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Abstract

We investigate a singularly perturbed q-difference differential Cauchy problem with polynomial coefficients
in complex time t and space z and with quadratic nonlinearity. We construct local holomorphic solutions
on sectors in the complex plane with respect to the perturbation parameter ϵ with values in some Banach
space of formal power series in z with analytic coefficients on shrinking domains in t. Two aspects of
these solutions are addressed. One feature concerns asymptotic expansions in ϵ for which a Gevrey type
structure is unveiled. The other fact deals with confluence properties as q > 1 tends to 1. In particular
the built up Banach valued solutions are shown to merge in norm to a fully bounded holomorphic map
in all the variables t,z and ϵ that solves a nonlinear partial differential Cauchy problem.

Key words: asymptotic expansion, confluence, formal power series, partial differential equation,

q−difference equation. 2010 MSC: 35R10, 35C10, 35C15, 35C20.

1 Introduction

In this paper we examine a nonlinear singularly perturbed Cauchy problem which couples up
two classes of operators applying both on a complex time variable t, formed by compositions of
the plain q−difference operator σq;t : t 7→ qt for a prescribed real number q > 1 and powers of
the basic singularly perturbed differential operator t 7→ ϵktk+1∂t of irregular type where k ≥ 1
is a given integer and ϵ stands for a complex parameter.

The problem under study is outlined as follows

(1) P (ϵktk+1∂t)∂
S
z u(t, z, ϵ) = P(t, z, ϵ, σq;t, ϵ

ktk+1∂t, ∂z)u(t, z, ϵ) + d(z, ϵ)(u(t, z, ϵ))2

for assigned Cauchy data

(2) (∂jzu)(t, 0, ϵ) = φj(t, ϵ) 0 ≤ j ≤ S − 1

where

− S, k ≥ 1 are integers and the element P (T ) from the leading term of (1) represents a
polynomial belonging to C[T ].



2

− The linear part P(t, z, ϵ, V1, V2, V3) of (1) is a polynomial with complex coefficients in all its
arguments except in ϵ whose dependence is bounded analytic on a fixed disc Dϵ0 centered
at 0 in C with given radius ϵ0 > 0.

− The coefficient d(z, ϵ) of the nonlinear part of (1) together with the Cauchy data φj(t, ϵ),
0 ≤ j ≤ S−1, are complex polynomials in their arguments t, z with bounded holomorphic
reliance in ϵ on Dϵ0 .

This work is a continuation of the study [8] by A. Lastra and the author. In [8], we consider
linear singularly perturbed Cauchy problems whose shape is similar to the linear part of (1),

(3) Q(ϵrtr+1∂t)∂
β
z y(t, z, ϵ) = Q(t, z, ϵ, σq;t, ϵ

rtr+1∂t, ∂z)y(t, z, ϵ)

for given Cauchy data

(4) (∂jzy)(t, 0, ϵ) = ψj(t, ϵ) , 0 ≤ j ≤ S − 1

where β, r ≥ 1 are integers, Q(T ) belongs to C[T ], Q(t, z, ϵ, V1, V2, V3) stands for a polynomial
in t, z, V1, V2, V3 with bounded holomorphic coefficients in ϵ on a small fixed disc Dϵ0 and where
the data ψj have the same features as the Cauchy data (2).

Assuming strong restrictions on the profile of Q, which differ from the conditions we impose
on P in the present work (see Section 2.1), we build up a finite set {yp(t, z, ϵ)}0≤p≤ς−1, for some
integer ς ≥ 2, of bounded holomorphic solutions to (3), (4) defined on products T ×DR × Ep,
for some radius R > 0, where T is a suitably chosen bounded sector at 0 and where the set
of finite sectors {Ep}0≤p≤ς−1 stands for a good covering in C∗ (see Definition 1 in this paper).
These solutions are represented by means of power series in z with Laplace transforms of order
r coefficients

yp(t, z, ϵ) =
∑
n≥0

yp,n(t, ϵ)
zn

n!

where

yp,n(t, ϵ) = k

∫
Lγp

ωp,n(u, ϵ) exp
(
− (

u

ϵt
)r
)du
u

along halflines Lγp = [0,+∞)e
√
−1γp in appropriate directions γp ∈ R where the so-called Borel

maps ωp,n are subjected to q-exponential growth relatively to u on Lγp , namely

(5) |ωp,n(u, ϵ)| ≤ Gnn!|u| exp
(
k1 log

2(|u|+ u0) + α log(|u|+ u0)
)

for some geometric sequence (Gn)n≥0 and positive constants k1, u0, α > 0.
Actually, the main achievement of [8] concerns the construction of asymptotic expansions of

these solutions as ϵ tends to 0. Our idea consists in embedding the partial maps (t, z) 7→ yp(t, z, ϵ),
for all ϵ ∈ Ep, in two distinguished Banach spaces of formal power series in z with holomorphic
coefficients in t on T . Each embedding forsters a different formal Gevrey asymptotic expansion
as ϵ tends to 0, one of so-called q-Gevrey/Gevrey mixed type and the second of mere Gevrey
type. Namely, let R1 > 0 be a fixed real number.

− We denote ET ;R1 the vector space of formal power series h(t, z) =
∑

n≥0 hn(t)z
n/n! with

coefficients hn(t) ∈ Ob(T ), bounded holomorphic on the sector T , equipped with the mixed
type sup norm and L1 norm

||h(t, z)||T ;R1 :=
∑
n≥0

sup
t∈T

|hn(t)|
Rn

1

n!
.
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The first main result of [8] states that for each 0 ≤ p ≤ ς−1, the partial map ϵ 7→ yp(t, z, ϵ)
represents a bounded holomorphic map from Ep into the Banach space (ET ;R1 , ||.||T ;R1)
provided that 0 < R1 < R. Furthermore, there exists a formal power series

û1(t, z, ϵ) =
∑
n≥0

u1,n(t, z)ϵ
n ∈ ET ;R1 [[ϵ]]

which is the common asymptotic expansion of so-called Gevrey type with mixed order
(1/r; (q, 1)) for all partial maps ϵ 7→ yp(t, z, ϵ) on Ep, with 0 ≤ p ≤ ς − 1. It means that
one can find constants Ap, Cp > 0 with

||yp(t, z, ϵ)−
N∑

n=0

u1,n(t, z)ϵ
n||T ;R1 ≤ Cp(Ap)

Nq(N+1)2/2Γ(
N + 1

r
)|ϵ|N+1

for all N ≥ 0, all ϵ ∈ Ep, all 0 ≤ p ≤ ς − 1.

− The second Banach space in which the partial map (t, z) 7→ yp(t, z, ϵ) can be embedded for
all ϵ ∈ Ep has been at first introduced in [8] and minded in Definition 3 of this paper. It is
denoted O(Dn)n≥0;R1

, for 0 < R1 < R and represents a modification of the classical space
ET ;R1 for which the domain Dn of each sup norm taken for the coefficient hn(t) now relies
on n and shrinks to the empty set as n → +∞, meaning in particular that ∩n≥0Dn = ∅.
We show the existence of a formal power series

û2(t, z, ϵ) =
∑
n≥0

u2,n(t, z)ϵ
n ∈ O(Dn)n≥0;R1

[[ϵ]]

which is the shared asymptotic expansion of Gevrey type with order 1/r for all partial
maps ϵ 7→ yp(t, z, ϵ) on Ep, with 0 ≤ p ≤ ς − 1. In other words, constants Dp, Bp > 0 can
be singled out with

||yp(t, z, ϵ)−
N∑

n=0

u2,n(t, z)ϵ
n||(Dn)n≥0;R1

≤ Dp(Bp)
NΓ(

N + 1

r
)|ϵ|N+1

for all N ≥ 0, all ϵ ∈ Ep, all 0 ≤ p ≤ ς − 1.

In the present work, our objectives are similar to the ones of [8]. Namely

− The construction of a set of solutions up(t, z, ϵ), 0 ≤ p ≤ ς − 1, for some integer ς ≥ 2, to
(1), (2), well defined and holomorphic with respect to ϵ on bounded sectors Ep.

− The asymptotic analysis of these solutions as ϵ tends to 0.

Furthermore, we address another aspect concerning the so-called confluence of this finite set of
solutions as q tends to 1. This feature has already been studied in the linear case and in the
nonperturbative setting for equations with the shape (3) in [9].

It is noteworthy to stress that the statements of this work are presented for the Cauchy
problem (1), (2) which presents a quadratic nonlinearity. Such a restriction has only been
favored in order to avoid cumbersome and lenghty computations for the convenience of the
reader. The approach we introduce in this work can actually be applied to a wider class of
equations with higher degrees polynomial nonlinearities that might also involve actions of the
q-difference operator σq;t.
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In the first main result of this paper (Theorem 1, Section 5), given a set of technical require-
ments disclosed in Subsection 2.1 imposed on (1), (2), we establish a finite set {up(t, z, ϵ)}0≤p≤ς−1

of solutions to (1), (2), for some integer ς ≥ 2, that enjoys the next properties. A good covering
{Ep}0≤p≤ς−1 in C∗ and a bounded sector T centered at 0 can be properly chosen in a way that
for each 0 ≤ p ≤ ς − 1

− the partial map ϵ 7→ up(t, z, ϵ) is bounded holomorphic from Ep into a Banach space
(O(Dn)n≥0;R1

, ||.||(Dn)n≥0;R1
) for a contracting sequence of domains Dn = T ∩ D

R̃0/qn∆̃

where the radius R̃0, R1 > 0 and ∆̃ > 0 are suitable real numbers.

− the map up(t, z, ϵ) is expressed through a formal power series in z

up(t, z, ϵ) =
∑
n≥0

up,n(t, ϵ)
zn

n!

with Laplace transform of order k coefficients

up,n(t, ϵ) = k

∫
Lγp

wp,n(u, ϵ) exp
(
− (

u

ϵt
)k
)du
u

along halflines Lγp in fitting directions γp ∈ R where the Borel maps wp,n are no longer of
q-exponential growth as in [8], see (5), but with exponential growth of order k with respect
to u,

|wp,n(u, ϵ)| ≤ Cnn!|u| exp(Kn|u|k)

for some geometric sequence (Cn)n≥0 and where the type Kn tends to +∞ as n → +∞
with the shape CqnM1 for convenient constants C,M1 > 0.

In comparison to our previous work [8], we are not able to construct analytic solutions to
(1), (2) in all arguments t, z and ϵ but only analytic in ϵ whose values are located in the
second embedding introduced in [8]. However, for some special type of nonlinear q-difference
and differential Cauchy problem, analytic solutions both in complex time and space could be
exhibited in a recent contribution of the author, see [10]. These problems are expressed as
a coupling of a nonperturbative version of the linear Cauchy problem (3), (4) and a classical
Cauchy-Kowaleski type partial differential equation with quadratic nonlinearity which involves
the action of the contractive q-difference operator t 7→ q−lt for some integers l ≥ 1.

In general, the construction of genuine holomorphic local solutions to nonlinear equations
involving q-difference operators is a difficult endeavour. In the case of nonlinear q-difference
equations, a lush literature concerns the so-called q-Painlevé equations which are q-analogs
of the celebrated second order nonlinear Painlevé equations. We refer to the book [6] for a
comprehensive introduction to the subject. General nonlinear first order q-difference equations
have been studied in [11] from the standpoint of mould calculus introduced by J. Écalle. More
general nonlinear algebraic q-difference equations have been recently considered in [5] where the
authors build up local holomorphic solutions on sectors by means of generalized power series
expansions with complex exponents. In the framework of partial q-difference and differential
equations, the amount of results is more scarce. We mention however the important result [13]
for the construction of convergent power series and logarithmic type solutions to a q-analog of
the Briot-Bouquet type partial differential equations extensively studied in the textbook [4].

In the second foremost statement of our work (Theorem 2, Section 6), we prove the existence
of a formal power series û(t, z, ϵ) =

∑
n≥0 hn(t, z)ϵ

n whose coefficients belong to the Banach space
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O(Dn)n≥0;R1
which is the common asymptotic expansion of Gevrey type with order 1/k for all

the partial maps ϵ 7→ up(t, z, ϵ) on Ep, for 0 ≤ p ≤ ς − 1. This result is in the vein of the
one concerning the parametric asymptotic expansion of the second embedding for the solutions
yp(t, z, ϵ) to (3), (4) obtained in [8]. No Gevrey type expansions with mixed order are reached in
the present work. Notice that such double scales expansions were obtained for the holomorphic
solutions to the special nonlinear q-difference and differential Cauchy problems investigated in
[10].

In the third prominent claim of our study (Theorem 3, Subsection 7.4), we show that for
any given sector E from the good covering {Ep}0≤p≤ς−1 in C∗, the corresponding solution ϵ 7→
u;q(t, z, ϵ) (where the reliance on the parameter q is flagged by an index ; q) to (1), (2) merges
uniformly on E , as q ∈ (1, q0] tends to 1, for some fixed q0 > 1 to a holomorphic function u;1(t, z, ϵ)
in the norm ||.||(D̂n)n≥0;R̂1

for domains D̂n = T ∩D
R̂0/qn∆̃ and suitable radius R̂0, R̂1 > 0. The

limit map u;1(t, z, ϵ) is bounded holomorphic on a domain (T ∩DŘ0
)×DŘ1

×E for some radius

Ř0, Ř1 > 0 and solves a nonlinear partial differential Cauchy problem displayed in (109), (110)
which is merely reached by setting q = 1 in the initial problem (1), (2).

In the context of linear q-difference equations, general statements for the confluence of holo-
morphic solutions as q → 1 have been established in a recent past for Fuchsian systems in [12]
and for so-called equations with irregular singularity involving several slopes in [2]. From the
standpoint of nonlinear q-difference equations, confluence still remains a direction of active re-
search to which our present contribution participates. In this trend, we can mention the recent
major work [3] on the confluence of some discret solutions for the q-Painlevé VI equations as q
tends to 1 to analytic solutions for the famous Painleve VI equations using Hamiltonian systems
representations. This last work has been strongly influential for the investigation of conflu-
ence properties for the special type of nonlinear q-difference and differential Cauchy problems
mentioned earlier in this introduction and undertaken in [10].

2 Statement of the main problem

2.1 The main Cauchy problem and the set of assumptions disclosed

Let k, S ≥ 1 be integers and q > 1, ϵ0 > 0 be real numbers. We consider P (τ) ∈ C[τ ] a
polynomial with complex coefficients subjected to the conditions

(6) deg(P ) ≥ 1 , P (0) ̸= 0.

Let us fix a finite subset A of N4. We denote Dϵ0 the open disc in C centered at 0 with radius
ϵ0. The radius ϵ0 > 0 will be determined later on in the study and will be taken close to 0. The
next items represent the coefficients and Cauchy data for the main problem we consider in this
work.

• To each element l ∈ A, we attach

– a polynomial

(7) cl(z, ϵ) =
∑
h∈Il

cl,h(ϵ)z
h

in the variable z, where Il stands for a finite subset of the natural numbers N, whose
coefficients cl,h are bounded holomorphic functions on the disc Dϵ0 . For later use, we
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introduce the constants

(8) sup
ϵ∈Dϵ0

|cl,h(ϵ)| = cl,h,ϵ0

for h ∈ Il.

• We set

(9) d(z, ϵ) =
∑
h∈Id

dh(ϵ)z
h

as a polynomial in the variable z, where Id is a finite subset of N, whose coefficients dh(ϵ)
are bounded holomorphic maps on the disc Dϵ0 . Furthermore, the constants

(10) sup
ϵ∈Dϵ0

|dh(ϵ)| = dh,ϵ0

for h ∈ Id, are assumed close enough to the origin in a manner that will be expounded
later on in the paper.

• For all 0 ≤ j ≤ S − 1, we introduce maps φj(t, ϵ) expressed in time rescaled form

(11) φj(t, ϵ) = φ̌j(ϵt, ϵ)

where φ̌j stands for a polynomial in the variable T expanded as

(12) φ̌j(T, ϵ) =
∑
h∈Jj

pj,h(ϵ)Γ(h/k)T
h

where Jj represents a finite subset of N \ {0}, the coefficients pj,h stand for bounded
holomorphic funtions on the disc Dϵ0 and Γ(x) symbolizes the classical Gamma function.

For grounds that will be justified later on in the work, the next list of conditions is required
on the finite set A.
1) For all l = (l0, l1, l2, l3) ∈ A, the strict inequalities

(13) ∆l > l0 , S > l2

hold.

2) There exists a positive real number M1 > 0 for which

(14) SM1 ≥ l2M1 + l3k

for all l = (l0, l1, l2, l3) ∈ A.

3) For all l = (l0, l1, l2, l3) ∈ A, the lower bounds

(15) kdeg(P ) ≥ l0 + kl1

hold.
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We consider the next singularly perturbed nonlinear Cauchy problem with polynomial coef-
ficients in complex time t and space z,

(16) P (ϵktk+1∂t)∂
S
z u(t, z, ϵ) =

∑
l=(l0,l1,l2,l3)∈A

ϵ∆lcl(z, ϵ)t
l0
(
(ϵktk+1∂t)

l1∂l2z u
)
(ql3t, z, ϵ)

+ d(z, ϵ)(u(t, z, ϵ))2

for prescribed Cauchy data

(17) (∂jzu)(t, 0, ϵ) = φj(t, ϵ) , 0 ≤ j ≤ S − 1.

We discuss now our main approach that will lead later on to the construction of fitting sets
of solutions to our problem. We search for solutions in time rescaled form

(18) u(t, z, ϵ) = U(ϵt, z, ϵ)

for some expressions U(T, z, ϵ). We first observe that u(t, z, ϵ) formally solves the problem (16),
(17) if the expression U(T, z, ϵ) solves the next Cauchy problem

(19) P (T k+1∂T )∂
S
z U(T, z, ϵ) =

∑
l=(l0,l1,l2,l3)∈A

ϵ∆l−l0cl(z, ϵ)T
l0
(
(T k+1∂T )

l1∂l2z U
)
(ql3T, z, ϵ)

+ d(z, ϵ)(U(T, z, ϵ))2

for given Cauchy data

(20) (∂jzU)(T, 0, ϵ) = φ̌j(T, ϵ) , 0 ≤ j ≤ S − 1.

