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Abstract: The in-in formalism provides a way to systematically organize the calculation of
primordial correlation functions. Although its theoretical foundations are now firmly settled,
the treatment of total time derivative interactions, incorrectly trivialized as “boundary terms”,
has been the subject of intense discussions and conceptual mistakes. In this work, we demystify
the use of total time derivatives — as well as terms proportional to the linear equations of
motion — and show that they can lead to artificially large contributions cancelling at different
orders of the in-in operator formalism. We discuss the treatment of total time derivative
interactions in the Lagrangian path integral formulation of the in-in perturbation theory,
and we showcase the importance of interaction terms proportional to linear equations of
motion. We then provide a new route to the calculation of primordial correlation functions,
which avoids the generation of total time derivatives, by working directly at the level of
the full Hamiltonian in terms of phase-space variables. Instead of integrating by parts,
we perform canonical transformations to simplify interactions. We explain how to retrieve
correlation functions of the initial phase-space variables from the knowledge of the ones after
canonical transformations. As an important first application, we find the explicit sizes of
Hamiltonian cubic interactions in single-field inflation with canonical kinetic terms and for
any background evolution, straight in terms of the primordial curvature perturbation and its
canonical conjugate momentum, as well as the corresponding ones in the tensor sector, and the
ones mixing scalars and tensors. We also briefly comment on quartic interactions. Our results
are important for performing complete calculations of exchange diagrams in inflation, such as
the (scalar and tensor) exchange trispectrum and the one-loop power spectrum. Being already
written in a form amenable to characterize quantum properties of primordial fluctuations,
they also promise to shed light on the non-linear dynamics of quantum states during inflation.
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1 Introduction

Originally designed to address the shortcomings of the Hot Big Bang scenario, the most
fascinating aspect of the theory of cosmic inflation is its intriguing connection to the formation
of the Large-Scale Structures that we now observe in our universe. The exponential expansion
stretches the physical wavelength of zero-point quantum fluctuations outside the Hubble
radius, often dubbed “horizon” with a slight abuse of notation. After inflation, the Hubble
radius starts growing significantly and the large-scale fluctuations originating from inflation
re-enter the horizon. They are eventually turned into perturbations to the matter and
radiation fluids permeating the Universe. Inflation thus inherently predicts the existence of
primordial seeds for structure formation and provides a natural explanation for the observed
anisotropies in the Cosmic Microwave Background (CMB). Conversely, the fact that the
distribution of matter and radiation that we routinely observe trace the earliest phase of
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the universe provides one with the tantalizing opportunity to test theories of high-energy
physics likely to be at play during inflation.

Given the observational data that we currently have at hand, cosmic inflation is certainly
the best theory to describe the earliest moments of our universe. Yet, the precise mechanism
responsible for it is yet to be confirmed. The simplest model, canonical single-field slow-roll
inflation, has successfully predicted the nearly scale-invariant spectrum of primordial scalar
fluctuations, even before they were observed in the CMB. Impressively, sixty years after the
discovery of the CMB, inflation has withstood all observational tests, even though many
specific realizations are now ruled out or in tension with latest data [1]. However, a good
model does not make for a good theory, and canonical single-field slow-roll inflation arguably
suffers from a lack of theoretical consistency. Chief amongst its weaknesses is the required,
though unnatural, flatness of the scalar potential, best known as the “eta problem” of inflation
(see ref. [2] for a review) and similar to the hierarchy problem in the Standard Model of
particle physics. Additionally, candidate theories for high-energy physics generically predict
the presence of not only a scalar field, but several active degrees of freedom with various
kinds of masses, spins and interactions [3].

Given the stake — not less than probing new fundamental physics with cosmological
observations — it appears crucial to pinpoint observable predictions that enable to decisively
discriminate between inflationary scenarios. Primordial Non-Gaussianities (PNGs) carry
the hope to disentangle single-field from multifield scenarios, and hereby to advance our
understanding of the laws of gravity and particle physics in a new regime. Indeed, after
first estimations of the smallness of PNGs in canonical single-field slow-roll inflation [4, 5],
Maldacena computed the precise size and shape of the primordial three-point function, the
bispectrum, definitively concluding that fNL ∼ O(0.01) in this vanilla scenario [6]. This
value, often dubbed as the “gravitational floor” as PNGs are then the result of the minimal,
ever-present, gravitational interactions is — fortunately for inflation as a theory — well
within the current upper bounds from the Planck satellite [7] but it is also, unfortunately,
well below the most optimistic projected sensitivities of cosmological surveys in the coming
decade: σ(fNL) ∼ O(1) [8, 9]. On the other hand, inflationary scenarios breaking either
of the assumptions of canonical single-field slow-roll may predict a substantial amount of
PNGs. More in detail, both the size and the shape of PNGs vary from model to model:
single-field with non-canonical kinetic terms, with non-minimal coupling to gravity or higher-
order derivatives, and all kinds of multifield models (see ref. [10] for a review). At smaller
scales, other cosmological observations could help pinpointing the correct mechanism behind
inflation, or at least complete the picture to its latest stages. In particular, gravitational-wave
background phenomenology can be intimately related to non-linear interactions that are the
subject of this work, such as gravitational waves non-linearly produced during inflation [11–
14], scalar-induced gravitational waves from non-Gaussian primordial fluctuations [15–19]
or anisotropies originating from tensor and mixed scalar-tensor PNGs (see ref. [20] for their
incorporation within the in-in formalism).

Given the importance of both these predictions and their interpretations, it may seem
surprising that ambiguities could persist in the formalism used for the calculation of primordial
correlation functions, even in the simplest scenarios. The now standard technique for
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computing PNGs is the quantum in-in formalism, first introduced in the context of inflation
by Maldacena [6], later formalized by Weinberg [21] and more generally known as the
Schwinger-Keldysh formalism for out-of-equilibrium processes (see ref. [22] for a book on the
topic, not related to cosmology). However, even decades after its introduction, we found
ourselves with no complete treatment — in the sense that it would be valid at any order
of the in-in perturbation theory — when the interaction Hamiltonian contains total time
derivatives, as it is the case in single-field slow-roll inflation. Total time derivative interactions
arise as the byproduct of temporal integration by parts (other total time derivatives may
appear from the Noether procedure to derive soft theorems, see ref. [23]). In his seminal
paper, Maldacena performed a large number of such integrations by parts to simplify the
cubic order Lagrangian in the comoving gauge, where the dynamical scalar degree of freedom
is identified with the curvature perturbation ζ, in order to elucidate the true size of non-linear
interactions. As a result, the cubic interaction Hamiltonian (simply given by minus the cubic
Lagrangian at this order) is composed by bulk slow-roll suppressed interactions, as well as
total time derivative interactions, and terms proportional to the linear Equations of Motion
(EoM) verified by free fields on shell. Maldacena ignored total time derivatives and proposed
a field redefinition of ζ 7→ ζn to remove the interactions proportional to the linear EoM.
Through this field redefinition, he was able to compute correlation functions of ζ by relating
them to those of ζn, technically easier to compute and manifestly slow-roll suppressed. While
ultimately yielding the correct result for canonical single-field inflation, this procedure was
later revisited in [24–27]. The main argument in these works can be summarized as follows.
Since the upper integration limit of the in-in integrals lives at the finite-time boundary of
the inflationary space-time, where interactions may not be negligible, overlooking total time
derivatives may not always be justified. On the contrary, the interaction Hamiltonian is
evaluated on interaction picture fields and momenta which identically verify the equations of
motion dictated by the free Hamiltonian, so terms proportional to the EoM can be safely
evacuated. The main reason why the procedure outlined by Maldacena gives the correct
answer is that total time derivatives contributing to the bispectrum always come in pairs with
terms proportional to the equations of motion, so by cancelling the latter, care was also taken
about the former. These conclusions in single-field inflation were later extended to multiple
scalar fields [28, 29] and tensor [30] fluctuations. However, all these works specifically focus
on the computation of the primordial bispectrum with cubic order interactions and at the
one-vertex order of the in-in perturbation theory (see ref. [31] for a notable exception where
an exchange trispectrum from such cubic interactions is computed).

This paper aims at definitively addressing lingering ambiguities associated with total
time derivative interactions and at systematizing their treatment at any order of perturbation
theory, both for tree and loop processes. After providing general formulae for the calculation
of in-in correlation functions of theories with any number of fields, and which include total
time derivative interactions in the interaction Hamiltonian, we show how they lead to a
tedious perturbation theory, with cancellations between different orders. Prompt by the
need of a more straightforward method, we propose another route which avoids the use of
integrations by parts altogether. Our method relies on the use of canonical transformations
to simplify interactions in the full Hamiltonian, rather than the interaction one, which is
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L(ψa, ψ̇aI )

Legendre transform integration by parts (section 2.1)

H(ψa, pψ,a) L(ψa, ψ̇aI ) = −U − dB/dt− E

canonical transformations (sections 3.1–3.2) Legendre transform (section 2.2)

H̃(ψ̃a, p̃ψ,a) H(ψa, pψ,a)

in-in perturbation theory (section 3.2) interaction picture (section 2.2)

⟨O(ψ̃a, p̃ψ,a)⟩

⟨O(ψa)⟩

( diagrammatic rules (appendix B) )

HI = U + dB/dt

in-in perturbation theory (sections 2.3–2.4)

path integral formalism (section 2.5)

Figure 1. Flowchart of the three possible ways considered in this work to compute the correlation
functions ⟨O(ψa)⟩ of fields ψa dictated by an initial Lagrangian L(ψa, ψ̇aI ). We consider a procedure
where one needs to manipulate interactions in order to break degeneracies amongst operators and
render explicit their sizes, either with integration by parts in the Lagrangian (section 2) or with
canonical transformations in the Hamiltonian (section 3) obtained via Legendre transform of the
initial Lagrangian. The different steps leading to correlators of ψa are shown, with the corresponding
sections of this paper to help the reader navigating through it. For two toy models of cubic and quartic
interactions, we prove explicitly that all relevant correlators exactly agree, thus showing agreement of
the three distinct procedures. Finally, section 4 consists in an application to single-field inflation with
canonical kinetic terms of our new procedure with canonical transformations in the Hamiltonian.

therefore expressed in terms of canonical phase-space variables, instead of interaction picture
fields and their time derivatives. Applying our formalism to canonical single-field inflation, we
show how it offers clarity of interpretation and a computational simplification compared to
the in-in method with total time derivative interactions. The paper is structured as follows.

Structure of the paper. In section 2, we solve the question of total time derivative
interactions within the widely used operator in-in formalism, presenting generic formulae
valid at any order in perturbation theory. We also illustrate with two toy models how various
superficially large contributions to correlation functions cancel each other at different vertex
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orders, making the treatment of total time derivative interactions non-trivial. We show the
“conservation of trouble” between the operator in-in formalism and the Lagrangian path
integral one, where in the latter care must be taken concerning non-vanishing contributions
coming from interactions proportional to the linear equations of motion.

In section 3, we introduce a new method, utilizing canonical transformations and the
full Hamiltonian. After a brief pedagogical review of canonical transformations in classical
mechanics, we apply this technique to calculate non-trivial correlation functions in the
previously mentioned toy models, thus showcasing straightforward calculations without
subtle cancellations and proving equivalence with the approach utilizing integrations by
parts. Within this new method, the issue of total time derivative interactions is completely
bypassed, as no such interactions appear in the Hamiltonian anymore. We explain how
to compute correlation functions of the initial phase-space variables in terms of the ones
after the canonical transformation.

In section 4, we apply those techniques to single-field inflation with canonical kinetic
terms, focusing first on scalar fluctuations, but directly written in terms of the primordial
curvature perturbation and its canonical conjugate momentum. These variables are defined
before expanding the Hamiltonian to a given order in perturbations, and we show how
to perform a first non-linear canonical transformation that will simplify the calculation of
interactions to all orders in perturbation theory. We then dig into the perturbation theory,
first defining the quadratic theory and solving the linear constraints in terms of phase-space
variables. After this, we go to cubic order and perform a series of canonical transformations
to simplify the interactions, thus reducing the number of cubic operators and rendering
manifest their sizes. This is the equivalent of Maldacena’s calculation, but at the level
of the Hamiltonian, in terms of phase-space variables, and without introducing total time
derivatives nor using the linear equations of motion. Our final result is valid for any FLRW
evolution, it does not assume a slow-roll dynamics and it needs not be expressed in the
interaction picture. It therefore extends the regime of application of already-known cubic
interactions in single-field inflation to other contexts requiring a phase-space description,
such as the non-linear evolution of the quantum properties of cosmological perturbations
during inflation. We then turn to the equivalent calculations for non-linear tensor and mixed
scalar-tensor perturbations, and we finally close this section with a few remarks regarding the
calculation of the next, quartic order. In particular, we comment on a non-trivial interplay of
tensor and scalar fluctuations that makes it necessary to carefully take into account both of
them to correctly derive quartic scalar interactions. As a first application in this direction,
we also show how our formalism allows to estimate the dominant quartic interactions in
a regime of inflation with a large η.

In section 5, we close the paper with a summary of the main results and directions for
future work, opened by our findings.

Our paper includes an appendix, which offers additional material that complements the
main text. In appendix A, we briefly comment on extensions of canonical transformations
from classical to quantum field theories. In appendix B, we provide diagrammatic rules to
compute correlation functions of the initial phase-space variables in terms of the ones after
the canonical transformation. Finally, in appendix C we collect all Lagrangian interactions
relevant to tensor and mixed scalar-tensor non-linearities.
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Notations. Before starting, we set some notations for convenience. We denote derivatives
with respect to the cosmic time t with an over-dot ˙, and derivatives with respect to the
conformal time dt = a dτ , where a is the scale factor. We define the Hubble scale as H = ȧ/a,
and sequentially define from it the first and higher order slow-roll parameter as ϵ1 ≡ −Ḣ/H2

and ϵi+1 = H−1d ln ϵi/dt with i = 1, · · · . In this paper we will mainly be interested in
ϵ ≡ ϵ1, η ≡ ϵ2 and η2 ≡ ϵ3. We use Latin indices i, j, . . . to denote spatial coordinates, unless
otherwise stated. MPl is the Planck mass. Finally, we use italic fonts, respectively calligraphic
ones, to indicate the Hamiltonian, Lagrangian, respectively their densities. For example, the
Hamiltonian is related to the Hamiltonian density as H =

∫
d3xH.

2 In-in formalism with total time derivatives

In this section, we explain how to consistently include the effect of total time derivatives
in the interaction Hamiltonian, using in-in perturbation theory. We start by recalling the
origin of those terms in the inflationary context, and remind how a sub-class of them are
always generated together with terms proportional to the linear equations of motion. We
then present how the usual in-in integrals are affected by these terms, carefully taking into
account subtle effects from the (anti)-time ordering operators and the non-commutativity
of quantum operators. Finally, we define two toy-model Lagrangians with different kinds of
total time derivatives interactions, and terms proportional to linear equations of motion, and
show how subtle cancellations among various terms affect their correlation functions. We
will use those toy models to showcase the technical difficulties with dealing with total time
derivative interactions, and argue for the utility of a different approach, based on canonical
transformations in phase space and exposed in the following section.

2.1 The rise of total time derivatives in inflationary Lagrangians

After preliminary estimations of the (small) size of primordial non-Gaussianities in single-field,
slow-roll inflation [4, 5], Maldacena provided the first complete calculation, including exact
coefficients and the shape dependence of the primordial bispectrum [6]. The calculation
is conducted both in the flat gauge, where the only propagating scalar degree of freedom
coincides with the fluctuation in the scalar field (δϕflat), and in the comoving gauge, where it
aligns with the curvature perturbation in the spacetime metric, denoted as ζ in this paper.
Each of the two gauges has its own advantages. In the flat gauge, both the extrinsic curvature
and the spatial curvature of three-dimensional hypersurfaces are trivial. It is therefore easy
to expand the action up to cubic order in fluctuations using the ADM formalism [32, 33], as
relevant for the calculation of the primordial bispectrum, the three-point function. Moreover,
all cubic interactions are found to be proportional to at least two powers of the slow-roll
parameters, showing explicitly the smallness of their sizes. However, the variable used in the
calculation, δϕflat, is not conserved on super-horizon scales. Actually, it is non-linearly related
to the curvature perturbation ζ which is the conserved quantity on these scales [34], and whose
statistics need to be known to faithfully predict initial conditions in the radiation and matter
eras through reheating. It is therefore desirable to describe non-linearities directly in terms of
the observable, adiabatic, fluctuation ζ. The calculation in the comoving gauge, however, is
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more involved as a direct expansion of the Lagrangian action does not yield manifestly slow-
roll suppressed cubic interactions. Moreover, several cubic operators are degenerate and their
contributions to the three-point functions cancel at leading-order in the slow-roll expansion.
Maldacena proposed to perform a significant number of integrations by parts to explicitly
cancel superficially large interactions and reduce the number of cubic operators. For pedagogy,
and as a warm-up for subsequent calculations, let us show two of such simplifications.

The Lagrangian of single-field inflation in the comoving gauge, after solving for the linear
constraints and expanded at cubic order, contains the following contributions:

L(3)(ζ, ζ̇) = L(3)
A (ζ, ζ̇) + L(3)

B (ζ, ζ̇) + . . . with (2.1)

L(3)
A (ζ, ζ̇) = a3ϵM2

Pl

(
3ζ − ζ̇

H

)
ζ̇2 and (2.2)

L(3)
B (ζ, ζ̇) = aϵM2

Pl

(
ζ̇

H
− ζ

)
(∂ζ)2 .

Both contributions can be simplified by the use of integrations by parts, but the first
manipulation requires invoking the linear equation of motion for ζ:

Eζ(ζ, ζ̇) ≡ − 1
a3
δS(2)

δζ
= 2M2

Pl

[ 1
a3

d
dt
(
a3ϵζ̇

)
− ϵ

a2∂
2ζ

]
, (2.3)

which corresponds to the Euler-Lagrange equation computed from the quadratic action
S(2) =

∫
d4xL(2)(ζ, ζ̇) with

L(2)(ζ, ζ̇) = a3ϵM2
Pl

[
ζ̇2 − (∂ζ)2

a2

]
. (2.4)

Equipped with these notations, we can rewrite the “A” contribution as

L(3)
A (ζ, ζ̇) = a3M2

Plϵ(ϵ− η)ζ̇2ζ − d
dt

[
a3M2

Pl
ϵ

H
ζ̇2ζ

]
+ 1
H
ζζ̇Eζ(ζ, ζ̇) + 2a ϵ

H
M2

Plζζ̇∂
2ζ . (2.5)

A few remarks are in order. First, ζ̇3 interactions have been removed and the explicit size
of the ζ̇2ζ interaction has been reduced from order ϵ to order ϵ(ϵ − η) , and is therefore
further suppressed by slow-roll parameters. Second, we see the appearance of a total time
derivative term, as well as a term proportional to the linear equations of motion. Actually,
it is a general feature that total time derivatives of functions of fields and their first time
derivatives — like what we have here — always appear along with a term proportional to
Eζ(ζ, ζ̇). The reason is simply that terms proportional to the second time derivatives of field
must cancel out as they are absent from the initial Lagrangian. This fact also ensures that
no subtleties arise at the level of the variational principle and that no new ad hoc degrees of
freedom are added in the theory. Therefore, they always come in pairs, from an integration
by parts as in eq. (2.5). Third and finally, we seem to have generated a new interaction with
the operator ζζ̇∂2ζ, but this term can actually be combined with the “B” contribution:

2a ϵ
H
M2

Plζζ̇∂
2ζ + L(3)

B (ζ, ζ̇) = aM2
Plϵ(ϵ+ η)ζ(∂ζ)2 − d

dt

[
aϵM2

Pl
H

ζ (∂ζ)2
]
, (2.6)
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where we have not kept total spatial derivatives. Indeed, there is no physically well-defined
notion of spatial boundary in cosmology, so we disregard them, which in practice amounts to
neglecting interactions evaluated at infinite distances. This is to be contrasted with total
time derivatives: in the in-in formalism, the lower bound of the time integrals is still taken at
(minus) infinity, but the upper one is living in the bulk of the inflationary spacetime or at its
finite-time boundary, where interactions may not be negligible, as we will see soon. At this
stage, we can note that we have reduced the size of the ζ(∂ζ)2 interaction by one more order of
slow-roll parameters, and we have generated another total time derivative. However, no term
proportional to the linear equation of motion appears from the manipulation of L(3)

B because
the total time derivative acts on a product of fields only, and not of their time derivatives.

After all simplifications, consisting in many integrations by parts and uses of linear
equations of motion as in the two examples we showcased, one finds the total cubic La-
grangian [6, 25, 35]:

L(3)(ζ, ζ̇) = −
(
U (3)(ζ, ζ̇) + dB(3)

dt (ζ, ζ̇) + E(3)(ζ, ζ̇)
)
, (2.7)

with

U (3)(ζ, ζ̇) = −M2
Pl a

3
[
ϵ(ϵ− η)ζ̇2ζ + ϵ(ϵ+ η)ζ (∂ζ)2

a2 + ϵ2
(
ϵ

2 − 2
)
ζ̇∂iζ∂i∂

−2ζ̇

+ ϵ3

4 ∂
2ζ
(
∂i∂

−2ζ̇
)2
]
, (2.8)

dB(3)

dt (ζ, ζ̇) = M2
Pl

d
dt

{
9Ha3ζ3 − a

H
(1 − ϵ)ζ(∂ζ)2 + 1

4aH3 (∂ζ)2∂2ζ + a3ϵ

H
ζζ̇2 (2.9)

+ ϵ2a3

2H ζ
(
∂−2ζ̇,ij∂

−2ζ̇,ij − ζ̇2
)
− ϵa

2H2 ζ
(
ζ,ij∂

−2ζ̇,ij − ∂2ζ ζ̇
)}

E(3)(ζ, ζ̇) = a3

H
Eζ

{
−ζ̇ζ + 1

4a2H

[
(∂ζ)2 − ∂−2∂i∂j(∂iζ∂jζ)

− 2a2ϵH
(
∂ζ∂χ− ∂−2∂i∂j(∂iζ∂j ζ̇)

)]}
,

where we defined ∂−2 as the inverse Laplacian operator: ∂−2∂2 = ∂2∂−2 = 1. For later
convenience, we have separated the final Lagrangian into usual interaction terms inside U ,
total time derivatives inside dB/dt, and terms proportional to the linear equation of motion
inside E . This result has then been extended to two-field inflation in ref. [28], and then to
any number of fields in ref. [29], where all steps of the simplifications are shown explicitly.
Primordial tensor perturbations have also been added in single-field inflation up to cubic order,
including their self-interactions and also their interactions with the scalar sector, see ref. [30].

2.2 The interaction picture

In perturbative calculations as described by the in-in formalism, one needs to define an
interaction picture by separating the Hamiltonian into a free part, defining the time evolution
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of the interaction picture fields and their propagators, and an interacting part, defining the
vertices of the theory. From L(2)(ζ, ζ̇) in eq. (2.4), we find the linear canonical conjugate
momentum to be

plin
ζ ≡ ∂L(2)(ζ, ζ̇)

∂ζ̇
= 2ϵa3M2

Plζ̇ , (2.10)

from which we deduce, after performing a Legendre transformation, that the quadratic
Hamiltonian density, which we define to be the free Hamiltonian Hfree, reads:

Hfree(ζ, pζ) ≡ H(2)(ζ, pζ) =
p2
ζ

4a3ϵM2
Pl

+ aϵM2
Pl (∂ζ)2 (2.11)

The interaction picture fields and momenta therefore verify the linear equations of motion

ζ̇I =
pIζ

2ϵa3M2
Pl

(2.12)

ṗIζ = 2ϵaM2
Pl∂

2ζI (2.13)

Combining those two equations, we find:

Eζ(ζI , ζ̇I) = 0 , (2.14)

meaning that the interaction picture fields identically verify the second-order linear equations
of motion dictated by L(2), as expected. Now that interaction picture fields are defined,
vertices of the theory need to be written down. Those are found from the interaction
Hamiltonian Hint(ζ, pζ) = H(ζ, pζ) − Hfree(ζ, pζ), but expressed in terms of interaction
picture fields and momenta, Hint(ζI , pIζ). Using the linear equation of motion relating ζ̇I to
pIζ , one may express the interaction Hamiltonian in terms of fields and their time derivatives
in the interaction picture.

In general, going from the Lagrangian to the full Hamiltonian H(ζ, pζ) requires defining
the non-linear momenta and performing the Legendre transformation consistently order by
order in fields and momenta. We find the cubic order interaction Hamiltonian of single-field
inflation, in the interaction picture, to read:

H(3)
int

(
ζI , p

I
ζ(ζI , ζ̇I)

)
= U (3)(ζI , ζ̇I) + dB(3)

dt (ζI , ζ̇I) . (2.15)

Note that an intermediate step of the calculation is the interaction Hamiltonian in terms
of the general phase-space variables (ζ, pζ). In order to get it, it is crucial to keep all three
contributions to the Lagrangian. In particular, terms proportional to the equations of motion
in E cancel second order derivatives of the fields in the subset of the dB/dt terms where B does
contain time derivatives of the fields. Only in the final expression Hint(ζ, pζ) did we express
the Hamiltonian in terms of interaction picture fields, for which one can use E(3)(ζI , ζ̇I) ∝
Eζ(ζI , ζ̇I) = 0. We will show more details of this procedure in a toy model with simpler
interactions in section 2.4. Eq. (2.15) confirms that H(3)

int

(
ζI , p

I
ζ(ζI , ζ̇I)

)
= −L(3)(ζI , ζ̇I), as

already well-known for Lagrangians without total time derivatives nor terms proportional to
the equations of motion. But a cubic Lagrangian may also generate quartic (and sometimes
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higher) order interactions in the interaction Hamiltonian, which is therefore not simply given
by minus the Lagrangian in general [36] (see also [37] for a review). Curiously, contributions
of this kind, i.e. terms of order four and more in the interaction Hamiltonian and arising
from cubic total time derivative interactions in the Lagrangian, have been overlooked in the
literature on single-field slow-roll inflation with canonical kinetic terms.

In particular, let us look at a subset of these interactions: dB(3)/dt ⊃ d
(
9a3HM2

Plζ
3) /dt

(we will consider them again and in greater detail in the insert page 13). It is easy to show
that, through a non-linear correction to the momentum, this cubic Lagrangian interaction
results in a quartic Hamiltonian interaction1

H(4)
int (ζI , pIζ) ⊃

729
4ϵ a

3H2M2
Plζ

4
I , (2.16)

whose size is inversely proportional to the slow-roll parameter ϵ. This term cannot be cancelled
by other contributions to H(4)

int , neither from L(3) as one can check explicitly, nor from L(4)

that we have not written. Indeed, it is possible to prove non-perturbatively that L(ζ, ζ̇) does
not contain any non-derivative interactions like ζn [6]; such interactions in the Lagrangian
would also violate the theorem of constancy of ζ on super-horizon scales [34, 39, 40]. This is
a rather troubling fact, that single-field inflation in slow roll predicts very large interactions
like in eq. (2.16). Actually, we will show that there are subtle cancellations: in-in diagrams
including this large quartic interaction are exactly cancelled by a subset of the same diagrams
where the quartic vertex is replaced by two cubic vertices B(3) and a “collapsed” internal
propagator. To see that, we first need to develop a perturbative in-in formalism in the
presence of total time derivatives.

