma 5.5. The assertion of Lemma 5.4 holds with ζ = 0.

Proof. In this proof we fix γ and consider δ → ζ(δ) as a function R → Z, satisfying

|λn(Ĵ
δ
γ)− λn+ζ(δ)(J̃

δ
γ)| ≤ Cδn

−1 for n ≥ 1, (5.10)

where Cδ is a constant independent of n. We observe that, combining Theorem 4.2
with (5.10), we get

|λn(Ĵ
δ
γ)− dn+ζ(δ),γ | ≤ C ′

δn
−1/2 for n ≥ 1, (5.11)

where C ′
δ is a constant independent of n and

dn,γ := βn+
(
γ − 1

2

)
(β − 1). (5.12)

We recall that Lemma 5.2 ensures ζ(0) = 0. Consider δ′ ∈ R. Then the min-max
principle ensures

|λn(Ĵ
δ
γ)− λn(Ĵ

δ′

γ )| ≤ |δ − δ′|. (5.13)

Using (5.13), (5.11) and an analogical estimate for δ′, we obtain

|dn+ζ(δ),γ − dn+ζ(δ′),γ | ≤ (C ′
δ + C ′

δ′)n
−1/2 + |δ − δ′| (5.14)

and consequently
lim sup
n→∞

|dn+ζ(δ),γ − dn+ζ(δ′),γ | ≤ |δ − δ′|. (5.15)



BEHAVIOR OF LARGE EIGENVALUES OF THE INTENSITY-DEPENDENT RABI MODEL 9

However, (5.12) gives

lim
n→∞

|dn+ζ(δ),γ − dn+ζ(δ′),γ | = |ζ(δ)− ζ(δ′)|β (5.16)

and, combining (5.16) with (5.15), we find |ζ(δ)− ζ(δ′)| ≤ β−1|δ− δ′|. Thus, ζ : R → Z
is locally constant, hence ζ(δ) = ζ(0) and ζ(0) = 0. □

5.4. End of the proof of Theorem 3.3. Combining Lemma 5.5 with Theorem 4.2,
we obtain

λn(Ĵ
δ
γ) = dn,γ + rδγ(n) +O(n−1 lnn) as n → ∞ (5.17)

with rδγ given by (4.6)-(4.7). Using Lemma 5.2(b) and (5.17), we find

λn(Ĵ
δ
a) = dn,κ+1/2 + rδκ+1/2(n) +O(n−1 lnn) as n → ∞. (5.18)

To complete the proof, we observe that the parity decomposition (see Lemma 3.2(b))
gives the assertion of Theorem 3.3 with E±

m = λm(Ĵ
±∆/2
a ) and we obtain (2.9)-(2.10),

using (5.18) with δ = ±∆/2.

6. Rozenblum’s estimate

Theorem 6.1 (G. V. Rozenblum). Let A and B be unbounded self-adjoint operators
with discrete spectrum in a separable Hilbert space H such that 0 not in the spectrum of
A or B. Assume that there exists α < 1 such that

|A|−α(A−B) and |B|−α(A−B) (6.1)

are bounded operators in H.
(a) If A and B are bounded from below and {λn(A)}n∈N, {λn(B)}n∈N are non-decreasing

eigenvalue sequences of A and B (counting the multiplicities), then

λn(A)− λn(B) = O(|λn(A)|α) as n → ∞. (6.2)

(b) If A and B are not semi-bounded and {λj(A)}j∈Z is an eigenvalue sequence of A
(counting the multiplicities), then we can find {λj(B)}j∈Z, an eigenvalue sequence
of B (counting the multiplicities), so that

λj(A)− λj(B) = O(|λj(A)|α) as |j| → ∞. (6.3)
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