We seek for solutions to (19), (20) presented as formal series in the variable z,

(21) U(T, z, ϵ) =
∑
n≥0

Un(T, ϵ)
zn

n!

whose coefficients Un(T, ϵ) stand for Laplace transforms of order k,

(22) Un(T, ϵ) = k

∫
Lγ

wn(u, ϵ) exp(−(
u

T
)k)du/u

along a prescribed halfline Lγ = [0,+∞)e
√
−1γ for some well chosen direction γ ∈ R. For all

n ≥ 0, the so-called Borel maps wn(u, ϵ) are assumed to be holomorphic on a common product
U ×Dϵ0 , where U is an open unbounded sector edged at 0 containing the halfline Lγ \ {0}. For
each Laplace transform (22) to be well defined, we make the assumption that for each n ≥ 0,
there exist constants Cn,Kn > 0 with the bounds

(23) sup
ϵ∈Dϵ0

|wn(u, ϵ)| ≤ Cn|u| exp(Kn|u|k)

provided that u ∈ U . The precise shape of the sequences (Cn)n≥0 and (Kn)n≥0 will be given in
Section 4.

Once it is assumed that such formal solutions exists, we plan to derive some recursion
relations that the sequence of Borel maps wn(u, ϵ), n ≥ 0, are asked to fulfill. Such relations will
be described in the next subsection. In later sections of the work (see Sections 3,4 and 5) we
will rigorously show the existence of such recursion relations in different kind of function spaces,
that will lead to the construction of some Banach valued solutions of the form (21) to (19), (20).
Furthermore, asymptotic expansions as ϵ tends to 0 will be extracted in Section 6.
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2.2 Some q−difference-differential and q−difference-convolution relations

In this subsection, we formulate some integro-q−difference recurrence relations satisfied by the
sequence (wn(u, ϵ))n≥0.

We first need to derive some q−difference-differential relations that the sequence of functions
(Un(T, ϵ))n≥0 is asked to fulfill. The next lemma is straightforward.

Lemma 1 The formal series (21) solves the problem (19), (20) if the sequence (Un(T, ϵ))n≥0

fulfills the next q−difference-differential relation

(24)

P (T k+1∂T )
Un+S(T, ϵ)

n!
=

∑
l=(l0,l1,l2,l3)∈A

ϵ∆l−l0
∑

n1+n2=n

cl,n1(ϵ)
T l0((T k+1∂T )

l1Un2+l2)(q
l3T, ϵ)

n2!

+
∑

n1+n2+n3=n

dn1(ϵ)
Un2(T, ϵ)

n2!

Un3(T, ϵ)

n3!

for all n ≥ 0, together with

(25) Uj(T, ϵ) = φ̌j(T, ϵ) , 0 ≤ j ≤ S − 1,

where, by convention, we set cl,h(ϵ) ≡ 0 for h /∈ Il and dh(ϵ) ≡ 0 whenever h /∈ Id.

The next proposition rephrases Proposition 1 from [10] for C−valued holomorphic maps.

Proposition 1 Let k ≥ 1 be an integer and let w : Sd,δ → C be a holomorphic function on the
open unbounded sector Sd,δ = {u ∈ C∗ : |d − arg(u)| < δ}, continuous on Sd,δ ∪ {0}. We take
for granted the existence of two constants C > 0 and K > 0 such that

(26) |w(u)| ≤ C|u|eK|u|k

for all u ∈ Sd,δ. Then, the Laplace transform of order k of w in the direction d is defined by the
integral representation

Ld
k(w(u))(t) = k

∫
Lγ

w(u)e−(u/t)k du

u
,

along a half-line Lγ = R+e
iγ ⊂ Sd,δ ∪ {0}, where γ depends on t and is chosen in such a way

that cos(k(γ − arg(t))) ≥ δ1 > 0, for some fixed δ1. The function Ld
k(w(u))(t) is well defined,

holomorphic and bounded in any sector

(27) Sd,θ,R1/k = {t ∈ C∗ : |t| < R1/k , |d− arg(t)| < θ/2},

where π
k < θ < π

k + 2δ and 0 < R < δ1/K.
A) The action of the Laplace transform on entire functions is described as follows: If w is an
entire function on C, with growth estimates (26) and with Taylor expansion w(u) =

∑
n≥1 bnu

n,

then Ld
k(w(u))(t) defines an analytic function near the origin w.r.t t with convergent Taylor

expansion
∑

n≥1 Γ(
n
k )bnt

n.

B) The actions of the irregular operator tk+1∂t and the monomial tm on the Laplace transform
are expressed through the next formulas

(28) Ld
k(ku

kw(u))(t) = tk+1∂t

(
Ld
k(w(u))(t)

)
, tmLd

k(w(u))(t) = Ld
k

(
u 7→ (um ⋆k w(u))

)
(t),
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for every nonnegative integer m, and for all t ∈ Sd,θ,R1/k with 0 < R < δ1/K. Here, um ⋆k w(u)
stands for the convolution product

uk

Γ(mk )

∫ uk

0
(uk − s)

m
k
−1w(s1/k)

ds

s
.

C) Let w1, w2 : Sd,δ → C be holomorphic maps with the same feature (26) as w above. Then,
the next multiplicative formula

(29) Ld
k(w1(u))(t)× Ld

k(w2(u))(t) = Ld
k(w1(u) ⋆k w2(u))(t)

holds for all t ∈ Sd,θ,R1/k with 0 < R < δ1/K, where w1(u) ⋆k w2(u) represents the convolution
product

w1(u) ⋆k w2(u) := uk
∫ uk

0
w1((u

k − s)1/k)w2(s
1/k)

1

(uk − s)s
ds

D) The action of the dilation t 7→ qδt commutes with the Laplace transform, for any integer
δ ≥ 1, namely

(30) Ld
k(w(u))(q

δt) = Ld
k(w(q

δu))(t)

holds for all t ∈ S
d,θ,R

1/k
1

for 0 < R1 < δ1/(Kq
kδ).

From the point A) of the above proposition, we first notice that the Cauchy data (20) given as
polynomials through (12) can be expressed as Laplace transforms of order k,

(31) φ̌j(T, ϵ) = k

∫
Lγ

Pj(u, ϵ) exp(−(u/T )k)du/u

of polynomials given by

(32) Pj(u, ϵ) =
∑
h∈Jj

pj,h(ϵ)u
h , 0 ≤ j ≤ S − 1.

According to the above identities (28), (29), (30) and (31), the next lemma is deduced.

Lemma 2 The sequence (Un(T, ϵ))n≥0 where Un are given by (22) conforms to the q−difference-
differential relations (24) with prescribed S first terms (25) if the sequence of Borel maps
(wn(u, ϵ))n≥0 obeys the next q−difference-convolution recurrence relation

(33)
wn+S(u, ϵ)

n!
=

∑
l=(l0,l1,l2,l3)∈A;l0=0

ϵ∆l
(k(ql3u)k)l1

P (kuk)

( ∑
n1+n2=n

cl,n1(ϵ)
wn2+l2(q

l3u, ϵ)

n2!

)

+
∑

l=(l0,l1,l2,l3)∈A;l0≥1

ϵ∆l−l0 uk

P (kuk)Γ(l0/k)

∫ uk

0
(uk − s)

l0
k
−1(k(ql3s1/k)k)l1

×
( ∑

n1+n2=n

cl,n1(ϵ)
wn2+l2(q

l3s1/k, ϵ)

n2!

)ds
s

+
uk

P (kuk)

∫ uk

0

( ∑
n1+n2+n3=n

dn1(ϵ)
wn2((u

k − s)1/k, ϵ)

n2!

wn3(s
1/k, ϵ)

n3!

) 1

(uk − s)s
ds

for given

(34) wj(u, ϵ) = Pj(u, ϵ) , 0 ≤ j ≤ S − 1.
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3 Some q−difference-convolution recursion on a sequence of discs

In this section, the recursion relation (33), (34) is solved on a well selected sequence of discs
DRn , whose radius Rn tends to 0 as n tends to infinity. Besides, we display sharp bounds control
for the sequence of functions (wn)n≥0 solving this recursion relation.

Let ζj , 1 ≤ j ≤ kdeg(P ), the complex roots of the polynomial u 7→ P (kuk), where deg(P )
stands for the degree of the polynomial P introduced at the onset of Section 2. The second
condition of (6) imposed on P grants the existence of a disc DR0 for which

(35) ζj /∈ DR0 , 1 ≤ j ≤ kdeg(P ).

We introduce the constant

(36) ∆ =M1/k

where M1 > 0 is the real number appearing in (14). We introduce the sequence of radius

(37) Rn =
R0

q∆n
, n ≥ 0.

Our main objective is the discussion of the next proposition.

Proposition 2 Assuming the radius ϵ0 > 0 and the constants dh,ϵ0 > 0 introduced in (10)
small enough, one can single out a unique sequence of functions (wn(u, ϵ))n≥0, where each map
(u, ϵ) 7→ wn(u, ϵ) is bounded holomorphic w.r.t u on the disc DRn and w.r.t ϵ on Dϵ0, that
fulfills the recursion (33) with S first terms (34). Furthermore, one can choose two constants
C1, C2 > 0 such that the next bounds hold

(38) sup
ϵ∈Dϵ0

|wn(u, ϵ)| ≤ C1(C2)
nn!|u|

for all n ≥ 0, all u ∈ DRn.

Proof We will proceed by induction. We name Dn the property (38) for a fixed given n ≥ 0.
We first check that the property Dn holds in a straight manner for 0 ≤ n ≤ S − 1 for well
chosen C1, C2 > 0 since in that case it is imposed that wn(u, ϵ) = Pn(u, ϵ) are polynomials with
bounded holomorphic coefficients w.r.t ϵ on the disc Dϵ0 such that Pn(0, ϵ) = 0.

Let n ≥ 0, we assume that Dp holds for all p < n + S for some given C1, C2 > 0. Our goal
throughout the rest of the proof is to show that Dn+S holds. The induction principle will then
imply that the property Dp holds for all p ≥ 0.

In the next lemma, we provide upper bounds for some terms wp for p < n + S which are
involved in the identity (33).

Lemma 3 1) For all l = (0, l1, l2, l3) ∈ A, the next bounds

(39) |wn2+l2(q
l3u, ϵ)| ≤ C1(C2)

n2+l2(n2 + l2)!|ql3u|

hold provided that u ∈ DRn+S
, ϵ ∈ Dϵ0, for all n2 ≤ n.

2) For all l = (l0, l1, l2, l3) ∈ A, the next inequality

(40) |wn2+l2(q
l3s1/k, ϵ)| ≤ C1(C2)

n2+l2(n2 + l2)!|ql3s1/k|

is valid whenever s ∈ [0, uk], for all u ∈ DRn+S
, ϵ ∈ Dϵ0, for all n2 ≤ n.
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3) For all n2, n3 ≤ n, the next inequalities

(41) |wn2((u
k − s)1/k, ϵ)| ≤ C1(C2)

n2n2!|(uk − s)1/k|

and

(42) |wn3(s
1/k, ϵ)| ≤ C1(C2)

n3n3!|s1/k|

hold for all u ∈ DRn+S
, s ∈ [0, uk], provided that ϵ ∈ Dϵ0.

Proof We first treat the points 1) and 2). Provided that l = (l0, l1, l2, l3) ∈ A, we observe that

• If u ∈ DRn+S
then ql3u ∈ DRn2+l2

for n2 ≤ n.

• If s ∈ [0, uk] for u ∈ DRn+S
then ql3s1/k ∈ DRn2+l2

for n2 ≤ n.

Indeed, u ∈ DRn+S
means that

(43) |u| ≤ R0/q
∆(n+S).

According to the inequality
S∆ ≥ l2∆+ l3

which is deduced from the condition (14) for all l = (l0, l1, l2, l3) ∈ A and the definition (36), we
get

(44) ql3 |u| ≤ R0

q∆(n+S)−l3
≤ R0

q∆(n2+l2)

which means that ql3u ∈ DRn2+l2
. Besides, if s ∈ [0, uk], we notice that |s1/k| ≤ |u| and hence

that ql3 |s1/k| ≤ ql3 |u|. From (44), we deduce that ql3s1/k ∈ DRn2+l2
.

As a consequence of the above first and second items, we deduce that both inequalities (39)
and (40) follow directly from the recusion hypothesis Dn2+l2 keeping in mind the assumption
(13).

We focus on the third point 3). We check that

• If u ∈ DRn+S
, then (uk − s)1/k ∈ DRn2

provided that s ∈ [0, uk] and n2 ≤ n.

• If u ∈ DRn+S
, then s1/k ∈ DRn3

as long as s ∈ [0, uk] and n3 ≤ n.

Indeed, we can parametrize s ∈ [0, uk] by s = uks1 for 0 ≤ s1 ≤ 1 and obtain

|(uk − s)1/k| = |u|(1− s1)
1/k , |s1/k| = |u|s1/k1 .

Hence, for u ∈ DRn+S
, we get that

|(uk − s)1/k| ≤ R0

q∆(n+S)
(1− s1)

1/k ≤ R0

q∆n2

since (1− s1)
1/k ≤ 1 and n2 ≤ n, which means that (uk − s)1/k ∈ DRn2

and

|s1/k| ≤ R0

q∆(n+S)
s
1/k
1 ≤ R0

q∆n3
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owing to s
1/k
1 ≤ 1 and n3 ≤ n, which says that s1/k ∈ DRn3

.
As a direct outcome of the latter two items, we conclude that the upper bound (41) is a

straight effect of the recursion hypothesis Dn2 and that (42) follows from the recursion assump-
tion Dn3 . 2

According to the recursion (33) and the bounds reached in Lemma 3, we get the next estimates
for the term |wn+S(u, ϵ)|,

(45)
|wn+S(u, ϵ)|

n!
≤ L1(u, n, ϵ) + L2(u, n, ϵ) + L3(u, n, ϵ)

where

(46) L1(u, n, ϵ)

≤
∑

l=(l0,l1,l2,l3)∈A;l0=0

|ϵ|∆l
(k(ql3 |u|)k)l1
|P (kuk)|

( ∑
n1+n2=n

|cl,n1(ϵ)|C1C
n2+l2
2

(n2 + l2)!

n2!
ql3 |u|

)
and

(47) L2(u, n, ϵ) ≤
∑

l=(l0,l1,l2,l3)∈A;l0≥1

|ϵ|∆l−l0 |u|k

|P (kuk)|Γ(l0/k)

∫ |u|k

0
(|u|k − s)

l0
k
−1(k(ql3s1/k)k)l1

×
( ∑

n1+n2=n

|cl,n1(ϵ)|C1(C2)
n2+l2 (n2 + l2)!

n2!
ql3s1/k

)ds
s

in a row with

(48) L3(u, n, ϵ)

≤ |u|k

|P (kuk)|

∫ |u|k

0

( ∑
n1+n2+n3=n

|dn1(ϵ)|C1(C2)
n2(|u|k − s)1/kC1(C2)

n3s1/k
1

(|u|k − s)s

)
ds

provided that u ∈ DRn+S
and ϵ ∈ Dϵ0 .

In order to provide upper bounds for the above quantities, the next lemma is needed.

Lemma 4 The next inequality

(49) n!
(n2 + l2)!

n2!
≤ (n+ S)!

holds for all integers n ≥ 0, n2 ≤ n and l2 < S.

Proof The above inequality results from the next observation

n!

(n+ S)!

(n2 + l2)!

n2!
=

Πl2
k=1(n2 + k)

ΠS
k=1(n+ k)

≤ 1

provided that n2 ≤ n, l2 < S. 2
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We provide upper estimates for the first piece L1(u, n, ϵ). The use of the definition (8), the
assumption (13), the requirement (35), the inclusion DRn+S

⊂ DR0 along with the above Lemma
4 yield the next suitable upper bounds

(50) n!L1(u, n, ϵ)

≤
∑

l=(l0,l1,l2,l3)∈A;l0=0

ϵ
∆l

0

(k(ql3R0)
k)l1

minu∈DR0
|P (kuk)|

( ∑
0≤n1≤n

n1∈Il

|cl,n1(ϵ)|C1C
n−n1+S
2 (n+ S)!ql3 |u|

)

≤ C1(C2)
n+S(n+ S)!|u| ×

[ ∑
l=(l0,l1,l2,l3)∈A;l0=0

ϵ
∆l

0

(k(ql3R0)
k)l1ql3

minu∈DR0
|P (kuk)|

( ∑
0≤n1≤n

n1∈Il

cl,n1,ϵ0C
−n1
2

)]

for all u ∈ DRn+S
and ϵ ∈ Dϵ0 .

We aim attention to the second part L2(u, n, ϵ). The assumption (13), the requirement (35),
the inclusion DRn+S

⊂ DR0 along with the above Lemma 4 give rise to

(51) n!L2(u, n, ϵ) ≤
∑

l=(l0,l1,l2,l3)∈A;l0≥1

ϵ
∆l−l0
0

1

minu∈DR0
|P (kuk)|Γ(l0/k)

|u|

× |u|k−1

∫ |u|k

0
(|u|k − s)

l0
k
−1(k(ql3s1/k)k)l1

×
( ∑

0≤n1≤n

n1∈Il

|cl,n1(ϵ)|C1(C2)
n−n1+S(n+ S)!ql3s1/k

)ds
s

for all u ∈ DRn+S
and ϵ ∈ Dϵ0 . Besides, the change of variable s = |u|ks1, allows to reshape the

next integral as a product

(52) |u|k−1

∫ |u|k

0
(|u|k − s)

l0
k
−1sl1+

1
k
ds

s
= |u|l0+kl1

∫ 1

0
(1− s1)

l0
k
−1s

l1+
1
k

1

ds1
s1

for all u ∈ C. The combination of (51) and (52) with the definition (8) and the inclusion
DRn+S

⊂ DR0 beget the next fitting upper bounds

(53) n!L2(u, n, ϵ) ≤ C1(C2)
n+S(n+ S)!|u|

×
[ ∑
l=(l0,l1,l2,l3)∈A;l0≥1

ϵ
∆l−l0
0

1

minu∈DR0
|P (kuk)|Γ(l0/k)

(k(ql3)k)l1ql3Rl0+kl1
0

×
∫ 1

0
(1− s1)

l0
k
−1s

l1+
1
k

1

ds1
s1

×
( ∑

0≤n1≤n

n1∈Il

cl,n1,ϵ0C
−n1
2

)]

whenever u ∈ DRn+S
and ϵ ∈ Dϵ0 .