2.3 Total time derivatives in the interaction Hamiltonian

Let us now take a step back and neither specify a particular field content nor the cosmological
background. We do not even specify particular kinds of non-linear interactions. We simply
consider fields ψa labelled by a, b, . . . and their canonically conjugate momenta pψ,a. We
suppose the total Hamiltonian has already been split into a free and an interaction part, as
H = Hfree +Hint. The interaction picture has been defined as the one in which fields and
momenta verify the equations of motion dictated by Hfree that we assume is quadratic, so
there exists a linear relation pIψ,a(ψbI , ψ̇bI). We also assume that the interaction Hamiltonian,
once written in terms of interaction picture fields and momenta, reads

HI
int ≡ Hint

(
ψaI , p

I
ψ,a(ψbI , ψ̇bI)

)
= U(ψaI , ψ̇aI ) + dB

dt (ψaI , ψ̇aI ) , (2.17)

where U encodes the usual interactions and dB/dt is a total time derivative. Each of these
two terms is generally a sum of different operators with various powers of the fields and
their time (and spatial) derivatives.

1In the Lagrangian path integral approach to the in-in formalism as presented in ref. [38], an equivalent
statement holds. Exchange diagrams with two Lagrangian cubic vertices corresponding to dB(3)/dt contain a
permutation for which the time derivatives of both vertices hit the internal propagator. For this permutation,
there exists a term ∝ δ(τ1 − τ2) where τ1,2 are the conformal times at which the two vertices are, leading to
an effective quartic unique vertex with strength exactly equal to eq. (2.16). However, other contributions will
eventually cancel out this particular permutation, as we show in section 2.5.
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In the operator approach of the in-in formalism, the vacuum expectation value of an
operator O is written:〈

Ô
〉

(t) =
〈

0
∣∣∣∣ T̄ [exp

{
i

∫ t

−∞+
dt′ĤI

int(t′)
}]

ÔI(t)T
[
exp

{
−i
∫ t

−∞−
dt′ĤI

int(t′)
}] ∣∣∣∣ 0〉 .

(2.18)
where the superscript in −∞± denotes the iϵ-prescription needed to regularize ambiguous
phases in the infinite past and project the vacuum of the full theory onto the one of the free
theory: |in⟩ → |0⟩. T and T̄ are the time and anti-time ordering operators respectively. An
important comment is that eq. (2.18) is nothing but a useful, compact formula to encode
perturbation theory at any order with the in-in formalism. Rigorously though, the time-
ordered exponential should really be understood as the re-summed series (in the following
we drop the superscript I in order to avoid cluttered notations)

lim
N→∞

N∑
n=0

(−i)n
∫ t

−∞−
dt1

∫ t1

−∞−
dt2 . . .

∫ tn−1

−∞−
dtnĤint(t1)Ĥint(t2) . . . Ĥint(tn) , (2.19)

and similarly for the anti-time ordered one. Forgetting for the moment the iϵ-prescriptions,
it will turn useful to use the so-called commutator form [21] of the in-in formalism at the
n-vertices order:〈

Ô
〉(n)

(t) = in
∫ t

−∞
dt1

∫ t1

−∞
dt2 . . .

∫ tn−1

−∞
dtn× (2.20)〈

0
∣∣∣ [Ĥint(tn),

[
Ĥint(tn−1), . . . ,

[
Ĥint(t1), Ô(t)

]
. . .
]] ∣∣∣ 0〉 .

Let us investigate more concretely the effects of the U and B terms composing Hint. We will
do so explicitly up to two vertices, but later we will generalize to any order.

One-vertex order. We get:〈
Ô
〉(1)

(t) = i

∫ t

−∞
dt1

〈
0
∣∣∣ [Û(t1), Ô(t)

] ∣∣∣ 0〉+ i
〈
0
∣∣∣ [B̂(t), Ô(t)

] ∣∣∣ 0〉 . (2.21)

First, any type of interactions encoded in U would contribute to
〈
Ô
〉(1)

(t), as even the
commutator of fields only, but at different times (t1 for the ones in U and t for the ones
in O) is always non-vanishing. Moreover, they are all integrated over time from the birth
of interactions on sub-Hubble scales to the external time t at which expectation values are
calculated. We now turn to the contribution from the total time derivative term B. Clearly,
the usual nomenclature boundary terms for total time derivative interactions carries, at first
order in vertices, a meaningful name: they only result in a local-in-time contribution evaluated
at the external time t.2 Note also that they only appear in a commutator with the external

2For in-out perturbation theory like in S-matrix amplitudes calculations in flat spacetime, the upper limit
of the time integrals is taken to be +∞. In that case, total time derivatives are always boundary terms
evaluated at infinity, where interactions are supposed to shut down adiabatically, so their contribution is
always vanishing. In cosmology, breaking of Lorentz invariance forbids one to take time integrals up to future
infinity and connect to a free theory with unambiguous vacuum. A consequence of this fact is the necessity
to use the more involved in-in formalism, but more generally this symmetry breaking can be considered as
the fundamental difficulty in computing cosmological correlation functions and understanding their analytic
structures.
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operator O. For definiteness, we now focus on cases where this external operator contains only
powers of fields and not of their conjugate momenta, O(ψa): scalar or tensor power spectra,
bispectra, trispectra, etc. We can then make use of the canonical commutation relations[

ψ̂a(t, x⃗), p̂ψ,b(t, y⃗)
]

= iδab δ
(3)(x⃗− y⃗) ⇐⇒

[
ψ̂a
k⃗
(t), p̂k⃗′ψ,b(t)

]
= iδab δ

(3)(k⃗ + k⃗′) . (2.22)

Let us consider different cases:

• If a B-term contains only fields and no time derivatives of the fields — i.e. no momenta
— then it commutes with O and its contribution to correlation functions vanishes
identically at this one-vertex order.

• If a B-term contains two or more powers of momenta, then at least one of them
will survive the operation consisting in taking the commutator. The corresponding
contribution, if not identically vanishing, may still be completely negligible in the
inflationary context, i.e. for an external time t at the end of inflation and scales
of cosmological interest. Indeed, if an adiabatic limit is reached on super-horizon
scales, which is both a necessary condition for inflation to remain predictive without a
full description of reheating and a fairly generic feature of inflationary models, then
conjugate momenta decay exponentially on super-horizon scales. Note however that
this contribution may not be negligible at external times t not taken at the end of
inflation, or during or slightly after non-attractor phases of inflation like ultra-slow-roll.

• If a B-term contains exactly one power of momenta, then its contribution may be
important if it is not suppressed by spatial gradients, which are as negligible as time
derivatives at the end of inflation for scales of cosmological interest.

The way we displayed usual interactions and total time derivative terms in the cubic in-
teractions in eqs. (2.7) is optimized to compute primordial bispectra as only few boundary
terms can contribute to correlation functions. For the scalar bispectrum specifically, only
the last boundary term in B(3) contains a single power of the momentum pζ , however it is
suppressed by spatial gradients that are exponentially small on super-horizon scales, and
it results in a completely negligible contribution [24, 25]. This is the main reason why one
usually disregards the contribution of total time derivative terms after having chosen them
appropriately. But, this intuition is based on one-vertex in-in perturbation theory in the
context of bispectrum calculations. Let us now investigate the two-vertices order.

Two-vertices order. The effect of total time derivatives interactions becomes more subtle
at the two-vertices order as they can mix, both together and with usual interactions. Dia-
gramatically, the two-vertices order also corresponds to the appearance of internal, so-called
“bulk-to-bulk” propagators. We find:〈

Ô
〉(2)

(t) =
∑

a,b∈{B,U}

〈
Ô
〉(2)

ab
(t) , (2.23)

〈
Ô
〉(2)

BB
(t) = −

∫ t

−∞
dt1

∫ t1

−∞
dt2

〈
0
∣∣∣∣∣
[

dB̂
dt2

(t2),
[

dB̂
dt1

(t1), Ô(t)
]] ∣∣∣∣∣ 0

〉
,
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〈
Ô
〉(2)

BU
(t) = −

∫ t

−∞
dt1

∫ t1

−∞
dt2

〈
0
∣∣∣∣∣
[

dB̂
dt2

(t2),
[
Û(t1), Ô(t)

]] ∣∣∣∣∣ 0
〉
,

〈
Ô
〉(2)

UB
(t) = −

∫ t

−∞
dt1

∫ t1

−∞
dt2

〈
0
∣∣∣∣∣
[
Û(t2),

[
dB̂
dt1

(t1), Ô(t)
]] ∣∣∣∣∣ 0

〉
,

〈
Ô
〉(2)

UU
(t) = −

∫ t

−∞
dt1

∫ t1

−∞
dt2

〈
0
∣∣∣ [Û(t2),

[
Û(t1), Ô(t)

]] ∣∣∣ 0〉 ,
where care needs to be taken due to the nested time integrals. We investigate each contribution
separately.

The BB contribution is rather simple, as the integral over t2 can be carried explicitly,
yielding a function of t1 and t only (we disregard contributions from t → −∞ as those
are consistently shut down by the iϵ-prescription, even if not explicited any more in the
above expressions),

B̂(t1)B̂′(t1)Ô(t) − B̂(t1)Ô(t)B̂′(t1) − B̂′(t1)Ô(t)B̂(t1) + Ô(t)B̂′(t1)B̂(t1) ,

which can be recast as a total derivative of t1 plus a remaining term, finally yielding〈
Ô
〉(2)

BB
(t) = − 1

2
〈
0
∣∣∣ [B̂(t),

[
B̂(t), Ô(t)

]] ∣∣∣ 0〉
− 1

2

∫ t

−∞
dt1

〈
0
∣∣∣∣∣
[[
B̂(t1), dB̂

dt1
(t1)

]
, Ô(t)

] ∣∣∣∣∣ 0
〉
. (2.24)

The first term shares some features with the first-order equivalent one: it is a local contribution
at the final time t and it only contributes to field correlation functions if it has at least one
term with one momentum. However, this time, different B-terms may mix non-trivially.
For example, consider B = B1 + B2, schematically with B1 ∼

∫
ψ3 and B2 ∼

∫
ψp2

ψ, and
O = ψ4, then [B̂(t), [B̂(t), Ô(t)]] ∼ ψ6(t) where no momenta survived the commutators. The
second term above, however, is still integrating over time, showing that the nomenclature
“boundary term” is not justified once one considers interactions involving at least two vertices,
and, therefore, internal propagators. As we will see, this term generally cancels with the
contribution from one-vertex diagrams with usual interactions but of higher order, that come
from switching from total time derivative interactions in the Lagrangian to the Hamiltonian.
Actually, such cancellation is precisely of the kind already mentioned at the end of the
previous section, needed to remove large contributions in single-field slow-roll inflation from
the large quartic interaction in eq. (2.16), as we show in the following insert.

Here, we consider only one cubic interaction with a total time derivative, and the corre-
sponding quartic interaction generated from going from the Lagrangian to the Hamiltonian,
in real space:

L(3)(ζ, ζ̇) ⊃ −dB(3)
A

dt (ζ, ζ̇) = − d
dt
(
9a3HM2

Plζ
3
)

(2.25)

=⇒ HI
int ⊃

∫
d3x⃗

[ d
dt
(
9a3HM2

Plζ
3
I

)
+ 729

4ϵ a
3H2M2

Plζ
4
I

]
. (2.26)

The first term is a total time derivative, let us call it B(3)
A , and the second one is a usual

interaction, let us call it U (4)
A = U

(4)
from−dB(3)

A /dt
. Let us add the contribution of the former at
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the two-vertices order to the one of the latter at the one-vertex order. For this, we compute
the following commutator appearing at the two-vertices order:

−1
2

[
B̂

(3)
A (t1), dB̂(3)

A

dt1
(t1)

]
= −1

2

∫
d3x⃗

∫
d3y⃗

[
9a3HM2

Plζ
3
I (x⃗, t1), 27a3HM2

Plζ
2
I (y⃗, t1)ζ̇I(y⃗, t1)

]
= −1

2 × 9 × 27 × 3i
2ϵ

∫
d3x⃗ a3H2M2

Plζ
4
I (x⃗, t1) , (2.27)

where we used the linear relation verified by interaction picture fields ζ̇I = pIζ/(2ϵa3M2
Pl), and

the equal-time commutation relation with appropriate symmetry factors
[ζ3
I (x⃗, t1), ζ2

I (y⃗, t1)pIζ(y⃗, t1)] = 3i × δ(3)(x⃗ − y⃗) × ζ4
I (x⃗, t1). Collecting the pre-factors, we

find the overall coefficient to be −729/(4ϵ). Adding this contribution to the one-vertex
contribution from U

(4)
A , we find:

i

∫ t

−∞
dt1

〈
0
∣∣∣ [Û (4)

A (t1), Ô(t)
] ∣∣∣ 0〉− 1

2

∫ t

−∞
dt1

〈
0
∣∣∣∣∣
[[
B̂

(3)
A (t1), dB̂(3)

A

dt1
(t1)

]
, Ô(t)

] ∣∣∣∣∣ 0
〉

= 0 ,

(2.28)
thus proving the exact cancellation. Note that the cancellation happens even in the integrand
of the t1-integral, so that there is a notion of effective quartic interaction, which exactly
vanishes in the example given above. We will come back to this notion soon. This example
shows also that it is inconsistent to take only the cubic Hamiltonian to compute a given cor-
relation function: one could wrongly interpret the result to be large from the [B(3), dB(3)/dt]
contribution, while it gets cancelled by carefully computing, and taking into account, U (4)

terms generated from the −B(3) term in the cubic Lagrangian density.
The BU contribution is found trivially after integrating explicitly over t2:〈

Ô
〉(2)

BU
(t) = −

∫ t

−∞
dt1

〈
0
∣∣∣ [B̂(t1),

[
Û(t1), Ô(t)

]] ∣∣∣ 0〉 , (2.29)

and constitutes yet another example where the total time derivative term is “integrated
over the history”, and not a “boundary term”.

The UB contribution is more subtle. We define F̂ (t1) =
∫ t1
−∞ dt2 Û(t2), in terms of

which we have:

F̂ (t1)B̂′(t1)Ô(t) − F̂ (t1)Ô(t)B̂′(t1) − B̂′(t1)Ô(t)F̂ (t1) + Ô(t)B̂′(t1)F̂ (t1) .

We then integrate by parts over t1 and we find two terms:〈
Ô
〉(2)

UB
(t) = −

∫ t

−∞
dt1

〈
0
∣∣∣ {[Û(t1),

[
B̂(t), Ô(t)

]]
−
[
Û(t1),

[
B̂(t1), Ô(t)

]]} ∣∣∣ 0〉 , (2.30)

with the first one verifying the usual statement about total time derivatives being boundary
terms, and with the second one which does not. Actually, the two terms BU and UB may
be rewritten together in a useful way as:〈

Ô
〉(2)

BU
(t) +

〈
Ô
〉(2)

UB
(t) = −

∫ t

−∞
dt1× (2.31)〈

0
∣∣∣ {[Û(t1),

[
B̂(t), Ô(t)

]]
+
[[
B̂(t1), Û(t1)

]
, Ô(t)

]} ∣∣∣ 0〉 .
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We argue that this form is enlightening as it enables one to conclude that total time
derivatives may also contribute to the bulk evolution (via B(t1) above) when mixing with
usual interactions U(t1), but only provided they do not commute with them.

The UU contribution, from usual interactions only, is the one that has always been
considered, and cannot be written more explicitly. We close this paragraph by re-arranging
in-in perturbation theory up to second order and in the commutator form, including both total
time derivatives (dB/dt) and usual interactions (U) in the interaction Hamiltonian explicitly.
This extends the in-in perturbative formalism to theories with total time derivatives:〈

Ô
〉

(t) =
〈
0
∣∣∣Ô(t)

∣∣∣0〉+i
〈
0
∣∣∣ [B̂(t),Ô(t)

] ∣∣∣0〉− 1
2
〈
0
∣∣∣ [B̂(t),

[
B̂(t),Ô(t)

]] ∣∣∣0〉 (2.32)

+i
∫ t

−∞
dt1

〈
0
∣∣∣{[Û(t1),Ô(t)

]
+
[
i[B̂(t1), Û(t1)],Ô(t)

]
+
[
Û(t1), i[B̂(t),Ô(t)]

]}∣∣∣0〉
+i
∫ t

−∞
dt1

〈
0
∣∣∣∣∣
[
i

2

[
B̂(t1), dB̂dt1

(t1)
]
,Ô(t)

]∣∣∣∣∣0
〉

−
∫ t

−∞
dt1

∫ t1

−∞
dt2

〈
0
∣∣∣ [Û(t2),

[
Û(t1),Ô(t)

]] ∣∣∣0〉+. . . ,

Contributions including total time derivatives interactions are highlighted.
Interestingly, all these new contributions, shown here explicitly up to two-vertices order,

may be recast as either a redefinition of the external operator O as an effective external
operator Õ, or a redefinition of the usual interactions U as effective interactions Ũ :

ˆ̃O ≡ Ô + i
[
B̂, Ô

]
− 1

2
[
B̂,
[
B̂, Ô

]]
+ . . . (2.33)

ˆ̃U ≡ Û + i
[
B̂, Û

]
+ i

2

[
B̂,

dB̂
dt

]
+ . . . . (2.34)

As we are going to see, this statement actually holds at any order in perturbation theory and
considerably simplifies the in-in formalism when total time derivatives interactions are present.

Any vertex order. We would like to generalize eqs. (2.33)–(2.34) beyond the two-vertices
order. The first line of eq. (2.32) seems straightforward to extend at any order as

∞∑
n=0

in

n!

〈
0

∣∣∣∣∣∣∣ [B̂(t)[B̂(t)[. . . , [B̂(t), Ô(t)] . . .]]︸ ︷︷ ︸
n commutators

∣∣∣∣∣∣∣ 0
〉
. (2.35)

If true, this would mean that we could redefine non-perturbatively the external operator O
to take into account this (infinite) subset of contributions. To build physical intuition, we
first show that this property indeed holds, and then only we will prove the general form of
eqs. (2.33)–(2.34) at any order including both redefinitions of O and U at once.

The effect O → Õ from total time derivatives interactions corresponds to the only
one that one would find by wrongly interpreting the “non-perturbative” expression of the
in-in perturbation theory, eq. (2.18), and performing explicitly the time integral inside the
exponential, inside the (anti-)time-ordering operators. Clearly, this procedure is wrong as it
misses all other contributions from total time derivatives that are still integrated over time. It
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has however been used in the past, in particular to justify that total time derivatives without
momenta of the fields inside could not participate to correlation functions made of fields only.
Although our findings will eventually agree with this statement, those proofs using the in-in
operator formalism are clearly incomplete as we show now. One can use the (left-ordered)
Zassenhaus formula for the exponential of the sum of two operators:

eX+Y = eXeY
∞∏
n=2

eCn(X,Y ) ,

with Cn living in the Lie algebra of (X,Y ), i.e. they can all be written only in terms of
n nested commutators of X and Y . For example, C2(X,Y ) = −[X,Y ]/2 , C3(X,Y ) =
(2[Y, [X,Y ]] + [X, [X,Y ]) /6 . . . Applying this left-ordered formula to the time-ordered ex-
ponential with X = −i

∫
dB/dt and Y = −i

∫
U , we are able to take the single B term

outside the operator T as

T

[
exp

{
−i
∫ t

−∞−
dt′
(
U + dB/dt′

)}]
= exp {−iB(t)}T

[
exp

{
−i
∫ t

−∞−
dt′ U

}
(2.36)

×
∞∏
n=2

exp
{
Cn

(
−i
∫ t

−∞−
dt′ dB/dt′,−i

∫ t

−∞−
dt′ U

)}]
.

Similarly, the anti-time-ordered product may be rewritten by using the right-ordered Zassen-
haus formula

e−X−Y =
2∏

n=∞
eC̃n(−X,−Y )e−Y e−X ,

with C̃n(X,Y ) = (−1)n+1Cn(X,Y ), giving

T̄

[
exp

{
i

∫ t

−∞+
dt′
(
U + dB/dt′

)}]
(2.37)

= T̄

[ 2∏
n=∞

exp
{

(−1)n+1Cn

(
i

∫ t

−∞+
dt′ dB/dt′, i

∫ t

−∞+
dt′ U

)}

exp
{
−i
∫ t

−∞+
dt′ U

}]
exp {iB(t)} .

Unfortunately, there is no closed formula for the Cn’s (see however ref. [41] for an efficient
algorithm to compute them recursively up to a given order n and ref. [42] for an explicit
expression for e−XeX+Y although not in terms of commutators only). Therefore, this formula
is not particularly useful to perform concrete calculations in perturbation theory. However,
it does prove the non-perturbative form of Õ in terms of O as:

ˆ̃O(t) = eiB̂(t)Ô(t)e−iB̂(t) , (2.38)

which exactly coincides with the infinite series expansion that we guessed in eq. (2.35).
Expressions (2.36)–(2.37), although not explicit, also prove the presence of additional non-
zero contributions from B integrated over time when mixing either with itself or with ordinary
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interactions in U . Importantly, this proves also that these contributions are always in the
form of commutators and start at the two-vertices order only, given the properties of the Cn’s.

We are now ready for the general proof, which is rather short and elegant. We define
the usual interaction-picture evolution operator as

F̂ (t, t0) = T

[
exp

{
−i
∫ t

t0
dt′Ĥint(t′)

}]
. (2.39)

F̂ is a unitary operator and its Hermitian conjugate defines the inverse evolution along the
anti-time ordered path. The general in-in formula (2.18) is precisely found by separating the
full Hamiltonian into a free part dictating the dynamics of the interaction picture fields and
momenta, and an interaction part that dictates the evolution of F̂ as

i
∂F̂ (t, t0)

∂t
= Ĥint(t)F̂ (t, t0) . (2.40)

We now split Hint = U + dB/dt, and we define a new evolution operator F̃ as

F̂ (t, t0) = e−iB̂(t) ˆ̃F (t, t0) . (2.41)

One can then find the equation of evolution of F̃ using the one for F and their relation
through eq. (2.41), being careful about the fact that B does not commute with dB/dt:

i
∂ ˆ̃F (t, t0)

∂t
=
{
eiB̂(t)

[
Û(t) + dB̂(t)

dt + ie−iB̂(t) d
dt
(
eiB̂(t)

)]
e−iB̂(t)

}
ˆ̃F (t, t0) . (2.42)

This equation can be formally solved with a time-ordered product and we can retrieve the
initial evolution operator as:

F̂ (t, t0) = e−iB̂(t) T

[
exp

{
−i
∫ t

t0
dt′ ˆ̃U(t′)

}]
, (2.43)

where, remarkably, we were able to define the effective interactions Ũ non-perturbatively as:

ˆ̃U(t) = eiB̂(t)
[
Û(t) + dB̂(t)

dt + ie−iB̂(t) d
dt
(
eiB̂(t)

)]
e−iB̂(t) . (2.44)

This expression was quoted in a different context and without proof by Weinberg in ref. [21].
Following similar steps for the anti-time-ordered path of the in-in, finally setting t0 → −∞±,3
we eventually find〈

Ô
〉

(t) = ⟨0|T̄
[
exp

{
i

∫ t

−∞+
dt′ ˆ̃U(t′)

}]
eiB̂(t)ÔI(t)e−iB̂(t)︸ ︷︷ ︸

ˆ̃OI(t)

T

[
exp

{
−i
∫ t

−∞−
dt′ ˆ̃U(t′)

}]
|0⟩ .

(2.45)
3Strictly speaking, the iϵ-prescription to adiabatically shut down interactions in the infinite past time

breaks the unitarity property of the evolution. See [43] for an interesting discussion on this topic, as well
as [44] for the proposition of a different prescription that respects unitarity and allows for a manifestly causal
in-in perturbation theory.
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This proves non-perturbatively that one can write the expectation value of interest in the
theory of interest including both usual interactions and total time derivatives ⟨Ô⟩Û ,B̂ in
terms of an expectation value of another operator in another theory without total time
derivatives interactions: 〈

Ô
〉
Û ,B̂

=
〈 ˆ̃O
〉

ˆ̃U
. (2.46)

Expressions for Õ and Ũ have been found first perturbatively up to two-vertices orders in
eqs. (2.33)–(2.34), then non-perturbatively in eqs. (2.38)–(2.44). For performing concrete
perturbative calculations, it will prove useful to also expand these non-perturbative formulas
at arbitrary finite vertex order n as:

ˆ̃O =
∞∑
n=0

in

n!
(
LB̂
)n · Ô ≡ eiLB̂ · Ô (2.47)

ˆ̃U =
∞∑
n=0

in

n!
(
LB̂
)n · Û +

∞∑
n=0

n in

(n+ 1)!
(
LB̂
)n · dB̂

dt (2.48)

≡ eiLB̂ · Û +
eiLB̂ (iLB̂ − 1) + 1

iLB̂
· dB̂

dt ,

where we have defined the operation “taking the commutator of . . . with B̂” as LB̂ with

LB̂ · X̂ ≡
[
B̂, X̂

]
=⇒

(
LB̂
)n · X̂ =

[
B̂,
[
B̂,
[
. . . ,

[
B̂, X̂

]
. . .
]]]

︸ ︷︷ ︸
n commutators

(2.49)

and where in the second lines above we have defined a non-perturbative version of the
infinite sums of such commutators. Looking at n ⩽ 2 in those equations, we consistently
recover eqs. (2.33)–(2.34).

We conclude this section by summarizing what we have learnt about total time derivative
terms in the Lagrangian, and all possible ways they can affect expectation values of an operator:

• If L ⊃ −dB/dt, we have seen that it generates the same interaction with an opposite
sign in the interaction Hamiltonian in terms of interaction picture fields and momenta,
plus a new contribution as a usual interaction but of higher-order in powers of fields
and momenta, HI

int ⊃ dB/dt+ Ufrom−dB/dt;

• The resulting total-time derivative interaction in the Hamiltonian redefines the external
operator O whose expectation values are sought for. This effect really corresponds to a
“boundary term”, and it is the only one that was considered before this work, as it is
the only relevant one for the computation of the primordial bispectrum at tree level;

• B terms in the interaction Hamiltonian also contribute as integrated over time, i.e.
as redefining effective interactions, which cannot be understood as a “boundary term”
effect.

• For B-terms that do not contain powers of the momenta inside the total time derivative,
we have proved that this last contribution at the two cubic vertices order exactly cancels
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the one from the quartic Ufrom−dB/dt at the one-vertex order. Furthermore, in the
particular case where the Lagrangian interactions are made only of total time derivatives
of fields as L − L(2) = −dB/dt (and no usual interactions), it is straightforward to
prove that these cancellations happen at every order in vertices and powers of the fields.
Therefore, these interactions do not affect correlation functions O made of fields only.
Indeed, one finds Õ = O and Ũ = dB/dt+ Ufrom−dB/dt + i[B, dB/dt]/2 = 0, which is
an exact expression since B commutes with [B, dB/dt] and with Ufrom−dB/dt. We find
the general proof of this statement when the Lagrangian interactions also contain usual
interactions −U rather cumbersome in this formalism, as many cancellations should be
sought for in Ũ between different vertex orders. Instead, we will prove the equivalent
statement with a different approach in section 3.

We now show concrete calculations of correlation functions for two toy models, in order to
get more intuition on the aforementioned cancellations within the in-in perturbation theory
with total time derivative interactions. The reader not interested in these calculations may
directly jump to section 2.5 and section 3, where we present alternative methods to compute
the same expectation values in a more direct way.

2.4 Toy models

We here define two toy models of a single scalar degree of freedom ψ(x⃗, t) and its momentum
pψ(x⃗, t). In both cases, we consider the following quadratic Lagrangian:

L(2)(ψ, ψ̇) = c(t)
2
[
ψ̇2 − (∂ψ)2

]
, (2.50)

with c(t) a time-varying parameter. For t→ τ the conformal time and ψ̇ = dψ/dt→ ψ′ =
dψ/dτ , with S =

∫
dτL, ψ = ζ and c = 2a2ϵM2

Pl, one recovers the quadratic Lagrangian of
single-field inflation with canonical kinetic terms. However in the following we remain generic
and do not specify neither a cosmology nor a particular field content. This Lagrangian results
in the following quadratic Hamiltonian, which we define as the free Hamiltonian:

Hfree(ψ, pψ) ≡ H(2)(ψ, pψ) =
p2
ψ

2c + c

2(∂ψ)2 . (2.51)

In particular, interaction picture fields and momenta verify:

ψ̇I =
pIψ
c
, (2.52)

ṗIψ = c ∂2ψI .

By combining Hamilton’s equations, we find d
(
cψ̇I

)
/dt− c ∂2ψI = 0, which corresponds to

the linear equations of motion one would derive from the quadratic Lagrangian. We now
specify to two different interacting theories.
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2.4.1 No time derivatives inside the total time derivative interaction

The first toy model contains the following cubic order Lagrangian density, with both a total
time derivative and a usual interaction:

L(3)(ψ, ψ̇) = − d
dt
(
α(t)ψ3

)
︸ ︷︷ ︸

−dB(3)/dt

−β(t)ψ̇ψ2︸ ︷︷ ︸
−U(3)

, (2.53)

with α(t), β(t) two time-varying parameters. Together with the quadratic Lagrangian, it can
be used to derive the full Hamiltonian density of the theory, H, from the full momentum
pψ = cψ̇ − (β + 3α)ψ2:

H(ψ, pψ) = H(2)(ψ, pψ) + (β + 3α)pψψ2

c
+ α̇ψ3 + 1

2c(β2 + 6αβ + 9α2)ψ4 , (2.54)

which is an exact expression. Having done so, one can evaluate the interaction Hamiltonian
Hint = H − Hfree in terms of interaction picture fields, and replace the momentum using
the linear equations of motion, giving:

HI ≡
∫

d3x⃗Hint(ψI , pIψ(ψI , ψ̇I))

=
∫

d3x⃗


d
dt
(
αψ3

I

)
︸ ︷︷ ︸
→ dB/dt

+βψ̇Iψ
2
I︸ ︷︷ ︸

→ U(3)

+ 1
2c(β2 + 6αβ + 9α2)ψ4

I︸ ︷︷ ︸
→ U

(4)
from L(3)

 , (2.55)

where we were able to re-form the total time derivative at cubic order, as in the Lagrangian
but with an opposite sign. We identify this term as dB/dt in the notations of the previous
section. Once more, we also note the appearance of new quartic interaction, with a size
inversely proportional to the normalisation of the quadratic order Lagrangian, c. In single-field
inflation where c ∝ ϵ1 and α ∝ ϵ0, this leads in particular to the large quartic interaction
inversely proportional to ϵ that we have already encountered. There are also two other quartic
terms, including one that mixes the two Lagrangian cubic interactions non-trivially and is
∝ α× β. We identify the cubic interaction ∝ β plus the new quartic interactions as the term
U = U (3) + U

(4)
fromL(3) in the notations of the previous section.

Using this interaction Hamiltonian, we can now compute correlation functions of the
theory. For this, we will take the shortest route, using the lessons learnt in the previous
section, and compute the effective external operator Õ and usual interactions Ũ . We find:

Ũ = U + i [B,U ] + i

2

[
B,

dB
dt

]
=
∫

d3x⃗

(
βψ̇Iψ

2
I + β2

2c ψ
4
I

)
, (2.56)

where we used the derivative of an exponential operator and the fact that B commutes with
[B, dB/dt] and with [B,U ] to write an exact expression for Ũ at all orders. This proves the
cancellation between two of the possible effects from cubic total time derivative terms dB/dt in
the Lagrangian: induce in the Hamiltonian usual interactions Ufrom−dB/dt of higher order, and
modify interactions into new effective ones U → Ũ . Evidently, the cancellation happens even
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in the presence of additional interactions (here ∝ β) which mix non-trivially. Now, we want
to compute Õ, a step for which we first need to specify the correlation function of interest, i.e.
O. In cosmology, we are typically interested in the bispectrum, the trispectrum, the one-loop
power spectrum, etc. For all these correlation functions, the external operator O is only made
of fields. Since in this example, B is also made of fields only, it is straightforward to show that:

Õ = O . (2.57)

We have therefore proved, without even calculating correlation functions explicitly, that the
total time derivative cubic interaction ∝ α in the Lagrangian, eq. (2.53), does not generate
at all a bispectrum, nor a trispectrum, nor a one-loop correction to the power spectrum, etc.
Note however that the statement is non-trivial in the sense that we used cancellations between
different vertex orders of the in-in perturbation theory. Of course, the usual interaction
∝ β in eq. (2.53) does correspond to non-linearities that will generate those (corrections to)
correlation functions, but in a way that is not affected by the presence of the total time
derivative interaction, as can be seen from the absence of the parameter α in (Ũ , Õ). In
particular the Hamiltonian quartic interaction mixing the two Lagrangian cubic non-linearities
and ∝ α× β, was cancelled by the term i[B,U ] in the expression of the effective interaction
Ũ . This is the first proof of this paper that total time derivative interactions made of fields
only do not contribute to correlation functions of fields, at any order in vertex theory and
including mixed diagrams with other vertices from usual interactions. We show a second proof
of this in the next paragraph below, and a third proof using the Lagrangian path integral
approach is proposed in section 2.5. Note also that the Lagrangian interaction ∝ β can
almost be written as a total time derivative interaction without time derivatives of the fields
inside, indeed βψ̇ψ2 = d

(
βψ3/3

)
/dt − β̇ψ3/3. Therefore, from the current discussion, we

already know that the final contributions to correlation functions from this interaction must
be proportional to β̇, and not β. Indeed, one can write Ũ = dB′/dt+ U ′ with B′ = βψ3

I/3
and where U ′ contains the cubic interaction ∝ β̇ and the quartic interaction ∝ β2. This
procedure indeed results in a new effective operator ˜̃U = Ũ − β2ψ4

I/(2c) = −β̇ψ3
I/3, and with

˜̃O = O for correlation functions of fields only, thus proving our point.
Actually, it would have been straightforward to reach the same conclusions by avoiding

the definition of the perturbative theory with interaction picture fields to begin with, and
simply write the a priori non-linear equations of motion for the full fields:

0 =
δ
(
L(2) + L(3)

)
δψ

(2.58)

= d
dt
[
cψ̇ − (β + 3α)ψ2

]
− c∂2ψ + 3α̇ψ2 + 2(β + 3α)ψ̇ψ

= d
dt
(
cψ̇
)
− c∂2ψ − β̇ψ2 ,

where the two contributions from the total time derivative cubic term cancel each other. Note
also how the interactions ∝ β combine to result in a contribution ∝ β̇ only, as already shown
above. This shows that at the non-perturbative level, the total time derivative interaction in
eq. (2.53) does not affect the dynamics of the field ψ, making for the second proof. The lesson
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of this short paragraph is that the perturbative in-in formalism with total time derivatives
may be unnecessary complicated, with cancellations to be sought for between different orders
of the perturbation theory.

Also, if we write the Hamilton equations from the full Hamiltonian in eq. (2.54),

ψ̇ = pψ
c

+ (β + 3α)ψ2

c
, (2.59)

ṗψ = c∂2ψ − 2
c

(β + 3α)ψpψ − 3α̇ψ2 − 2
c

(β2 + 6αβ + 9α2)ψ3 ,

we do find that those are non-linear even when β̇ = 0. Of course, by combining them we
retrieve the second-order equations of motion (2.58), which are much simpler. The conclusion
is that a total time derivative term in the Lagrangian −dB/dt where B is a function of fields
only, and not of time derivatives of the fields — i.e. momenta —, does not contribute to
correlation functions of fields, although they do affect the correlation functions of momenta.
Indeed, if e.g. O = ψ2pψ, then Õ ̸= O. This can also be seen from the comparison between
the second-order equation of motion for ψ — linear when β̇ = 0 — and the first-order
equations for (ψ, pψ) — non-linear even when β̇ = 0. This simple example also already
points towards the idea that there may be a “better” notion of conjugate momentum. We
will come back to this in section 3.

2.4.2 Time derivatives inside the total time derivative interaction

The second toy model contains the following cubic order Lagrangian density, with both a
total time derivative of a function of a time derivative, and a term proportional to the linear
equations of motion, as they always appear in pairs:

L(3)(ψ, ψ̇) = d
dt
(
c(t)ψ̇ψ2

)
︸ ︷︷ ︸

−dB(3)/dt

−
[ d

dt
(
c(t)ψ̇

)
− c(t)∂2ψ

]
ψ2︸ ︷︷ ︸

−E(3)

(2.60)

= 2cψ̇2ψ + cψ2∂2ψ .

For simplicity we have assumed that the size of this interaction is proportional to the
same homogeneous function c(t) appearing in the free Lagrangian. Developing the total
time derivatives as we did in the second line of this expression, one can check the explicit
cancellation of terms proportional to ψ̈, as expected. There is therefore a single degree of
freedom in the system, characterized by a momentum pψ = cψ̇+ 4cψ̇ψ. This expression needs
to be inverted, ψ̇ = (pψ/c) × (1 + 4ψ)−1 in order to derive the Hamiltonian density as the
Legendre transform of the Lagrangian. Clearly, the expression becomes non-perturbative
with inverse powers of the field ψ. We therefore consistently expand the Hamiltonian up
to quartic order in fields and momenta, which requires the expression of ψ̇(ψ, pψ) up to
quadratic order only, giving:

H(ψ, pψ) = H(2)(ψ, pψ) − 2
p2
ψψ

c
− cψ2∂2ψ + 8

p2
ψψ

2

c
+ . . . , (2.61)

where we omitted terms of order five or more. Having done so, one can evaluate the
interaction Hamiltonian Hint = H−Hfree in terms of interaction picture fields, and replace
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the momentum using the linear equations of motion, giving:

HI ≡
∫

d3x⃗Hint(ψI , pIψ(ψI , ψ̇I)) =
∫

d3x⃗

− d
dt
(
cψ̇Iψ

2
I

)
︸ ︷︷ ︸

→ dB(3)/dt

+ 8cψ̇2
Iψ

2
I︸ ︷︷ ︸

→ U
(4)
from L(3)

 . (2.62)

In particular, in this expression, we have used that EI =
∫
E(ψI , ψ̇I) = 0. Once more, we see

that at cubic order the interaction Hamiltonian is given by minus the Lagrangian expressed
in terms of interaction picture fields, while a new interaction is generated at quartic order.
Note also that keeping in the initial cubic Lagrangian density, the terms proportional to the
linear equation of motion, was crucial to correctly define the momentum and the Hamiltonian
of the theory. Moreover in this example, one can observe the qualitative differences between
the full and the interaction Hamiltonians.

Effective interactions. Having identified a total time derivative, dB/dt, and usual interac-
tions, U , we can proceed with the computation of the effective interactions Ũ in an equivalent
theory without total time derivatives. The derivation is complicated by the fact that B does
not commute neither with U , nor with dB/dt, nor with their commutators with itself, [B,U ]
and [B,dB/dt]. However, we have already truncated interactions at the quartic order in
the full Hamiltonian, so it would be inconsistent to proceed more generally at a later stage.
Therefore, we consistently compute effective interactions up to quartic order in interaction
picture fields and their time derivatives. Given the interactions at hand, this calculation
only requires the two-vertices order expression for Ũ of eq. (2.34). We find i[B̂, Û ] to yield a
quintic order interaction, and therefore to be negligible. We also find

i

2[B, dB/dt](t) = ic2(t)
2

∫
d3x⃗

∫
d3y⃗

[
ψ̇I(t, x⃗)ψ2

I (t, x⃗), 2ψ̇2
I (t, y⃗)ψI(t, y⃗) + ψ2

I (t, y⃗)∂2ψI(t, y⃗)
]

= −3c(t)
∫

d3x⃗ ψ̇2
I (t, x⃗)ψ2

I (t, x⃗) + 5
3c(t)

∫
d3x⃗ ψ3

I (t, x⃗)∂2ψI(t, x⃗) . (2.63)

Up to quartic order, we therefore have:

Ũ = U + i

2[B, dB/dt] =
∫

d3x⃗

(
5cψ̇2

Iψ
2
I + 5c

3 ψ
3
I∂

2ψI

)
. (2.64)

Note that, quite strikingly, these two interactions can be further simplified as a total time
derivative using the linear equation of motion for ψI :

Ũ =
∫

d3x⃗

[ d
dt

(5c
3 ψ̇Iψ

3
I

)]
, (2.65)

Identifying this term as total time derivative interaction dB(4)/dt, we can iterate the cal-
culation of effective interactions without it, and we simply find

˜̃U = 0 + . . . , (2.66)

where, once more, we truncated at quartic order.
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We now want to compute the effective external operator Õ — respectively ˜̃O — corre-
sponding to the theory without the cubic total time derivative — respectively without cubic
nor quartic total time derivatives. This time, since B-terms involve time derivatives of the
fields, their commutators with O are non-trivial even when the latter is only composed of
fields. We therefore separate the calculations for different correlation functions.

Bispectrum. We first compute the tree-level three-point function of the theory, in Fourier
space, i.e.

O = ψ
k⃗1
ψ
k⃗2
ψ
k⃗3
. (2.67)

Only the interaction Hamiltonian up to cubic order is relevant. Since U (3) = 0, only the
effect of dB(3)/dt is relevant. Using eq. (2.34) it is straightforward to find that the tree-level
bispectrum can be found from an equivalent theory without interactions at all (Ũ (3) = 0),
but with a modified external operator

⟨O⟩B(3) =
〈
Õ
〉

0
(2.68)

= i

〈
0
∣∣∣∣∣
∫ ( 3∏

i=1

d3q⃗i
(2π)3

)
δ(3)

( 3∑
i=1

q⃗i

)[
−cψ̇q⃗1

I ψ
q⃗2
I ψ

q⃗3
I , ψ

k⃗1
I ψ

k⃗2
I ψ

k⃗3
I

] ∣∣∣∣∣ 0
〉
. (2.69)

Taking into account permutations, and defining the bispectrum as〈
ψ
k⃗1
ψ
k⃗2
ψ
k⃗3

〉
= (2π)3δ(3)

( 3∑
i=1

k⃗i

)
Bψ(k1, k2, k3) , (2.70)

we find:

Bψ(k1, k2, k3) = −2 [Pψ(k1)Pψ(k2) + Pψ(k2)Pψ(k3) + Pψ(k3)Pψ(k1)] , (2.71)

where we have defined Pψ(k) the two-point function of interaction picture fields,
〈
ψk⃗Iψ

k⃗′
I

〉
=

(2π)3δ(3)(k⃗ + k⃗′)Pψ(k). This bispectrum corresponds to a local shape, with an amplitude
f loc

NL = −5/3. Note that we used only the 1-vertex order of the effective external operator Õ,
even though in principle higher orders like [B, [B,O]], etc., also generate non-zero contributions.
One can check, however, that those additional terms all contribute at a higher loop level.
It is therefore consistent to neglect them at tree level, which we have assumed any way to
consider only cubic (and not quintic, etc.) interactions to start with.

Trispectrum. We now turn to the computation of the trispectrum, the connected four-point
correlation function. It is the lowest n-point function for which non-trivial effects of the
total time derivatives, and Lagrangian versus Hamiltonian interactions, can be seen at tree
level. We consider

O = ψ
k⃗1
ψ
k⃗2
ψ
k⃗3
ψ
k⃗4
, (2.72)

and we remind that we are interested in the connected piece only:〈
ψ
k⃗1
ψ
k⃗2
ψ
k⃗3
ψ
k⃗4

〉
c

=
〈
ψ
k⃗1
ψ
k⃗2
ψ
k⃗3
ψ
k⃗4

〉
−
[
Pψ(k1)Pψ(k2)δ(3)(k⃗1 + k⃗3)δ(3)(k⃗2 + k⃗4) + 2 perm.

]
= (2π)3δ(3)

( 4∑
i=1

k⃗i

)
Tψ(k⃗1, k⃗2, k⃗3, k⃗4) , (2.73)
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where the second line serves as a definition for the trispectrum, which in general can be a
function of the four vectors k⃗i, and not just their norms. The shortest route to the final
result consists in considering the effective interaction ˜̃U in eq. (2.66), coming from both cubic
and quartic total time derivatives B = B(3) +B(4) = −cψ̇Iψ2

I + 5cψ̇ψ3/3. In that case, we
read from eq. (2.34) that ˜̃O receives two corrections, and therefore that

⟨O⟩U,B(3) =
〈
Õ
〉
Ũ=dB(4)/dt

=
〈 ˜̃O
〉

0
(2.74)

= ⟨0 | O | 0⟩ + i
〈
0
∣∣∣ [B(4),O]

∣∣∣ 0〉− 1
2
〈
0
∣∣∣ [B(3), [B(3),O]]

∣∣∣ 0〉
+ . . .

where we have consistently truncated the result at tree level.
The first term,

〈
0
∣∣∣ψk⃗1

ψ
k⃗2
ψ
k⃗3
ψ
k⃗4

∣∣∣ 0〉, corresponds precisely to the disconnected piece of
the four-point function, Pψ(k1)Pψ(k2)δ(3)(k⃗1 + k⃗3)δ(3)(k⃗2 + k⃗4) + 2 perm.

The second term gives a connected contribution (we factor out the (2π)3δ(3)(∑4
i=1 k⃗i)):

i

〈
0
∣∣∣∣∣
∫ ( 4∏

i=1

d3q⃗i
(2π)3

)
δ(3)

( 4∑
i=1

q⃗i

)[5c
3 ψ̇

q⃗1
I ψ

q⃗2
I ψ

q⃗3
I ψ

q⃗4
I , ψ

k⃗1
I ψ

k⃗2
I ψ

k⃗3
I ψ

k⃗4
I

] ∣∣∣∣∣ 0
〉′

= 10 [Pψ(k1)Pψ(k2)Pψ(k3) + 3 perm.] . (2.75)

The total of four permutations comes from choosing which of the k⃗i’s is taken to commute
with ψ̇, also giving a factor −i/c. A symmetry factor of 6 = 3! also arises from equivalent
permutations of the connected contractions amongst the remaining six ψ, giving the prefactor
i × (5c/3) × (−i/c)× = 10. This contribution consists in a local trispectrum shape of the
gNL kind, as can be found from a local parameterization of non-linearities as ψ(t, x⃗) =
ψGaussian(t, x⃗) + (9gloc

NL/25)ψ3
Gaussian(t, x⃗).

The third term has more complicated combinatorics, but it is straightforward to find
that it gives

− 1
2

∫ ( 3∏
i=1

d3q⃗i
(2π)3

)
δ(3)

( 3∑
i=1

q⃗i

)∫ ( 3∏
i=1

d3p⃗i
(2π)3

)
δ(3)

( 3∑
i=1

p⃗i

)

×
〈
0
∣∣∣ [cψ̇q⃗1

I ψ
q⃗2
I ψ

q⃗3
I , [cψ̇

p⃗1
I ψ

p⃗2
I ψ

p⃗3
I , ψ

k⃗1
I ψ

k⃗2
I ψ

k⃗3
I ψ

k⃗4
I ]
] ∣∣∣ 0〉′

= 6 [Pψ(k1)Pψ(k2)Pψ(k3) + 3 perm.] + 4 [Pψ(k1)Pψ(k2)Pψ(k13) + 11 perm.] , (2.76)

where k13 = |⃗k1 + k⃗3|, etc., and the 12 permutations correspond to the 4! possible permu-
tations of the ordered four k⃗i, with half of them being explicitly equal. This corresponds
to a local trispectrum shape, with both a gNL contribution and a τNL contribution, as
can be found from a local parameterization of non-linearities as ψ(t, x⃗) = ψGaussian(t, x⃗) +
(3f loc

NL/5)
(
ψ2

Gaussian(t, x⃗) −
〈
ψ2

Gaussian(t, x⃗)
〉)

+ (9gloc
NL/25)ψ3

Gaussian(t, x⃗). Together with the
previous contribution, we find the total shape of the trispectrum to be local, Tψ = T loc

ψ , with

T loc
ψ = τNL [Pψ(k1)Pψ(k2)Pψ(k13)+11 perm.]+ 54

25gNL [Pψ(k1)Pψ(k2)Pψ(k3)+3 perm.]

with τNL =
(

6f loc
NL
5

)2

= 4 and gNL = gloc
NL = 200

27 . (2.77)
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Note that, as expected, we recovered the single-field consistency relation for local non-
Gaussianities, relating the exchange trispectrum to the bispectrum through τNL =

(
6f loc

NL/5
)2

.
The conclusion is that an interaction in the form of a total time derivative of a function

including a time derivative of the field does contribute to correlation functions, a priori both
as a boundary term and as effective interactions to be integrated over the cosmic history.
We have shown in practice how to compute correlation functions in theories involving these
interactions, where considering different vertices-orders of the in-in perturbation theory was
crucial to get a consistent result. Although suitable to perform concrete calculations, it
would be desirable to have a simpler framework to deal with these interactions. This is
the point of section 3. Before that, we comment on another version of the in-in formalism
with total time derivative interactions.

2.5 Lagrangian path integral formulation

Another formulation of the in-in, equivalent to the operator formalism that is the main
focus of this work, is provided by the in-in path integral approach [45, 46], sometimes
dubbed “Schwinger-Keldysh” to honor the authors of these references. In this approach,
one manipulates classical field configurations instead of quantum operators. However, as
we quickly review in the following, interactions are still specified by operators acting as
derivatives with respect to external currents, which also leads to a number of subtleties.
The Schwinger-Keldysh, in-in, partition function with external currents can be derived from
first principles; in perturbation theory it reads

Zin−in
[
J±,K±]= exp

{{
−i
∫

dt
∫

d3x⃗

(
Hint

[
ψ+ → δ

iδJ+
,p+
ψ → δ

iδK+

]
−(+↔−)

)}}
×Z free

in−in
[
J±,K±] ,

with Z free
in−in

[
J±,K±]=

∫
C(t,−∞±)

Dψ±Dp±ψ δ(ψ
+(t)−ψ−(t)) (2.78)

×exp
{
i

∫
dt
∫

d3x⃗
[
p+
ψ ψ̇

+−H+
free+J+ψ++K+p+

ψ−(+↔−)
]}

.

The path integral follows a closed time path from −∞ (with slight deformations in the complex
plane in order to implement the iϵ-prescriptions) to the external time t at which one wants
to compute observables, and back to −∞, as denoted by C(t,−∞±). Fields and momenta in
each of the two branches, forward time evolution and backwards one, are independent in the
bulk of the closed time path, hence we have defined them with a superscript ±. Importantly,
at the external time t, the two branches of the path integral are sewn; this means that
field configurations ψ± (and not momenta) need to coincide at t and that the degrees of
freedom + and − are actually not completely independent. We have already defined the
path integral in a perturbation theory, with the total Hamiltonian divided into a free part
and an interacting one, as in the operator formalism. The free partition function can be
used to define propagators of the free theory, and derivatives with respect to the external
currents J± and K±, generated by the interaction Hamiltonian, bring down respectively
powers of ψ± and p±ψ in the path integral. These operations can be neatly encompassed by
a diagrammatic representation with vertices and propagators.
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But before that, and importantly for the matter of this work given the aforementioned
complications with the Hamiltonian operator formalism when the Lagrangian contains
total time derivative interactions, we define a simplified path integral approach at the
level of the interaction Lagrangian. When the (full) Hamiltonian is only quadratic in the
momenta pψ, one can explicitly integrate over them in the closed-time-path integral, giving
schematically

∫
DψDpψei

∫
(pψψ̇−H) →

∫
D′ψei

∫
L, where L is the Lagrangian density of the

theory. Although this procedure can be performed exactly, we are interested in situations
where the Hamiltonian density may contain cubic or quartic interactions with momenta.
Fortunately for us, it was proved that up to quartic order in the momenta, the path integral
over momenta can still be performed perturbatively, leading to [38] (see also [47])

Zin−in
[
J±] = exp

{{
i

∫
dt
∫

d3x⃗

(
Lint

[
ψ+ → δ

iδJ+

]
− (+ ↔ −)

)}}
Z free

in−in
[
J±] ,

with Z free
in−in

[
J±] =

∫
C(t,−∞±)

D′ψ±δ(ψ+(t) − ψ−(t)) (2.79)

× exp
{
i

∫
dt
∫

d3x⃗
[
L+

free + J+ψ+ − (+ ↔ −)
]}

,

where Lfree is the free Lagrangian and Lint the interaction one. In the following, we will
closely follow the notations of ref. [38]. In particular, from now, we switch to the notation
t → τ for the time variable, ḟ → f ′ for the time derivative and we consider τ = 0 as the
time at which observables are sought for, having in mind conformal time in the cosmological
context and in order to match the literature. Propagators of the free theory are then defined
as Fourier transforms of the (anti) time-ordered two point functions in real space:

∀a, b ∈ {+,−} , −i∆ab(τ1, x⃗1; τ2, x⃗2) = δ

iaδJa(τ1, x⃗1)
δ

ibδJb(τ2, x⃗2)Z
free
in−in[J±], (2.80)

as
Gab(k; τ1, τ2) = −i

∫
d3x⃗e−ik⃗·x⃗∆ab(τ1, x⃗; τ2, 0⃗). (2.81)

These ± propagators can then be expressed in terms of the causal bulk-to-bulk propagators

G>(k; τ1, τ2) = ψk(τ1)ψ∗
k(τ2) , G<(k; τ1, τ2) = ψ∗

k(τ1)ψk(τ2) , (2.82)

where ψk(τ) are the Fourier-space mode functions whose dynamics are dictated by the free
Lagrangian Lfree, as

G++(k; τ1, τ2) = θ(τ1 − τ2)G>(k; τ1, τ2) + θ(τ2 − τ1)G<(k; τ1, τ2) (2.83)
G+−(k; τ1, τ2) = G<(k; τ1, τ2)
G−+(k; τ1, τ2) = G>(k; τ1, τ2)
G−−(k; τ1, τ2) = θ(τ1 − τ2)G<(k; τ1, τ2) + θ(τ2 − τ1)G>(k; τ1, τ2) .