At last, we address the tail piece L3(u, n, ϵ). Namely, from the inclusion DRn+S
⊂ DR0 and
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the requirement (35), we first observe that

(54) n!L3(u, n, ϵ) ≤
1

minu∈DR0
|P (kuk)|

|u|

×|u|k−1

∫ |u|k

0

( ∑
0≤n1≤n

n1∈Id

|dn1(ϵ)|(C1)
2×
( ∑
n2+n3=n−n1

(C2)
n2+n3n!

)
×(|u|k−s)1/ks1/k 1

(|u|k − s)s

)
ds

≤ 1

minu∈DR0
|P (kuk)|

|u|

× |u|k−1

∫ |u|k

0

( ∑
0≤n1≤n

n1∈Id

|dn1(ϵ)|(C1)
2n!(n− n1 + 1)Cn−n1

2 (|u|k − s)1/ks1/k
1

(|u|k − s)s

)
ds

provided that u ∈ DRn+S
and ϵ ∈ Dϵ0 . In addition, the change of variable s = |u|ks1 enables to

write the next integral in factorized form

(55) |u|k−1

∫ |u|k

0
(|u|k − s)1/ks1/k

1

(|u|k − s)s
ds = |u|

∫ 1

0
(1− s1)

1/ks
1/k
1

1

1− s1

1

s1
ds1

for all u ∈ C. The coupling of (54) and (55) together with the inclusion DRn+S
⊂ DR0 and the

definition (10) triggers the following appropriate bounds

(56) n!L3(u, n, ϵ) ≤ C1(C2)
n+S(n+ S)!|u|

×
[ 1

minu∈DR0
|P (kuk)|

R0 ×
(∫ 1

0
(1− s1)

1/ks
1/k
1

1

1− s1

1

s1
ds1

)
× C1

( ∑
0≤n1≤n

n1∈Id

dn1,ϵ0C
−n1
2

)]
for all u ∈ DRn+S

and ϵ ∈ Dϵ0 .
We make the assumption that the radius ϵ0 > 0 and the constants dh,ϵ0 > 0 introduced in

(10) are selected nearby the origin in a way that the next condition

(57)
∑

l=(l0,l1,l2,l3)∈A;l0=0

ϵ
∆l

0

(k(ql3R0)
k)l1ql3

minu∈DR0
|P (kuk)|

( ∑
0≤n1≤n

n1∈Il

cl,n1,ϵ0C
−n1
2

)

+
∑

l=(l0,l1,l2,l3)∈A;l0≥1

ϵ
∆l−l0
0

1

minu∈DR0
|P (kuk)|Γ(l0/k)

(k(ql3)k)l1ql3Rl0+kl1
0

×
∫ 1

0
(1− s1)

l0
k
−1s

l1+
1
k

1

ds1
s1

×
( ∑

0≤n1≤n

n1∈Il

cl,n1,ϵ0C
−n1
2

)

+
1

minu∈DR0
|P (kuk)|

R0 ×
(∫ 1

0
(1− s1)

1/ks
1/k
1

1

1− s1

1

s1
ds1

)
× C1

( ∑
0≤n1≤n

n1∈Id

dn1,ϵ0C
−n1
2

)
≤ 1

holds. Eventually, we combine the gathering of the above auxiliary bounds (50), (53) and (56)
with the initial estimates (45) constrained by (57) from which follow the next bounds

(58) |wn+S(u, ϵ)| ≤ C1(C2)
n+S(n+ S)!|u|

provided that u ∈ DRn+S
and ϵ ∈ Dϵ0 . Therefore, the property Dn+S is valid. Proposition 2

follows. 2
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4 Some q−difference-convolution recursion on unbounded sec-
tors

In this section, we solve the recursion relation (33), (34) on suitable unbounded sectors U
together with sharp bounds control for the sequence of holomorphic maps (wn)n≥0 solving it.
Indeed, we fix an unbounded sector

(59) U = {u ∈ C∗/α < arg(u) < β}

for some given angles α < β. We assume that

(60) ζj /∈ U , 1 ≤ j ≤ kdeg(P )

where ζj , 1 ≤ j ≤ kdeg(P ) represent the roots of the polynomial u 7→ P (kuk).

The purpose of this section is to explain the next proposition.

Proposition 3 Provided that the radius ϵ0 > 0 and the constants dh,ϵ0 > 0 introduced in (10)
are taken close enough to 0, one can find out a unique sequence of functions (wn(u, ϵ))n≥0, where
each map (u, ϵ) 7→ wn(u, ϵ) is holomorphic on the sector U , continuous on U ∪ {0} with respect
to u and bounded holomorphic w.r.t ϵ on Dϵ0, that fulfills the recursion (33) with S first terms
(34). In addition, one can find constants C3, C4 > 0 and C5 > 0 for which the next estimates

(61) sup
ϵ∈Dϵ0

|wn(u, ϵ)| ≤ C3(C4)
nn!|u| exp

(
C5q

nM1 |u|k
)

hold for all n ≥ 0, all u ∈ U ∪ {0}, where M1 > 0 appears in the assumption (14).

Proof The induction principle is applied. We denote Un the property (61) for a given integer
n ≥ 0. We observe that the property Un is valid whenever 0 ≤ n ≤ S − 1 for well chosen
constants C3, C4, C5 > 0 owing to the fact that wn(u, ϵ) = Pn(u, ϵ) represent mere polynomials
that vanish at u = 0 and possess bounded holomorphic coefficients w.r.t ϵ on the disc Dϵ0 .

Let n ≥ 0, we take for granted that Up is true for all p < n+S for some given C3, C4, C5 > 0.
Our aim is to prove that Un+S holds. The induction principle then implies that the bounds Up

are valid for any integer p ≥ 0.
According to the recursion (33) and that Up is taken for granted for all p < n + S, we get

the next bounds for the term |wn+S(u, ϵ)|,

(62)
|wn+S(u, ϵ)|

n!
≤ P1(u, n, ϵ) + P2(u, n, ϵ) + P3(u, n, ϵ)

where

(63) P1(u, n, ϵ) =
∑

l=(l0,l1,l2,l3)∈A;l0=0

|ϵ|∆l
(k(ql3 |u|)k)l1
|P (kuk)|

( ∑
n1+n2=n

|cl,n1(ϵ)|C3(C4)
n2+l2 (n2 + l2)!

n2!

× |ql3u| exp
(
C5q

(n2+l2)M1 |ql3u|k
))

and

(64) P2(u, n, ϵ) =
∑

l=(l0,l1,l2,l3)∈A;l0≥1

|ϵ|∆l−l0 |u|k

|P (kuk)|Γ(l0/k)

∫ |u|k

0
(|u|k − s)

l0
k
−1(k(ql3s1/k)k)l1

×
( ∑

n1+n2=n

|cl,n1(ϵ)|C3(C4)
n2+l2 (n2 + l2)!

n2!
ql3s1/k exp

(
C5q

(n2+l2)M1(ql3s1/k)k
))ds

s
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along with

(65) P3(u, n, ϵ)

=
|u|k

|P (kuk)|

∫ |u|k

0

( ∑
n1+n2+n3=n

|dn1(ϵ)|C3(C4)
n2(|u|k − s)1/k exp

(
C5q

n2M1((|u|k − s)1/k)k
)

× C3(C4)
n3s1/k exp

(
C5q

n3M1(s1/k)k
)) 1

(|u|k − s)s
ds

provided that u ∈ U ∪ {0} and ϵ ∈ Dϵ0 .
Owing to the condition (14), since q > 1, we get that

(66) q(n2+l2)M1ql3k ≤ q(n+S)M1

provided that n2 ≤ n and l = (l0, l1, l2, l3) ∈ A. Besides, taking heed of the conditions (6), (15)
and the requirement (60), one can find a constant MP,k,l1 > 0 with

(67)
|u|kl1

|P (kuk)|
≤ MP,k,l1

for all u ∈ U , provided that l = (l0, l1, l2, l3) ∈ A with l0 = 0.
With the use of (8) and the hypothesis (13) together with the help of (49), (66) and (67),

we get appropriate upper bounds for the first piece P1(u, n, ϵ). Namely,

(68) n!P1(u, n, ϵ) ≤
∑

l=(l0,l1,l2,l3)∈A;l0=0

ϵ
∆l

0 (kql3k)l1MP,k,l1

×
( ∑

0≤n1≤n

n1∈Il

|cl,n1(ϵ)|C3(C4)
n−n1+S(n+ S)!ql3 |u| exp

(
C5q

(n+S)M1 |u|k
))

≤ C3(C4)
n+S(n+ S)!|u| exp

(
C5q

(n+S)M1 |u|k
)

×
[ ∑
l=(l0,l1,l2,l3)∈A;l0=0

ϵ
∆l

0 (kql3k)l1MP,k,l1q
l3 ×

( ∑
0≤n1≤n

n1∈Il

cl,n1,ϵ0C
−n1
4

)]

provided that u ∈ U and ϵ ∈ Dϵ0 .
We now focus on the second piece P2(u, n, ϵ). Bearing in mind (13), (49) and (66), we first

observe that

(69) n!P2(u, n, ϵ) ≤
∑

l=(l0,l1,l2,l3)∈A;l0≥1

ϵ
∆l−l0
0

|u|k

|P (kuk)|Γ(l0/k)

∫ |u|k

0
(|u|k − s)

l0
k
−1(kql3k)l1sl1

×
( ∑

0≤n1≤n

n1∈Il

|cl,n1(ϵ)|C3(C4)
n−n1+S(n+ S)!ql3s1/k

)ds
s

× exp
(
C5q

(n+S)M1 |u|k
)

≤ C3(C4)
n+S(n+ S)!|u| exp

(
C5q

(n+S)M1 |u|k
)

×
[ ∑
l=(l0,l1,l2,l3)∈A;l0≥1

ϵ
∆l−l0
0

|u|k−1

|P (kuk)|Γ(l0/k)

∫ |u|k

0
(|u|k − s)

l0
k
−1(kql3k)l1sl1

×
( ∑

0≤n1≤n

n1∈Il

|cl,n1(ϵ)|C
−n1
4 ql3s1/k

)ds
s

]
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for all u ∈ U and ϵ ∈ Dϵ0 . In the next step, we need to upper bound the integral expression

(70) A(u) =
|u|k−1

|P (kuk)|

∫ |u|k

0
(|u|k − s)

l0
k
−1sl1s1/k

ds

s

for u ∈ U . Indeed, using the change of variable s = |u|ks1 for 0 ≤ s1 ≤ 1 in A(u), we get from
(6), (15) and the constraint (60), a constant MP,k,l0,l1 > 0 with

(71) A(u) =
|u|l0+kl1

|P (kuk)|
×
( ∫ 1

0
(1− s1)

l0
k
−1s

l1+
1
k

1

ds1
s1

)
≤ MP,k,l0,l1

for all u ∈ U . At last, paying regard to the definition (8), the combination of the above bounds
(69) and (71), yields the next suitable estimates for the quantity P2(u, n, ϵ). Namely,

(72) n!P2(u, n, ϵ) ≤ C3(C4)
n+S(n+ S)!|u| exp

(
C5q

(n+S)M1 |u|k
)

×
[ ∑
l=(l0,l1,l2,l3)∈A;l0≥1

ϵ
∆l−l0
0

1

Γ(l0/k)
(kql3k)l1ql3MP,k,l0,l1 ×

( ∑
0≤n1≤n

n1∈Il

cl,n1,ϵ0C
−n1
4

)]

as long as u ∈ U and ϵ ∈ Dϵ0 .
We turn our attention to the third piece P3(u, n, ϵ). From the straight bounds

qn2M1(|u|k − s) + qn3M1s ≤ q(n+S)M1 |u|k

for all u ∈ C, 0 ≤ s ≤ |u|k and n2, n3 ≤ n, we observe that

(73) n!P3(u, n, ϵ) ≤
|u|k

|P (kuk)|

∫ |u|k

0

( ∑
0≤n1≤n

n1∈Id

|dn1(ϵ)|(C3)
2 ×

( ∑
n2+n3=n−n1

(C4)
n2+n3n!

))

× exp
(
C5q

(n+S)M1 |u|k
)
(|u|k − s)1/ks1/k

1

(|u|k − s)s
ds

≤ |u|k

|P (kuk)|

∫ |u|k

0

( ∑
0≤n1≤n

n1∈Id

|dn1(ϵ)|(C3)
2Cn−n1

4 (n− n1 + 1)n!

× exp
(
C5q

(n+S)M1 |u|k
)
(|u|k − s)1/ks1/k

1

(|u|k − s)s
ds

Again, we are reduced to upper bound an integral term

(74) B(u) =
|u|k−1

|P (kuk)|
×
( ∫ |u|k

0
(|u|k − s)1/ks1/k

1

(|u|k − s)s
ds
)

for u ∈ U . Indeed, owing to a change of variable s = |u|ks1 for 0 ≤ s1 ≤ 1 in B(u), we get from
(6) and the constraint (60), a constant MP,k > 0 can be singled out with

(75) B(u) =
|u|

|P (kuk)|
×
( ∫ 1

0
(1− s1)

1/ks
1/k
1

1

(1− s1)s1
ds1
)
≤ MP,k

for all u ∈ U . Eventually, paying heed to (10) and teaming up (73) with (75), we reach the next
fitting estimates for the term P3(u, n, ϵ). Namely,

(76) n!P3(u, n, ϵ) ≤ C3(C4)
n+S(n+S)!|u| exp

(
C5q

(n+S)M1 |u|k
)
×
[
MP,kC3

( ∑
0≤n1≤n

n1∈Id

dn1,ϵ0C
−n1
4

)]
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whenever u ∈ U and ϵ ∈ Dϵ0 .
Now, we make the assumption that the radius ϵ0 > 0 and the constants dh,ϵ0 > 0 introduced

in (10) are chosen in the vicinity of the origin in a way that the next constraint

(77)
∑

l=(l0,l1,l2,l3)∈A;l0=0

ϵ
∆l

0 (kql3k)l1MP,k,l1q
l3 ×

( ∑
0≤n1≤n

n1∈Il

cl,n1,ϵ0C
−n1
4

)

+
∑

l=(l0,l1,l2,l3)∈A;l0≥1

ϵ
∆l−l0
0

1

Γ(l0/k)
(kql3k)l1ql3MP,k,l0,l1 ×

( ∑
0≤n1≤n

n1∈Il

cl,n1,ϵ0C
−n1
4

)
+MP,kC3

( ∑
0≤n1≤n

n1∈Id

dn1,ϵ0C
−n1
4

)
≤ 1

holds. At last, the collection of all the technical bounds (68), (72) and (76) when applied to the
inequality (62) under the constraint (77) gives rise to the estimates

(78) |wn+S(u, ϵ)| ≤ C3(C4)
n+S(n+ S)!|u| exp

(
C5q

(n+S)M1 |u|k
)

for all u ∈ U , all ϵ ∈ Dϵ0 . This means that the property Un+S holds. This yields Proposition 2.
2

5 Layout of analytic Banach valued solutions to the initial Cauchy
problem (16), (17).

We recall the definition of a good covering in C∗ as given in [7], Chapter XI.

Definition 1 Let ς ≥ 2 be an integer. We consider a family E = {Ep}0≤p≤ς−1 of open sectors
Ep centered at 0 (but not containing the origin) with given radius ϵ0 that conforms to the next
three features:
i) The intersection of any two consecutive sectors Ep ∩ Ep+1 of the family E is not empty for all
0 ≤ p ≤ ς − 1, with the convention that Eς = E0.
ii) The intersection of any three elements Ep1 ∩ Ep2 ∩ Ep3 for p1 ̸= p2 ̸= p3 in E is empty.
iii) The union of the sectors Ep covers some punctured neighborhood U̇ of the origin in C∗,
namely

∪ς−1
p=0Ep = U̇ = U \ {0}.

A family E endowed with the above three properties is called a good covering in C∗.

A notion of admissible set of sectors is put forward in the next

Definition 2 Let ς ≥ 2 be an integer and let E = {Ep}0≤p≤ς−1 be a good covering in C∗ and let
T be a bounded sector edged at 0. We consider a set U = {Up}0≤p≤ς−1 of unbounded sectors Up

edged at 0, that are subjected to the next properties:
1) Each sector Up does not contain any of the roots of the polynomial u 7→ P (kuk), for 0 ≤ p ≤
ς − 1.
2) For all 0 ≤ p ≤ ς − 1, there exists a constant ∆p > 0 such that for all ϵ ∈ Ep and all t ∈ T ,
one can find out a direction γp ∈ R (that may depend on ϵ and t) such that both conditions

(79) Lγp = [0,+∞) exp(
√
−1γp) ⊂ Up ∪ {0}
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and

(80) cos(k(γp − arg(ϵt))) > ∆p

hold.
The set of sectors D = {E , T ,U} favored with the above two features is called an admissible

set of sectors.

In the next definition, we remind the reader the construction of a Banach space of formal power
series introduced in the former work [8] by A. Lastra and the author.

Definition 3 Let T be a fixed bounded sector edged at 0. Let R̃0, ∆̃ > 0 be constants. We mind
the sequence (R̃n)n≥0 where

(81) R̃n = R̃0/q
n∆̃ , n ≥ 0.

For each n ≥ 0, we consider the domain

(82) Dn = T ∩DR̃n
,

and we fix some positive radius R1 > 0. We denote O(Dn)n≥0;R1
the vector space of formal power

series

(83) h(t, z) =
∑
n≥0

hn(t)
zn

n!

where each coefficient hn belongs to Ob(Dn), the vector space of bounded C-valued holomorphic
functions on Dn, such that the norm

(84) ||h(t, z)||(Dn)n≥0;R1
:=
∑
n≥0

sup
t∈Dn

|hn(t)|
Rn

1

n!

is finite.

The next proposition has been discussed in [8].

Proposition 4 The vector space O(Dn)n≥0;R1
of formal series in the variable z equipped with

the mixed type sup-norm and L1-norm ||.||(Dn)n≥0;R1
turns out to be a complex Banach space.

At this stage of the paper, the necessary prefatory material has been prepared in order to
show the first main result of our work.

Theorem 1 We take for granted that the conditions described in Section 2.1 are imposed on
the main Cauchy problem (16), (17). Consider a good covering E = {Ep}0≤p≤ς−1 in C∗, a set
U = {Up}0≤p≤ς−1 of unbounded sectors edged at 0 and a bounded sector T edged at 0 chosen in
a way that the data D = {E , T ,U} forms an admissible set of sectors.