We find it useful to also define bulk-to-boundary propagators G̃ as

G±±(k; τ1, 0) = G±∓(k; τ1, 0) = G≶(k; τ1, 0) ≡ G̃±(k, τ1) . (2.84)

Note that when both times are evaluated at the boundary all these propagators simply reduce
to the final two-point function of ψ, Pψ(k). Vertices of the perturbation theory arise from Lint.
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A vertex on the branch a ∈ {+,−} at τi with one power of ψ in it will bring down a power of
ψa(τi), to be contracted with an other ψb(τj), either from another vertex at τj on the branch
b or with an external field with τj = 0, leading to respectively a bulk-to-bulk propagator
Gab(k; τi, τj) or a bulk-to-boundary one G̃a(k, τi). Interactions with spatial derivatives are
simply given by suitable multiplications of the propagators by wavenumbers k⃗. Interactions
with time derivatives are slightly more subtle (strictly speaking they should be taken care of
in a Hamiltonian path integral approach), however they can be understood as the operator
multiplication ψ±′ → ∂τ · (−iδ/δJ±) ·, to be applied to the left of a functional. Therefore a
vertex at τi on the branch a with one power of ψ′ in it will bring down a power of ψa′(τi)
giving, after suitable contraction with another field, a partial time derivative of a propagator:
∂τiGab(k; τi, τj) or ∂τiG̃a(k, τi). One should note, however, that although time derivatives of
bulk-to-bulk propagators ∓± reduce to time derivatives of the causal propagators G≷ (as do
the bulk-to-boundary ones by definition), time derivatives of the ±± bulk-to-bulk propagators
are more subtle as one needs to take into account derivatives of the Heaviside distributions θ.
For example, one can show that the following equalities hold in the sense of distributions (i.e.
once integrated over the two time variables with test functions f(τ1) and g(τ2)),

∂τiG±±(k; τ1, τ2) = θ(τ1 − τ2)∂τiG≷(k; τ1, τ2) + θ(τ2 − τ1)∂τiG≶(k; τ1, τ2) (2.85)
+ (−1)i−1δ(τ1 − τ2)(G≷(k; τ1, τ2) −G≶(k; τ1, τ2)) ,

∂2
τiτjG±±(k; τ1, τ2) = θ(τ1 − τ2)∂2

τiτjG≷(k; τ1, τ2) + θ(τ2 − τ1)∂2
τiτjG≶(k; τ1, τ2)

± (−1)i+j−1 i

c(τ1)δ(τ1 − τ2) ,

valid ∀i, j ∈ {1, 2}. Note that, if no other derivative operator is acting on them, the second
line in single-derivatives proportional to δ(τ1 − τ2) vanishes identically, since G<(k; τ, τ) =
G>(k; τ, τ). Moreover, as before c(τ) denotes the normalisation of ψ in the free Lagrangian,
see eq. (2.50), and for which we used the Wronskian condition W (k, τ) = ψ′∗

k (τ)ψk(τ) −
ψ′
k(τ)ψ∗

k(τ) = i/c(τ) from the canonical commutation relation and the linear momentum
definition valid for the free theory defining the propagators.

There is one last ingredient we need in order to compute, in the path integral approach,
correlation functions for our theory with total time derivative interactions that include
powers of the time derivatives of the fields. As we have seen above, a general feature of
such interactions, arising from integration by parts, is that they always come in pairs with
interactions proportional to the linear equations of motion. While, as previously discussed,
vertices from such interactions are zero when evaluated on interaction picture fields in the
in-in operator formalism, they must be carefully taken into account in the path integral
approach, as we now explain. Let us define the Fourier space equation of motion operator as

OEoM(k, τ)f(k, τ) ≡ ∂τ [c(τ)∂τf(k, τ)] + c(τ)k2f(k, τ). (2.86)

By definition of the free theory in the path integral approach, the causal propagators
identically verify these equations of motion:

∀i ∈ {1, 2} , OEoM(k, τi)G≷(k; τ1, τ2) = 0 . (2.87)
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Therefore, when this operator acts on a bulk-to-boundary propagator, the corresponding
contribution vanishes. However, when the operator acts on a bulk-to-bulk propagator, its
effect is highly non-trivial. Indeed, once more in the sense of distributions, the following
properties hold:

∀i ∈ {1, 2} , OEoM(k, τi)G±∓(k; τ1, τ2) = 0 , (2.88)

∀i ∈ {1, 2} , OEoM(k, τi)G±±(k; τ1, τ2) = ∓ i
δ(τ1 − τ2)
c(τ1) ,∫

dτ1f(τ1)
∫

dτ2g(τ2)OEoM(k, τ2)OEoM(k, τ1)G±±(k; τ1, τ2) =

∓i
∫

dτ1f(τ1)
∫

dτ2δ(τ1 − τ2)OEoM(k, τ2)g(τ2) .

In the last equality, we made explicit the time integration with test functions, in order to show
the effect of the EOM operator. Keeping track of this subtle contribution from interactions
proportional to the linear equations of motion is crucial to obtain the correct result in the
path integral form of the in-in formalism, as we will prove explicitly for our toy model that
contains them. To our knowledge, this is the first time that the importance of interaction
terms proportional to linear equations of motion is stressed. We explained their roles both in
the operator formalism in order to consistently derive the Hamiltonian from the Lagrangian,
and here in the path integral approach not to miss any contribution.

Let us introduce here some diagrammatic rules to compute correlation functions. Fol-
lowing the notations of ref. [38], we use a black and a white dot to denote + and − vertices
respectively. The bulk-to-bulk propagators are represented as:

τ1 τ2
= G++(k; τ1, τ2) ,

τ1 τ2
= G+−(k; τ1, τ2) ,

τ1 τ2
= G−+(k; τ1, τ2) ,

τ1 τ2
= G−−(k; τ1, τ2) .

Furthermore, denoting the boundary with a square, we can also write the bulk-to-boundary
propagators

τ
= G̃+(k, τ) ,

τ
= G̃−(k, τ) . (2.89)

Diagrams with circles filled in gray denote that the sum over ± values of the vertex is
taken: = + .

Equipped with the tools just introduced, we now compute correlation functions for the
two toy models presented in section 2.4.
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2.5.1 Toy model 1

The calculation of correlation functions made of fields only in the first toy model, whose
interactions were specified in eq. (2.53), can be carried relatively easily in this approach.
Indeed, one needs not define the Hamiltonian nor look for cancellations between different
orders of the perturbation theory.

First, as already stressed in the Hamiltonian operator formalism, the easiest way to
show that interactions in the form of total time derivatives of functions of fields only, do
not contribute to correlation functions of fields, is to treat them in the free theory. In the
Lagrangian path integral formulation, this can be done by using eq. (2.79) and incorporating
the total time derivative in Lfree in the free partition function with external currents. This
way, those interactions completely disappear from the perturbation theory and cannot be
used to form vertices, and their only possible effect is through the mode functions ψk(τ)
appearing in the causal propagators (2.82). However, these total time derivatives do not
affect the equations of motion, as already shown explicitly in eq. (2.58). This concludes
this proof, which is by far the simplest one.

Would one insist in treating those total time derivatives as interactions in the perturbation
theory, they could still be shown to give vanishing contributions. An argument sketched
in [48] can already give us this intuition. Here we make this proof explicit, though underlining
its implicit assumptions. We use again eq. (2.79) but with the total time derivative interaction
in Lint. The effect of such a vertex, when combined with other vertices left implicit, is found
from the diagrammatic rules of ref. [38]

−i
∑

d∈{+,−}
abcd

∫
dτ∂τ [−α(τ)Gda(k1; τ, τ1)Gdb(k2; τ, τ2)Gdc(k3; τ, τ3)] ,

as can be seen by acting on the free partition function with the operator ∂τ
[
iα(τ)

(
δ/δJd(τ, x⃗)

)3
]

and going to Fourier space. By integrating this operator over time in the path integral of the
perturbation theory, using vanishing of interactions at −∞± as prescribed by the deformed
time contour, one finds:

exp
{
i α(0)

∫
d3x⃗

[(
δ

δJ+(0, x⃗)

)3
−
(

δ

δJ−(0, x⃗)

)3]}
Z free

in−in
[
J±] , (2.90)

which can only bring down powers of i α(0)
[(
ψ+(0, x⃗)

)3 − (ψ−(0, x⃗))3
]

in the path integral.
Since ± fields coincide at the external time, here τ = 0, where the time path closes, this
proves the vanishing of all diagrams including at least one power of the total time derivative
of a function made of fields only. Importantly, we stress that the proof above relies on the
implicit assumption that the action of the derivative operator at time τ commutes with the
time integral over τ . This hypothesis is not obviously correct, as we already stressed that
internal ±± propagators are not strictly speaking functions of time, but distributions. We
have shown that their time derivatives must be taken with care as they involve derivatives
of the Heaviside distributions, making for non-trivial contributions. In order to reinforce
the intuition that we have just developed, and to incorporate the effect of mixing total time
derivative interactions with strength α to normal ones with β in eq. (2.53), we now turn to
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the explicit calculation of the first two relevant correlation functions for this toy model: the
bispectrum and the exchange trispectrum. The latter case makes for an important check as
it involves permutations with two time derivatives of the internal propagator.

At one-vertex order, only the three-point function of ψ is relevant. Following the
diagrammatic rules of [38], it is immediate to realize that the result, proportional to

−i
∑

a∈{+,−}
a
∫

dτ∂τ
(
α(τ)G̃a(k1, τ)G̃a(k2, τ)G̃a(k3, τ)

)
and expressible in terms of the causal propagators G≷ only, vanishes after performing the
time integral and summing over ± vertices. As for the second interaction ∝ β, one concludes
that it can only contribute as ∝ β̇, following a similar reasoning. Subtleties start arising
at the two-vertices order at which internal propagators ±± with Heaviside distributions
appear. There, for the reasons already stressed above, it is less obvious that time integrals
can be performed without expanding the total time derivatives first. We first focus on the
four-point function of ψ generated by two total time derivative interactions. Overlooking
symmetry factors, the result is

−
∑

a,b∈{+,−}
ab
∫ 0

−∞
dτ1

∫ 0

−∞
dτ2∂τ1

[
α(τ1)G̃a(k1, τ1)G̃a(k2, τ1)∂τ2

(
α(τ2)

Gab(|⃗k1 + k⃗2|; τ1, τ2)G̃b(k3, τ2)G̃b(k4, τ2)
)]

+ perm. ,

where “perm.” means all other permutations of the external wavevectors k⃗i. The ±∓
contributions being given in terms of causal propagators G≷ only, they can be straight
integrated over time. Being real, they are equal and their sum is proportional to

+2α2(0)P (k1)P (k2)P (k3)P (k4)P (|⃗k1 + k⃗2|) + perm.

We turn to the ±± diagrams and we develop the total time derivatives being careful that,
whenever they hit the internal propagator, formulas of eq. (2.85) should be used. By rendering
explicit the causal structure, one finds the integrand of the ±± diagrams to read:

θ(τ1−τ2)∂τ1

[
α(τ1)G≶(k1, τ1)G≶(k2, τ1)∂τ2

(
α(τ2)G≷(|⃗k1+k⃗2|;τ1, τ2)G≶(k3, τ2)G≶(k4, τ2)

)]
+θ(τ2−τ1)∂τ1

[
α(τ1)G≶(k1, τ1)G≶(k2, τ1)∂τ2

(
α(τ2)G≶(|⃗k1+k⃗2|;τ1, τ2)G≶(k3, τ2)G≶(k4, τ2)

)]
± i

c(τ1)δ(τ1−τ2)α(τ1)α(τ2)G≶(k1, τ1)G≶(k2, τ1)G≶(k3, τ2)G≶(k4, τ2)+perm. ,

where we wrote G≶(ki, τ) ≡ G≶(ki, τ, 0) to avoid cluttered expressions. Fixing τ1 as the
outermost integral, integration over τ2 can be performed explicitly on the domain defined by
the Heaviside distributions. The contribution from the first line above (with τ2 ∈ (−∞, τ1])
cancels with the sum of the lower bound evaluation from the second line (with τ2 ∈ [τ1, 0])
and the third line. The only surviving term comes from the upper bound evaluation of the
second line and is already expressed as a total time derivative with respect to τ1, leading
to a result proportional to

−2α2(0)P (k1)P (k2)P (k3)P (k4)P (|⃗k1 + k⃗2|) + perm.
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after explicit integration. The factor of two comes from including both ++ and −− diagrams.
Taking into account all diagrams, we proved that the four-point function of ψ is not affected
by two insertions of total time derivative interactions made of fields only. We now turn to the
mixed diagram with one α-type and one β-type cubic interaction. First, the permutations for
which the time derivative of the β-diagram hits a bulk-to-boundary propagator do not contain
second-order derivative of the internal propagator; the total time derivative interaction can
be safely integrated over time and gives −i

∑
a aα(0)P (k1)P (k2) × (. . .) with “. . .” being

independent of a and they therefore vanish. The only potentially dangerous contribution
therefore comes from diagrams with the time derivative of the β-vertex hitting the internal
propagator. The ±∓ diagrams give:

+∂τ1

[
G≶(k1, τ1)G≶(k2, τ1)∂τ2(G≶(|⃗k1 + k⃗2|; τ1, τ2))G≷(k3, τ2)G≷(k4, τ2)

]
.

The most complicated diagrams are the ±± ones, and they give, after developing the total
time derivatives:

− ∂τ1

[
G≶(k1, τ1)G≶(k2, τ1)∂τ2(G≷(|⃗k1 + k⃗2|; τ1, τ2))G≶(k3, τ2)G≶(k4, τ2)

]
− ∂τ1

[
G≶(k1, τ1)G≶(k2, τ1)∂τ2(G≶(|⃗k1 + k⃗2|; τ1, τ2))G≶(k3, τ2)G≶(k4, τ2)

]
θ(τ2 − τ1)

+ ∂τ1

[
G≶(k1, τ1)G≶(k2, τ1)∂τ2(G≷(|⃗k1 + k⃗2|; τ1, τ2))G≶(k3, τ2)G≶(k4, τ2)

]
θ(τ2 − τ1)

∓ i

c(τ2)δ(τ1 − τ2)G≶(k1, τ1)G≶(k2, τ1)G≶(k3, τ2)G≶(k4, τ2). (2.91)

The first line cancels with the ∓± diagrams upon integrating over dτ1. The second and third
lines are total time derivatives with respect to τ1. The integral over τ1 can thus be performed
easily. Upon using the Wronskian condition, the result cancels together with the fourth line.
This finishes the explicit proof that total time derivative interactions that are functions of
fields only do not contribute to correlation functions of fields at all, even in the presence of
internal propagators and including mixed diagrams with other interactions. We believe the
result applies for any n-point function of ψ, at any order in vertex theory and also including
loop diagrams, but we find the general proof using explicitly the perturbation theory and
developing the total time derivatives to be cumbersome.

2.5.2 Toy model 2

Let us now move to toy model 2. The corresponding Lagrangian contains the two interactions
in eq. (2.60). The first one is a total time derivative, and the second one is proportional to
the linear equations of motion for ψ, and was thus vanishing in the interaction Hamiltonian
used for the calculation in section 2.4.2. However, as explained above, we cannot neglect it
a priori in the Lagrangian path integral approach. We can associate the following vertices
to each of these two interactions, respectively

V1 = ττ1

τ2

τ3

= −iabc
∫

dτ∂τ {c(τ) [∂τG+a(k1; τ, τ1)]G+b(k1; τ, τ2)G+c(k3; τ, τ3)} ,

(2.92)
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V2 = ττ1

τ2

τ3

= −iabc
∫

dτ c(τ)
[
OEoM(k1, τ)G+a(k1; τ, τ1)

]
G+b(k1; τ, τ2)G+c(k3; τ, τ3),

(2.93)
and vertices with a white circle are related to the ones above by complex conjugation. In
these vertices, dashed or wiggly lines are here to distinguish non-equivalent permutations and
denote the propagator to which is acting respectively the time derivative and OEoM operators.

Since the wiggly line in the vertex (2.93) is only non-zero when acting on an internal
line, the calculation of the bispectrum from this vertex is just 0. The bispectrum is thus
calculated solely from the first vertex (2.92), which can easily be shown to be equal to that
computed in the previous section, see eq. (2.71).

We therefore move to the calculation of the trispectrum, which is far less trivial. In the
Lagrangian path integral approach that we are embracing, only interactions in the Lagrangian
are relevant. Since our toy model has an exactly cubic Lagrangian, the trispectrum can only
be given by an exchange channel made of two insertions of cubic interactions with an internal
propagator. In particular, in contrast with the operator formalism, there is no quartic contact
interaction. We now calculate all contributions.

• V1-V1. This contribution corresponds to a diagram from two total time derivative
vertices. There are 3 contributions to this diagram. The first one can be represented
schematically as

τ2τ1 = 0 , (2.94)

and is seen to vanish when summing the gray circles over + and −.
The second contribution is:

τ2τ1 + τ1 ↔ τ2 = −
∑

a,b∈{+,−}
ab
∫

dτ1dτ2∂
2
τ1τ2

[
c(τ1)c(τ2)

×
(
G̃a(k1, τ1)G̃a(k2, τ1)∂τ1Gab(|⃗k1 + k⃗2|; τ1, τ2)∂τ2G̃b(k3, τ2)G̃b(k4, τ2)

+ G̃a(k1, τ2)G̃a(k2, τ2)∂τ2Gab(|⃗k1 + k⃗2|; τ2, τ1)∂τ1G̃b(k3, τ1)G̃b(k4, τ1) + perm.
)]
,

= 24 [Pψ(k1)Pψ(k2)Pψ(k3) + 3 perm.] , (2.95)

where we used the relations in eqs. (2.85), and where “perm.” in the last line represent
nonequivalent permutations of the external wavevectors.

The last contraction is given by the following diagram:

τ2τ1 = −
∑

a,b∈{+,−}
ab
∫

dτ1dτ2∂
2
τ1τ2

[
c(τ1)c(τ2)

×
(
∂τ1G̃a(k1, τ1)G̃a(k2, τ1)Gab(|⃗k1 + k⃗2|; τ1, τ2)∂τ2G̃b(k3, τ2)G̃b(k4, τ2) + perm.

)]
,

= 4 [Pψ(k1)Pψ(k2)Pψ(k13) + 11 perm.] (2.96)
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The result from summing the contributions from these diagrams is different from the one
obtained in section 2.4.2, which confirms the need to include diagrams with vertices V2,
which contain the EOM operator OEoM.

• V1-V2. Contributions from mixed interactions are vanishing.
• V2-V2. Finally, we compute the contribution to the trispectrum from two insertions

of the EOM operator. Before we draw the corresponding diagram, let us mention that the
calculation can be simplified using the property that, as mentioned at the beginning of this
section, the operator OEoM gives 0 when applied to a bulk-to-boundary propagator. For
this reason, only one contraction is contributing. Furthermore, we have that OEoMG±∓ = 0,
which implies that the only non-vanishing diagram must have both vertices on +, or both
on −. Taking these considerations into account, the trispectrum is given by:

τ2τ1 = −
∑

a∈{+,−}

∫
dτ1dτ2

[
G̃a(k1, τ1)G̃a(k2, τ1)

(
OEoM(|⃗k1 + k⃗2|, τ2)OEoM(|⃗k1 + k⃗2|, τ1)Gaa(|⃗k1 + k⃗2|; τ1, τ2)

)
G̃a(k3, τ2)G̃a(k4, τ2) + perm.

]
,

= −8 [Pψ(k1)Pψ(k2)Pψ(k3) + 3 perm.] . (2.97)

In order to arrive at this result, we have used the identities derived in eqs. (2.88) to express
the action of two EOM operators. We have used the linear equations of motion for the G̃≶ to
simplify the integrand, and performed the integral over the Dirac delta from eq. (2.88). The
resulting integrand turns out to be a total time derivative and can be integrated straight,
giving the result above.

Summing all contributions, we obtain exactly eq. (2.77). Our findings may not look
surprising. Indeed, the equivalence of the Lagrangian path integral approach with the
Hamiltonian operator formulation of the in-in formalism was already proved in ref. [38]
up to quartic interactions and two-vertices order. Here we extended it explicitly to total
time derivatives and interactions proportional to the linear equations of motion. Although
the two versions of the in-in formalism are consistent and are both suitable for performing
calculations, we finish this section with a few comments.

First of all, the apparent simplicity with which total time derivative interactions of
functions of fields only are seen to give vanishing contributions to correlation functions,
should be contrasted with the absence of complete and explicit proof — valid at any vertex
order and for any n-point function both at tree and loop levels — in the literature before
our work. Here we have shown this result with three different methods: incorporating these
“interactions” in the free theory which is by far the simplest way (equations of motion are not
affected), defining effective external operator and interactions (after cancellations, they are
not affected) in the operator in-in formalism, and in the Lagrangian path integral approach by
using the fact that ± fields coincide at the external time (showing the vanishing of all possible
diagrams after carefully accounting for non-trivial time derivatives of internal propagators),
an argument already sketched in [48]. Second, time derivatives of functions that contain
time derivatives of the fields contribute to correlation functions. We have shown that these
contributions are not particularly easy to take into account. In particular, they always come in
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pairs with interactions proportional to the linear equations of motion that should crucially be
taken into account. In the operator formalism, we showed that they are needed to even define
the Hamiltonian interactions from the Lagrangian ones, before turning to the calculation of
the effective external operator and interactions; in the Lagrangian path integral approach
they crucially give non-zero contributions to correlation functions, which are generally harder
to compute. To our knowledge, this is the first time that total time derivative interactions of
both kinds, as well as terms proportional to the linear equations of motion, are consistently
taken into account, also with both versions of the in-in formalism. Besides having shed light
on these aspects, our calculation makes it clear that either procedures are not particularly
easy to implement. We therefore move on to present a more flexible method to deal with
redundant interactions without introducing total time derivative interactions. Indeed, as
we will see, there will be no time to derive with.

3 Canonical transformations

In this section, we start by briefly recalling the notion of canonical transformations, and how
they can be used to solve a Hamiltonian system in terms of new phase-space variables whose
dynamics are dictated by a simpler Hamiltonian. We then explain how to use them in practice
to simplify interactions in the Hamiltonian, just like what can be done with integration by
parts in the Lagrangian. This procedure does not introduce total time derivative interactions
nor ones proportional to the linear equations of motion. We showcase the simplicity of
the calculation of correlation functions for the two toy models introduced in the previous
section, and we propose some diagrammatic rules to list all possible contributions from
the canonical transformation.

3.1 Generalities

Canonical transformations in the context of a classical field theory consist in a transformation
of canonical phase-space variables that preserves the Poisson bracket — denoted as {·, ·} —
relations. Consider a field ψ(t, x⃗) and its canonically conjugate momentum pψ(t, x⃗) describing
the system dynamics. They verify:

∀t , {ψ(t, x⃗), pψ(t, y⃗)} = δ(3)(x⃗− y⃗) . (3.1)

The initial Hamiltonian density is a function of the original variables, and possibly time
explicitly, H(ψ, pψ, t). This Hamiltonian defines the equations of motion of the system through:

ψ̇ = ∂H
∂pψ

, ṗψ = −∂H
∂ψ

. (3.2)

New phase-space variables. After a canonical transformation, new canonical variables
ψ̃ and p̃ψ are introduced. By construction, they are enforced to verify the same Poisson
brackets as the original variables:

∀t ,
{
ψ̃(t, x⃗), p̃ψ(t, y⃗)

}
= δ(3)(x⃗− y⃗) . (3.3)

– 35 –



J
H
E
P
0
8
(
2
0
2
4
)
0
6
8

After the transformation, a new Hamiltonian H̃ is introduced and dictates the dynamics
of the new variables via the following equations:

˙̃ψ = ∂H̃
∂p̃ψ

, ˙̃pψ = −∂H̃
∂ψ̃

. (3.4)

Generating functions. How to find in practice the new Hamiltonian density H̃ expressed
in terms of the new phase-space variables, depends on the kind of canonical transformations.
Indeed, there are four possible types of canonical transformations, depending on which of the
new or old phase-space variables are expressed explicitly in terms of the other ones. Those
four types are characterized by their so-called generating functions F , which correspond
to the following cases:

1. Type I:

F1(ψ, ψ̃, t) → pψ = ∂F1
∂ψ

, p̃ψ = −∂F1

∂ψ̃
(3.5)

2. Type II:

F2(ψ, p̃ψ, t) → pψ = ∂F2
∂ψ

, ψ̃ = ∂F2
∂p̃ψ

(3.6)

3. Type III:

F3(pψ, ψ̃, t) → ψ = −∂F3
∂pψ

, p̃ψ = −∂F3

∂ψ̃
(3.7)

4. Type IV:

F4(pψ, p̃ψ, t) → ψ = −∂F4
∂pψ

, ψ̃ = −∂F4
∂p̃ψ

(3.8)

For example, for type II generating functions, the old momentum pψ and the new position
ψ̃ are explicitly expressed in terms of the old position ψ and new momentum p̃ψ, while the
converse expressions have to be found by inversion. Canonical transformations are actually
restricted to the class of generating functions with invertible Hessian matrices, so that one can
always define any old or new variables in terms of the other ones. In the generating function,
the time t serves as an external parameter not involved in the phase-space structure. However
it does play an important role, as the Poisson bracket structure needs to be preserved for
all values of such an external parameter. Indeed, the new Hamiltonian can be found by
imposing invariance of the least action principle derived from the Hamiltonian action I under
the canonical transformation, which we assume to be of the type II here for definiteness:

I [ψ, pψ] ≡
∫

dt
∫

d3x⃗
[
pψψ̇ −H(ψ, pψ)

]
(3.9)

=
∫

d3x⃗
[
F2 (ψ, p̃ψ,∞) − ψ̃p̃ψ

]
+ Ĩ

[
ψ̃, p̃ψ

]
,

with Ĩ
[
ψ̃, p̃ψ

]
=
∫

dt
∫

d3x⃗
[
p̃ψ

˙̃ψ − H̃
(
ψ̃, p̃ψ

)]
, (3.10)
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where the surface term at infinity in the second line can be evacuated at this non-perturbative
level, i.e. in the full path integral of the theory, and with

H̃
(
ψ̃, p̃ψ

)
= H

(
ψ(ψ̃, p̃ψ), pψ(ψ̃, p̃ψ)

)
+ ∂F2

∂t

∣∣∣∣
ψ(ψ̃,p̃ψ),p̃ψ ,t

. (3.11)

The same relation between the old and new Hamiltonians actually holds for any of the four
types of generating function, where after the partial time derivative any old variable must be
expressed in terms of the new ones. Finally, the preservation of the Poisson bracket imposes
that the corresponding symplectic form on the phase space is invariant:

dΩ ≡ dψ ∧ dpψ = dψ̃ ∧ dp̃ψ , (3.12)

a consequence of which being to enforce unity of the Jacobian determinant of the trans-
formation:

J = ∂ψ

∂ψ̃

∂pψ
∂p̃ψ

− ∂pψ

∂ψ̃

∂ψ

∂p̃ψ
= 1 . (3.13)

This imposes further restrictions on the Hessian matrix of the generating function F .

Properties of the initial system in terms of the new one. If the system in terms of
the new phase-space variables is “solved”, be it its full dynamics, or the statistical properties
of interest, one can retrieve the corresponding information about the initial variables by
inverting the canonical transformation. Specifically in cosmology, we are interested in
correlation functions of fields and momenta. In a classical field theory, with a phase-space
path integral approach, expectation values of operators O(ψ, pψ) can be found from those
of the same operator in terms of the new variables after the canonical transformation and
calculated under the new Hamiltonian:

⟨O(ψ, pψ)⟩H ≡
∫

DψDpψO(ψ, pψ)eiI[ψ,pψ]

=
∫

Dψ̃Dp̃ψJ(ψ̃, p̃ψ)O
(
ψ(ψ̃, p̃ψ), pψ(ψ̃, p̃ψ)

)
eiĨ[ψ̃,p̃ψ]

=
〈
O
(
ψ(ψ̃, p̃ψ), pψ(ψ̃, p̃ψ)

)〉
H̃
, (3.14)

where Ĩ was defined above and where we used unity of the Jacobian determinant as already
proved. We will show concrete examples of non-linear canonical transformations and their
possible uses to simplify interactions in perturbation theory, as well as compute correlation
functions of the initial theory, in section 3.2. In appendix A, we briefly comment on extensions
of canonical transformations from classical to quantum field theories.

3.2 Use to simplify Hamiltonian interactions in the toy models

We now apply the general techniques presented in the previous paragraph, first to the two
toy models presented in the previous section, see section 2.4, and then to generic theories
with a Lagrangian that would lead to total time derivative interactions in the interaction
Hamiltonian and the in-in perturbation theory.
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3.2.1 Toy model 1

In the first toy model, the Hamiltonian is given by eq. (2.54). We would like to simplify the
interactions, but before defining the interaction picture and without introducing total time
derivatives. Let us find the canonical transformation needed to remove the cubic Hamiltonian
interaction, in the form:

pψ → p̃ψ with pψ = p̃ψ +A(t)ψ2 +B(t)p̃ψψ + C(t)p̃2
ψ , (3.15)

with A,B,C three real functions of time. The generating function must be of the type II,
F (ψ, p̃ψ, t) and verify the corresponding equations (3.6). Integrating the first equation, we find

F (ψ, p̃ψ, t) = p̃ψψ + A

3 ψ
3 + B

2 p̃ψψ
2 + Cp̃2

ψψ + f(p̃ψ, t) . (3.16)

The second equation, by requiring consistency, gives

ψ̃ = ψ + B

2 ψ
2 + 2Cp̃ψψ + ∂f

∂p̃ψ
. (3.17)

After the canonical transformation (ψ, pψ) → (ψ̃, p̃ψ), the new Hamiltonian of the theory
is given by eq. (3.11). For general B and C functions of time, as well as a general f
function of (p̃ψ, t), unwanted new cubic interactions will be generated, so we look for a
canonical transformation with these three functions put to zero: B = C = f = 0. After this
simplification, leading in particular to ψ̃ = ψ and ∂F/∂t = Ȧψ3/3, we find up to quartic
order in fields and momenta:

H̃ =H(2)(ψ̃, p̃ψ) + (β + 3α+A)p̃ψψ̃2

c
+ α̇ψ̃3 + Ȧ

3 ψ̃
3 (3.18)

+ 1
2c
(
β2 + 6αβ + 9α2 + 2A(β + 3α) +A2

)
ψ̃4 + . . . ,

where we have neglected terms of order five and more in the new phase-space variables.
Choosing A = −β − 3α to cancel the p̃ψψ2 coefficient, results in a number of additional
simplifications:

H̃ = H(2)(ψ̃, p̃ψ) − β̇

3 ψ̃
3 . (3.19)

In the new theory after canonical transformation, only a single cubic interaction is present,
and it is proportional to β̇. After going to the interaction picture, one finds exactly the
effective interactions ˜̃U found after two iterations in section 2.4. In particular, we have avoided
defining a perturbation theory with several cubic and quartic interactions leading to diagrams
at different vertices-order and that cancel each other. Indeed, all interactions involving α

have been taken into account simply as a redefinition of the momentum of the theory:

p̃ψ = pψ − (3α+ β)ψ2 . (3.20)

Clearly, this change does not affect correlation functions of fields only. From eq. (3.14),
we indeed find

⟨O(ψ)⟩H =
〈
O
(
ψ = ψ̃

)〉
H̃

(3.21)
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where we also used unity of the Jacobian. This confirms our conclusions from the in-
in perturbation theory including total time derivative interactions, but in a much more
straightforward way: interactions as total time derivatives of functions of fields only, do
not affect correlation functions of fields. Moreover, we found again that the other cubic
interaction ∝ β contributes only as proportional to β̇. Lastly, correlation functions of the
initial momentum pψ are non-trivially affected by the presence of the interaction ∝ α and
can be found from the correlation functions of the new phase-space variables after canonical
transformation (ψ̃, p̃ψ). Note, however, that the initial momentum may or may not carry
a physical meaning, so retrieving its correlation functions may or may not be interesting,
depending on what can be measured by experiments.

3.2.2 Toy model 2

In the second toy model, the Hamiltonian is perturbatively given by eq. (2.61) up to quartic
order. To simplify interactions, we want to include the terms p2

ψψ and p2
ψψ

2 in the kinetic
term. We try the following canonical transformation:

F (ψ, p̃ψ, t) = p̃ψψ + A

2 p̃ψψ
2 + B

3 p̃ψψ
3 , (3.22)

which results in

pψ = p̃ψ +Ap̃ψψ +Bp̃ψψ
2 , (3.23)

ψ̃ = ψ + A

2 ψ
2 + B

3 ψ
3 , (3.24)

and, after inversion:

pψ = p̃ψ +Ap̃ψψ̃ +
(
B − A2

2

)
p̃ψψ̃

2 + . . . , (3.25)

ψ = ψ̃ − A

2 ψ̃
2 +

(
A2

2 − B

3

)
ψ̃3 + . . . , (3.26)

where we truncated at cubic order in fields and momenta. The coefficients of the interactions
that we want to remove are now(

A+ cȦ

2 − 2
)
p̃ψψ̃

2

c
,

(
B − 3A+ 8 + cḂ

3

)
p̃2
ψψ̃

2

c
, (3.27)

so we set A = 2 , B = −2. Taking into account all contributions (note that ∂F/∂t = 0 for
this canonical transformation), we find a number of simplifications finally giving

H̃(ψ̃, p̃ψ) = H(2)(ψ̃, p̃ψ) . (3.28)

This agrees with the finding ˜̃U = 0 in eq. (2.66) of the in-in formalism with total time
derivatives, that we had obtained after several integrations by part, uses of the linear equations
of motion and careful considerations regarding cancellations between different vertex orders of
the perturbation theory. We find the method based on canonical transformations at the level
of the full (rather than the interaction picture one) Hamiltonian much more straightforward.

Now, correlations functions of ψ may be found from the ones of ψ̃ using ψ = ψ̃−ψ̃2+8ψ̃3/3.
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Bispectrum. Going from real to Fourier space, it is straightforward to compute the ex-
pectation value:

⟨O⟩ =
〈
ψ
k⃗1
ψ
k⃗2
ψ
k⃗3

〉
=
〈
ψ̃
k⃗1
ψ̃
k⃗2
ψ̃
k⃗3

〉
−
∫ d3q⃗

(2π)3

〈
ψ̃q⃗ ψ̃k⃗1−q⃗ ψ̃k⃗2

ψ̃
k⃗3

〉
+ 2 perm. + . . .

= (2π)3δ(3)
( 3∑
i=1

k⃗i

)
[−2Pψ(k1)Pψ(k2) + 2 perm.] + . . . , (3.29)

which exactly matches eq. (2.71). We have used that ψ̃ has itself a vanishing bispectrum
and we have consistently neglected loop-level corrections to the bispectrum of ψ from the
following contributions

• the connected piece of the four-point function ⟨ψ̃q⃗ ψ̃k⃗1−q⃗ ψ̃k⃗2
ψ̃
k⃗3
⟩ (if not vanishing);

• three insertions in
〈
ψ
k⃗1
ψ
k⃗2
ψ
k⃗3

〉
of the quadratic term in the expression relating ψ to ψ̃;

• the difference between Pψ(k) and Pψ̃(k);

• all other contributions leading to loop corrections.

In appendix B (see eqs. (B.1)–(B.2) therein), we define some diagrammatic rules which we
find useful to systematize the knowledge of the loop level at which canonical transformations
may contribute.

Trispectrum. Following the same set of rules for the trispectrum (see eqs. (B.1)–(B.3)
below), it is straightforward to find that there are two distinct contributions relevant at tree
level, and there remains no other difficulty than counting all permutations consistently. The
two contributions correspond to the usual τNL and gNL terms in the trispectrum, and we find:

⟨O⟩ =
〈
ψ
k⃗1
ψ
k⃗2
ψ
k⃗3
ψ
k⃗4

〉
=
∫ d3q⃗1d3q⃗2

(2π)6

〈
ψ̃q⃗1 ψ̃k⃗1−q⃗1

ψ̃q⃗2 ψ̃k⃗2−q⃗2
ψ̃
k⃗3
ψ̃
k⃗4

〉
+ 11 perm. (3.30)

+ 8
3

∫ d3q⃗1d3q⃗2
(2π)6

〈
ψ̃q⃗1 ψ̃q⃗2 ψ̃k⃗1−q⃗1−q⃗2

ψ̃
k⃗2
ψ̃
k⃗3
ψ̃
k⃗4

〉
+ 3 perm. + . . .

= (2π)3δ(3)
( 4∑
i=1

k⃗i

){
4 [Pψ(k1)Pψ(k2)Pψ(k13) + 11 perm.]

+ 8
3 × 6 × [Pψ(k1)Pψ(k2)Pψ(k3) + 3 perm.]

}
+ . . . ,

which exactly matches eq. (2.77) and where, once more, we consistently neglected loop
corrections.

One-loop power spectrum. Following the set of rules for the power spectrum at one loop
(see eqs. (B.1)–(B.4) below), it is straightforward to find that there are only two contributions
for this toy model where ψ̃ is exactly free, and there remains no other difficulty than counting
all permutations consistently:

⟨O⟩1−loop =
〈
ψ
k⃗
ψ
k⃗′

〉1−loop
=
∫ d3q⃗1d3q⃗2

(2π)6

〈
ψ̃q⃗1 ψ̃k⃗−q⃗1

ψ̃q⃗2 ψ̃k⃗′−q⃗2

〉
(3.31)

+ 8
3

∫ d3q⃗1d3q⃗2
(2π)6

〈
ψ̃q⃗1 ψ̃q⃗2 ψ̃k⃗−q⃗1−q⃗2

ψ̃
k⃗′

〉
+ (k⃗ ↔ k⃗′)
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= (2π)3δ(3)
(
k⃗ + k⃗′

){
2 ×

∫ d3q⃗

(2π)3P
tree
ψ (q)P tree

ψ (|q⃗ + k⃗|)

+ 8
3 × 3 × 2 × P tree

ψ (k)
∫ d3q⃗

(2π)3P
tree
ψ (q)

}
,

where we used that at this loop order Pψ̃ = P tree
ψ̃

= P tree
ψ . How to compute the loops

themselves is not the topic of this work.

4 Single-field inflation

We apply the formalism with canonical transformations developed in the previous section to
the case of single-field inflation. This scenario is both the simplest and the most commonly
explored, making it illustrative to observe the simplifications introduced by our formalism. We
start from the action of a single scalar field minimally coupled to gravity, which is given by:

S =
∫

d4x
√
−g
[
M2

Pl
2 R(g) − 1

2∂
µϕ∂µϕ− V (ϕ)

]
+ SGHY , (4.1)

where we have supplemented the Einstein-Hilbert and scalar field action by the Gibbons-
Hawking-York (GHY) boundary term that makes the initial problem well defined. As
customary in the context of inflationary cosmology, we adopt the ADM form of the metric [32]:

ds2 = −N2dt2 + hij(dxi + N idt)(dxj + N jdt) , (4.2)

where N is the lapse function and N i the shift vector, together defining a slicing of spacetime.
Using the Gauss-Codazzi relation (see e.g. [49]), the four-dimensional Ricci scalar can be
rewritten as:

M2
Pl

2

∫
d4x

√
−g R(g) = M2

Pl
2

∫
d4x

√
−g

[
R(3) + (KijK

ij −K2)
]
− SGHY . (4.3)

In this expression, the tensor Kij is the so-called extrinsic curvature tensor and reads

Kij = 1
2N

(
ḣij −∇iNj −∇jNi

)
, (4.4)

where ∇i denotes the spatial covariant derivative associated with the projection of the
spacetime metric on these spatial hypersurfaces: hij . Also, R(3) is the Ricci curvature on
three-dimensional spatial hypersurfaces, calculated with hij too. As a consequence of this
decomposition, the GHY term cancels out in the total action which, upon plugging the
ADM form of the metric, reads

S = M2
Pl

2

∫
dtd3x

√
hN

[
R(3) + (KijK

ij −K2)
]

+ 1
2

∫
dtd3x

√
hN

[ 1
N2

(
ϕ̇−N j∂jϕ

)2
− hij∂iϕ∂jϕ− 2V

]
,

(4.5)

where h = det(hij).
Actually, general relativity plus a scalar field, as we consider, is a fully constrained

system as we are reminding in the following. Indeed, the Lagrangian action of eq. (4.5), with

– 41 –



J
H
E
P
0
8
(
2
0
2
4
)
0
6
8

(ϕ, hij , N,N i) as fundamental position variables, defines the on-shell4 canonical conjugate
momenta:

p̄ϕ =
√
h

N

(
ϕ̇−N i∂iϕ

)
, (4.6)

p̄ij =
√
hM2

Pl
2

(
Khij −Kij

)
, (4.7)

p̄N = 0 , (4.8)
p̄N ,i = 0 , (4.9)

from which the Hamiltonian action of the theory is found by Legendre transform of the
Lagrangian:

I =
∫

dtd3x⃗
[
pϕϕ̇+ pij ḣij + pN Ṅ + pN ,iṄ i −H

]
, (4.10)

where the Hamiltonian density reads

H = pN Ṅ + pN ,iṄ i +NC
(
ϕ, pϕ, hij , p

ij
)

+ N iCi
(
ϕ, pϕ, hij , p

ij
)

(4.11)

with C = 2√
hM2

Pl

[
pijp

ij − 1
2(pii)2

]
−

√
hM2

Pl
2 R(3) + 1

2
√
h
p2
ϕ +

√
hhij

2 ∂iϕ∂jϕ+
√
hV ,

and Ci = −2
√
h∇j

(
pji√
h

)
+ pϕ∂iϕ .

To find this expression, we had to evaluate on-shell the time derivatives ϕ̇ and ḣij in the
Lagrangian as functions of the momenta pϕ and pijh which should themselves be consid-
ered unconstrained again, as could be seen from an explicit path integral approach with∫
DψaeiS[ψa] =

∫
Dψa

∫
Dpaψe

iI[ψa,paψ ], where ψa collectively denotes all position variables, and
paψ all momentum variables. Note however, that time derivatives of N and N i could not
be replaced as their momentum is vanishing, so no inverse can be found. Technically, this
is because they do not appear with time derivatives in the Lagrangian. Physically, this is
because the foliation of spacetime in the ADM formalism is arbitrary and does not describe
physically propagating degrees of freedom at this stage. Therefore N and N i act as simple
Lagrange multipliers, as in any constrained system. Let us construct the on-shell, constrained
subspace and its corresponding Hamiltonian H̄.

The so-called primary constraints, valid without invoking the equations of motion of the
theory, consist in the vanishing momenta that we have already encountered:

Primary constraints: p̄N = 0 , p̄N ,i = 0 → H = NC + N iCi . (4.12)

This partially on-shell form of the Hamiltonian of general relativity plus a scalar field, is
the one often quoted in the literature. Secondary constraints are found by requiring that
primary constrains are conserved as time passes. Technically, this amounts to asking that

4What we mean by “on-shell” here and in the following is an equation that is valid in the sense of a weak
equality, i.e. valid on the hypersurface of the phase space where constraints (to be derived right after) are
identically verified. We denote on-shell quantities by a bar.
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their Poisson brackets with the Hamiltonian density is vanishing on-shell, {pN (t, x⃗), H(t)} =
0 = {pN ,i(t, x⃗), H(t)} with H(t) =

∫
d3y⃗H(t, y⃗), which gives:

Secondary constraints: C̄ = 0 , C̄i = 0 → H̄ = 0 , (4.13)

where we used the fact that C and Ci do not depend on N nor N i. Remarkably, secondary
constraints imply the vanishing, on shell, of the quantities C and Ci. Those equations, which
are only functions of the field ϕ and the spatial metric hij , as well as their canonically
conjugate momenta, are known as the energy and momentum constraints in general relativity.
Moreover, that the (now fully) on-shell Hamiltonian is exactly vanishing, means that general
relativity plus a scalar field is a fully constrained system. Now, an important property of
these 4 primary and 4 secondary constraints is that they are first-class constraints. Indeed,
just like in pure general relativity, the Poisson brackets of the constraints are either trivially
vanishing (like {pN (t, x⃗), pN (t, y⃗)} = 0 , {pN (t, x⃗), C(t, y⃗)} = 0, etc.), or vanishing on-shell (like
{C(t, x⃗), C(t, y⃗)} is a linear combination of Ci(t, x⃗) and Ci(t, y⃗) [47], so {C(t, x⃗), C(t, y⃗)} = 0,
etc.). Defining Cα ≡ (C, Ci, pN , pN ,i), we therefore have:

First-class constraints: ∀α , β , {Cα(t, x⃗), Cβ(t, y⃗)} = 0 . (4.14)

Importantly, the fact that these are first-class constraints also closes the system of constraints,
as no tertiary constraints can be found. Indeed, Poisson brackets of the secondary constraints
with the Hamiltonian are linear combinations of themselves, and thus vanishing on-shell.
These features are due to the invariance of the theory under spacetime diffeomorphisms, and
they are crucial to correctly count degrees of freedom (d.o.f.) as we now recapitulate. General
relativity alone has 20 phase-space d.o.f. (N,Ni, hij and their momenta), but there are 8
first-class constraints each counting double, leaving for 4 phase-space d.o.f. only: the two
polarizations of gravitational waves and their conjugate momenta. As we have seen, adding the
scalar field and its momenta does not affect this picture, and simply adds 2 phase-space d.o.f.

On the other hand, the dynamical equations of the theory are given by the Hamilton
equations, i.e. the Poisson brackets of the phase-space variables with non-trivial on-shell
momenta. The dynamical part of Einstein equations can be found from

ḣij = δ

δpij

∫
d3x⃗H , (4.15)

ṗij = − δ

δhij

∫
d3x⃗H ,

but we will not need to write them explicitly at this stage. Hamilton equations in the
scalar sector read:

ϕ̇ = δ

δpϕ

∫
d3x⃗H = N√

h
pϕ + N i∂iϕ , (4.16)

ṗϕ = − δ

δϕ

∫
d3x⃗H = −

√
hNV ′(ϕ) + ∂i

(√
hNhij∂jϕ+ N ipϕ

)
.

Although this fully constrained Hamiltonian formalism for general relativity plus a scalar
field is very elegant, it is hard to use in practice, for it requires the manipulation of fully
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non-perturbative objects in real space like ϕ(t, x⃗) and hij(t, x⃗). What can be done, however,
starting from this understanding, is to systematically expand the Hamiltonian density and the
energy and momentum constraints up to a given order in perturbation theory. Then, at each
order, one can identify the physical degrees of freedom propagating on the constrained subset
of the phase space, also quotient by the unphysical gauge degrees of freedom ubiquitous in
constrained systems. Gauge-invariant variables may be defined, and their dynamics can be
studied, consistently order by order in perturbation theory. To our knowledge, this procedure
has been mainly used up to quadratic order in the Hamiltonian, and therefore for linear
order cosmological fluctuations only [50] (see however [51] for an interesting first work at
cubic order). Instead of pursuing this direction, which avoids the ad hoc fixing of a gauge,
but requires switching already to a perturbation theory, we decide to take another route
enabling us to make connection with the literature in the comoving gauge, although first
in an innovative way valid at all orders in perturbation theory.

Before that, we quickly specify the background dynamics, assuming all phase-space
variables to be homogeneous functions of time. Specifically, we focus on a FLRW metric
with hij = a2δij and we fix the lapse and shift to N = 1 , N i = 0. The constraint C̄ = 0
yields the first Friedmann equation:

3H2M2
Pl =

p2
ϕ

2a6 + V (ϕ) , (4.17)

while the second constraint vanishes trivially even off-shell, Ci = 0, and therefore does not
bring additional information. Hamilton equations in the scalar field sector are

ϕ̇ = pϕ
a3 , ṗϕ = −a3V ′(ϕ) . (4.18)

These three equations can be combined to give the homogeneous Klein-Gordon equation for
a scalar field in a FLRW spacetime, and the usual form of the two Friedmann equations:

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 , (4.19)

3H2M2
Pl = 1

2 ϕ̇
2 + V (ϕ) , (4.20)

− Ḣ

H2 = ϕ̇2

2H2M2
Pl
. (4.21)

The second Friedmann equation could also be found from the dynamical part of the Einstein
equations in eq. (4.15).

4.1 Hamiltonian in the comoving gauge

As explained in the introduction, in this paper, we are interested in calculations in the
comoving gauge. Discarding tensor perturbations for the moment (we will come back to
this matter in section 4.4), this choice corresponds to

δϕcomoving = 0, (4.22)
hcomoving
ij = a2e2ζδij . (4.23)
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Instead of arriving to this non-perturbative definition for the curvature fluctuation by
consistently requiring, order by order in perturbation theory, a gauge invariant variable in the
physical subset of the phase space, we have ourselves decided what would be the gauge for
performing calculations. The price for picking the gauge by hand, is that such choice breaks
the structure of the constrained system, as e.g. C and Ci are now functions of N and N i.
Moreover, one does not know how to deal with the momenta pϕ and pijh in the Hamiltonian
system, nor how to see the appearance of the momentum pζ that is canonically conjugate
to the variable ζ defined above. Instead, we first go back to the Lagrangian description in
terms of ϕ, hij and their time derivatives, and we will go back to the Hamiltonian after a
short pause. In the comoving gauge, the Lagrangian density L takes the following form

L =M2
Pl

{
−6a3e3ζHζ̇

N
+ 6a3e3ζHζ̇ − 3a3e3ζ ζ̇2

N
+ e−ζ (∂jNi) 2

4aN + e−ζNi
2 (∂jζ) 2

aN

+ e−ζ∂jNi∂iNj

4aN − e−ζ∂iNi∂jNj

2aN − e−ζNi∂jζ∂jNi

aN
− e−ζNi∂jζ∂iNj

aN

+ 2aeζH∂iNi

N
+ 2aeζHNi∂iζ

N
− aeζ ζ̇ (∂iζ) 2

H
− 2aeζ∂iζ∂iζ̇

H
− aeζN (∂iζ) 2

− 2aeζN∂2ζ + 2aeζ ζ̇∂iNi

N
+ 2aeζNiζ̇∂iζ

N
− aeζ (∂iζ) 2 − aeζϵ (∂iζ) 2

+ 6a3e3ζH2 − 3a3e3ζH2

N
− 2a3e3ζH2ϵ+ a3e3ζ ϕ̇2

2NM2
Pl

− a3

M2
Pl
e3ζNV (ϕ)

+ d
dt
[
−2a3e3ζH

]
+ d

dt

[
aeζ (∂iζ) 2

H

]}
. (4.24)

Let us emphasize that this equation is valid at all orders in perturbations in the curvature
perturbation ζ. As we will see below, this will prove to be a significant simplification in
deriving the Hamiltonian. In particular, we have isolated in the last line above two total
time derivatives at all orders in perturbation theory.

The on-shell conjugate momenta pX ≡ δL/δẊ computed from the complete Lagrangian
above (including the total time derivatives) are given by:

p̄ζ = M2
Pl

[
−6a3e3ζ ζ̇

N
+ 2aeζ∂iNi

N
+ 2aeζNi∂iζ

N
− 6a3e3ζH

N

]
(4.25)

p̄N = 0 (4.26)
p̄N,i = 0 . (4.27)

The Hamiltonian can be easily computed via the Legendre transformation, and reads:

H = pN Ṅ + pN ,iṄ i + 1
M2

Pl

[
−
e−3ζNp2

ζ

12a3 − pζ

(
H − e−2ζNi∂iζ

a2

)
− e−2ζNi∂ipζ

3a2

+ aeζN (∂iζ) 2 + 2aeζN∂i∂iζ + 3a3e3ζH2N − a3e3ζH2Nϵ− a3e3ζH2ϵ

N

− e−ζNi∂jN∂jNi

4aN2 − e−ζNi∂jN∂iNj

4aN2 + e−ζNi∂iN∂jNj

6aN2 − e−ζNi
2 (∂jζ) 2

aN
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+ 3e−ζNi∂jζ∂jNi

4aN + e−ζNi∂j∂jNi

4aN + 3e−ζNi∂jζ∂iNj

4aN − e−ζNi∂iζ∂jNj

2aN

+ e−ζNi∂i∂jNj

12aN − e−ζNiNj∂iζ∂jζ

3aN

]
,

where we have replaced instances of ζ̇ by inverting eq. (4.25). Importantly, this replacement
can be performed explicitly because, before solving the constraints, the form of pζ in eq. (4.25)
can be analytically inverted to express ζ̇ as a function of pζ . This is in contrast to more
general situations where the relation ζ̇ = ζ̇(ζ, pζ) has to be inverted perturbatively, see
e.g. refs. [37, 38]. In the following, we will focus on the partially on-shell Hamiltonian by
imposing the vanishing of the on-shell momenta p̄N and p̄N ,i, and we therefore drop the
two first terms in the expression above.