Provided that the radius ϵ0 > 0 and the constants dh,ϵ0 > 0 introduced in (10) are taken close
enough to the origin, for each 0 ≤ p ≤ ς − 1, one can construct a solution up(t, z, ϵ) to our main
Cauchy problem (16), (17) endowed with the next hallmarks

1. The partial map ϵ 7→ up(t, z, ϵ) represents a bounded holomorphic map from the sector
Ep into the Banach space (O(Dn)n≥0;R1

, ||.||(Dn)n≥0;R1
), for well chosen constants R̃0 > 0,

R1 > 0 with ∆̃ = ∆ introduced in (36).
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2. The map up(t, z, ϵ) is expressed as a formal power in z

(85) up(t, z, ϵ) =
∑
n≥0

up,n(t, ϵ)
zn

n!

where each coefficient up,n(t, ϵ), n ≥ 0, stands for a Laplace transform of order k,

(86) up,n(t, ϵ) = k

∫
Lγp

wp,n(u, ϵ) exp
(
− (

u

ϵt
)k
)du
u

along a halfline Lγp = [0,+∞)e
√
−1γp for the direction γp given in Definition 2 2), where

the so-called Borel map wp,n(u, ϵ) fulfills the next two features

• the map (u, ϵ) 7→ wp,n(u, ϵ) is bounded holomorphic on the product DRn × Dϵ0 for
Rn given by (37). Furthermore, two constants C1, C2 > 0 can be pinpointed with the
bounds

(87) |wp,n(u, ϵ)| ≤ C1(C2)
nn!|u|

for all n ≥ 0, all u ∈ DRn, all ϵ ∈ Dϵ0.

• the map (u, ϵ) 7→ wp,n(u, ϵ) is holomorphic on the product Up × Dϵ0 where Up is the
unbounded sector of the set U subjected to the inclusion (79) from Definition 2 2).
Moreover, three constants C3, C4 > 0 and C5 > 0 can be chosen with the bounds

(88) |wp,n(u, ϵ)| ≤ C3(C4)
nn!|u| exp

(
C5q

nM1 |u|k
)

for all n ≥ 0, all u ∈ Up ∪ {0}, where M1 > 0 stems from the assumption (14).

3. The difference of consecutive solutions up+1 − up can be estimated as follows. For each
0 ≤ p ≤ ς − 1, one can find two constants Kp,1,Kp,2 > 0 such that

(89) ||up+1(t, z, ϵ)− up(t, z, ϵ)||(Dn)n≥0;R1
≤ Kp,1 exp

(
− Kp,2

|ϵ|k
)

for all ϵ ∈ Ep+1 ∩ Ep, with the convention that uς = u0 and Eς = E0.

Proof Let D = {E , T ,U} be an admissible set of sectors. Provided that ϵ0 > 0 and the constants
dh,ϵ0 > 0 introduced in (10) are taken close enough to the origin, for a given unbounded sector Up

from U , we consider the unique sequence of functions (wn,p(u, ϵ))n≥0 built up in Proposition 3 for
the sector U = Up that fulfills the recursion (33) with S first terms (34). By construction, these
maps are submitted to the bounds (88). According to Proposition 2 and by a unicity argument,
it follows that each map wn,p(u, ϵ) is also bounded holomorphic on a product DRn ×Dϵ0 for Rn

given by (37) and obeys the bounds (87).
In the next step, we provide bounds estimates for the Laplace transform up,n(t, ϵ) displayed in

(86). Namely, according to the bounds (88) and the lower estimates (80), for u = re
√
−1γp ∈ Lγp

with r ≥ 0, we get the next upper estimates

(90) |wp,n(u, ϵ) exp
(
− (

u

ϵt
)k
)1
u
|

≤ C3(C4)
nn! exp

(
C5q

nM1rk
)
exp

(
− (

r

|ϵt|
)k cos(k(γp − arg(ϵt)))

)
≤ C3(C4)

nn! exp
(
rk
[
C5q

nM1 − ∆p

|ϵt|k
])

≤ C3(C4)
nn! exp

(
rk
[
C5q

nM1 − ∆p

(ϵ0|t|)k
])
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for all ϵ ∈ Ep and t ∈ T . In the next lemma, we provide some technical bounds

Lemma 5 There exists R̃0 > 0 and a constant B6 > 0 such that

(91) C5q
nM1 − ∆p

(ϵ0|t|)k
≤ −B6

provided that t ∈ C with |t| ≤ R̃0/q
n∆.

Proof I straight computation shows that the inequality (91) is equivalent to

(92) |t| ≤ ∆
1/k
p /ϵ0

(C5qnM1 +B6)1/k
.

For some given B6 > 0, we introduce the constant R̃0 > 0 defined by

(93) R̃0 = min
n≥0

(∆
1/k
p /ϵ0)q

n∆

(C5qnM1 +B6)1/k
= min

n≥0

∆
1/k
p /ϵ0

(C5 +B6q−nM1)1/k
=

∆
1/k
p /ϵ0

(C5 +B6)1/k

by keeping in mind the definition (36). By construction, if |t| ≤ R̃0/q
n∆, then the inequality

(92) holds. The Lemma follows. 2

The combination of the bounds (90) and (91) yields the estimates

(94) |wp,n(u, ϵ) exp
(
− (

u

ϵt
)k
)1
u
| ≤ C3(C4)

nn! exp(−B6r
k)

provided that u = re
√
−1γp ∈ Lγp with r ≥ 0, for all ϵ ∈ Ep and t ∈ T ∩DR̃0/qn∆ = Dn, for all

n ≥ 0, all 0 ≤ p ≤ ς − 1. It follows that each Laplace transform up,n(t, ϵ) given by (86) defines
a bounded holomorphic function on the product Dn × Ep and is subjected to the bounds

(95) |up,n(t, ϵ)| ≤ kC3(C4)
nn!

∫ +∞

0
exp(−B6r

k)dr

for all ϵ ∈ Ep and t ∈ Dn. If one sets the formal power series up(t, z, ϵ) by the formal expansion
in z given by (85), one checks that for all ϵ ∈ Ep, up(t, z, ϵ) belongs to the Banach space
(O(Dn)n≥0;R1

, ||.||(Dn)n≥0;R1
), provided that 0 < R1 < 1/C4. Indeed, from (95)

(96) ||up(t, z, ϵ)||(Dn)n≥0;R1

≤ kC3

∫ +∞

0
exp(−B6r

k)dr ×
∑
n≥0

(C4R1)
n =

kC3

∫ +∞
0 exp(−B6r

k)dr

1− C4R1
.

Besides, according to Lemma 2 and Lemma 1 from Subsection 2.2 and bearing in mind that
the sequence (wn,p(u, ϵ))n≥0 obeys the recursion (33) with S first terms (34), it follows that the
formal series up(t, z, ϵ) solves the problem (16), (17). As a result, the first 1. and second 2.
point of Theorem 1 hold true.

In the last part of the proof, we discuss the third point 3. Let 0 ≤ p ≤ ς − 1 be a given
integer. Our main objective is to provide sharp bounds for the difference of Laplace transforms
up+1,n(t, ϵ)−up,n(t, ϵ) for each given n ≥ 0. To that end, we employ a path deformation argument.
Namely, according to the construction of the sequence (wn,p(u, ϵ))n≥0 at the beginning of the
proof, we observe that for each n ≥ 0, for all given ϵ ∈ Dϵ0 , the partial maps u 7→ wp+1,n(u, ϵ)
and u 7→ wp,n(u, ϵ) share a common analytic continuation, that we name u 7→ wn(u, ϵ), on the
disc DRn for Rn = R0/q

n∆ where R0 > 0 is some radius submitted to (35) and ∆ > 0 is given by
(36). The classical Cauchy’s formula enables the deformation of the oriented path Lγp+1 − Lγp

into the union of
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• the two halflines

(97) Lγp+1,Rn+1 = [
R0

q(n+1)∆
,+∞) exp(

√
−1γp+1),

− Lγp,Rn+1 = −[
R0

q(n+1)∆
,+∞) exp(

√
−1γp),

• the circle

(98) Cγp,γp+1,Rn+1 = { R0

q(n+1)∆
exp(

√
−1θ)/θ ∈ (γp, γp+1)}

with radius Rn+1 joining the above two halflines,

keeping the value of the difference up+1,n(t, ϵ) − up,n(t, ϵ) unchanged. As a result, we can de-
compose the difference up+1,n − up,n as a sum of three contributions,

(99) up+1,n(t, ϵ)− up,n(t, ϵ) = k

∫
Lγp+1,Rn+1

wp+1,n(u, ϵ) exp
(
− (

u

ϵt
)k
)du
u

− k

∫
Lγp,Rn+1

wp,n(u, ϵ) exp
(
− (

u

ϵt
)k
)du
u

+ k

∫
Cγp,γp+1,Rn+1

wn(u, ϵ) exp
(
− (

u

ϵt
)k
)du
u
.

provided that t ∈ Dn, ϵ ∈ Ep+1 ∩ Ep. In the next step, we find upper estimates for each piece of
the above splitting. Let

I1(t, ϵ) =
∣∣∣k ∫

Lγp+1,Rn+1

wp+1,n(u, ϵ) exp
(
− (

u

ϵt
)k
)du
u

∣∣∣.
Based on the estimates (90), we obtain

(100) I1(t, ϵ) ≤ k

∫ +∞

Rn+1

n!C3(C4)
n exp

(
rk[C5q

nM1 − ∆p+1

|ϵt|k
]
)
dr

for all t ∈ Dn, ϵ ∈ Ep+1 ∩ Ep and therefore

(101) sup
t∈Dn

I1(t, ϵ) ≤ k

∫ +∞

Rn+1

n!C3(C4)
n exp

(
rk[C5q

nM1 − ∆p+1

|ϵ|k
qnM1

R̃k
0

]
)
dr

whenever ϵ ∈ Ep+1 ∩ Ep. Now, we choose ∆̌p+1 > 0, close enough to 0, in a way that

(102) C5 −
∆p+1

|ϵ|k
1

R̃k
0

≤ −∆̌p+1

|ϵ|k

for all ϵ ∈ Dϵ0 . A direct computation shows that (102) holds provided that ϵ0 > 0 is constrained
to the inequality

ϵ0 ≤

(∆p+1

R̃k
0

− ∆̌p+1

)1/k
C

1/k
5
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which is warranted if we take ϵ0 small enough. As a result of (101) and (102) we reach the next
bounds

(103) sup
t∈Dn

I1(t, ϵ) ≤ k

∫ +∞

Rn+1

n!C3(C4)
n exp

(
− rkqnM1

∆̌p+1

|ϵ|k
)
dr

≤ k

∫ +∞

Rn+1

n!C3(C4)
n 1

krk−1
× krk−1 exp

(
− rkqnM1

∆̌p+1

|ϵ|k
)
dr

≤ kC3n!(C4)
n 1

k(Rn+1)k−1

[
− 1

qnM1∆̌p+1/|ϵ|k
exp

(
− rkqnM1

∆̌p+1

|ϵ|k
)]+∞

Rn+1

≤ kC3(C4)
nn!

1

kRk−1
0

q−∆n+∆(k−1) ϵk0
∆̌p+1

exp
(
− Rk

0

q∆k

∆̌p+1

|ϵ|k
)

for all ϵ ∈ Ep+1 ∩ Ep.

In a similar manner, we get bounds for the second piece of the decomposition (99). Let

I2(t, ϵ) =
∣∣∣k ∫

Lγp,Rn+1

wp,n(u, ϵ) exp
(
− (

u

ϵt
)k
)du
u

∣∣∣.
Then, one can single out a tiny constant ∆̌p > 0, in a way that

(104) sup
t∈Dn

I2(t, ϵ) ≤ kC3(C4)
nn!

1

kRk−1
0

q−∆n+∆(k−1) ϵ
k
0

∆̌p

exp
(
− Rk

0

q∆k

∆̌p

|ϵ|k
)

provided that ϵ ∈ Ep+1 ∩ Ep.

Eventually, we control the tail piece of (99). We set

I3(t, ϵ) =
∣∣∣k ∫

Cγp,γp+1,Rn+1

wn(u, ϵ) exp
(
− (

u

ϵt
)k
)du
u

∣∣∣.
Owing to the fact that the arc of circle Cγp,γp+1,Rn+1 is contained in the disc DRn , we deduce
from the bounds (87) that

(105) I3(t, ϵ) ≤
∣∣∣k ∫ γp+1

γp

C1(C2)
nn!Rn+1 exp

(
− (

Rn+1

|ϵt|
)k cos(k(θ − arg(ϵt)))

)
dθ
∣∣∣

for all t ∈ Dn, ϵ ∈ Ep ∩ Ep+1. By construction of the directions γp and γp+1 in Definition 2 2),
one can find a constant ∆p+1,p > 0 with

(106) cos(k(θ − arg(ϵt))) > ∆p+1,p

for all ϵ ∈ Ep+1 ∩ Ep, t ∈ T and θ ∈ (γp, γp+1). As a consequence of (105) and (106), we reach
the upper estimates

(107) sup
t∈Dn

I3(t, ϵ) ≤ k|γp+1 − γp|C1(C2)
nn!

R0

q∆(n+1)
exp

(
− (

R0

R̃0q∆
)k∆p+1,p

1

|ϵ|k
)

whenever ϵ ∈ Ep+1 ∩ Ep.
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At last, we apply the above bounds (103), (104) and (107) to the decomposition (99) and
summing up with respect to n yields the next estimates

(108) ||up+1(t, z, ϵ)− up(t, z, ϵ)||(Dn)n≥0;R1

≤ exp
(
− Rk

0

q∆k

∆̌p+1

|ϵ|k
)
×
∑
n≥0

kC3(C4)
n 1

kRk−1
0

q−∆n+∆(k−1) ϵk0
∆̌p+1

Rn
1

+ exp
(
− Rk

0

q∆k

∆̌p

|ϵ|k
)
×
∑
n≥0

kC3(C4)
n 1

kRk−1
0

q−∆n+∆(k−1) ϵ
k
0

∆̌p

Rn
1

+ exp
(
− (

R0

R̃0q∆
)k∆p+1,p

1

|ϵ|k
)
×
∑
n≥0

k|γp+1 − γp|C1(C2)
n R0

q∆(n+1)
Rn

1

for all ϵ ∈ Ep+1 ∩ Ep, which hold provided that R1 > 0 is taken small enough and fulfills
0 < R1 < 1/C4 and 0 < R1 < 1/C2. The awaited estimates (89) follow. 2

6 Parametric Gevrey asymptotic expansions for the Banach val-
ued solutions to the Cauchy problem (16), (17).

The next definition is classical and can be found in the references [1], [7].

Definition 4 Let (E, ||.||E) be a complex Banach space. Let k > 0 be a real number and let E
be an open bounded sector in C∗ edged at 0. Let f : E → E be a holomorphic function. The map
f is said to possess the formal series

f̂(ϵ) =
∑
n≥0

anϵ
n ∈ E[[ϵ]]

as Gevrey asymptotic expansion of order 1/k on E if for each closed proper subsector W of E
edged at 0, one can select two constants C,M > 0 with

||f(ϵ)−
N∑

n=0

anϵ
n||F ≤ CMN+1Γ(

N + 1

k
)|ϵ|N+1

for all integers N ≥ 0, provided that ϵ ∈ W.

We can state the second prominent result of our work.

Theorem 2 There exists a formal power series û(t, z, ϵ) =
∑

n≥0 hn(t, z)ϵ
n in ϵ with the next

two features

1. The coefficients hn, n ≥ 0, belong to the Banach space (O(Dn)n≥0;R1
, ||.||(Dn)n≥0;R1

) de-

scribed in Definition 3, where the sector T , the sequence (R̃n)n≥0 and radius R1 > 0 are
chosen in Theorem 1.

2. For each 0 ≤ p ≤ ς − 1, the holomorphic map ϵ 7→ up(t, z, ϵ) from Ep into
(O(Dn)n≥0;R1

, ||.||(Dn)n≥0;R1
) built up in Theorem 1, possesses û(t, z, ϵ) as Gevrey asymptotic

expansion of order 1/k on Ep, for the integer k ≥ 1 introduced in Section 2.1.
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Proof The proof relies on the following Banach valued version of the classical Ramis-Sibuya
theorem stated in Lemma XI-2-6 from [7].

Theorem (Ramis-Sibuya) Let (E, ||.||E) be a Banach space over C and {Ep}0≤p≤ς−1 be a good
covering in C∗ as described in Definition 1. For each 0 ≤ p ≤ ς − 1, we consider a holomorphic
function Gp(ϵ) from Ep into the Banach space (E, ||.||E). We take for granted that for each
0 ≤ p ≤ ς − 1

1. the function Gp(ϵ) is bounded on the sector Ep,

2. the difference Θp(ϵ) = Gp+1(ϵ) − Gp(ϵ) is exponentially flat of some order k > 0 on the
intersection Ep+1 ∩ Ep, meaning that some constants Ap, Bp > 0 can be sorted with

||Θp(ϵ)||E ≤ Ape
−Bp/|ϵ|k

whenever ϵ ∈ Ep+1 ∩ Ep, with the convention that Eς = E0 and Gς = G0.

Then, there exists a formal power series

Ĝ(ϵ) =
∑
n≥0

Gnϵ
n ∈ E[[ϵ]]

which is the common Gevrey asymptotic expansion of order 1/k for each map Gp(ϵ) on Ep,
0 ≤ p ≤ ς − 1.

We set E = O(Dn)n≥0;R1
equipped with the norm ||.||E = ||.||(Dn)n≥0;R1

. According to Proposi-
tion 4, (E, ||.||E) is a Banach space over C. We apply the above theorem to the maps Gp : Ep → E
defined by

Gp(ϵ) := (t, z) 7→ up(t, z, ϵ).