The Hamiltonian H still contains contributions generated by the total time derivatives
terms, see the last line of eq. (4.24). We now apply the general lesson learnt in section 3 and
we define the following type II canonical transformation to remove such undesired interactions:

ζ̃ ≡ ζ, (4.28)

pζ ≡ p̃ζ − 2 a
H
eζ∂2ζ − a

H
eζ(∂ζ)2 − 6a3e3ζH , (4.29)

with the corresponding generating function given by

F [p̃ζ , ζ, t] = p̃ζζ + a

H
eζ (∂ζ)2 − 2a3e3ζH. (4.30)

Note that this canonical transformation does not affect ζ, as we now expect from the general
understanding of interactions expressed as total time derivatives of functions of fields only,
and not their time derivatives. Using the formulae developed in section 3, we can compute
the new Hamiltonian:

H̃M2
Pl = −

e−3ζ̃Np̃2
ζ

12a3 + p̃ζ

e−2ζ̃

a2H

N
(
∂iζ̃
)

2

6 + N∂2ζ̃

3 +HNi∂iζ̃

+H(N − 1)


−
e−2ζ̃Ni∂ip̃ζ̃

3a2 + e−ζ̃

3aH2

[
−N4

(
∂iζ̃∂iζ̃ + 2∂2ζ̃

)2
− 2HNi

(
∂iζ̃

(
∂j ζ̃
)

2

− ∂j ζ̃∂i∂j ζ̃ + 2∂iζ̃∂2ζ̃ − ∂i∂
2ζ̃

)]
+ e−ζ̃

aN

[
Ni(3N∂j ζ̃ − ∂jN) (∂jNi + ∂iNj)

4N

+ Ni∂iN∂jNj

6N −
(
Ni∂j ζ̃

)2
− Ni∂iζ̃∂jNj

2 + Ni∂
2Ni

4 + Ni∂i∂jNj

12 −

(
Ni∂iζ̃

)2

3

]

+ aeζ̃
[
(2 + ϵ)

(
∂iζ̃
)

2 + 2∂2ζ̃
]

+
(

2a3e3ζ̃ − a3e3ζ̃N − a3e3ζ̃

N

)
H2ϵ . (4.31)

We stress that this Hamiltonian, written in terms of the phase space variables, is valid to all
orders in perturbation theory, and has been derived for the first time in this paper. From now
on, we will drop all tildes ,̃ both on H and on the new phase-space variables and simply take
this Hamiltonian as the starting point for the remaining of the paper. Also, the curvature
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fluctuation ζ of observational relevance has not been affected by the canonical transformation.
Would one seek the dynamics of the initial conjugate momentum of ζ, one would need to
perform the inverse canonical transformation shown in eq. (4.28) from the dynamics of the
variables now called (ζ, pζ). We stress that there may be no particular reason to do, as the
new pζ variable is by definition the canonical conjugate momentum of ζ associated to the
Hamiltonian above, and is not less meaningful than the initial one. Equation (4.31) above is
one of the main results of our paper, and we insist that it is valid at all orders in perturbation
theory. It is also in a form where unwanted interactions generated by total time derivatives
in the Lagrangian have already been removed, thereby simplifying the calculation to come of
interactions, at all orders in perturbation theory and at once. It can be used as a starting
point for many applications, including but not restricted to calculations in perturbation
theory, to which we will turn in the next section.

Before that, we explain a conceptual but important point related to constraints and the
notions of off-shell versus on-shell Hamiltonians. We have already mentioned that because
we picked a gauge before defining the Hamiltonian, we lost the nice geometrical structure
of the complete description in terms of a fully constrained Hamiltonian. In particular, we
cannot simply evaluate the constraint equations C̄ = 0 = C̄i by replacing the moments in
terms of their expressions in the comoving gauge. Indeed, both C and Ci become functions of
N and N i and the new constraint equations would instead read C̄ +N

(
δC
δN

)
= 0, etc. This

form is not particularly enlightening so we avoid using explicitly the quantities C and Ci in
the following. Instead, we simply write the constraint equations as

δH
δN

∣∣∣∣
N̄, N̄i

= 0 , δH
δN i

∣∣∣∣
N̄, N̄i

= 0 , (4.32)

which still hold true in any particular gauge. Conceptually, this shows that the ADM slicing
is no longer arbitrary once a gauge is chosen: N and Ni are given in terms of other fluctuating
quantities. So, although the lapse and the shift are non-dynamical, they need to be solved
for, in contrast to the fully constrained approach. Conceptually, enforcing these constrains to
hold in the Hamiltonian corresponds to evaluating it on-shell, i.e. on the region in phase space
where physical processes happen classically. When we compute cosmological observables, we
do want to use the on-shell Hamiltonian where the lapse and the shift are assigned their
physical values. However, when we perform canonical transformations, we do so at the
level of the off-shell Hamiltonian. This is so because when we change phase-space variables
(ζ, pζ) → (ζ̃, p̃ζ), we implicitly leave invariant the remaining of the phase space made of
(N,N i, pN , pN ,i). Then, in the new phase space, constraints can still be derived and relate N
and N i to the variables (ζ̃, p̃ζ) and their (inverse) spatial derivatives. This conceptual subtlety
makes no practical difference up to cubic order in phase-space variables, but not following this
prescription would actually lead to mistakes starting at quartic order. Note also that, strictly
speaking, we should even consider the fully off-shell Hamiltonian including the pN Ṅ + pN ,iṄ i

term, but it is easy to realize that it makes no practical difference at all to simply consider
the partially on-shell Hamiltonian with p̄N = 0 = p̄N ,i that we have used above.
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4.2 Quadratic Hamiltonian

We now expand the Hamiltonian (4.31) perturbatively. In that utility, we will assign a
book-keeping perturbative parameter ε (not to be confused with the slow-roll parameter ϵ)
to our fundamental canonical variables ζ → εζ and pζ → εpζ . We also expand the lapse
and shift in powers of the phase-space variables, as5

N = 1 + ε α(1) + ε2 α(2) + · · · (4.33)

Ni = 0 + ε
(
∂iθ

(1) + b
(1)
i

)
+ ε2

(
∂iθ

(2) + b
(2)
i

)
+ · · · (4.34)

where b(n)
i are divergence-free vectors, i.e. ∀i , ∂ib(n)

i = 0. The Hamiltonian itself can then
be expanded consistently:

H = H(0) + εH(1) + ε2H(2) + ε3H(3) + ε4H(4) + . . . (4.35)

In order to find the solutions for the lapse and the shift, we will vary the Hamiltonian with
respect to them, as in eq. (4.32), at each order in perturbation variables.6 As well known, we
will only need first order constraints to compute the quadratic and cubic order interactions,
whereas constraints of order n ≥ 2 contribute to interactions of order H(≥2n).

The 0th order Hamiltonian is simply proportional to the first Friedmann equation and
therefore vanishes trivially. Next, the first-order Hamiltonian reads:

H(1) =
(1

2a
3ϕ̇2 + a3V (ϕ) − 3a3H2M2

Pl

)
α(1)

+
(

6a3H2ϵM2
Pl − 9a3H2M2

Pl −
3
2a

3ϕ̇2 + 3a3V (ϕ)
)
ζ , (4.37)

which also vanishes upon using the two Friedmann equations. Seen differently, by varying
H(1) with respect to α(1) and ζ, we would find respectively the first and second Friedmann
equations. In the following, we always enforce the Friedmann equations to hold, which sets
H(0) = 0 = H(1) even for off-shell calculations.

Next, we consider the quadratic Hamiltonian, which is given by:

H(2) = − pζ
2

12a3M2
Pl

+Hpζα
(1) − a3H2ϵM2

Pl

(
α(1)

)2
+ aM2

Plϵ (∂ζ)2 + pζ
3a2

(
∂iN (1)

i + ∂2ζ

H

)

− M2
Pl∂

2ζ

3aH

(
∂2ζ

H
+ 2∂iN (1)

i

)
−
M2

Pl

(
∂iN (1)

j

)2

4a −
M2

Pl

(
∂iN (1)

i

)2

12a . (4.38)

5The 1 in N corresponds to a physical choice for the time variable denoted as t from the beginning, for
which t coincides with the cosmic time. Other choices lead to t coinciding with other time variables, like
conformal time for N (0) = a the scale factor, or the number of e-folds for N (0) = H the Hubble parameter.

6Interestingly, a solution for lapse function N valid at all orders in perturbation theory can be found by
varying eq. (4.31) and reads N̄ = ±aeζH

√
f1/f2, where we defined

f1 = 12a4e4ζH2ϵ + 3 (∂jNi)2 + 3∂jNi∂iNj − 2∂iNi∂jNj − 12∂jζ∂jNiNi

− 12∂jζ∂iNjNi + 8∂iζ∂jNjNi + 12 (∂jζ)2 Ni
2 + 4∂iζ∂jζNiNj

f2 = 12a6e6ζH4ϵ − 12a3e3ζH3pζ/M2
Pl + H2p2

ζ − 2aeζHpζ (∂iζ)2 + a2e2ζ (∂iζ)2 (∂jζ)2

− 4aeζHpζ∂
2ζ + 4a2e2ζ (∂iζ)2 ∂2ζ + 4a2e2ζ∂2ζ∂2ζ. (4.36)

The solution with the + sign is the one that matches the perturbative solution we will soon encounter.
Unfortunately, no solution valid at all orders for the shift N̄i can be found.
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Varying it with respect to α(1) and N (1)
i , we obtain the linear order constraints, which read:

Hpζ − 2a3M2
Plᾱ

(1)H2ϵ = 0, (4.39)

− ∂ipζ
3a2M2

Pl
+ 2∂i∂2ζ

3aH + ∂i∂
2θ̄(1)

3a + ∂2b̄
(1)
i

4a = 0. (4.40)

Recalling that b(1)
i is by definition traceless, we can take the divergence of the second equation

to arrive at:

ᾱ(1) = pζ
2a3M2

PlHϵ
, (4.41)

b̄
(1)
i = 0, (4.42)

θ̄(1) = χ− ζ

H
, (4.43)

where we have defined

∂2χ ≡ pζ/2aM2
Pl. (4.44)

Inserting the solutions for the linear constraints into eq. (4.38), we get the on-shell quadratic
Hamiltonian

H̄(2) = 1
M2

Pl

p2
ζ

4a3ϵ
+ aϵM2

Pl (∂iζ) 2, (4.45)

which is the standard form of the quadratic Hamiltonian for single-field inflation. In per-
turbation theory, the interaction picture is often defined with this quadratic Hamiltonian
as the free Hamiltonian dictating equations of motion for the interaction picture field ζI

and momentum pIζ = 2M2
Pla

3ϵζ̇I .

4.3 Cubic Hamiltonian

We now consider cubic interactions. Expanding the Hamiltonian (4.31) up to third order
in perturbations, we get:

H(3) =M2
Pl

{(
3ζ − α(1)

) pζ
2

12a3M4
Pl

− a3H2ϵ
(
α(1)

)2
+

(
∂2θ(1)

)2

6a

+ (α(1) − 2ζ) pζ∂
2ζ

3a2HM2
Pl

+
(
3α(1) − ζ

) (∂i∂jθ(1)
)2

6a −
(
α(1) − ζ

) (∂2ζ)2

3aH2 + aϵ

3 (∂ζ)2
(

pζ
2a3HϵM2

Pl
+ 3ζ

)

− 1
3a2M2

Pl
ζ∂ipζ∂iθ

(1) + 2
3aH ζ∂i∂

2ζ∂iθ
(1) − 2

3a∂
2ζ
(
∂θ(1)

)2
− 1

3aH2 (∂ζ)2 ∂2ζ

−
(

pζζ

a2M2
Pl

+ (∂iζ)2

3aH − 4ζ∂2ζ

3aH

)
∂2θ(1)

}
. (4.46)

As well known, the lapse and shift at second order do not appear in the cubic Hamiltonian,
as interactions involving them can be recast into total spatial derivatives. The expression
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of H(3) in eq. (4.46) is quite cumbersome, but its on-shell evaluation can be written in a
more compact form:

H̄(3) = −M2
Pl

{(
3ζ − pζ

2a3ϵHM2
Pl

)[
p2
ζ

4a3ϵM4
Pl

+ 1
2a

(
∂i∂j θ̄

(1)∂i∂j θ̄
(1) −

(
∂2θ̄(1)

)2
)]

− aϵ ζ(∂ζ)2 − 2
a
∂iζ ∂iθ̄

(1) ∂2θ̄(1)
}
. (4.47)

It can be easily checked that, upon writing this expression in terms of the interaction picture
fields and momenta, eq. (4.47) matches exactly the starting point for the third order bulk
Lagrangian derived in [28], up to an overall minus sign, as expected. Note however the absence
of the total time derivatives denoted D0 in that reference, which instead have already been fully
evacuated (at all orders in perturbation theory) by the canonical transformation eq. (4.28).

Clearly, the interactions in eq. (4.47) are not all sufficiently slow-roll suppressed, even
when plugging interaction picture momenta pζ → pIζ ∝ ϵζ̇I . In order to make the suppression
manifest, we thus seek a canonical transformation as outlined in section 3. As we have already
explained, we should strictly speaking perform them at the level of the off-shell quadratic
and cubic Hamiltonians in eqs. (4.38)–(4.46). However, it can be checked that using the
on-shell ones gives a wrong answer starting at quartic order only, so we do so for simplicity
in this section and we will come back to this issue in section 4.5. Let us look at a subset
of the total cubic Hamiltonian to illustrate these simplifications:

H(3)(ζ, pζ) ⊃ H(3)
A (ζ, pζ) = − 1

4a3ϵM2
Pl

(
3ζ − pζ

2a3ϵHM2
Pl

)
p2
ζ . (4.48)

Upon plugging interaction picture fields and momenta, this contribution “A” reduces to
−L(3)

A (ζI , ζ̇I) of the Lagrangian approach that we have already encountered, see eq. (2.1). We
want to incorporate the dominant p3

ζ interaction into the kinetic term for a new momentum
variable pζ → p̃ζ , i.e.

1
M2

Pl

p2
ζ

4a3ϵ
+

p3
ζ

8a6Hϵ2M4
Pl

→ 1
M2

Pl

p̃2
ζ

4a3ϵ
. (4.49)

Inverting this equation to find the desired pζ as a function of p̃ζ , we find the following
expression to remove the large cubic interaction:

pζ ≡ p̃ζ −
1

4a3ϵHM2
Pl
p̃2
ζ , (4.50)

from which, using pζ = δF/δζ, we get the corresponding type II generating function:

F (ζ, p̃ζ , t) = ζp̃ζ −
1

4a3ϵHM2
Pl
p̃2
ζζ + f(p̃ζ , t) . (4.51)

We can now deduce the consistent transformation law for the position variable ζ, in order for
the new phase-space variables to be canonically conjugate one to the other:

ζ̃ = δF

δp̃ζ
= ζ − p̃ζζ

2a3ϵHM2
Pl

+ ∂f

∂p̃ζ
. (4.52)
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Since we are free to choose f = 0 for simplicity, we do so. We can then invert perturbatively
this last equation, to find:

ζ = ζ̃ + p̃ζ ζ̃

2a3ϵHM2
Pl

+ . . . (4.53)

with dots denoting terms of order three or more in the new phase-space variables. Note that,
following this procedure, the expression pζ(ζ, p̃ζ) is exact while the one for ζ(ζ̃, p̃ζ) — and
therefore also the one pζ(ζ̃, p̃ζ) in the general case, although not relevant here — is only
perturbative. This needs not be a problem as long as calculations are performed consistently
at a given order in perturbation theory. Another contribution is given by the time partial
derivative of the generating function,

∂F

∂t
= 1

4a3M2
Pl

(
−1 + 3

ϵ
+ η

ϵ

)
p̃2
ζζ. (4.54)

Inserting eqs. (4.50) and (4.53) into eqs. (4.45) and (4.48), and adding ∂F/∂t given above as
we should, we get a new Hamiltonian H̃ = H̃(2) + H̃(3)

A + . . . with

H̃(2)(ζ̃, p̃ζ) = H(2)(ζ̃, p̃ζ) (4.55)

H̃(3)
A (ζ̃, p̃ζ) = η − ϵ

4a3ϵM2
Pl
p̃2
ζ ζ̃ −

1
2a2H

ζ̃p̃ζ∂
2ζ̃ . (4.56)

A few remarks are in order. First, p3
ζ interactions have been removed and the explicit size of

the p2
ζζ interaction has been reduced from order ϵ to order ϵ(ϵ− η) (after inserting interaction

picture fields and momenta), and is therefore further suppressed by slow-roll parameters.
Second, in stark contrast with the approach with integrations by parts in the Lagrangian,
we have not generated neither total time derivatives nor terms proportional to the linear
equations of motion, but simply defined a canonical transformation (ζ, pζ) → (ζ̃, p̃ζ). Third
and finally, we have generated a new cubic interaction with the operator ζ̃ p̃ζ∂2ζ̃, but just
like in the Lagrangian approach (see eq. (2.6)) it can be combined with another contribution
to perform an additional canonical transformation and simplify further the Hamiltonian.

We perform canonical transformations step by step to simplify all types of cubic Hamil-
tonian interactions. The final type II generating function is

F (ζ, p̃ζ , t) = ζp̃ζ −
1

4a3ϵHM2
Pl
p̃2
ζζ −

aϵM2
Pl

H
ζ(∂ζ)2 − M2

Pl
6aH3 ζ

[
ζijζij − (∂2ζ)2

]
+ M2

Pl
2aH2 ζ

[
ζijχ̃ij − ∂2ζ∂2χ̃

]
− M2

Pl
2aH ζ

[
χ̃ijχ̃ij − (∂2χ̃)2

]
, (4.57)

with χ̃ given by eq. (4.44), but applied to p̃ζ instead of pζ . From the generating function,
we can derive

ζ̃ = ζ − p̃ζζ

2a3ϵHM2
Pl

+ 1
4a2H2

[
∂−2∂i∂j (ζ ζij) − ζ∂2ζ

]
− 1

2a2H

[
∂−2∂i∂j (ζχ̃ij) − ζ∂2χ̃

]
,

(4.58)
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pζ = p̃ζ −
1

4a3ϵHM2
Pl
p̃2
ζ + aϵM2

Pl
H

(∂ζ)2 + 2aϵM2
Pl

H
ζ∂2ζ − M2

Pl
6aH3

[
ζijζij − (∂2ζ)2

]
− M2

Pl
3aH3

[
∂i∂j (ζ ζij) − ∂2(ζ ∂2ζ)

]
+ M2

Pl
2aH2

[
ζijχ̃ij − ∂2ζ∂2χ̃

]
− M2

Pl
2aH

[
χ̃ijχ̃ij − (∂2χ̃)2

]
+ M2

Pl
2aH2

[
∂i∂j (ζ χ̃ij) − ∂2

(
ζ∂2χ̃

)]
. (4.59)

As mentioned above, although the generating function is cubic in (ζ, p̃ζ) and therefore the
above expressions for (ζ̃, pζ) are exactly quadratic in the same variables, inverting the relation
for ζ to express old variables in terms of new variables can only be done perturbatively,
schematically as

ζ ≡ ζ(1)
(
ζ̃, p̃ζ

)
+ ζ(2)

(
ζ̃, p̃ζ

)
+ ζ(3)

(
ζ̃, p̃ζ

)
+ · · · (4.60)

pζ ≡ p
(1)
ζ

(
ζ̃, p̃ζ

)
+ p

(2)
ζ

(
ζ̃, p̃ζ

)
+ p

(3)
ζ

(
ζ̃, p̃ζ

)
+ · · · (4.61)

where ζ(1) = ζ̃ and p
(1)
ζ = p̃ζ . Several effects must be taken into account. Let us list

them consistently.
First, expressing the old Hamiltonian H = H(2) +H(3) + . . . in terms of the new variables

leads to corrections at cubic order and higher ones. The old quadratic Hamiltonian gives

H(2)
(
ζ(ζ̃, p̃ζ), pζ(ζ̃, p̃ζ)

)
= H(2)

(
ζ̃, p̃ζ

)
+ ∆H̃(3) from (2) + . . . (4.62)

with
∆H̃(3) from (2) =

∑
A

δH(2)

δzA

∣∣∣∣∣
z̃

(
zA
)(2)

, (4.63)

where A, B = 1, 2, zA = (ζ, pζ) and z̃A = (ζ̃, p̃ζ).7 We have not written terms of order four
and more. For notation simplicity, we have denoted by the symbol δ/δ(ζ, pζ) the functional
derivative including the correct factors of (inverse) spatial derivatives operators. The old
cubic Hamiltonian gives

H(3)
(
ζ(ζ̃, p̃ζ), pζ(ζ̃, p̃ζ)

)
= H(3)

(
ζ̃, p̃ζ

)
+ . . . (4.64)

with corrections starting at quartic order only.
The generating function also contributes to the new Hamiltonian via its partial derivative

with respect to time. Explicitly, the correct contribution to H̃(ζ̃, p̃ζ , t) is

∂F (ζ, p̃ζ , t)
∂t

∣∣∣∣
ζ(ζ̃, p̃ζ),p̃ζ

= ∆H̃(3) fromF + . . . = ∂F (ζ, p̃ζ , t)
∂t

∣∣∣∣
z̃

+ . . . , (4.65)

where it is important to take the partial time derivative before plugging in the expression for
ζ in terms of the new variables, and where once more higher orders are not written explicitly.

An important consequence of having only cubic corrections to the trivial term ζp̃ζ in
the generating function is that our canonical transformation affects the Hamiltonian only
starting at cubic order. It therefore leaves invariant the background theory, as it should, and

7In a more general settings with multiple fields, or including tensors, zA would also contain them as well as
their associated momenta.
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does not create tadpoles with linear order terms. Moreover, it leaves invariant the quadratic
Hamiltonian, so that in the corresponding perturbation theory, the free theory is invariant
under the canonical transformation:

H̃(2)
(
ζ̃, p̃ζ

)
= H(2)

(
ζ̃, p̃ζ

)
. (4.66)

In particular, the linear equations of motion for interaction picture fields defined from
this quadratic Hamiltonian are not affected. However, non-linear interactions are affected.
Focusing for now on the cubic order terms in the Hamiltonian, we have:

H̃(3)
(
ζ̃, p̃ζ

)
= H(3)

(
ζ̃, p̃ζ

)
+ ∆H̃(3) from (2) + ∆H̃(3) fromF (4.67)

After some straightforward simplifications, the canonically transformed cubic Hamiltonian,
on shell, becomes:

¯̃H(3) = η − ϵ

4a3ϵM2
Pl
p̃2
ζ ζ̃ − ϵ(ϵ+ η)aM2

Plζ̃(∂ζ̃)2 + M2
Pl
a

(2 − ϵ/2)(∂ζ̃)(∂χ̃)∂2χ̃− ϵM2
Pl

4a ∂2ζ̃(∂χ̃)2.

(4.68)
Upon inserting the interaction picture fields and momenta, this equation reduces to the bulk
part of the cubic scalar Lagrangian after all simplifications in the traditional approach, see
eq. (2.7). The important point, however, is that no integration by parts has been performed
in this Hamiltonian approach, but rather a canonical transformation to new variables. The
consequence is the absence of total time derivative interactions in the interaction Hamiltonian
of the corresponding perturbation theory, leading to simpler in-in formulas. Our canonical
transformation generalizes Maldacena’s change of variable [6] to the whole phase space without
invoking cancellations of total time derivatives or terms proportional to the equations of
motion. From eqs. (4.58) and (4.59), the old variables are connected to the new ones via
the following canonical transformation:

ζ = ζ̃ + p̃ζ ζ̃

2a3ϵHM2
Pl

− 1
4a2H2

[
∂−2∂i∂j

(
ζ̃ ζ̃ij

)
− ζ̃∂2ζ̃

]
+ 1

2a2H

[
∂−2∂i∂j

(
ζ̃χ̃ij

)
− ζ̃∂2χ̃

]
+ . . . (4.69)

pζ = p̃ζ −
1

4a3ϵHM2
Pl
p̃2
ζ + aϵM2

Pl
H

(∂ζ̃)2 + 2aϵM2
Pl

H
ζ̃∂2ζ̃ − M2

Pl
6aH3

[
ζ̃ij ζ̃ij − (∂2ζ̃)2

]
(4.70)

− M2
Pl

3aH3

[
∂i∂j

(
ζ̃ ζ̃ij

)
− ∂2(ζ̃∂2ζ̃)

]
+ M2

Pl
2aH2

[
ζ̃ijχ̃ij − ∂2ζ̃∂2χ̃

]
− M2

Pl
2aH

[
χ̃ijχ̃ij − (∂2χ̃)2

]
+ M2

Pl
2aH2

[
∂i∂j

(
ζ̃ χ̃ij

)
− ∂2

(
ζ̃∂2χ̃

)]
+ . . .

where we have consistently included only quadratic corrections. Indeed, although our canonical
transformations technically include cubic and higher-order corrections to these equations,
those terms only contribute to correlation functions that also get affected by quartic and
higher order interactions that we have not consistently kept track of.

In particular, correlation functions of ζ (and similarly for those of pζ or mixed correlators)
can be related to those of ζ̃ and p̃ζ via eqs. (4.69) and (4.70), which are computed using the
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new H̃(3). For illustration, let us relate the late-time bispectrum of ζ, i.e. its Fourier space
3-point correlation function on super-horizon scales, defined as:

lim
∀i ,−kiτ→0

⟨ζk1ζk2ζk3⟩(τ) ≡ (2π)3δ (k1 + k2 + k3)Bζ(k1, k2, k3) , (4.71)

to the one of ζ̃, Bζ̃ that can be computed from the Hamiltonian (4.68) or equivalently from
the Lagrangian path integral approach, soon after horizon crossing for these modes. Indeed, a
subtlety comes about here. In general, we are only able to compute correlation functions with
the in-in formalism in a given range of e-folds where we consider all background quantities
to be slowly varying. When we compute correlation functions for ζ directly, this makes
little difference as ζ generally reaches an adiabatic limit on super-horizon scales, at least
in attractor scenarios of single-field inflation. In that case, it is enough to compute the
evolution of the correlation functions from deep inside the Hubble radius to slightly after
Hubble crossing when the fluctuations freeze. However, when the variable used differs from
ζ, like ζ̃ here, we need to be careful and in practice we are only able to relate correlation
functions of ζ to those of ζ̃ soon after horizon crossing. The other option, perfectly valid,
consists in following exactly the (slow) evolution of correlators of ζ̃ until the end of inflation
on super-horizon scales, and only there relate them to those of ζ. Here we follow the first
route, better adapted to analytical calculations.

By using the Fourier transform of eq. (4.69) at a time τ⋆ slightly after horizon crossing
for all three wavenumbers, i.e. ∀i , −kiτ⋆ ≪ 1, we find:

Bζ = B⋆
ζ = B⋆

ζ̃
− 2 b(−k1,−k2,−k3)P ⋆

ζ̃
(k1)P ⋆

ζ̃
(k2) + 2 perm.

− 2 c(−k1,−k2,−k3)P ⋆
ζ̃

(k3)P ⋆
ζ̃p̃ζ

(k2) + 5 perm. , (4.72)

where we have defined

b(k1,k2,k3) = 1
8a2H2

⋆

(
k2

1 + k2
2 − (k1 · k̂3)2 − (k2 · k̂3)2

)
(4.73)

c(k1,k2,k3) = 1
8a3ϵ⋆H⋆M2

Pl

[
−2 + ϵ⋆ (1 − (k̂1 · k̂2)2)

]
, (4.74)

a starred quantity being evaluated around the time τ⋆, and where k̂i is the unit vector ki/ki.
Note that Pζ̃p̃ζ (k) = 1

2

(
⟨ζ̃(k)p̃ζ(−k)⟩′ + ⟨p̃ζ(k)ζ̃(−k)⟩′

)
is the real cross-spectrum of ζ̃ and

p̃ζ , and Pζ̃(k) is the power spectrum of ζ̃. At tree-level, those power spectra are equal to
those of ζ, pζ . The result for the bispectrum obtained with our formalism exactly matches
the one computed in [28] obtained using the in-in formalism with boundary terms outlined in
section 2, and we have intentionally adopted their same notation.

Given this canonical transformation, we can see that correlation functions of ζ will
be equal to those of ζ̃, plus correction terms either proportional to correlation functions
including the momentum p̃ζ or spatial gradients. Therefore, in single-field inflation with
an attractor phase, for cosmological scales of observational relevance, one can conclude
that the above canonical transformation used to simplify the cubic Hamiltonian, will only
produce negligible corrections. This conclusion is much easier to arrive at using the canonical
transformations approach rather than the IBP one, for in the latter case we have seen that
the in-in perturbation theory quickly becomes cumbersome with cancellations to seek for
between different vertex orders.
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4.4 Scalar and tensor interactions

So far, we have exclusively examined scalar interactions, but it is instructive to apply our
formalism to tensor interactions as well. Therefore, we extend the results of the previous
section to encompass tensor perturbations. We present the cubic Hamiltonian for tensors
and mixed scalar-tensor interactions. Our findings can be used for calculating correlation
functions involving tensor perturbations, such as in computations related to scalar-induced
gravitational waves [52] and gravitational wave anisotropies [20]. Additionally, we highlight
an intriguing aspect of our approach—a nontrivial contribution of tensor perturbations to
scalar interactions and vice versa, beginning at quartic order in interactions.

Including tensor perturbations, the spatial metric in the comoving gauge takes the
following form:

hij = a2e2ζ(eγ)ij , (4.75)

where the tensor perturbation γij is transverse and traceless, i.e. ∂iγij = γii = 0. Let us note
that (4.75) is just a shorthand and it should be understood as follows

hij = a2e2ζ(eγ)ij = a2e2ζ
(
δij + γij + 1

2γilγlj + 1
6γilγlmγmj + . . .

)
. (4.76)

Using the exponential of γij to carry out an analysis for the tensor sector valid at all orders
in perturbation theory is not as straightforward as for scalar perturbations, so that we need
to use the expression (4.76) instead. Plugging it into the action (4.5) we get:

L = Lscalars + Lγ + Lγγ + Lγγγ + Lγγγγ + · · · , (4.77)

where Lscalars is given by the scalar Lagrangian in eq. (4.24), Lγ , Lγγ , Lγγγ , Lγγγγ contain 1,
2, 3 and 4 powers of γij or its spatial or time derivatives as well as other powers of the scalar
perturbation ζ. Explicit expressions for each term in eq. (4.77) are provided in the appendix C.
From such expressions, we can derive the on-shell conjugate momenta p̄X ≡ δL/δẊ:

p̄ζ = M2
Pl

(
− 6a3e3ζ ζ̇

N
+ 2aeζ∂iNi

N
+ 2aeζNi∂iζ

N
− 6a3e3ζH

N
− 2aeζ∂jNi γij

N

)
+ · · · , (4.78)

p̄ij = M2
Pl

(
a3e3ζ γ̇ij

4N − aeζNi∂jN

2N2 + 3aeζNi∂jζ

2N − aeζNk∂kγij
4N + aeζNk∂jγik

2N

+ aeζ∂kNjγik
4N + aeζ∂jNkγik

4N

)
symm

+ · · · , (4.79)

where the subscript “symm” denotes symmetrization with respect to the indices i, j, i.e.
Aij |symm ≡ (Aij + Aji)/2, and the conjugate momenta to N and Ni are still zero. The
dots denote cubic order terms in the expressions of the momenta p̄ζ and p̄ij , and only
become relevant for the computation of quintic or higher order interactions, which we are
not concerned with in this paper.

We immediately notice that the momentum p̄ζ differs from that in eq. (4.25) by the
term −2aM2

Ple
ζ∂jNi γij /N . Furthermore, the tensor momentum p̄ij receives contributions
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from products of scalar perturbations. This fact will play a crucial role in deriving the
quartic Hamiltonian in phase space. For example, the kinetic terms ∼ ζ̇2 and ∼ (γ̇ij)2 will
also generate purely tensor and scalar quartic interactions respectively, as well as mixed
scalar-tensor quartic interactions. We will come back to this matter in section 4.5.

Using eqs. (4.77), (4.78) and (4.79), we can perform the Legendre transform, followed
by the canonical transformation (4.30) arrive at the Hamiltonian. Up to cubic order, the
Hamiltonian consists in the following contributions:

H = H(2)
scalars + H(2)

tensors + H(3)
ζζζ + H(3)

ζζγ + H(3)
ζγγ + H(3)

γγγ (4.80)

where the purely scalar interactions H(2)
scalars and H(3)

ζζζ are given by eqs. (4.45) and (4.47)
respectively. The evolution of the interaction picture tensor degrees of freedom is often set
to be governed by their quadratic Hamiltonian, which reads:

H(2)
tensors =

2p2
ij

a3M2
Pl

+ M2
Pl

8 a (∂kγij)2 , (4.81)

in which case pIij = a3M2
Plγ̇

I
ij . The cubic interactions involving tensors take the following form

H(3)
ζζγ = 6ζpij∂i∂jθ(1)

a2 − pζpij∂i∂jθ
(1)

a5HϵM2
Pl

− M2
Pl

2a θ(1)∂i∂j∂kθ
(1) ∂kγij − aM2

Plζ∂i∂jζγij

− pζ∂i∂jζγij
a2H ϵ

(4.82)

H(3)
ζγγ = −

6ζp2
ij

a3M2
Pl

+
pζp

2
ij

a6HϵM4
Pl

+ pij∂kθ
(1)∂kγij
a2 + M2

Pl
8 aζ (∂kγij)2 + pζ (∂kγij)2

16a2Hϵ
(4.83)

H(3)
γγγ = − aM2

Pl
4 ∂lγik ∂kγjl γij + aM2

Pl
8 ∂k∂lγij γij γkl. (4.84)

As before, we need to perform a canonical transformation to simplify the cubic Hamiltonian
and make the slow-roll suppression manifest. We arrive at the following generating function:

F [p̃ζ , ζ, p̃ij , γij , t] = p̃ζζ + p̃ij γij (4.85)

− 1
4a3ϵHM2

Pl
p̃2
ζζ −

aϵM2
Pl

H
ζ(∂ζ)2 − M2

Pl
6aH3 ζ

[
ζijζij − (∂2ζ)2

]
+ M2

Pl
2aH2 ζ

[
ζijχ̃ij − ∂2ζ∂2χ̃

]
− M2

Pl
2aH ζ

[
χ̃ijχ̃ij − (∂2χ̃)2

]
− aM2

Pl
H

∂iζ∂jζγij + 1
a2H2∂iζ∂jζp̃ij + 2

a2HM2
Pl
χ̃∂i∂jζp̃ij

− aM2
Pl

8H ζ (∂lγij)2 − 2
a3HM2

Pl
ζp̃2

ij .

The second and third lines of the generating functions are the same as in eq. (4.57), and
only affect H(3)

ζζζ , recasting it in the form (4.68). Terms in the fourth and fifth lines are new.
Like in the scalar case, when evaluated on interaction picture fields, the fourth line turns
out to be equal to the argument of total time derivative terms in the Lagrangian, as can be
easily checked by comparing with ref. [30], where total time derivative tensor interactions
were highlighted for the fist time.
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From the generating function, we can derive the relations between the new and the
old variables:

ζ̃ = Eq. (4.58) − 1
a3H

∂−2 (∂i∂jζ p̃ij) (4.86)

pζ = Eq. (4.59) + 2aM2
Pl

H
∂i∂jζ γij −

2
a2H2∂j (∂iζ p̃ij) + 2

a2HM2
Pl
∂i∂j (χ̃ p̃ij)

− aM2
Pl

8H (∂k γij)2 − 2
a3HM2

Pl
p̃2
ij , (4.87)

γ̃ij = γij + M2
Pl

a2H2∂iζ∂jζ + 2
a2H

χ̃∂i∂jζ −
4

a3H
ζp̃ij , (4.88)

pij = p̃ij −
aM2

Pl
H

∂iζ∂jζ + aM2
Pl

4H ∂k (ζ∂kγij) . (4.89)

We can invert the relations above perturbatively to find the old variables in terms of the
new one, and compute the new Hamiltonian H̃. As previously announced, we see that the
canonical transformations mix scalar and tensor perturbations, which implies that correlation
functions of the old scalar or tensor variables will be found from both new scalar and tensor
variables. One may derive diagrammatic rules following the procedure outlined in appendix B
to find the precise relations, although we do not do it here.

Using the transformations above, we simplify the tensor interactions:

H̃ζζγ = −M2
Pl

[
− 2ϵ
a2M2

Pl
χ̃∂i∂j ζ̃ p̃ij + 1

4aM2
Pl
∂iχ̃∂jχ̃∂

2γ̃ij + aϵ∂iζ̃∂j ζ̃ γ̃ij

]
, (4.90)

− 1
a2

[
ϵ

H
∂j
(
ζ̃2
)
− 2
M2

Pl
∂j

(
3ζ̃ − p̃ζ

2a3HϵM2
Pl

)
χ̃

]
∂ip̃ij ,

H̃ζγγ = −M2
Pl

[
2ϵ

a3M4
Pl
ζ̃ p̃ij

2 − 1
a2M4

Pl
∂lχ̃p̃ij∂lγ̃ij + 1

8aϵζ̃ (∂lγ̃ij)2
]

(4.91)

+ 2
a2∂kθ̃

(1) γjk ∂ip̃ij ,

H̃γγγ = −M2
Pl

[1
4a∂mγ̃il∂lγ̃jmγ̃ij + 1

8a∂iγ̃lm∂j γ̃lmγ̃ij
]
. (4.92)

Upon inserting the interaction picture fields γ̃Iij and p̃Iij = M2
Pla

3 ˙̃γIij , we have that ∂ip̃Iij = 0
and the equation above simply reduces to the bulk interactions found in ref. [30], as expected.

One may want to seek for an additional canonical transformation to remove the in-
teractions proportional to ∂ip̃ij so that the Hamiltonian do not contain at all such terms,
even without evaluating it on interaction picture fields. This can be done by modifying
the generating function as follows:

F [p̃ζ , ζ, p̃ij , γij , t] = Eq. (4.85) (4.93)

+ aM2
Pl

4 γij ∂i

{
2∂k

[(
χ̃

M2
Pl

− ζ

H

)
γjk

]
−
[
∂j

(
ϵζ2

H

)
− 2∂j

(
3ζ − p̃ζ

2a3HϵM2
Pl

)]
χ̃

M2
Pl

}
.

– 57 –



J
H
E
P
0
8
(
2
0
2
4
)
0
6
8

Adding this term only modifies the canonical transformation law for the tensor conjugate
momentum as

pij = Eq. (4.89) (4.94)

− aM2
Pl

4

{
−2∂i∂k

[(
χ̃

M2
Pl

− ζ

H

)
γjk

]
+ ∂i

[
∂j

(
ϵζ2

H

)
− 2∂j

(
3ζ − p̃ζ

2a3HϵM2
Pl

)]
χ̃

M2
Pl

}

and does not induce any additional transformations for ζ, pζ and γij . Furthermore, eq. (4.93)
is easily seen to be a total spatial derivative, and so is its partial time derivative. Therefore,
the sole effect of adding this term is the removal of interactions proportional to ∂ip̃ij in
eqs. (4.90) and (4.92), and does not introduce additional terms.

4.5 Quartic Hamiltonian

Let us finally comment on the quartic Hamiltonian. Quartic vertices are relevant for the
calculations of tree-level trispectra and loop-corrections to primordial correlators. The
procedure to arrive at a manifestly slow-roll suppressed Hamiltonian is conceptually the same
as outlined in the previous sections. However, the calculation is significantly more involved,
due to the large number of SR unsuppressed terms that need to be removed via canonical
transformations. For this reason, here we will simply outline the steps of the calculation,
leaving a full simplification for future works. To show how the procedure works in practice,
we apply it to a simplified situation in which the size of only a subset of interactions is much
larger than the other ones, so that a simplification becomes feasible.

4.5.1 All contributions to the quartic Hamiltonian

Let us remind the reader that the quartic Hamiltonian is not obtained by simply expanding
the original Hamiltonian up to fourth order in perturbations. Indeed, following the notation
of section 4.3, the quartic Hamiltonian receives several contributions that look schematically
as follows:

H̃(4) = H(4)
(
ζ̃, p̃ζ , γ̃ij , p̃ij

)
+ ∆H̃(4) from (2) + ∆H̃(4) from (3) + ∆H̃(4) fromF . (4.95)

We now explain the origin of each contribution in this equation, and clarify some subtleties
associated to their calculation.

• H(4)
(
ζ̃, p̃ζ , γ̃ij , p̃ij

)
. This is the standard contribution from the Legendre transform,

expanded at fourth order in perturbations, and written in terms of the new variables.
Had we not performed the canonical transformation (4.93), this would be the final
result for H(4), and the starting point for subsequent simplifications. As well known, it
is in general not equal to −L(4) [36]. Computing this term is already quite demanding
as, in general, the relation between the time derivative of the coordinate and its
conjugate momentum is not always analytically invertible. One could need to invert
it perturbatively, as explained in e.g. [37, 38]. However, in our case we get a simple
analytical expression of ζ̇ and γ̇ij in terms of their momenta (4.78) and (4.79), thereby
significantly simplifying its calculation.
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Let us note that varying the quartic Hamiltonian with respect to the second order lapse
and shift we can get the second order constraint equations needed for this calculation.
Actually, terms involving α(2), and shift N (2)

i only appear in the first term in eq. (4.95),
as all other ones are generated by the canonical transformation (4.93). Before moving
on to the next contribution, let us finally stress that in order to obtain the correct H(4)

we have to take into account both scalar and tensor perturbations, as the conjugate
scalar and tensor momenta in (4.78) and (4.79) contain second order tensor and scalar
contributions, respectively.

• ∆H̃(4) from (2). Inserting the expression for the old variables in terms of the new ones in
the quadratic Hamiltonian we get a correction to H̃(4), which can be calculated as:

∆H̃(4) from (2) =
∑
A

δH(2)

δzA

∣∣∣∣∣
z̃

(
zA
)(3)

+ 1
2
∑
A,B

δ2H(2)

δzAδzB

∣∣∣∣∣∣
z̃

(
zA
)(2) (

zB
)(2)

. (4.96)

To derive the cubic contributions
(
zA
)(3)

, eqs. (4.86), (4.87), (4.88) and (4.94) need to
be expanded to third order in the new ˜ variables. Let us also emphasize once more
that it is crucial not to plug the solutions for the linear constraints into the quadratic
Hamiltonian before performing the canonical transformation. The first term in eq. (4.96)
yield the same contribution to ∆H(4) from (2) irrespective of whether one starts from
the off-shell quadratic Hamiltonian (4.38) or the on-shell one (4.45). However, this
consistency does not extend to the second term in (4.96). Indeed, it can be easily
checked that quartic interactions made up of products of two quadratic terms in the
perturbative expansion (4.60) differ depending on whether one uses the off-shell or the
on-shell Hamiltonians as starting points for the canonical transformation.

• ∆H̃(4) from (3). Similarly, inserting the expression for the old variables in terms of the
new ones in the cubic Hamiltonian we get the following correction to H̃(4):

∆H̃(4) from (3) =
∑
A

δH(3)

δzA

∣∣∣∣∣
z̃

(
zA
)(2)

. (4.97)

Also in this case, the starting point for the simplification should be a priori the off-shell
cubic Hamiltonian (4.46), before any on-shell solution for the linear constraints is
enforced.

• ∆H̃(4) fromF . Finally, there is a fourth contribution from plugging the canonical trans-
formation into ∂F/∂t:

∆H̃(4) fromF =
(
δ

δζ

∂F (ζ, γij , p̃ζ , p̃ij , t)
∂t

ζ(2) + δ

δγij

∂F (ζ, γij , p̃ζ , p̃ij , t)
∂t

γ
(2)
ij

)∣∣∣∣∣
z̃A

.

(4.98)
We remind the reader that our type II generating function is already a function of the
new momenta, so only the new coordinates needs to be expanded perturbatively to
calculate this contribution. It is important to first take the partial time derivative, and
then only expand in terms of the new phase-space variables.
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The process of extracting manifestly slow-roll suppressed quartic interactions from H̃(4) is
the same as in section 4.3. The difference lies in the much larger number of initial interactions
to be simplified, which makes the simplification computationally demanding. Rather than
performing all such kinds of simplifications, which goes beyond the scopes of this paper, we
will focus on a subset of interactions to show how the algorithm described at the end of
section 4.3 works in practice for quartic interactions.

4.5.2 Dominant interactions with a large η

In this section, we focus on a subset of the quartic interactions, that dominate whenever
η and its derivatives are large. This may be relevant for inflationary scenarios with a
transient stage during which the usual slow-roll approximation breaks down, with higher
order slow-roll parameters become of order one (ϵi>1 ∼ O(1)) while ϵ is still remaining small.
We already encountered some interactions proportional to ϵ2 = η in the simplified cubic
Hamiltonian (4.46). Those are indeed the dominant cubic interactions in this regime, and
we can estimate their sizes as, for example,8

Large η cubic vertex: / ζ̃ ∼
[
ϵηaM2

Plζ̃(∂ζ̃)2
]
/ ζ̃ ∼ η . (4.99)

The other cubic interaction with η, schematically of the form (η/ϵ)p̃2
ζ ζ̃, contributes roughly

the same order, although the precise relative size of these two contributions depends also
on the details of the hierarchies between higher order slow-roll parameters ϵi>1 and one, as
encoded in the ratio ζ̇/(Hζ). We also stress already that in addition to these two leading
interactions, the canonical transformation used to simplify the cubic order Hamiltonian may
lead to non-negligible contributions in scenarios with large η where the momentum p̃ζ does not
necessarily decay on super-horizon scales, in contrast to the usual slow-roll attractor scenario.

The lowest order correlation functions to which quartic interactions contribute are the
tree-level trispetrum, and the 1-vertex correction to the 1-loop power spectrum. The same
correlation functions will receive a contribution from two insertions of (4.99). We can use
this to estimate the typical size of a quartic interactions as important as, or more important
than, the cubic ones, as follows:

Large η quartic vertex: / ζ̃2 ≳
(

/ ζ̃

)2
∼ η2 . (4.100)

For example, a quartic Hamiltonian interaction of the form aϵη2M2
Plζ̃

2(∂ζ̃)2 would para-
metrically contribute as much as the leading cubic interactions. Quartic interactions with
an estimated size smaller than (4.100) would provide a subdominant contribution during
a stage of η ∼ O(1).

Let us now isolate such dominant interactions in H̃(4). The Lagrangian for single-field
inflation (4.5) does not contain any interactions with ϵi>1 in its original form and the only way
such interactions can appear in the Hamiltonian is by performing canonical transformations.
There are therefore only two possibilities. Either such interactions are generated by the

8We estimate the size of interactions around the time of Hubble crossing using dt ∼ 1/H, a ∼ k/H, ∂ζ ∼ kζ,
pζ ∼ ϵa3M2

Plζ̇ and ζ ∼ H/(k3/2ϵ1/2MPl). How to relate ζ̇ to ζ depends on the details of this non-slow-roll
phase.
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canonical transformation in (4.85) to simplify the cubic interactions, or they are generated
by a new canonical transformation to render manifest the true size of quartic interactions.

Let us start by the former possibility, i.e. by inspecting the canonical transformations
derived from the generating function (4.85). They only depend on the background quantities
(a, H, ϵ), so that interactions involving η can only be generated through the partial time
derivative of the generating function, i.e. ∆H̃(4) fromF . Among such interactions, the ones
least suppressed by ϵ ≪ 1 are given by:

H̃(4)
η, dominant = η

8a6HM4
Plϵ

2 p̃
3
ζ ζ̃ + η

2a2H
p̃ζ ζ̃

(
∂ζ̃
)2

+ η

a2H
p̃ζ ζ̃

2∂2ζ̃ + H(4)
η, inv.deriv. , (4.101)

with H(4)
η, inv.deriv. involving interactions of the form ϵηD(ζ̃4) and (η/ϵ)D(ζ̃2p̃2

ζ) with D a
complicated operator involving inverse spatial derivatives. Interactions above only contain
one power of η, thus providing an apparently smaller size than our estimate in (4.100) when η
is large. However, as in section 4.3, we can perform a canonical transformation to incorporate
the interactions not involving inverse spatial derivatives in (4.101) into the kinetic term for a
new momentum variable. This will result in interactions of the form ζ4 or pζ2ζ2 but with
additional factors of η and its derivatives, which would decrease the size of the interaction in
slow roll, while here it increases it. In practice, we define the following generating function:

Fη[ζ̃, ˜̃pζ , t] = ˜̃pζ ζ̃ −
η

8a3HM2
Plϵ

˜̃pζ2
ζ̃2 −M2

Pl
aϵη

6H ζ̃3∂2ζ̃, (4.102)

from which we can derive the expressions relating old and new variables as follows

p̃ζ = ˜̃pζ −
η

4a3HM2
Plϵ

˜̃pζ2
ζ̃ −M2

Pl
aϵη

H
ζ̃
(
∂ζ̃
)2

−M2
Pl
aϵη

H
ζ̃2 ∂2ζ̃ (4.103)

˜̃ζ = ζ̃ + η

8a3HM2
Plϵ

˜̃pζ ζ̃2. (4.104)

Let us note that, being the generating function quartic (besides the trivial term), not only
does this canonical transformation leave the quadratic action invariant, but also the cubic
one. Computing the new quartic Hamiltonian, and keeping only terms quadratic in η and
its logarithmic derivative we get:

˜̃H(4)
η2, dominant =

˜̃pζ2 ˜̃ζ
2
η2

8a3M2
Plϵ

−
˜̃pζ2 ˜̃ζ

2
ηη2

8a3M2
Plϵ

+ M2
Pl

2 aϵ ˜̃ζ
2
η2
(
∂ ˜̃ζ
)2

+ M2
Pl

2 aϵ ˜̃ζ
2
ηη2

(
∂ ˜̃ζ
)2
, (4.105)

where we have defined η2 ≡ η̇/Hη. We have also consistently neglected H(4)
η, inv.deriv. as it is

less boosted by ϵi>1 parameters. Interestingly, this expression exactly matches the dominant
η interactions derived using the EFT of inflation in ref. [53]. However, to be consistent when
computing a given observable generated by such large quartic interactions, one should also
consider contributions given by the canonical transformation relating correlation functions of
ζ to those of ˜̃ζ. One can check that the only term containing η is the one shown in eq. (4.104),
leading to ζ ≃ ˜̃ζ − η/(8a3ϵHM2

Pl)˜̃pζ ˜̃ζ
2
. Whether it can give a contribution to correlation

functions of ζ as sizable as the dominant cubic and quartic interactions should be decided
depending on the details of the modelling of the large η phase, and in particular depending
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on the behaviour of the momenta which are super-horizon and the time of evaluation of the
correlation functions (see discussion around eq. (4.71)).

Next, let us explore the second potential source of large η contributions, namely, addi-
tional canonical transformations aimed at elucidating the magnitude of the entire quartic
Hamiltonian. As mentioned earlier, we do not undertake this entire calculation, as it is beyond
the scope of this work. Instead, our goal is to present a general argument explaining why such
transformations are unlikely to yield dominant contributions to the large η interactions. Let
O(i)
pζn ζm

denote an interaction consisting solely of operators with n powers of pζ , m powers of
ζ, and i spatial derivatives, suitably contracted. Inverse Laplacian operators contribute with
a factor of −2 to the sum for computing the index i. We find the leading contribution to our
on-shell quartic Hamiltonian (4.95) to be superficially of slow-roll order ϵ0, and of the form:

H̃(4)
ϵ0 = 1

a7H4ϵ2M2
Pl
O(4)
p̃2
ζ
ζ̃2 + 1

a6H5ϵ
O(6)
p̃ζ ζ̃3 + M2

Pl
a4H3ϵ

O(4)
p̃ζ ζ̃3 + M2

Pl
a3H4O

(6)
ζ̃4 + M2

Pl
aH2O

(4)
ζ̃4 . (4.106)

One can follow the usual procedure and determine the canonical transformation to simplify
the interactions above by incorporating the first two terms in (4.106) into the quadratic
kinetic term. Only the generating function corresponding to the first term above includes
factors of ϵ and eventually leads to an η dependent term upon taking the partial time
derivative. The resulting η-dependent contribution is of the form ηF (4)

˜̃pζ ˜̃ζ
3/a

4H3ϵ, and is
superficially of slow-roll order ∼ ϵ.