Based on the points 1. and 3. of the statement of Theorem 1, we observe that the set of maps
{Gp}0≤p≤ς−1 obeys the two requirements 1. and 2. of the above Ramis-Sibuya theorem. As
a result, the existence of a formal power series Ĝ(ϵ) that we denote û(t, z, ϵ) in the statement
of Theorem 2 which stands for the common Gevrey asymptotic expansion of order 1/k for the
maps Gp(ϵ) on Ep for all 0 ≤ p ≤ ς − 1 is warranted. 2

7 Confluence of the Banach valued solutions to (16), (17) as
q > 1 tends to 1.

Throughout this section, the notations introduced in the earlier sections of the work are slightly
changed. In order to keep track of the dependence of the set of solutions {up(t, z, ϵ)}0≤p≤ς−1

to the problem (16), (17) with respect to the parameter q > 1, constructed in Theorem 1, we
denote up;q(t, z, ϵ) the map up(t, z, ϵ). A third index q is added to the Borel maps wp,n(u, ϵ), by
setting wp,n(u, ϵ) = wp,n;q(u, ϵ) inside the integral representation (86). The real parameter q is
chosen within the range (1, q0] for some fixed real number q0 > 1.

7.1 The limit nonlinear partial differential Cauchy problem.

In this subsection, a new Cauchy problem is introduced that is called the limit problem as q > 1
tends to 1. It is displayed as follows

(109) P (ϵktk+1∂t)∂
S
z u;1(t, z, ϵ) =

∑
l=(l0,l1,l2,l3)∈A

ϵ∆lcl(z, ϵ)t
l0(ϵktk+1∂t)

l1∂l2z u;1(t, z, ϵ)

+ d(z, ϵ)(u;1(t, z, ϵ))
2
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for given Cauchy data

(110) (∂jzu;1)(t, 0, ϵ) = φj(t, ϵ) , 0 ≤ j ≤ S − 1.

where all the data k, S, P,A, the constants ∆l and the coefficients cl(z, ϵ) with l ∈ A, d(z, ϵ)
along with the initial data φj(t, ϵ) for 0 ≤ j ≤ S − 1 are the ones already set up in Section 2.1.

We search for solutions to (109), (110) that can be written as a formal power series in the
variable z

(111) u;1(t, z, ϵ) =
∑
n≥0

un;1(t, ϵ)
zn

n!

whose coefficients un;1(t, ϵ), n ≥ 0, are expressed through Laplace transforms of order k,

(112) un;1(t, ϵ) = k

∫
Lγ

wn;1(u, ϵ) exp
(
− (

u

ϵt
)k
)du
u

along a prescribed halfline Lγ = [0,+∞)e
√
−1γ for suitable direction γ ∈ R. For all n ≥ 0, the

Borel maps wn;1(u, ϵ) are supposed to be holomorphic on a common product U × Dϵ0 , where
U stands for an open unbounded sector edged at 0 containing the halfline Lγ \ {0}. For each
Laplace transform (112) to be well defined, the assumption is made that a constant K > 0 and
a positive sequence (Hn)n≥0 can be found with bounds of the form

(113) sup
ϵ∈Dϵ0

|wn;1(u, ϵ)| ≤ Hn|u| exp(K|u|k)

for all n ≥ 0, provided that u ∈ U . The value of the constant K > 0 and the exact shape of the
sequence (Hn)n≥0 will be discussed in the forthcoming Proposition 5..

Identical computations as the ones performed in Lemma 1 and Lemma 2 in Section 2.2 give
rise to the next lemma.

Lemma 6 The formal series (111) solves the problem (109), (110) if the sequence of Borel
maps (wn;1(u, ϵ))n≥0 conforms to the next convolution recurrence relation

(114)
wn+S;1(u, ϵ)

n!
=

∑
l=(l0,l1,l2,l3)∈A;l0=0

ϵ∆l
(kuk)l1

P (kuk)

( ∑
n1+n2=n

cl,n1(ϵ)
wn2+l2;1(u, ϵ)

n2!

)

+
∑

l=(l0,l1,l2,l3)∈A;l0≥1

ϵ∆l−l0 uk

P (kuk)Γ(l0/k)

∫ uk

0
(uk − s)

l0
k
−1(ks)l1

×
( ∑

n1+n2=n

cl,n1(ϵ)
wn2+l2;1(s

1/k, ϵ)

n2!

)ds
s

+
uk

P (kuk)

∫ uk

0

( ∑
n1+n2+n3=n

dn1(ϵ)
wn2;1((u

k − s)1/k, ϵ)

n2!

wn3;1(s
1/k, ϵ)

n3!

) 1

(uk − s)s
ds

for given

(115) wj;1(u, ϵ) = Pj(u, ϵ) , 0 ≤ j ≤ S − 1.

The next proposition can be shown in following exactly the same steps of the proof of
Proposition 3 and by merely setting q = 1 in each inequality involved.
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Proposition 5 Let D = {E , T ,U} be an admissible set of sectors as chosen in Definition 2 of
Section 5. Let U be one sector belonging to the family of unbounded sectors U . Provided that
the radius ϵ0 > 0 and the constants dh,ϵ0 > 0 introduced in (10) are taken close enough to 0,
one can find a unique sequence of functions (wn;1(u, ϵ))n≥0, where each map (u, ϵ) 7→ wn;1(u, ϵ)

• is holomorphic with respect to u on U and continuous on U ∪ {0}

• is holomorphic relatively to ϵ on Dϵ0

• fulfills the recursion (114) for given S first terms (115)

• suffers the next upper bounds : one can single out constants C6, C7, C8 > 0 (independent
of n) with

(116) sup
ϵ∈Dϵ0

|wn;1(u, ϵ)| ≤ C6(C7)
nn!|u| exp(C8|u|k)

for all u ∈ U ∪ {0}.

In the next proposition, we build up a genuine holomorphic solution to the Cauchy problem
(109), (110).

Proposition 6 We consider an admissible set of sectors D = {E , T ,U} as chosen in Definition
2 of Section 5. Let us pick up one sector U belonging to the family of unbounded sectors U . We
denote E the open sector from the good covering E that is related to U under the requirement
of Definition 2 2). Granted that the radius ϵ0 > 0 and the constants dh,ϵ0 > 0 introduced in
(10) are taken in the vicinity of 0, one can construct a solution u;1(t, z, ϵ) to the limit Cauchy
problem (109), (110) favored with the next features

1. The map u;1(t, z, ϵ) represents a bounded holomorphic map on the domain (T ∩ DŘ0
) ×

DŘ1
× E, for well chosen constants Ř0, Ř1 > 0.

2. The map u;1(t, z, ϵ) is expressed as a convergent series in z with the shape (111) with
coefficients un;1(t, ϵ), n ≥ 1 in the form of a Laplace transform of order k given by (112)

along a halfline Lγ = [0,+∞)e
√
−1γ for the direction γ ∈ R given in Definition 2 2)

relatively to the sectors E and U . In addition, each Borel map wn;1(u, ϵ), n ≥ 0, is
holomorphic on the product U×Dϵ0 and is submitted to the bounds (116) for some constants
C6, C7, C8 > 0 and all u ∈ U ∪ {0}.

Proof We consider the unique sequence of functions (wn;1(u, ϵ))n≥0 disclosed in Proposition 5.
We need to display upper bounds for the Laplace transform un;1(t, ϵ) given by (112). Indeed,

according to the upper and lower bounds (116) and (80), for u = re
√
−1γ ∈ Lγ with r ≥ 0, we

reach a constant ∆;1 > 0 with

(117) |wn;1(u, ϵ) exp
(
− (

u

ϵt
)k
)1
u
|

≤ C6(C7)
nn! exp

(
C8r

k
)
exp

(
− (

r

|ϵt|
)k cos(k(γ − arg(ϵt)))

)
≤ C6(C7)

nn! exp
(
rk
[
C8 −

∆;1

(ϵ0|t|)k
])
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for all ϵ ∈ E and t ∈ T . As a result, we can find a constant B9 > 0 such that

(118) |wn;1(u, ϵ) exp
(
− (

u

ϵt
)k
)1
u
| ≤ C6(C7)

nn! exp(−B9r
k)

provided that u = re
√
−1γ ∈ Lγ , for r ≥ 0, all ϵ ∈ E and t ∈ T constrained to the bounds

|t| ≤ (∆;1)
1/k/ϵ0

(C8 +B9)1/k
= Ř0.

It follows that each Laplace transform un;1(t, ϵ) displayed in (112) defines a bounded holomorphic
function on the product (T ∩DŘ0

)× E and suffers the bounds

(119) |un;1(t, ϵ)| ≤ kC6(C7)
nn!

∫ +∞

0
exp(−B9r

k)dr

for all t ∈ T ∩DŘ0
and ϵ ∈ E . If one sets the expression u;1(t, z, ϵ) by the expansion (111) in z, one

checks that u;1(t, z, ϵ) defines a bounded holomorphic function on the product (T ∩DŘ0
)×DŘ1

×E
provided that 0 < Ř1 < 1/C7. Namely, from (119)

(120) |u;1(t, z, ϵ)| ≤ kC6

∫ +∞

0
exp(−B9r

k)dr ×
∑
n≥0

(C7Ř1)
n =

kC6

∫ +∞
0 exp(−B9r

k)dr

1− C7Ř1

for all t ∈ T ∩DŘ0
, z ∈ DŘ1

and ϵ ∈ E . Besides, according to Lemma 6 and the fact discussed
in Proposition 5 that the sequence (wn;1(u, ϵ))n≥0 obeys the recursion (114) for given S first
terms (115), it follows that the series u;1(t, z, ϵ) solves the limit Cauchy problem (109), (110).
Proposition 6 ensues. 2

7.2 Bounds for the difference of Borel maps solving the convolution recur-
rence relation (114) under the action of a q−difference operator

The aim of this subsection is to prove the next technical issue.

Proposition 7 Let β ∈ Z∗ be a non vanishing integer and let q ∈ (1, q0]. Provided that the
radius ϵ0 > 0 and the constants dh,ϵ0 > 0 introduced in (10) are sufficiently small, one can
choose constants C9, C10, C11 > 0 independently of q ∈ (1, q0] (where C10 can be selected larger
than the constant C7 obtained in Proposition 5) such that

(121) |wn;1(u, ϵ)− wn;1(q
βu, ϵ)| ≤ |qβ − 1|C9(C10)

nn!|u| exp(C11|u|k)

for all integers n ≥ 0, all u ∈ U ∪ {0} and ϵ ∈ Dϵ0.

Proof We proceed by induction. We call D ;1;β
n the property (121) for a given natural number

n ≥ 0.
We first discuss the reason for which D ;1;β

n holds true for 0 ≤ n ≤ S − 1. By construction,
whenever 0 ≤ n ≤ S − 1, wn;1(u, ϵ) = Pn(u, ϵ) is a polynomial in u with bounded holomorphic
coefficients in ϵ on Dϵ0 . Since the partial map u 7→ Pn(u, ϵ) admits in particular a derivative
u 7→ P ′

n(u, ϵ) w.r.t u on C, we can rewrite the next difference as an integral

Pn(u, ϵ)− Pn(q
βu, ϵ) =

∫ u

qβu
P ′
n(s, ϵ)ds
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for all u ∈ C and from the parametrization s = uh + qβu(1 − h) of the segment [qβu, u] with
0 ≤ h ≤ 1, we obtain the integral representation

Pn(u, ϵ)− Pn(q
βu, ϵ) = (1− qβ)u

∫ 1

0
P ′
n(uh+ qβu(1− h), ϵ)dh

and since u 7→ P ′
n(uh + qβu(1 − h), ϵ) is again a polynomial in u, with bounded holomorphic

coefficients in ϵ on Dϵ0 , we get that D ;1;β
n is valid for 0 ≤ n ≤ S − 1, for some well chosen

constants C9, C10, C11 > 0 depending on β, q0.
Let n ≥ 0, we take for granted that D ;1;β

p holds for any p < n+ S for some given constants

C9, C10, C11 > 0. In the remaining part of the proof, we prove that D ;1;β
n+S is valid. The induction

principle will then imply that the feature D ;1;β
n occurs for all n ≥ 0.

In a first step, we use the recursion (114) with S first terms (115) in order to write the quantity
wn+S;1(q

βu, ϵ) by means of prior terms wp;1(u, ϵ) and wp;1(q
βu, ϵ) for p < n + S. Namely, the

next identities

(122)
wn+S;1(q

βu, ϵ)

n!
=

∑
l=(l0,l1,l2,l3)∈A;l0=0

ϵ∆l
(k(qβu)k)l1

P (k(qβu)k)

( ∑
n1+n2=n

cl,n1(ϵ)
wn2+l2;1(q

βu, ϵ)

n2!

)

+
∑

l=(l0,l1,l2,l3)∈A;l0≥1

ϵ∆l−l0 (qβu)k

P (k(qβu)k)Γ(l0/k)

∫ (qβu)k

0
((qβu)k − s)

l0
k
−1(ks)l1

×
( ∑

n1+n2=n

cl,n1(ϵ)
wn2+l2;1(s

1/k, ϵ)

n2!

)ds
s

+
(qβu)k

P (k(qβu)k)

×
∫ (qβu)k

0

( ∑
n1+n2+n3=n

dn1(ϵ)
wn2;1(((q

βu)k − s)1/k, ϵ)

n2!

wn3;1(s
1/k, ϵ)

n3!

) 1

((qβu)k − s)s
ds

hold for prescribed

(123) wj;1(q
βu, ϵ) = Pj(q

βu, ϵ) , 0 ≤ j ≤ S − 1.

In the next lemma, upper bounds are provided for the quantity

(124) An2,l2(u, ϵ) :=
(kuk)l1

P (kuk)

wn2+l2;1(u, ϵ)

n2!
− (k(qβu)k)l1

P (k(qβu)k)

wn2+l2;1(q
βu, ϵ)

n2!

Lemma 7 Two constants Kj,l1,P > 0, j = 1, 3, can be singled out for which

(125) |An2,l2(u, ϵ)| ≤
[
K3,l1,P +K1,l1,P

]
× |qβ − 1|C9(C10)

n2+l2 (n2 + l2)!

n2!
|u| exp(C11|u|k)

holds for all u ∈ U ∪ {0}, all ϵ ∈ Dϵ0, all n2, l2 ≥ 0 with n2 ≤ n and l = (0, l1, l2, l3) ∈ A.

Proof We use the classical identity ab − cd = (a − c)b + c(b − d) which enables to rewrite
An2,l2(u, ϵ) as a sum

(126) An2,l2(u, ϵ) =

[
(kuk)l1

P (kuk)
− (k(qβu)k)l1

P (k(qβu)k)

]
wn2+l2;1(u, ϵ)

n2!

+
(k(qβu)k)l1

P (k(qβu)k)

[
wn2+l2;1(u, ϵ)− wn2+l2;1(q

βu, ϵ)

n2!

]
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a) According to the assumption (15) and the condition given in Definition 2 1) imposed on the
unbounded sector U , we get a constant K1,l1,P > 0 such that

(127)

∣∣∣∣∣ (k(qβu)k)l1P (k(qβu)k)

∣∣∣∣∣ ≤ K1,l1,P

for all u ∈ U ∪ {0}, for all l = (0, l1, l2, l3) ∈ A.
b) On the other hand, we can display an integral representation for the next difference

(128)
(kuk)l1

P (kuk)
− (k(qβu)k)l1

P (k(qβu)k)
=

∫ u

qβu

( (ksk)l1
P (ksk)

)′
ds

where the integrand can be explicitely computed

(129)
( (ksk)l1
P (ksk)

)′
= kl1

kl1s
kl1−1P (ksk)− P̂k(s)s

kl1

(P (ksk))2

where P̂k(s) = (P (ksk))′ is the derivative w.r.t s of the polynomial P (ksk). Furthermore, since
s 7→ P (ksk) is a polynomial of degree kdeg(P ) together with the condition on U imposed in
Definition 2 1), we notice the next two bounds

(130) CP,k(1 + |s|)kdeg(P ) ≤ |P (ksk)| ≤ C1
P,k(|s|+ 1)kdeg(P ) , |P̂k(s)| ≤ C1

P̂k
(|s|+ 1)kdeg(P )−1

for all s ∈ U ∪ {0}, for some constants CP,k, C
1
P,k, C

1
P̂k
> 0. Consequently, departing from (129),

the bounds (130), beget a constant K2,l1,P > 0 for which

(131)

∣∣∣∣∣( (ksk)l1P (ksk)

)′∣∣∣∣∣ ≤ kl1
kl1|s|kl1−1C1

P,k(|s|+ 1)kdeg(P ) + |s|kl1C1
P̂k
(|s|+ 1)kdeg(P )−1

C2
P,k(1 + |s|)2kdeg(P )

≤
K2,l1,P

(1 + |s|)kdeg(P)−kl1+1

provided that s ∈ U ∪ {0}.
From the parametrization s = uh+ qβu(1− h) of the segment [qβu, u] for 0 ≤ h ≤ 1 in the

integral (128), owing to the previous bounds (131), we deduce

(132)

∣∣∣∣∣ (kuk)l1P (kuk)
− (k(qβu)k)l1

P (k(qβu)k)

∣∣∣∣∣ ≤ |qβ − 1||u|
∫ 1

0

K2,l1,P

(1 + |uh+ qβu(1− h)|)kdeg(P )−kl1+1
dh

for all u ∈ U ∪ {0}. Since (1 − qβ)h + qβ ≥ dq,β for all 0 ≤ h ≤ 1 where dq,β = 1 if β > 0 and
dq,β = qβ if β < 0, we reach a constant K3,l1,P > 0 for which

(133)

∣∣∣∣∣ (kuk)l1P (kuk)
− (k(qβu)k)l1

P (k(qβu)k)

∣∣∣∣∣ ≤ |qβ − 1|K2,l1,P
|u|

(1 + |u|dq,β)kdeg(P )−kl1+1
≤ |qβ − 1|K3,l1,P

whenever u ∈ U ∪ {0}, by taking heed of the condition (15).
c) In accordance with (116), we already know that

(134) |wn2+l2;1(u, ϵ)| ≤ C6(C7)
n2+l2(n2 + l2)!|u| exp(C8|u|k)

≤ C9(C10)
n2+l2(n2 + l2)!|u| exp(C11|u|k)



31

for all n2, l2 ≥ 0, whenever u ∈ U ∪ {0}, ϵ ∈ Dϵ0 , provided that we select C9 > C6 and C10 > C7

and C11 > C8.
d) Due to (13), we notice that n2 + l2 < n + S, therefore by the induction hypothesis, the

property D ;1;β
n2+l2

is valid, which yields the upper bounds

(135) |wn2+l2;1(u, ϵ)− wn2+l2;1(q
βu, ϵ)| ≤ |qβ − 1|C9(C10)

n2+l2(n2 + l2)!|u| exp(C11|u|k)

whenever u ∈ U ∪ {0}, ϵ ∈ Dϵ0 . Collecting the set of bounds (127), (133) along with (134) and
(135), we arrive at the forecast bounds (125). 2

The next lemma is devoted to upper bounds for the quantity

(136) Bn2,l2(u, ϵ) :=
uk

P (kuk)

∫ uk

0
(uk − s)

l0
k
−1sl1

wn2+l2;1(s
1/k, ϵ)

n2!

ds

s

− (qβu)k

P (k(qβu)k)

∫ (qβu)k

0
((qβu)k − s)

l0
k
−1sl1

wn2+l2;1(s
1/k, ϵ)

n2!

ds

s

We first rephrase the above difference by performing the parametrization s = uks1, 0 ≤ s1 ≤ 1
in the first integral part of Bn2,l2(u, ϵ) and s = (qβu)ks1, 0 ≤ s1 ≤ 1 in the second. Indeed,

(137) Bn2,l2(u, ϵ) :=
ul0+kl1

P (kuk)

∫ 1

0
(1− s1)

l0
k
−1sl11

wn2+l2;1(us
1/k
1 , ϵ)

n2!

ds1
s1

−

(qβu)l0+kl1

P (k(qβu)k)

∫ 1

0
(1− s1)

l0
k
−1sl11

wn2+l2;1(q
βus

1/k
1 , ϵ)

n2!

ds1
s1

Lemma 8 We can find two constants Lj,l0,l1,P > 0, j = 1, 3, such that

(138) |Bn2,l2(u, ϵ)| ≤
[
L3,l0,l1,P + L1,l0,l1,p

]
× |qβ − 1|C9

(∫ 1

0
(1− s1)

l0
k
−1sl11

1

s
1− 1

k
1

ds1

)
(C10)

n2+l2 (n2 + l2)!

n2!
|u| exp(C11|u|k)

for all u ∈ U ∪ {0}, ϵ ∈ Dϵ0, all n2, l2 ≥ 0 with n2 ≤ n and l = (l0, l1, l2, l3) ∈ A with l0 ≥ 1.