After having properly chosen the generating function so as to cancel out the leading
order Hamiltonian (4.106), the remaining interactions are superficially of slow-roll order
∼ ϵ, and we find their form to be:

˜̃H(4)
ϵ1 = 1

a8H3ϵ2M4
Pl
O(2)

˜̃pζ
3 ˜̃ζ

+ 1
a6Hϵ2M4

Pl
O(0)

˜̃pζ
3 ˜̃ζ

+ 1
a5H2ϵM2

Pl
O(2)

˜̃pζ
2 ˜̃ζ

2 + 1
a3ϵM2

Pl
O(0)

˜̃pζ
2 ˜̃ζ

2

+ 1
a7H4ϵM2

Pl
O(4)

˜̃pζ
2 ˜̃ζ

2 + 1
a4H3O

(4)
˜̃pζ ˜̃ζ

3 + 1
a2H

O(2)
˜̃pζ ˜̃ζ

3 + ϵM2
Pl

aH2 O(4)
˜̃ζ

4 − ϵM2
Pl

a3H4 O(6)
˜̃ζ

4

+ 1
a4H3

η

ϵ
F (4)

˜̃pζ ˜̃ζ
3 , (4.107)

where the last term is precisely the one mentioned above, produced by the first canonical
transformation. As in the previous step, one could then find another canonical transformation
to reduce the size of the interactions. It is easy to see check that of all the terms in eq. (4.107),
only the first two terms and the last one can possibly produce interactions proportional to η
through this procedure. The former generate a term of the form ηF (2)

˜̃̃p2
ζ

˜̃̃
ζ2
/a5H2M2

Pl, which is,

however, subdominant with respect to those in the leading interactions in the large η regime
derived in eq. (4.105). On the other hand, simplifying the last term in eq. (4.107), may lead
to an interaction of the form η(η2 −H)M2

PlF
(4)
˜̃̃
ζ4
/aH2M2

Pl. The interaction ∝ ηη2 would be
of the same order as those in eq. (4.105). However, the one ∝ η would be of slow-roll order
ϵ1, and cannot be cancelled by any other contribution. This would be problematic, as such
interaction would lead to a large trispectrum of order unity even during standard slow-roll
inflation, while it is known to start at the next order in this regime [54, 55]. Therefore, we
conclude that the complicated operator F (4)

˜̃̃
ζ4

must vanish upon careful computation of its
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various contributions and uses of spatial integration by parts. Based on this argument, we
conclude that the dominant interactions in the large η limit take the form that we have
derived in eq. (4.105). Moreover, the canonical transformations needed to reach the stage with
the operator F (4)

˜̃̃
ζ4

do not introduce η-dependent terms so we can consider ˜̃̃
ζ = ˜̃ζ in the large

η regime, and the only relevant canonical transformation is still given by eq. (4.104) alone.
This example serves primarily for illustration, providing a simplified setting to demon-

strate the method for manipulating H(4) using canonical transformations. However, let us
mention that our exercise has already interesting applications on its own. In particular, a
heated discussion has recently emerged regarding whether models with a transient stage
of large η can produce large loop-corrections to the spectrum of ζ (see refs. [48, 56–67] for
an incomplete list of papers). One of the controversies in this context is related to how to
deal with total time derivative interactions terms, recently discussed in refs. [68–70]. We
hope that our identification of the dominant interactions in the large η regime, together with
our thorough explanation of how to deal with total time derivatives in the approach with
integrations by parts, our equivalently with canonical transformations at the level of the full
Hamiltonian in phase space, can contribute to solving this matter.

4.5.3 Order n Hamiltonian

Before concluding, let us thus generalize the learnt lesson, and provide a prescription to
simplify interactions at order n in perturbations. To be fully general we reintroduce a
collection of multiple fields ψA and associated momenta pAψ with A = 1, . . . , N . Starting
from a Hamiltonian with interactions of superficially slow-roll size ϵmi (m powers of either of
the slow-roll parameters) after introducing interaction picture fields, we propose the following
prescription to make explicit the true size of interactions:

• Take the interactions with the highest powers of momenta, and superficial size ϵmi . At
order n this would be

(
pAψ

)n
.

• Define new momenta p̃Aψ to incorporate this interaction into the kinetic term for this
new momentum.

• Find the corresponding generating function and new position variable ψ̃A, possibly
perturbatively, and derive the new Hamiltonian H̃ for the new phase-space variables.
The generating function is of order n, and lower order interactions of order < n are not
modified.

• Repeat this procedure for the interaction of order
(
pAψ

)n−1
ψA, etc. The last step is

the order pAψ
(
ψA
)n−1

, after which one is left with only terms of the form
(
ψA
)n

. At
this point there are three possibilities. (i) the remaining interactions of the form

(
ψA
)n

do not cancel out among each others: the true size of the Hamiltonian is ϵmi . (ii) the
remaining interactions of the form

(
ψA
)n

cancel out among each others: the true size
of the Hamiltonian is < ϵmi , and we will have to repeat the procedure above until we
reach the true size of the interaction Hamiltonian at order n.
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The perturbative canonical transformations obtained to simplify the Hamiltonian of order
n way will also generate higher order interactions, which will add to other interactions of
the same order. One can then go to the order n + 1 and apply again the algorithm we
have just proposed.

5 Conclusions

Despite the established use of in-in perturbation theory for computing cosmological correlation
functions, unresolved ambiguities were persisting in handling total time derivative interactions
in the Lagrangian. In the context of inflation, these interactions primarily emerge from
integrations by parts designed to reveal the correct slow-roll suppression of non-linear
interactions in the comoving gauge. Although the importance of not overlooking total time
derivatives was already emphasized, a systematic approach to such terms beyond the single
vertex order was still lacking in the literature. Our work precisely clarifies the impact of
total time derivatives and terms proportional to the linear equations of motion in the in-in
perturbation theory and formalizes their analysis.

In this work, we systematize the treatment of total time derivative interactions in the
interaction Hamiltonian of the in-in perturbation theory and we elucidate their possible
contributions to correlation functions. We show that they lead to i) boundary terms in
the form of equal-time nested commutators with the external operator O whose correlation
functions are sought for; ii) modifications of the usual bulk interactions that need to be
integrated over time, in the form of effective interactions. Only the former contribution was
investigated before our work, while we show that the latter is also crucial to cancel superficially
large contributions from higher-order bulk interactions in the Hamiltonian generated from the
Legendre transformation of the Lagrangian that includes total time derivative interactions. We
provide a general formula valid at any order in perturbation theory that enables to recast all
contributions from total time derivatives in the interaction Hamiltonian as either a redefinition
of the external operator O or of the bulk interactions. Explicitly expanding the formula up to
second order, as required for practical calculations of the most common primordial correlation
functions, bispectrum, contact and exchange trispectrum and 1-loop corrections to the power
spectrum, we demonstrate its practical use beyond the single-vertex order. For completeness
and sake of comparison, we also explored how the Lagrangian path integral approach of the
in-in formalism performs in dealing with total time derivatives and terms proportional to
linear equations of motion, and showcased concrete calculations proving equivalence with
the Hamiltonian operator approach. Although perfectly suitable for performing calculations,
these two versions of the in-in perturbation theory with total time derivative interactions
that we have developed could be judged cumbersome, with either fine cancellations to be
sought for between different vertex-orders or interactions with complicated operators to take
into account. We thus propose another route to the calculation of primordial correlation
functions, that avoids altogether the generation of total time derivative interactions.

Instead of performing integrations by parts in the Lagrangian to reveal the correct size of
interactions, our proposed method operates directly in phase space, where the Hamiltonian is
defined. By utilizing canonical transformations, we are able to simplify interactions without
generating total time derivatives, so that the canonically transformed Hamiltonian exclusively
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comprises bulk interactions. The canonical transformations establish a relationship between
correlation functions of old and new variables, and we explain how to retrieve the former from
the knowledge of the latter that can be computed using the transformed Hamiltonian. With
this approach the interaction Hamiltonian is significantly simpler, which greatly trivializes
the computation of correlation functions beyond the single-vertex order. We demonstrate
the equivalence of this new method with the in-in perturbation theory that includes total
time derivatives for the two toy models that we had already introduced. In order to build
intuition on the possible contributions from the inverse canonical transformations relating
correlation functions of the old phase-space variables to those of the new ones, we also
introduce diagrammatic rules of thumb.

As an application, we utilized our formalism to compute the cubic Hamiltonian for scalar
and tensor perturbations in canonical single-field inflation. Using canonical transformations,
we are able to extract the correct slow-roll order suppression of the phase-space interactions
without introducing total time derivatives nor terms proportional to the linear equations
of motion. Importantly, this cubic Hamiltonian is relevant beyond interaction picture
calculations, and can also be used for Schrödinger picture non-linear evolutions. When
evaluated on interaction picture fields and momenta though, it exactly reduces to the cubic
interaction Hamiltonian found from the cubic scalar and tensor Lagrangians derived in earlier
works, with the exception of total time derivative interactions which are now absent. In
comparison to the more traditional approach with integration by parts, our method proves
simpler to compute the primordial bispectrum and illuminates the connection between the
use of either boundary terms and field redefinitions a la Maldacena, the latter representing
simply a subset of the canonical transformations proposed in our approach. We also discuss
the generalization of our formalism to quartic and higher-order interactions. To illustrate
practicality, we applied our formalism to recover the subset of phase-space quartic interactions
that are dominant in the large η limit. When evaluated on interaction picture fields and
momenta, this quartic interaction picture Hamiltonian exactly coincides with findings using
the Lagrangian of the EFT of inflation beyond the slow-varying background approximation.
However, we additionally provide with the crucial information about the inverse canonical
transformations to be performed in order to retrieve correlation functions of the exact
primordial curvature perturbation seeding the large-scale structures of our universe.

Our formalism can be extended and applied in several directions. An evident example is
a comprehensive computation of quartic interactions in single-field inflation in the comoving
gauge, a task that remains unexplored in the existing literature, even with the more traditional
approach at the level of the Lagrangian and using integrations by parts. Although this
computation will be demanding, our work establishes all the essential tools for undertaking
such an endeavor. Another intriguing avenue consists in the simplification of the phase-space
Hamiltonian interactions in multifield models of inflation that encompass both the adiabatic
curvature perturbation that we have considered in this work, and a set of entropic — or
isocurvature — fluctuations. We also anticipate that our insights into large η interactions will
contribute to clarifying the recent debate surrounding loop corrections to the primordial power
spectrum arising from a temporary non-attractor stage of inflation. Lastly, we stress again
that the phase-space interactions elucidated in this work can be applied beyond interaction
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picture calculations of primordial correlation functions. For instance, they may prove useful
in studying the quantum properties of cosmological perturbations beyond the linear order.
Concrete applications could range from the calculation of self-decoherence in single-field
inflation from non-linear interactions between different scales, to Schrödinger picture non-
linear evolutions. We plan to explore ourselves some of these directions in future works.
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A Canonical quantization and quantum anomalies

In most cosmological applications, a semi-classical and perturbative treatment is used. Semi-
classical because only vacuum fluctuations around a homogeneous background are quantified.
Perturbative because the theory is first assumed to be free, and therefore the Hamiltonian is
truncated at quadratic order before canonical quantization. Then only, non-linear interactions
expressed in terms of the quantized free fields are added to the theory in a perturbative
scheme. We will therefore focus here on a free quadratic Hamiltonian, for simplicity still with
a single degree of freedom and no mass term as in eq. (2.51). Roughly speaking, canonical
quantization amounts to promoting the phase-space variables (ψ, pψ) in Hfree to quantum
operators verifying the canonical commutation relations inherited from the Poisson brackets
in the corresponding classical theory:

ψ(t, x⃗) → ψ̂(t, x⃗) , (A.1)
pψ(t, x⃗) → p̂ψ(t, x⃗) ,

∀t , {ψ(t, x⃗), pψ(t, y⃗)} = δ(3) (x⃗− y⃗) →
[
ψ̂(t, x⃗), p̂ψ(t, y⃗)

]
= iℏ δ(3) (x⃗− y⃗) ,

where we kept the ℏ-factor exceptionally. Then, one must define the vacuum state of the
theory, |0⟩, often found by minimization of the energy ⟨0|H|0⟩. The creation and annihilation
quantum operators are used to construct the corresponding Fock space made of n-particles
states, e.g. |1

k⃗
⟩ = â†

k⃗
|0⟩, etc. The creation and annihilation operators must verify the

commutation relations [
â
k⃗
, â†
k⃗′

]
= (2π)3δ(3)

(
k⃗ − k⃗′

)
. (A.2)
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Since they form a complete set of quantum states, the position and momentum operators
in Fourier space can be decomposed in this basis, and the coefficients of the decomposition
are the mode functions (ψk(t), pψ,k(t)):

ψ̂(t, x⃗) =
∫ d3k⃗

(2π)3 e
ik⃗·x⃗

(
ψk(t)âk⃗ + ψ∗

k(t)â
†
−k⃗

)
, (A.3)

p̂ψ(t, x⃗) =
∫ d3k⃗

(2π)3 e
ik⃗·x⃗

(
pψ,k(t)âk⃗ + p∗ψ,k(t)â

†
−k⃗

)
. (A.4)

From the canonical commutation relations in real space, those for the creation and annihilation
operators, and the above expressions, the mode functions must verify the Wronskian condition:
∀t , ψkp∗ψ,k − ψ∗

kpψ,k = iℏ.
A quantum canonical transformation must leave invariant all these properties. In practice,

the difference with classical mechanics is the presence of non-commutating operators. This
implies for example that the order in which quantum canonical transformations are performed
now matters, and that the inverse transformations must be defined with care. Also, a canonical
transformation should a priori be assigned a given operator ordering, e.g. ˆ̃pψ = p̂ψ + ψ̂p̂ψ is
different from ˆ̃pψ = p̂ψ + p̂ψψ̂, etc., see ref. [72] in the context of quantum mechanics. One
way to go around the operator ordering ambiguities is to consider a path-integral approach
where all instances of the fields and their conjugate momenta are simply dummy variables of
integration, instead of operators: Z =

∫
DψDpψeiI[ψ,pψ ]. However, then, equivalent subtleties

arise at the level of the discrete time path. The main point is that, for quantum path integrals,
the “jump” between two values ψj and ψj−1 (resp. pjψ and pj−1

ψ ) may not be proportional to
the time elapsed tj − tj−1 ≡ ∆t during the jump, but to its square root

√
∆t. This property,

ubiquitous in classical but stochastic processes, result in so-called quantum anomalies in
the context of canonical transformations.

• Given a generating function F for a canonical transformation at the time tj , the relation
between old and new variables is affected by corrections proportional to higher-order
derivatives of F and to the jumps ∆ψj ≡ ψj − ψj−1 ,∆pjψ ≡ pj+1

ψ − pjψ. For example,
for a type III generating function, eq. (3.7) would now read [73]:

ψj = −
F3(pj+1

ψ , ψ̃j , tj) − F3(pjψ, ψ̃j , tj)
∆pjψ

(A.5)

= −∂F3

∂pjψ
(pjψ, ψ̃j , tj) −

1
2
∂2F3

∂pj 2
ψ

(pjψ, ψ̃j , tj)∆p
j
ψ + . . .

p̃jψ = −
F3(pjψ, ψ̃j , tj) − F3(pjψ, ψ̃j−1, tj)

∆ψ̃j
(A.6)

= −∂F3

∂ψ̃j
(pjψ, ψ̃j , tj) + 1

2
∂2F3

∂ψ̃2
j

(pjψ, ψ̃j , tj)∆ψ̃j + . . .

where usually one discards the contributions explicitly proportional to the jumps in
the limit ∆t → 0. However in general in a quantum theory those contribute finite
corrections, though suppressed by an additional factor of ℏ, not explicit here. In practice,
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this has the consequence that the new Hamiltonian that describes the system in terms
of the new phase-space variables is not only a function of the fields and momenta, but
also of their time derivatives — the equivalent of the “jumps” in the continuous time
description — H̃

(
ψ̃, p̃ψ,

˙̃ψ, ˙̃pψ
)
.

• A second, related anomaly concerns the Jacobian of the transformation in the path
integral, taking into account all canonical transformations at the discrete times tj .
Indeed, the equivalent of eq. (3.13) now becomes [73]:

J =
∞∏
j=0

[
1 +Aj∆ψ̃j +Bj∆p̃jψ

]
̸= 1 , (A.7)

with contributions proportional to the jumps at each time step, Aj and Bj being
given by third derivatives of the generating function. In the continuous limit, one can
exponentiate the Jacobian and finds J → exp{

∫
dtA(t) ˙̃ψ(t) +B(t) ˙̃pψ(t)}, contributing

as external source terms for the time derivatives.

Ref. [73] shows examples of physical systems and canonical transformations including all
relevant corrections in a quantum system, and proves that the quantum anomalies cancel
each other. In those cases, one can therefore consider a Hamiltonian path integral in terms
of the new phase-space variables and independent of the time derivatives of the fields and
momenta. Although definitely a fascinating direction for future work, we defer the study of
such quantum anomalies in the cosmological context. In practice, we will therefore overlook
the possibility of having quantum anomalies and use canonical transformations at the level of
the classical Hamiltonian, before canonical quantization. It remains to be known whether
quantum anomalies may affect the calculation of loop-level diagrams or purely quantum
effects like entanglement, etc., in the context of quantum canonical transformations.

B Diagrammatic rules

We present here some diagrammatic rules of thumb that we found convenient to develop, in
order to classify the possible contributions to an observable ⟨O(ψ)⟩, where ψ is related to a
variable ψ̃ via a canonical transformation. These are only approximate diagrammatic rules in
the sense that we pay no attention to numerical factors, permutations, etc. Moreover, for
simplicity, we overlook the presence of momenta p̃ψ in the expression for ψ, as well as the
possibility to compute expectation values of an operator including pψ. More generally, as
in the rest of this section, we only consider explicilty a single degree of freedom ψ instead
of a collection {ψa}a=1,...,N . However, we already propose a straight generalization of these
diagrammatic rules to a multifield setup in phase space: by the inclusion of indices A such
that {ψA}A=1,...,2N = {ψa, paψ}a=1,...,N , with both propagators and vertices mixing them.

For definiteness, we now focus on a transformation ψ = g2ψ̃+ g3ψ̃
2 + g4ψ̃

3 + . . . where we
wrote explicitly only the relevant contributions for the calculations of the tree-level bispectrum
and trispectrum, as well as the one-loop power spectrum. In the diagrams below, a white
dot simply corresponds to the transition ψ → g2ψ̃ (quadratic vertex), while a black dot
represents a non-linear transition ψ → g3ψ̃

2 (cubic vertex), ψ → g4ψ̃
3 (quartic vertex), etc.
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A larger and red dot represents a non-linear interaction for the ψ̃ field itself, so any diagram
containing this kind of vertex will be proportional to correlation functions of ψ̃ beyond its
power spectrum. For n-point connected correlation functions of ψ, only the exact same
n-point connected correlation functions of ψ̃ can contribute at tree level. Blue lines represent
external propagators, but they actually only appear as amputated after a white or black
vertex, so they do not contribute and they are only shown for illustration purposes. Red
lines represent internal propagators and may result either in power spectra (if connected
to white and black dots only) or higher-order correlation functions of ψ̃ (if connected to a
single red dot and to another either white or black dot). Note however that red lines cannot
connect to two red dots, as this amounts to dissecting the different contributions to a given
correlation function of ψ̃. Diagrammatic rules now follow.

Amputated vertices: ∼ g2 , ∼ g3,4,...,n . (B.1)
Internal 2-point functions: ∼ ∼ ∼ Pψ̃(k) ,

Internal n-point functions: ∼ Bψ̃(k1, k2, k3) , ∼ Tψ̃(k⃗1, k⃗2, k⃗3, k⃗4) , . . .

Internal loops: ∼
∫

d3q⃗ , ∼ ∼ ∼
∫

d3q⃗1d3q⃗2 , . . .

We now show a few examples below, with all leading-loop order contributions and a few
corrections at one higher order in loops, for connected diagrams only. The bispectrum of
ψ is given by:

Bψ(k1, k2, k3) = + + + + . . . (B.2)

∼ g3
2 ×Bψ̃(k1, k2, k3) + g2

2 × g3
[
Pψ̃(k2)Pψ̃(k3)+ perm.

]
+ g3

3 ×
∫

d3q⃗
[
Pψ̃(q)Pψ̃(|q⃗ + k⃗1|)Pψ̃(|q⃗ − k⃗3|)+ perm.

]
+ g2

2 × g3 ×
∫

d3q⃗
[
Tψ̃(q⃗, k⃗1 − q⃗, k⃗2, k⃗3)+ perm.

]
+ . . . ,

and where, at leading-order in the loop expansion, one has Pψ̃ = Pψ , Bψ̃ = Bψ , Tψ̃ = Tψ , . . .

However, to be consistent, the leading loop correction to the bispectrum of ψ is given both
by the loop terms starting from the second line above (plus other ones not written), and
by the quantities appearing in the first line at the one-loop order, for which Pψ̃ ̸= Pψ for
example. The trispectrum of ψ is given by:

Tψ(k⃗1, k⃗2, k⃗3, k⃗4) = + + + + . . . (B.3)

∼ g4
2 × Tψ̃(k⃗1, k⃗2, k⃗3, k⃗4) + g2

2g
2
3 ×

[
Pψ̃(k1)Pψ̃(k2)Pψ̃(|⃗k1 + k⃗3|) + perm.

]
+ g3

2g4 ×
[
Pψ̃(k1)Pψ̃(k2)Pψ̃(k3) + perm.

]
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+ g4
2 ×

∫
d3q⃗

[
Pψ̃(q)Pψ̃(|q⃗ + k⃗1|)Pψ̃(|q⃗ + k⃗1 + k⃗2|)Pψ̃(|q⃗ − k⃗4|) + perm.

]
+ . . .

The one-loop power spectrum of ψ is given by:

P 1−loop
ψ (k) =

[
Pψ(k) − P tree

ψ (k)
]1−loop

(B.4)

=
[

− P tree
ψ̃

(k)
]1−loop

+ + +

= P 1−loop
ψ̃

(k) + 2g2
3 ×

∫ d3q⃗

(2π)3 P tree
ψ̃

(q)P tree
ψ̃

(|q⃗ + k⃗|)

+ 6g4 ×
∫ d3q⃗

(2π)3 P tree
ψ̃

(q)P tree
ψ̃

(k) + 2g3 ×
∫ d3q⃗

(2π)3 Btree
ψ̃

(q, |⃗k + q⃗|, k) ,

where
[
. . .
]1−loop

means “truncated at one loop”. This expression for the one-loop power
spectrum is exact, though we used that g2 = 1 explicitly. We see that the one-loop power
spectrum of ψ is given both by the one-loop power spectrum of ψ̃ as well as the one-loop
corrections from the non-linear canonical transformation ψ(ψ̃).

C Complete expressions for the scalar and tensor Lagrangian

Lγ
M2

Pl
= − aeζ∂jNγ̇ij Ni

2N2 + 3aeζ∂jζγ̇ij Ni

2N − e−ζ∂kNj∂kγijNi

2aN − e−ζ∂kNj∂jγikNi

2aN

+ e−ζ∂kNj∂iγjkNi

2aN + e−ζ∂kζ∂kγij NiNj

aN
+ aeζN∂iζ∂jζγij + 2aeζN∂i∂jζγij

− 2aeζH∂jNiγij
N

− 2aeζ ζ̇∂jNiγij
N

− e−ζ∂kNi ∂kNjγij
4aN − e−ζ∂kNi ∂jNkγij

2aN

− e−ζ∂iNk∂jNkγij
4aN + e−ζ∂jNi ∂kNkγij

aN
− 2aeζH∂jζNiγij

N
− 2aeζ ζ̇∂jζNi γij

N

+ e−ζ∂kζ∂kNj Niγij
aN

+ e−ζ∂kζ∂jNk Niγij
aN

+ e−ζ∂jζ∂kNi Niγjk
aN

+ e−ζ∂jζ∂iNk Niγjk
aN

, (C.1)

Lγγ
M2

Pl
= a3e3ζ γ̇ij

2

8N − 1
8ae

ζN (∂kγij)2 − 1
4ae

ζN∂kγij ∂jγik + 1
4ae

ζN∂kγij ∂iγjk

+ aeζ∂kγij γ̇jk Ni

2N − aeζ γ̇jk∂iγjk Ni

4N + e−ζ∂lγik∂lγjkNiNj

4aN

+ e−ζ∂lγik∂kγj lNiNj

4aN − e−ζ∂lγik∂jγklNiNj

2aN + e−ζ∂iγkl∂jγklNiNj

8aN

− aeζN∂kζ∂jγikγij + aeζ∂kNiγ̇jk γij
4N + aeζ∂iNkγ̇jk γij

4N

− aeζ∂kζγ̇jk Niγij
2N + e−ζ∂lNk∂lγjkNiγij

4aN + e−ζ∂lNk∂kγj lNiγij
4aN

− e−ζ∂lNk∂jγklNiγij
2aN + aeζH∂kγijNi γjk

N
+ aeζ ζ̇∂kγij Niγjk

N
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− e−ζ∂lNl∂kγijNiγjk
2aN − aeζ∂jζγ̇ik Niγjk

2N + e−ζ∂lNj∂lγikNiγjk
4aN

+ e−ζ∂jNl∂lγikNiγjk
4aN + e−ζ∂lNj∂kγilNiγjk

2aN + e−ζ∂jNl∂kγilNiγjk
2aN

− e−ζ∂lNj∂iγklNiγjk
4aN − e−ζ∂jNl∂iγklNiγjk

4aN − 1
2ae

ζN∂iζ∂kζ γijγjk

− aeζN∂i∂kζγijγjk + aeζH∂kNiγij γjk
N

+ aeζ ζ̇∂kNiγijγjk
N

+ e−ζ∂lNi ∂lNkγijγjk
8aN + e−ζ∂lNi ∂kNlγijγjk

4aN + e−ζ∂iNl ∂kNlγijγjk
8aN

− e−ζ∂kNi ∂lNlγijγjk
2aN + aeζH∂kζNiγijγjk

N
+ e−ζ∂kNi ∂lNjγijγkl

4aN

− e−ζ∂jNi ∂lNkγijγkl
2aN + e−ζ∂kNi ∂jNlγijγkl

4aN , (C.2)
Lγγγ
M2

Pl
= 1

12ae
ζN∂lγak ∂kγj lγij −

1
12ae

ζN∂lγik ∂jγklγij + 1
8ae

ζN∂iγkl ∂jγklγij

− aeζ∂lγjkγ̇kl Niγij
4N + aeζ γ̇kl∂jγkl Niγij

4N − aeζ∂jγilγ̇kl Niγjk
4N

+ 1
3ae

ζN∂lζ∂kγilγijγjk −
aeζ∂lNiγ̇kl γijγjk

12N − aeζ∂iNlγ̇kl γijγjk
12N

+ 1
12ae

ζN∂j∂lγik γijγkl + 1
6ae

ζN∂kζ∂jγilγijγkl + 1
6ae

ζN∂iζ∂lγjkγijγkl

− aeζ∂kNiγ̇j l γijγkl
12N − aeζH∂lγjkNi γijγkl

3N − aeζH∂lγijNi γjkγkl
3N

− aeζH∂lNiγij γjkγkl
6N − aeζH∂iNlγij γjkγkl

6N + 1
3ae

ζN∂i∂kζγijγj lγkl, (C.3)

Lγγγγ
M2

Pl
= a3e3ζ γ̇ilγ̇klγijγjk

48N − 1
48ae

ζN∂mγil ∂mγklγijγjk + 1
24ae

ζN∂mγil ∂kγlmγijγjk

− 1
16ae

ζN∂iγlm ∂kγlmγijγjk −
a3e3ζ γ̇ikγ̇j l γijγkl

48N + 1
48ae

ζN∂mγik ∂mγj lγijγkl

+ 1
8ae

ζN∂mγik ∂lγjmγijγkl −
1
48ae

ζN∂jγim ∂lγkmγijγkl

− 5
24ae

ζN∂mγik ∂jγlmγijγkl + 1
24ae

ζN∂kγim ∂jγlmγijγkl

+ 1
48ae

ζN∂l∂mγik γijγjmγkl + 1
3ae

ζN∂k∂mζγijγilγjmγkl

− 1
16ae

ζN∂j∂mγik γijγklγlm − 5
12ae

ζN∂i∂kζγijγjmγklγlm. (C.4)
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