Proof The proof follows the same guideline as the one of Lemma 7. Namely, the identity
ab − cd = (a − c)b + c(b − d) allows us to restate the expression of Bn2,l2(u, ϵ) as a sum of
differences

(139) Bn2,l2(u, ϵ) =

[
ul0+kl1

P (kuk)
− (qβu)l0+kl1

P (k(qβu)k)

]∫ 1

0
(1− s1)

l0
k
−1sl11

wn2+l2;1(us
1/k
1 , ϵ)

n2!

ds1
s1

+
(qβu)l0+kl1

P (k(qβu)k)

(∫ 1

0
(1− s1)

l0
k
−1sl11

{
wn2+l2;1(us

1/k
1 , ϵ)

n2!
−
wn2+l2;1(q

βus
1/k
1 , ϵ)

n2!

}
ds1
s1

)
.

a) The assumption (15) and the condition given in Definition 2 1) imposed on the unbounded
sector U yields a constant L1,l0,l1,P > 0 can be found with

(140)

∣∣∣∣∣ (qβu)l0+kl1

P (k(qβu)k)

∣∣∣∣∣ ≤ L1,l0,l1,P



32

for all u ∈ U ∪ {0}.
b) By adapting the arguments outlined in the paragraph b) in the proof of Lemma 7, we can
gather two constants Lj,l0,l1,P > 0, j = 2, 3 such that

(141)

∣∣∣∣∣ ul0+kl1

P (kuk)
− (qβu)l0+kl1

P (k(qβu)k)

∣∣∣∣∣ ≤ |qβ−1|L2,l0,l1,P
|u|

(1 + |u|dq,β)kdeg(P )−(l0+kl1)+1
≤ |qβ−1|L3,l0,l1,P

for all u ∈ U ∪ {0}.
c) Bearing in mind the bounds (134) reached in the point c) of Lemma 7, we obtain upper
bounds for the next integral piece

(142)

∣∣∣∣∣
∫ 1

0
(1− s1)

l0
k
−1sl11

wn2+l2;1(us
1/k
1 , ϵ)

n2!

ds1
s1

∣∣∣∣∣
≤ C9

(∫ 1

0
(1− s1)

l0
k
−1sl11

1

s
1− 1

k
1

ds1

)
(C10)

n2+l2 (n2 + l2)!

n2!
|u| exp(C11|u|k)

for all u ∈ U ∪ {0}, ϵ ∈ Dϵ0 .
d) According to the bounds (135) obtained from our induction hypothesis, we arrive at

(143)

∣∣∣∣∣
∫ 1

0
(1− s1)

l0
k
−1sl11

{
wn2+l2;1(us

1/k
1 , ϵ)

n2!
−
wn2+l2;1(q

βus
1/k
1 , ϵ)

n2!

}
ds1
s1

∣∣∣∣∣
≤ |qβ − 1|C9

(∫ 1

0
(1− s1)

l0
k
−1sl11

1

s
1− 1

k
1

ds1

)
(C10)

n2+l2 (n2 + l2)!

n2!
|u| exp(C11|u|k)

whenever u ∈ U ∪ {0}, ϵ ∈ Dϵ0 .
Combining the bounds (140), (141), (142), (143) along with the factorization (139) triggers

the foretold estimates (138). 2

The forthcoming lemma discusses upper bounds for the difference of nonlinear terms

(144) Cn2,n3(u, ϵ)

=
uk

P (kuk)
×
∫ uk

0

wn2;1((u
k − s)1/k, ϵ)

n2!

wn3;1(s
1/k, ϵ)

n3!

1

(uk − s)s
ds− (qβu)k

P (k(qβu)k)

×
∫ (qβu)k

0

wn2;1(((q
βu)k − s)1/k, ϵ)

n2!

wn3;1(s
1/k, ϵ)

n3!

1

((qβu)k − s)s
ds

Lemma 9 We can find constants Mj,P > 0, j = 1, 3, such that

(145) |Cn2,n3(u, ϵ)|

≤
[
M1,P +M3,P

]( ∫ 1

0

1

(1− s1)
1− 1

k s
1− 1

k
1

ds1

)
|qβ − 1|(C9)

2(C10)
n2+n3 |u| exp(C11|u|k)

holds for all u ∈ U ∪ {0}, ϵ ∈ Dϵ0, provided that the integers n2, n3 ≥ 0 obey n2 + n3 ≤ n.
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Proof We first reshape the expression of Cn2,n3(u, ϵ) by using the parametrization s = uks1,
0 ≤ s1 ≤ 1, in the first term of (144) and s = (qβu)ks1, 0 ≤ s1 ≤ 1 in the second. Indeed,

Cn2,n3(u, ϵ)

=
1

P (kuk)
×
∫ 1

0

wn2;1(u(1− s1)
1/k, ϵ)

n2!

wn3;1(us
1/k
1 , ϵ)

n3!

1

(1− s1)s1
ds1 −

1

P (k(qβu)k)

×
∫ 1

0

wn2;1(q
βu(1− s1)

1/k, ϵ)

n2!

wn3;1(q
βus

1/k
1 , ϵ)

n3!

1

(1− s1)s1
ds1.

Furthermore, the identity ab−cd = (a−c)b+c(b−d) enables the above expression to be written
as a sum of differences

(146) Cn2,n3(u, ϵ) = C1
n2,n3

(u, ϵ) + C2
n2,n3

(u, ϵ)

where

(147) C1
n2,n3

(u, ϵ) :=
[ 1

P (kuk)
− 1

P (k(qβu)k)

]
×
∫ 1

0

wn2;1(u(1− s1)
1/k, ϵ)

n2!

wn3;1(us
1/k
1 , ϵ)

n3!

1

(1− s1)s1
ds1

and

(148) C2
n2,n3

(u, ϵ) :=
1

P (k(qβu)k)

×
[ ∫ 1

0

{wn2;1(u(1− s1)
1/k, ϵ)

n2!

wn3;1(us
1/k
1 , ϵ)

n3!
− wn2;1(q

βu(1− s1)
1/k, ϵ)

n2!

wn3;1(q
βus

1/k
1 , ϵ)

n3!

}
× 1

(1− s1)s1
ds1

]
.

We control the quantity C1
n2,n3

(u, ϵ). Namely, comparable computations as the ones performed
in the paragraph b) in the proof of Lemma 7 yield a constant M2,P > 0 with

(149)
∣∣∣ 1

P (kuk)
− 1

P (k(qβu)k)

∣∣∣ ≤ |qβ − 1|M2,P × |u|
(1 + |u|dq,β)kdeg(P )+1

for all u ∈ U ∪ {0}, for the constant dq,β = 1 if β > 0 and dq,β = qβ if β < 0. Besides, from the
bounds (116) in Proposition 5, we observe that

(150) |wn2;1(u, ϵ)| ≤ C6(C7)
n2n2!|u| exp(C8|u|k) ≤ C9(C10)

n2n2!|u| exp(C11|u|k)

along with

(151) |wn3;1(u, ϵ)| ≤ C6(C7)
n3n3!|u| exp(C8|u|k) ≤ C9(C10)

n3n3!|u| exp(C11|u|k)

for all integers n2, n3 ≥ 0, provided that u ∈ U ∪ {0} and ϵ ∈ Dϵ0 , under the condition that we
choose C9 > C6, C10 > C7 and C11 > C8. We deduce that the integral part of C1

n2,n3
(u, ϵ) is
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bounded as follows.

(152)
∣∣∣ ∫ 1

0

wn2;1(u(1− s1)
1/k, ϵ)

n2!

wn3;1(us
1/k
1 , ϵ)

n3!

1

(1− s1)s1
ds1

∣∣∣
≤ (C9)

2(C10)
n2+n3 |u|2

∫ 1

0
exp

(
C11|u|k(1− s1)

)
exp(C11|u|ks1)

1

(1− s1)
1− 1

k s
1− 1

k
1

ds1

≤ (C9)
2(C10)

n2+n3 |u| ×
(∫ 1

0

1

(1− s1)
1− 1

k s
1− 1

k
1

ds1

)
× |u| exp(C11|u|k)

for all u ∈ U ∪ {0} and ϵ ∈ Dϵ0 . As a result of (149) with (152) and by keeping on mind (6), we
reach a constant M1,P > 0 for which

(153) |C1
n2,n3

(u, ϵ)|

≤ |qβ − 1|M1,P ×
(∫ 1

0

1

(1− s1)
1− 1

k s
1− 1

k
1

ds1

)
(C9)

2(C10)
n2+n3 |u| exp(C11|u|k)

provided that u ∈ U ∪ {0} and ϵ ∈ Dϵ0 .
The term C2

n2,n3
(u, ϵ) is now framed. We need to further split this term as a sum of differences

using again the identity ab− cd = (a− c)b+ c(b− d). Indeed,

(154) C2
n2,n3

(u, ϵ) = C2.1
n2,n3

(u, ϵ) + C2.2
n2,n3

(u, ϵ)

where

(155) C2.1
n2,n3

(u, ϵ) :=
1

P (k(qβu)k)

×
[ ∫ 1

0

{wn2;1(u(1− s1)
1/k, ϵ)− wn2;1(q

βu(1− s1)
1/k, ϵ)

n2!

wn3;1(us
1/k
1 , ϵ)

n3!

} 1

(1− s1)s1
ds1

]
and

(156) C2.2
n2,n3

(u, ϵ) :=
1

P (k(qβu)k)

×
[ ∫ 1

0

{wn2;1(q
βu(1− s1)

1/k, ϵ)

n2!

wn3;1(us
1/k
1 , ϵ)− wn3;1(q

βus
1/k
1 , ϵ)

n3!

} 1

(1− s1)s1
ds1

]
.

Since the integers n2, n3 ≥ 0 are not larger than n, owing to the induction hypothesis, both
properties D;1;β

n2 and D;1;β
n3 are valid and displayed as

(157) |wn2;1(u, ϵ)− wn2;1(q
βu, ϵ)| ≤ |qβ − 1|C9(C10)

n2n2!|u| exp(C11|u|k)

in a row with

(158) |wn3;1(u, ϵ)− wn3;1(q
βu, ϵ)| ≤ |qβ − 1|C9(C10)

n3n3!|u| exp(C11|u|k)

as long as u ∈ U ∪ {0} and ϵ ∈ Dϵ0 . The bounds (157) together with (151) give rise to the next



35

estimates for the integral piece of (155),

(159)
∣∣∣ ∫ 1

0

{wn2;1(u(1− s1)
1/k, ϵ)− wn2;1(q

βu(1− s1)
1/k, ϵ)

n2!

wn3;1(us
1/k
1 , ϵ)

n3!

} 1

(1− s1)s1
ds1

∣∣∣
≤
∫ 1

0

{
|qβ − 1|C9(C10)

n2 |u|(1− s1)
1/k exp

(
C11|u|k(1− s1)

)
×C9(C10)

n3 |u|s1/k1 exp(C11|u|ks1)
}

× 1

(1− s1)s1
ds1 ≤ |qβ − 1|(C9)

2(C10)
n2+n3 |u|2 exp(C11|u|k)×

(∫ 1

0

1

(1− s1)
1− 1

k s
1− 1

k
1

ds1

)
for all u ∈ U ∪ {0} and ϵ ∈ Dϵ0 . In a similar manner, the bounds (158) along with the first
inequality of (150) beget upper estimates for the integral piece of (156). Namely,

(160)
∣∣∣ ∫ 1

0

{wn2;1(q
βu(1− s1)

1/k, ϵ)

n2!

wn3;1(us
1/k
1 , ϵ)− wn3;1(q

βus
1/k
1 , ϵ)

n3!

} 1

(1− s1)s1
ds1

∣∣∣
≤
∫ 1

0
C6(C7)

n2 |qβu|(1− s1)
1/k exp

(
C8|qβu|k(1− s1)

)
× |qβ − 1|C9(C10)

n3 |u|s1/k1 exp(C11|u|ks1)
1

(1− s1)s1
ds1

≤ qβ|qβ − 1|(C9)
2(C10)

n2+n3 |u|2 exp(C11|u|k)×
(∫ 1

0

1

(1− s1)
1− 1

k s
1− 1

k
1

ds1

)
for all u ∈ U ∪ {0} and ϵ ∈ Dϵ0 , under the additional assumption that C8q

βk < C11, together
with C6 < C9 and C7 < C10.

Besides, the assumption (6) and the condition given in Definition 2 1) imposed on the
unbounded sector U yields a constant MP,1,β > 0 with

(161)
|u|

|P (k(qβu)k)|
≤MP,1,β

for all u ∈ U ∪ {0}.
By stacking up the above bounds (159), (160) and (161), we deduce from the decomposition

(154) the next appropriate upper bounds for C2
n2,n3

(u, ϵ),

(162) |C2
n2,n3

(u, ϵ)| ≤ |qβ − 1|MP,1,β × [1 + qβ]

×
(∫ 1

0

1

(1− s1)
1− 1

k s
1− 1

k
1

ds1

)
(C9)

2(C10)
n2+n3 |u| exp(C11|u|k)

provided that u ∈ U ∪ {0} and ϵ ∈ Dϵ0 .
At last, the combination of the two bounds (153) and (162) applied to the splitting (146)

triggers the awaited bounds (145). 2

With the help of the above lemma 7, 8 and 9, we get from the recursion (114) with S first terms
(115) along with the identities (122) and (123) the next bounds

(163)
|wn+S;1(u, ϵ)− wn+S;1(q

βu, ϵ)|
n!

≤ Q1(u, n, ϵ) +Q2(u, n, ϵ) +Q3(u, n, ϵ)
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for

(164) Q1(u, n, ϵ) :=
∑

l=(l0,l1,l2,l3)∈A;l0=0

|ϵ|∆l
∑

n1+n2=n

|cl,n1(ϵ)|

×
[
K3,l1,P +K1,l1,P

]
|qβ − 1|C9(C10)

n2+l2 (n2 + l2)!

n2!
|u| exp(C11|u|k)

and

(165) Q2(u, n, ϵ) :=
∑

l=(l0,l1,l2,l3)∈A;l0≥1

|ϵ|∆l−l0 kl1

Γ(l0/k)

∑
n1+n2=n

|cl,n1(ϵ)| ×
[
L3,l0,l1,P + L1,l0,l1,p

]
× |qβ − 1|C9

(∫ 1

0
(1− s1)

l0
k
−1sl11

1

s
1− 1

k
1

ds1

)
(C10)

n2+l2 (n2 + l2)!

n2!
|u| exp(C11|u|k)

with

(166) Q3(u, n, ϵ) :=
∑

n1+n2+n3=n

|dn1(ϵ)|
[
M1,P +M3,P

]( ∫ 1

0

1

(1− s1)
1− 1

k s
1− 1

k
1

ds1

)
× |qβ − 1|(C9)

2(C10)
n2+n3 |u| exp(C11|u|k)

provided that u ∈ U ∪ {0} and ϵ ∈ Dϵ0 .
Bearing in mind the assumptions (8), (13) and the bounds (49) from Lemma 4, we deduce

the accurate bounds

(167) n!Q1(u, n, ϵ) ≤
∑

l=(l0,l1,l2,l3)∈A;l0=0

ϵ
∆l

0

( ∑
0≤n1≤n

n1∈Il

cl,n1,ϵ0C
−n1
10

)[
K3,l1,P +K1,l1,P

]
× |qβ − 1|C9(C10)

n+S(n+ S)!|u| exp(C11|u|k)

together with

(168) n!Q2(u, n, ϵ) ≤
∑

l=(l0,l1,l2,l3)∈A;l0≥1

ϵ
∆l−l0
0

kl1

Γ(l0/k)

( ∑
0≤n1≤n

n1∈Il

cl,n1,ϵ0C
−n1
10

)
×
[
L3,l0,l1,P + L1,l0,l1,p

]
× |qβ − 1|C9

(∫ 1

0
(1− s1)

l0
k
−1sl11

1

s
1− 1

k
1

ds1

)
(C10)

n+S(n+ S)!|u| exp(C11|u|k)
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for all u ∈ U ∪ {0} and ϵ ∈ Dϵ0 . Eventually, based on the assumption (10), we reach

(169) n!Q3(u, n, ϵ) ≤
( ∑

0≤n1≤n

n1∈Id

|dn1(ϵ)| ×
[
M1,P +M3,P

]( ∫ 1

0

1

(1− s1)
1− 1

k s
1− 1

k
1

ds1

)

× |qβ − 1|(C9)
2 ×

( ∑
n2+n3=n−n1

(C10)
n2+n3n!

))
|u| exp(C11|u|k)

≤
( ∑

0≤n1≤n

n1∈Id

|dn1(ϵ)|
[
M1,P +M3,P

]( ∫ 1

0

1

(1− s1)
1− 1

k s
1− 1

k
1

ds1

)
× |qβ − 1|(C9)

2Cn−n1
10 (n− n1 + 1)n!|u| exp(C11|u|k)

≤
( ∑

0≤n1≤n

n1∈Id

dn1,ϵ0C
−n1
10

)
×
[
M1,P +M3,P

]( ∫ 1

0

1

(1− s1)
1− 1

k s
1− 1

k
1

ds1

)
× |qβ − 1|(C9)

2(C10)
n+S(n+ S)!|u| exp(C11|u|k)

whenever u ∈ U ∪ {0} and ϵ ∈ Dϵ0 .
Now, we take for granted that the radius ϵ0 > 0 and the constants dh,ϵ0 > 0 given in (10)

are suitably chosen near the origin in a manner that the next constraint

(170)
∑

l=(l0,l1,l2,l3)∈A;l0=0

ϵ
∆l

0

( ∑
0≤n1≤n

n1∈Il

cl,n1,ϵ0C
−n1
10

)
×
[
K3,l1,P +K1,l1,P

]

+
∑

l=(l0,l1,l2,l3)∈A;l0≥1

ϵ
∆l−l0
0

kl1

Γ(l0/k)

( ∑
0≤n1≤n

n1∈Il

cl,n1,ϵ0C
−n1
10

)[
L3,l0,l1,P + L1,l0,l1,p

]

×
(∫ 1

0
(1− s1)

l0
k
−1sl11

1

s
1− 1

k
1

ds1

)

+
( ∑

0≤n1≤n

n1∈Id

dn1,ϵ0C
−n1
10

)
×
[
M1,P +M3,P

]
×
(∫ 1

0

1

(1− s1)
1− 1

k s
1− 1

k
1

ds1

)
C9 ≤ 1

holds. As a result, the gathering of the bounds (167), (168) and (169) under the contingency
(170) yields the next estimates

(171) |wn+S;1(u, ϵ)− wn+S;1(q
βu, ϵ)| ≤ |qβ − 1|C9(C10)

n+S(n+ S)!|u| exp(C11|u|k)

for all u ∈ U ∪ {0} and ϵ ∈ Dϵ0 . This means that the property D ;1;β
n+S is valid. Proposition 7

follows. 2

7.3 Bounds for the difference of the sequences of Borel maps solving the
recursions (33), (34) and (114), (115)

This subsection is devoted to the explanation of the next proposition.

Proposition 8 Let D = {E , T ,U} be an admissible set of sectors as described in Definition 2
of Section 5. Let U be one sector belonging to the family of unbounded sectors U . Let q ∈ (1, q0].
Provided that ϵ0 > 0 and the constants dh,ϵ0 > 0 are taken small enough, we consider
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• the unique sequence of functions (wn;q(u, ϵ))n≥0 that fulfills the recursion (33) with S first
terms (34), built up in Proposition 3 and subjected to the bounds (61) on U ∪ {0}.

• the unique sequence of functions (wn;1(u, ϵ))n≥0 which obeys the recursion (114) with S
initial terms (115), crafted in Proposition 5 and submitted to the bounds (116) on U ∪{0}.

Then, for ϵ0 > 0 and the constants dh,ϵ0 > 0 close enough to 0, there exist constants C12, C13 > 0
and C14 > 0 with

(172) |wn;q(u, ϵ)− wn;1(u, ϵ)| ≤ (q − 1)C12(C13)
nn!|u| exp

(
C14q

nM1 |u|k
)

for all u ∈ U ∪ {0} and ϵ ∈ Dϵ0, for the constant M1 > 0 defined in (14).

Proof We proceed again by means of the induction principle. We call D;q;1
n the property (172)

for any prescribed integer n ≥ 0.
We first observe that the feature D;q;1

n holds in a straight manner for 0 ≤ n ≤ S− 1, since in
that case wn;q(u, ϵ) = wn;1(u, ϵ) = Pn(u, ϵ) for all u ∈ U ∪ {0} and ϵ ∈ Dϵ0 .

We set n ≥ 0. We take for granted that the hypothesis D;q;1
h holds true for all integers

h < n+ S for some constants C12, C13 > 0 and C14 > 0. In the remaining part of the proof, we
will prove that the property D;q;1

n+S is then effective. It will follow from the induction principle,

that the property D;q;1
n is true for all integers n ≥ 0.

According to the recursions (33) and (114), we can express the difference wn+S;q(u, ϵ) −
wn+S;1(u, ϵ) in term of the lower indexed quantities wh;q(u, ϵ) and wh;1(u, ϵ) with h < n + S.
Namely,

(173)
wn+S;q(u, ϵ)− wn+S;1(u, ϵ)

n!
=

∑
l=(l0,l1,l2,l3)∈A;l0=0

ϵ∆l
(kuk)l1

P (kuk)

×
( ∑

n1+n2=n

cl,n1(ϵ)
[wn2+l2;q(q

l3u, ϵ)

n2!
ql3kl1 −

wn2+l2;1(u, ϵ)

n2!

])
+

∑
l=(l0,l1,l2,l3)∈A;l0≥1

ϵ∆l−l0 uk

P (kuk)

kl1

Γ(l0/k)

×
( ∑

n1+n2=n

cl,n1(ϵ)
[
ql3kl1

∫ uk

0
(uk − s)

l0
k
−1sl1

wn2+l2;q(q
l3s1/k, ϵ)

n2!

ds

s

−
∫ uk

0
(uk − s)

l0
k
−1sl1

wn2+l2;1(s
1/k, ϵ)

n2!

ds

s

])
+

uk

P (kuk)

∑
n1+n2+n3=n

dn1(ϵ)×
[ ∫ uk

0

wn2;q((u
k − s)1/k, ϵ)

n2!

wn3;q(s
1/k, ϵ)

n3!

1

(uk − s)s
ds

−
∫ uk

0

wn2;1((u
k − s)1/k, ϵ)

n2!

wn3;1(s
1/k, ϵ)

n3!

1

(uk − s)s
ds
]
.

In the next lemma, bounds are provided for the front piece of (173),

(174) A;q;1
n2,l2

(u, ϵ) :=
(kuk)l1

P (kuk)
×
[wn2+l2;q(q

l3u, ϵ)

n2!
ql3kl1 −

wn2+l2;1(u, ϵ)

n2!

]
.
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Lemma 10 The next inequality

(175) |A;q;1
n2,l2

(u, ϵ)| ≤ K1,l1,P ×
[
ql3kl1(ql3 +

ql3 − 1

q − 1
) +

ql3kl1 − 1

q − 1

]
× (q − 1)C12(C13)

n2+l2 (n2 + l2)!

n2!
|u| exp

(
C14q

(n+S)M1 |u|k
)

holds for all u ∈ U ∪{0} and ϵ ∈ Dϵ0, for the constant K1,l1,P > 0 introduced in (127) of Lemma
7.

Proof Based on the identity ab−cd = (a−c)b+c(b−d), we reorganize the expression A;q;1
n2,l2

(u, ϵ)
as a sum of differences

(176) A;q;1
n2,l2

(u, ϵ) =
(kuk)l1

P (kuk)
×
[
ql3kl1

(wn2+l2;q(q
l3u, ϵ)− wn2+l2;1(u, ϵ)

n2!

)
+
wn2+l2;1(u, ϵ)

n2!
(ql3kl1 − 1)

]
.

1) We deal with the first part of the righthandside of (176). In order to enable the use of the
induction hypothesis, an auxiliary term is inserted in the expression, namely

(177) |wn2+l2;q(q
l3u, ϵ)− wn2+l2;1(u, ϵ)|

= |wn2+l2;q(q
l3u, ϵ)− wn2+l2;1(q

l3u, ϵ) + wn2+l2;1(q
l3u, ϵ)− wn2+l2;1(u, ϵ)|

≤ |wn2+l2;q(q
l3u, ϵ)− wn2+l2;1(q

l3u, ϵ)|+ |wn2+l2;1(q
l3u, ϵ)− wn2+l2;1(u, ϵ)|.

a) Since n2 + l2 < n + S owing to (13), by induction hypothesis, we acknowledge that the
property D;q;1

n2+l2
holds. As a result, we reach

|wn2+l2;q(q
l3u, ϵ)− wn2+l2;1(q

l3u, ϵ)|
≤ (q − 1)C12(C13)

n2+l2(n2 + l2)!|ql3u| exp
(
C14q

(n2+l2)M1 |ql3u|k
)

for all u ∈ U ∪ {0} and ϵ ∈ Dϵ0 . Besides, the condition (14) with the assumption q > 1 implies
that

(178) q(n2+l2)M1ql3k ≤ q(n+S)M1

provided that n2 ≤ n for l = (l0, l1, l2, l3) ∈ A. As a result of these latter two inequalities, we
arrive at

(179) |wn2+l2;q(q
l3u, ϵ)− wn2+l2;1(q

l3u, ϵ)|
≤ (q − 1)C12(C13)

n2+l2(n2 + l2)!q
l3 |u| exp

(
C14q

(n+S)M1 |u|k
)

whenever u ∈ U ∪ {0} and ϵ ∈ Dϵ0 .
b) Taking heed of the auxiliary bounds (121) for the special case β = l3 and n = n2 + l2, we
know that

(180) |wn2+l2;1(q
l3u, ϵ)− wn2+l2;1(u, ϵ)| ≤ |ql3 − 1|C9(C10)

n2+l2(n2 + l2)!|u| exp(C11|u|k)

for all u ∈ U ∪ {0} and ϵ ∈ Dϵ0 .
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Eventually, under the choice that C12 > C9, C13 > C10 and C14 > C11, it follows from (177)
together with (179) and (180) that

(181) |wn2+l2;q(q
l3u, ϵ)− wn2+l2;1(u, ϵ)|

≤
[
ql3 +

ql3 − 1

q − 1

]
(q − 1)C12(C13)

n2+l2(n2 + l2)!|u| exp
(
C14q

(n+S)M1 |u|k
)

for all u ∈ U ∪ {0} and ϵ ∈ Dϵ0 .

2) We address the second piece of (176). Bearing in mind the bounds (116) from Proposition 5,
we know that

|wn2+l2;1(u, ϵ)| ≤ C6(C7)
n2+l2(n2 + l2)!|u| exp(C8|u|k)

for all u ∈ U ∪ {0}, all ϵ ∈ Dϵ0 . Under the choice C12 > C6, C13 > C7 and C14 > C8, we get

(182) |wn2+l2;1(u, ϵ)| ≤ C12(C13)
n2+l2(n2 + l2)!|u| exp(C14q

(n+S)M1 |u|k)

provided that u ∈ U ∪ {0} and ϵ ∈ Dϵ0 .

At last, gathering the bounds (127) of Lemma 7, (181) and (182) spawns the awaited in-
equality (175). 2

In the forthcoming lemma, bounds are exhibited for the piece

(183) B;q;1
n2,l2

(u, ϵ) :=
uk

P (kuk)
×
[
ql3kl1

∫ uk

0
(uk − s)

l0
k
−1sl1

wn2+l2;q(q
l3s1/k, ϵ)

n2!

ds

s

− 1×
∫ uk

0
(uk − s)

l0
k
−1sl1

wn2+l2;1(s
1/k, ϵ)

n2!

ds

s

]
.

Lemma 11 The following inequality

(184) |B;q;1
n2,l2

(u, ϵ)| ≤ L1,l0,l1,P ×
[
ql3kl1(ql3 +

ql3 − 1

q − 1
) +

ql3kl1 − 1

q − 1

]
× (q − 1)C12(C13)

n2+l2 (n2 + l2)!

n2!
×
(∫ 1

0
(1− s1)

l0
k
−1sl1

1

s
1− 1

k
1

ds1

)
× |u| exp(C14q

(n+S)M1 |u|k)

holds for all u ∈ U ∪ {0}, all ϵ ∈ Dϵ0, where L1,l0,l1,P > 0 is the constant set up in (140) of
Lemma 8.

Proof Our favorite identity ab− cd = (a− c)b+ c(b− d) warrants B;q;1
n2,l2

(u, ϵ) to be expressed as
a sum of differences

(185) B;q;1
n2,l2

(u, ϵ) =
uk

P (kuk)
×
[
ql3kl1

∫ uk

0
(uk − s)

l0
k
−1sl1

×
(wn2+l2;q(q

l3s1/k, ϵ)− wn2+l2;1(s
1/k, ϵ)

n2!

)ds
s

+
(∫ uk

0
(uk − s)

l0
k
−1sl1

wn2+l2;1(s
1/k, ϵ)

n2!

ds

s

)
× (ql3kl1 − 1)

]
.
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We parametrize the first and the second integral appearing in the latter expression of B;q;1
n2,l2

(u, ϵ)

by means of s = uks1 for 0 ≤ s1 ≤ 1. This yields the next expression

(186) B;q;1
n2,l2

(u, ϵ) =
ul0+kl1

P (kuk)
×
[
ql3kl1

∫ 1

0
(1− s1)

l0
k
−1sl11

×
(wn2+l2;q(q

l3us
1/k
1 , ϵ)− wn2+l2;1(us

1/k
1 , ϵ)

n2!

)ds1
s1

+
(∫ 1

0
(1− s1)

l0
k
−1sl11

wn2+l2;1(us
1/k
1 , ϵ)

n2!

ds1
s1

)
× (ql3kl1 − 1)

]
.

1) We handle the first part of the righthandside of (186). As in Lemma 10, we insert an auxiliary
term in order to apply the induction hypothesis. Indeed,

(187) |wn2+l2;q(q
l3us

1/k
1 , ϵ)− wn2+l2;1(us

1/k
1 , ϵ)|

= |wn2+l2;q(q
l3us

1/k
1 , ϵ)− wn2+l2;1(q

l3us
1/k
1 , ϵ) + wn2+l2;1(q

l3us
1/k
1 , ϵ)− wn2+l2;1(us

1/k
1 , ϵ)|

≤ |wn2+l2;q(q
l3us

1/k
1 , ϵ)− wn2+l2;1(q

l3us
1/k
1 , ϵ)|+ |wn2+l2;1(q

l3us
1/k
1 , ϵ)− wn2+l2;1(us

1/k
1 , ϵ)|.

a) Since n2+ l2 < n+S owing to (13), the induction hypothesis ensures that the property D;q;1
n2+l2

holds true. As a consequence, we reach

|wn2+l2;q(q
l3us

1/k
1 , ϵ)− wn2+l2;1(q

l3us
1/k
1 , ϵ)|

≤ (q − 1)C12(C13)
n2+l2(n2 + l2)!|ql3us1/k1 | exp(C14q

(n2+l2)M1 |ql3u|k)

for u ∈ U ∪ {0}, 0 ≤ s1 ≤ 1, ϵ ∈ Dϵ0 and from the inequality (178) provided that n2 ≤ n and
that l ∈ A, we deduce

(188) |wn2+l2;q(q
l3us

1/k
1 , ϵ)− wn2+l2;1(q

l3us
1/k
1 , ϵ)|

≤ (q − 1)C12(C13)
n2+l2(n2 + l2)!|ql3us1/k1 | exp(C14q

(n+S)M1 |u|k)

whenever u ∈ U ∪ {0}, 0 ≤ s1 ≤ 1, ϵ ∈ Dϵ0 .
b) Taking into account the auxiliary bounds (121) specialized for β = l3 and n = n2 + l2, we
know that

(189) |wn2+l2;1(q
l3us

1/k
1 , ϵ)− wn2+l2;1(us

1/k
1 , ϵ)|

≤ |ql3 − 1|C9(C10)
n2+l2(n2 + l2)!|us1/k1 | exp(C11|u|k)

for all u ∈ U ∪ {0}, 0 ≤ s1 ≤ 1 and ϵ ∈ Dϵ0 .
According to the choice C12 > C9, C13 > C10 and C14 > C11 made above, the combination

of (187), (188) and (189) gives rise to

(190)
∣∣∣ ∫ 1

0
(1− s1)

l0
k
−1sl11 ×

(wn2+l2;q(q
l3us

1/k
1 , ϵ)− wn2+l2;1(us

1/k
1 , ϵ)

n2!

)ds1
s1

∣∣∣
≤
[
ql3 +

ql3 − 1

q − 1

]
(q − 1)C12(C13)

n2+l2 (n2 + l2)!

n2!

× |u|
(∫ 1

0
(1− s1)

l0
k
−1sl11

1

s
1− 1

k
1

ds1

)
exp(C14q

(n+S)M1 |u|k)
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for all u ∈ U ∪ {0} and ϵ ∈ Dϵ0 .

2) We focus on the second part of the righthandside of (186). Keeping in mind the bounds (116)
from Proposition 5, we notice that

(191) |wn2+l2;1(us
1/k
1 , ϵ)| ≤ C6(C7)

n2+l2(n2 + l2)!|us1/k1 | exp(C8|u|k)

for all u ∈ U ∪ {0}, 0 ≤ s1 ≤ 1 and ϵ ∈ Dϵ0 . Under the choice made overhead, C12 > C6,
C13 > C7 and C14 > C8, we obtain

(192)
∣∣∣ ∫ 1

0
(1− s1)

l0
k
−1sl11

wn2+l2;1(us
1/k
1 , ϵ)

n2!

ds1
s1

∣∣∣ ≤ C12(C13)
n2+l2 (n2 + l2)!

n2!
|u|

×
(∫ 1

0
(1− s1)

l0
k
−1sl11

1

s
1− 1

k
1

ds1

)
exp(C14q

(n+S)M1 |u|k)

for all u ∈ U ∪ {0} and ϵ ∈ Dϵ0 .
Eventually, the collection of the bounds (140) of Lemma 8, (190) and (192) begets the

expected inequality (184). 2

In the next lemma, bounds are displayed for the nonlinear term of (173),

(193) C;q;1
n2,n3

(u, ϵ) :=
uk

P (kuk)
×
[ ∫ uk

0

wn2;q((u
k − s)1/k, ϵ)

n2!

wn3;q(s
1/k, ϵ)

n3!

1

(uk − s)s
ds

−
∫ uk

0

wn2;1((u
k − s)1/k, ϵ)

n2!

wn3;1(s
1/k, ϵ)

n3!

1

(uk − s)s
ds
]
.

Lemma 12 The next inequality

(194) |C;q;1
n2,n3

(u, ϵ)| ≤ MP,k

[
C3 + C6

]
(q − 1)C12(C13)

n2+n3 |u| exp(C14q
(n+S)M1 |u|k)

holds for all u ∈ U ∪ {0}, ϵ ∈ Dϵ0, where the constant MP,k > 0 appears in (75), C3 > 0 stems
from (61) and C6 > 0 springs from (116).

Proof The identity ab− cd = (a− c)b+ c(b− d) allows to express (193) as a sum of differences

(195) C;q;1
n2,n3

(u, ϵ) =
uk

P (kuk)
×
[ ∫ uk

0

(wn2;q((u
k − s)1/k, ϵ)− wn2;1((u

k − s)1/k, ϵ)

n2!

)
× wn3;q(s

1/k, ϵ)

n3!

1

(uk − s)s
ds+

∫ uk

0

wn2;1((u
k − s)1/k, ϵ)

n2!
×
(wn3;q(s

1/k, ϵ)− wn3;1(s
1/k, ϵ)

n3!

)
× 1

(uk − s)s
ds
]
.

The first and second integrals entailed in the expression (195) are parametrized through s = uks1
for 0 ≤ s1 ≤ 1, leading to the next equality

(196) C;q;1
n2,n3

(u, ϵ) =
1

P (kuk)
×
[ ∫ 1

0

(wn2;q(u(1− s1)
1/k, ϵ)− wn2;1(u(1− s1)

1/k, ϵ)

n2!

)
×wn3;q(us

1/k
1 , ϵ)

n3!
× 1

(1− s1)s1
ds1+

∫ 1

0

wn2;1(u(1− s1)
1/k, ϵ)

n2!
×
(wn3;q(us

1/k
1 , ϵ)− wn3;1(us

1/k
1 , ϵ)

n3!

)
× 1

(1− s1)s1
ds1

]
.
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1) a) On the ground of the induction hypothesis D;q;1
n2 for n2 ≤ n < n + S, we already notice

that

(197) |wn2;q(u(1− s1)
1/k, ϵ)− wn2;1(u(1− s1)

1/k, ϵ)|
≤ (q − 1)C12(C13)

n2n2!|u|(1− s1)
1/k exp(C14q

n2M1 |u|k(1− s1))

provided that u ∈ U ∪ {0}, 0 ≤ s1 ≤ 1 and ϵ ∈ Dϵ0 .
b) In view of the bounds (61), we observe that

(198) |wn3;q(us
1/k
1 , ϵ)| ≤ C3(C4)

n3n3!|u|s1/k1 exp(C5q
n3M1 |u|ks1)

≤ C3(C13)
n3n3!|u|s1/k1 exp(C14q

n3M1 |u|ks1)

whenever u ∈ U ∪ {0}, 0 ≤ s1 ≤ 1 and ϵ ∈ Dϵ0 , assuming that C13 > C4 and C14 > C5.

2) a) Based on the induction hypothesis D;q;1
n3 for n3 ≤ n < n+ S, we know that

(199) |wn3;q(us
1/k
1 , ϵ)− wn3;1(us

1/k
1 , ϵ)| ≤ (q − 1)C12(C13)

n3n3!|u|s1/k1 exp(C14q
n3M1 |u|ks1)

as long as u ∈ U ∪ {0}, 0 ≤ s1 ≤ 1 and ϵ ∈ Dϵ0 .
b) By dint of the bounds (116), we see that

(200) |wn2;1(u(1− s1)
1/k, ϵ)| ≤ C6(C7)

n2n2!|u|(1− s1)
1/k exp

(
C8|u|k(1− s1)

)
≤ C6(C13)

n2n2!|u|(1− s1)
1/k exp

(
C14q

n2M1 |u|k(1− s1)
)

holds for u ∈ U ∪ {0}, 0 ≤ s1 ≤ 1 and ϵ ∈ Dϵ0 , provided that we choose C13 > C7, C14 > C8.

Stacking up the latter bounds (197), (198), (199) and (200), we reach

(201)
∣∣∣ ∫ 1

0

(wn2;q(u(1− s1)
1/k, ϵ)− wn2;1(u(1− s1)

1/k, ϵ)

n2!

)
× wn3;q(us

1/k
1 , ϵ)

n3!
× 1

(1− s1)s1
ds1

∣∣∣
≤ C3(q − 1)C12(C13)

n2+n3 |u|2

×
(∫ 1

0
(1− s1)

1/ks
1/k
1

1

(1− s1)s1
exp(C14q

(n+S)M1 |u|k(1− s1 + s1))ds1

)
together with

(202)
∣∣∣ ∫ 1

0

wn2;1(u(1− s1)
1/k, ϵ)

n2!
×
(wn3;q(us

1/k
1 , ϵ)− wn3;1(us

1/k
1 , ϵ)

n3!

)
× 1

(1− s1)s1
ds1

∣∣∣
≤ C6(q − 1)C12(C13)

n2+n3 |u|2

×
(∫ 1

0
(1− s1)

1/ks
1/k
1

1

(1− s1)s1
exp(C14q

(n+S)M1 |u|k(s1 + 1− s1))ds1

)
for all u ∈ U ∪ {0} and ϵ ∈ Dϵ0 .
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At last, gathering (75), (201) and (202) gives rise to (194). 2

Based on the above lemma 10, 11 and 12, we obtain from the recursion (173) the next bounds

(203)
wn+S;q(u, ϵ)− wn+S;1(u, ϵ)

n!
≤ R1(u, n, ϵ) +R2(u, n, ϵ) +R3(u, n, ϵ)

where

(204) R1(u, n, ϵ) :=
∑

l=(l0,l1,l2,l3)∈A;l0=0

|ϵ|∆l ×
[ ∑
n1+n2=n

|cl,n1(ϵ)|K1,l1,P

×
[
ql3kl1(ql3 +

ql3 − 1

q − 1
) +

ql3kl1 − 1

q − 1

]
× (q − 1)C12(C13)

n2+l2 (n2 + l2)!

n2!
|u| exp

(
C14q

(n+S)M1 |u|k
)]

along with

(205) R2(u, n, ϵ) :=
∑

l=(l0,l1,l2,l3)∈A;l0≥1

|ϵ|∆l−l0 kl1

Γ(l0/k)
×
[ ∑
n1+n2=n

|cl,n1(ϵ)|L1,l0,l1,P

×
[
ql3kl1(ql3 +

ql3 − 1

q − 1
) +

ql3kl1 − 1

q − 1

]
× (q − 1)C12(C13)

n2+l2 (n2 + l2)!

n2!
×
(∫ 1

0
(1− s1)

l0
k
−1sl1

1

s
1− 1

k
1

ds1

)
× |u| exp(C14q

(n+S)M1 |u|k)
]

and

(206) R3(u, n, ϵ) :=
∑

n1+n2+n3=n

|dn1(ϵ)|MP,k

[
C3 + C6

]
× (q − 1)C12(C13)

n2+n3 |u| exp(C14q
(n+S)M1 |u|k)

provided that u ∈ U ∪ {0} and ϵ ∈ Dϵ0 .
According to (8), (13) and (49) from Lemma 4, we obtain the next bounds for the quantities

R1 and R2. Namely,

(207) n!R1(u, n, ϵ) ≤
∑

l=(l0,l1,l2,l3)∈A;l0=0

ϵ
∆l

0

[ ∑
0≤n1≤n

n1∈Il

|cl,n1(ϵ)|K1,l1,P

×
[
ql3kl1(ql3 +

ql3 − 1

q − 1
) +

ql3kl1 − 1

q − 1

]
× (q − 1)C12(C13)

n−n1+S(n+ S)!|u| exp
(
C14q

(n+S)M1 |u|k
)]

≤ (q − 1)C12(C13)
n+S(n+ S)!|u| exp

(
C14q

(n+S)M1 |u|k
)

×
[ ∑
l=(l0,l1,l2,l3)∈A;l0=0

ϵ
∆l

0

∑
0≤n1≤n

n1∈Il

cl,n1,ϵ0C
−n1
13 K1,l1,P ×

[
ql3kl1(ql3 +

ql3 − 1

q − 1
) +

ql3kl1 − 1

q − 1

]]
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together with

(208) n!R2(u, n, ϵ) :=
∑

l=(l0,l1,l2,l3)∈A;l0≥1

ϵ
∆l−l0
0

kl1

Γ(l0/k)
×
[ ∑

0≤n1≤n

n1∈Il

|cl,n1(ϵ)|L1,l0,l1,P

×
[
ql3kl1(ql3 +

ql3 − 1

q − 1
) +

ql3kl1 − 1

q − 1

]
× (q − 1)C12(C13)

n−n1+S(n+ S)!×
(∫ 1

0
(1− s1)

l0
k
−1sl1

1

s
1− 1

k
1

ds1

)
× |u| exp(C14q

(n+S)M1 |u|k)
]

≤ (q − 1)C12(C13)
n+S(n+ S)!|u| exp(C14q

(n+S)M1 |u|k)

×
[ ∑
l=(l0,l1,l2,l3)∈A;l0≥1

ϵ
∆l−l0
0

kl1

Γ(l0/k)
×

∑
0≤n1≤n

n1∈Il

cl,n1,ϵ0C
−n1
13 L1,l0,l1,P

×
[
ql3kl1(ql3 +

ql3 − 1

q − 1
) +

ql3kl1 − 1

q − 1

]
×
(∫ 1

0
(1− s1)

l0
k
−1sl1

1

s
1− 1

k
1

ds1

)]
for all u ∈ U ∪ {0} and ϵ ∈ Dϵ0 .

Furthermore, owing to (10), we reach the next bounds for R3. Indeed,

(209) n!R3(u, n, ϵ) ≤
∑

0≤n1≤n

n1∈Id

|dn1(ϵ)|MP,k

[
C3 + C6

]
(q − 1)C12

×
( ∑
n2+n3=n−n1

Cn2+n3
13 n!

)
|u| exp(C14q

(n+S)M1 |u|k)

≤
∑

0≤n1≤n

n1∈Id

|dn1(ϵ)|MP,k

[
C3 + C6

]
(q − 1)C12C

n−n1
13 (n− n1 + 1)n!× |u| exp(C14q

(n+S)M1 |u|k)

≤ (q − 1)C12(C13)
n+S(n+ S)!|u| exp(C14q

(n+S)M1 |u|k)×
( ∑

0≤n1≤n

n1∈Id

dn1,ϵ0C
−n1
13

)
MP,k

[
C3 + C6

]
as long as u ∈ U ∪ {0} and ϵ ∈ Dϵ0 .

At last, we take for granted that the radius ϵ0 > 0 and the constants dh,ϵ0 > 0 given in (10)
are close enough to 0 in a way that the next condition

(210)
∑

l=(l0,l1,l2,l3)∈A;l0=0

ϵ
∆l

0

∑
0≤n1≤n

n1∈Il

cl,n1,ϵ0C
−n1
13 K1,l1,P ×

[
ql3kl1(ql3 +

ql3 − 1

q − 1
) +

ql3kl1 − 1

q − 1

]

+
∑

l=(l0,l1,l2,l3)∈A;l0≥1

ϵ
∆l−l0
0

kl1

Γ(l0/k)
×

∑
0≤n1≤n

n1∈Il

cl,n1,ϵ0C
−n1
13 L1,l0,l1,P

×
[
ql3kl1(ql3 +

ql3 − 1

q − 1
) +

ql3kl1 − 1

q − 1

]
×
(∫ 1

0
(1− s1)

l0
k
−1sl1

1

s
1− 1

k
1

ds1

)
+
( ∑

0≤n1≤n

n1∈Id

dn1,ϵ0C
−n1
13

)
MP,k

[
C3 + C6

]
≤ 1
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holds.
As a consequence of the bounds (203), (207), (208) and (209) under the assumption (210),

the next estimates

(211) |wn+S;q(u, ϵ)− wn+S;1(u, ϵ)| ≤ (q − 1)C12(C13)
n+S(n+ S)!|u| exp(C14q

(n+S)M1 |u|k)

holds for all u ∈ U ∪ {0} and ϵ ∈ Dϵ0 . Hence, the property D;q;1
n+S is granted. Proposition 8

ensues. 2

7.4 Confluence for the Banach valued holomorphic solutions of the Cauchy
problem (16), (17) as q → 1.

We establish the third and last main result of the work.

Theorem 3 Let D = {E , T ,U} be an admissible set of sectors as chosen in Definition 2. Let U
be one sector belonging to the family of unbounded sectors U . Let E be the one bounded sector
from the set E that is related to U under the requirement of Definition 2 2). For ϵ0 > 0 and the
constants dh,ϵ0 > 0 introduced in (10) taken small enough, let q ∈ (1, q0].

• We denote u;q(t, z, ϵ) the bounded holomorphic map ϵ 7→ u;q(t, z, ϵ) from E into O(Dn)n≥0;R1

built up in Theorem 1 which obeys (16), (17), for Dn = T ∩ DR̃0/qn∆ where R̃0 > 0 and

R1 > 0 are well chosen radius and ∆ > 0 is given in (36).

• We consider the bounded holomorphic solution u;1(t, z, ϵ) to the limit Cauchy problem
(109), (110) on the domain (T ∩ DŘ0

) × DŘ1
× E for well chosen radius Ř0, Ř1 > 0,

constructed in Proposition 6.

Then, one can find a constant C > 0 (independent of q ∈ (1, q0]) such that

(212) sup
ϵ∈E

||u;q(t, z, ϵ)− u;1(t, z, ϵ)||(D̂n)n≥0;R̂1
≤ C(q − 1)

for all q ∈ (1, q0], where D̂n = T ∩DR̂0/qn∆, for some radius R̂0 > 0, R̂1 > 0 that are properly
chosen and independent of q.

In particular, we observe that the solution u;q(t, z, ϵ) to (16), (17) merges uniformly in ϵ on
E for the norm ||.||(D̂n)n≥0;R̂1

(that rely on q) to the solution u;1(t, z, ϵ) of (109), (110) as q tends
to 1.

Proof According to the expansions (85) and (111), we can express both expressions u;q(t, z, ϵ)
and u;1(t, z, ϵ) as formal power series in z with Laplace transforms as coefficients. Namely,

(213) u;q(t, z, ϵ) =
∑
n≥0

un;q(t, ϵ)
zn

n!
, u;1(t, z, ϵ) =

∑
n≥0

un;1(t, ϵ)
zn

n!

where

(214) un;q(t, ϵ) = k

∫
Lγ

wn;q(u, ϵ) exp
(
− (

u

ϵt
)k
)du
u
,

un;1(t, ϵ) = k

∫
Lγ

wn;1(u, ϵ) exp
(
− (

u

ϵt
)k
)du
u
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along a halfline Lγ = [0,+∞)e
√
−1γ ⊂ U ∪ {0}, for a direction γ ∈ R (that might rely on ϵ and

t) submitted to the condition

(215) cos
(
k(γ − arg(ϵt))

)
> δ

for some δ > 0, provided that ϵ ∈ E and t ∈ T .
Owing to the bounds (172) reached in Proposition 8, for each n ≥ 0 and fixed u = re

√
−1γ ∈

Lγ , t ∈ T and ϵ ∈ E , we observe that

(216) |wn;q(u, ϵ)− wn;1(u, ϵ)|| exp
(
− (

u

ϵt
)k
)
||1
u
| ≤ (q − 1)C12(C13)

nn! exp
(
C14q

nM1rk
)

× exp
(
− (

r

|ϵt|
)k cos

(
k(γ − arg(ϵt))

))
≤ (q − 1)C12(C13)

nn! exp
(
rk
[
C14q

nM1 − δ

(ϵ0|t|)k
])
.

In the next lemma some technical bounds are exhibited. Its statement and proof are similar to
those of Lemma 5.

Lemma 13 There exist two constants R̂0 > 0 and B14 > 0 (both independent of q) such that

(217) C14q
nM1 − δ

(ϵ0|t|)k
≤ −B14

provided that t ∈ C subjected to |t| ≤ R̂0/q
n∆.

Proof A direct computation reveals that the inequality (217) is tantamount to

(218) |t| ≤ δ1/k/ϵ0

(C14qnM1 +B14)1/k
.

Bearing in mind the definition of ∆ given in (36), for prescribed B14 > 0 (chosen independently
of q), we introduce the constant R̂0 > 0 defined by

(219) R̂0 = min
n≥0

(δ1/k/ϵ0)q
n∆

(C14qnM1 +B14)1/k
= min

n≥0

δ1/k/ϵ0

(C14 +B14q−nM1)1/k
=

δ1/k/ϵ0

(C14 +B14)1/k

which turns out not to rely on q. By construction, we observe that if |t| ≤ R̂0/q
n∆, then the

inequality (218) holds. 2

As a result of (216) and (217), we obtain

(220) |wn;q(u, ϵ)− wn;1(u, ϵ)|| exp
(
− (

u

ϵt
)k
)
||1
u
| ≤ (q − 1)C12(C13)

nn! exp(−B14r
k)

provided that u = re
√
−1γ ∈ Lγ , ϵ ∈ E and t ∈ D̂n = T ∩DR̂0/qn∆ .

In conclusion, as a consequence of (220), we arrive at

(221) ||u;q(t, z, ϵ)− u;1(t, z, ϵ)||(D̂n)n≥0;R̂1
:=
∑
n≥0

sup
t∈D̂n

|un;q(t, ϵ)− un;1(t, ϵ)|
R̂n

1

n!

≤
∑
n≥0

(q − 1)C12(C13)
nk
(∫ +∞

0
exp(−B14r

k)dr
)
R̂n

1

≤ (q − 1)C12k
(∫ +∞

0
exp(−B14r

k)dr
) 1

1− C13R̂1
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for all ϵ ∈ E , provided that R̂1 > 0 is chosen such that C13R̂1 < 1 and unrelated to q. This
achieves the expected bounds (212) for a constant C > 0 independent of q. 2
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