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Abstract

Extensive studies on hexagonal honeycombs under in-plane compression have demonstrated

that the structure’s symmetry plays a decisive part in the emergence of deformation patterns in

post-bifurcated configurations. In this work, the aim is to take advantage of this property by

presenting a new group-theoretic approach to list the various attainable post-bifurcated patterns

of periodic architectured materials.

As of today, some group-theoretic approaches have been elaborated for determining the post-

bifurcated paths and thus patterns of a symmetric system submitted to specific loading conditions.

However, the application of these approaches requires knowledge of the system’s governing equa-

tions. By making use of another group-theoretic tool, this work predicts the various possible

post-bifurcated configurations of a periodic architectured material a priori of any non-linear com-

putation by simply assessing the symmetry group of its undeformed configuration.

This approach is applied, as an example, to the buckling of regular hexagonal honeycombs but

can be easily transferred to any periodic architectured material. This work is a first step towards

the elaboration of a more general process for the design of architectured materials when harnessing

post-bifurcated behaviour is essential.

1 Introduction

For the past 30 years, theoretical, numerical and experimental studies of regular hexagonal honey-

combs under in-plane compression have been of particular interest. Indeed, the increasing challenges

in material science for modern engineering applications have generated unprecedented enthusiasm

in the study of a new class of materials, architectured materials [1, 2], and for which 2D hexagonal

structures have been a case study.

The pioneering studies that mechanically characterised the behaviour of a 2D regular hexagonal ar-

rangement subject to in-plane compression were conducted by [3, 4, 5]. Through experiments and

simulation, they observed the generation of three distinct patterns caused by buckling of the cell

walls and involving multiple cells for given biaxiality ratios. Later on, other studies of honeycombs
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attached to rigid substrates [6] and honeycombs where voids are filled with gels [7] were shown to

exhibit new bifurcated patterns that had not yet been observed for the regular honeycomb composed

of trusses and voids.

For design purposes, works on these materials then focused on theoretically and numerically deter-

mining the onset of buckling and the post-buckling behaviour of these structures. Indeed, studies

on finding the onset of buckling for various load directions were carried out [8, 9] which coincided

with previous experimental observations and showed that the patterns formed may occur at a larger

wavelength than the primitive unit cell. An extensive review of the various methods for determining

patterns stemming from instabilities in architectured materials is presented in [10].

Of particular interest in this work is the study carried out by [11]. Indeed, their numerical investiga-

tion of the post-buckling response of hexagonal honeycombs was the first to establish the relationship

between the initial symmetry of the structure and the symmetry in the patterns generated after the

bifurcation point. As observed in previous experimental studies, a bifurcation phenomenon induces

a loss of symmetry in the bifurcated path resulting in the change in shape and size of the represen-

tative periodic unit cell used to describe the pattern before and after the bifurcation point. Indeed,

a periodic primitive unit cell composed of a single hexagon is enough to represent the geometry of

the deformed configuration up to the bifurcation point, while a larger unit cell of 2 × 2 hexagonal

primitive cells seems to be necessary to capture the observable patterns after buckling. Such bifur-

cation is referred to as a symmetry-breaking bifurcation, as the symmetry of the bifurcated path is

generically lower than the symmetry of the original structure. In the case of periodic architectured

materials such as hexagonal honeycombs, both point-group symmetries (referring to rotational, inver-

sions and mirror symmetries) and translation symmetries can be broken when the patterns are formed.

The mechanisms of such pattern changes are subject to group-theoretic rules as thoroughly described

by [12]. Two main tools are described in this book: (i) a symmetric treatment of the Lyapunov-

Schmidt decomposition of the bifurcation equation near the bifurcation point and (ii) the Equivariant

Branching Lemma which gives a result on the existence of bifurcated branches at the bifurcation

point based on group theoretic considerations. The first tool was used for studying the flower-like

mode in [13, 14] to solve the post-bifurcated branches. This method was further developed and used

by [15, 16] for studying all three modes of various types of hexagonal honeycombs subject to in-plane

compressive loads. Even if the group-theoretic Lyapunov-Schmidt decomposition has proven to be

a very useful tool for determining the post-bifurcated behaviour of the structure, its application re-

quires knowledge of the system’s governing equations and needs to be performed for each boundary

condition applied to the specimen. Taking a step back, the bifurcated path being directly linked

to the symmetry of the structure, an appropriate group-theoretic tool should be able to predict at

least some part of the post-bifurcated behaviour in architectured materials a priori to any non-linear
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computation. This is the role of the Equivariant Branching Lemma as first described by [17]. To

the authors’ knowledge, this method has only been used for simple point groups [14, 18, 19] and

has never been applied neither for groups including some translation symmetries nor in this field of

material science. However, the interested reader could start their journey into these types of methods

by reading the following papers determining the various vibration modes of space grid and symmetric

structures based on symmetry point groups arguments [20, 21] and then direct towards symmetry

breaking bifurcation classifications with [22] and [23]. Additionally, most applications of the EBL

stop at predicting the possible bifurcation subgroups [24] but nothing has been done to predict the

bifurcated deformation patterns.

In this paper, a new group-theoretic-based method is presented. It makes use of the EBL to pre-

dict attainable post-bifurcated patterns of architectured materials. Using the presented method, the

paradigm is switched from a mechanical standpoint well suited for analysis to a mathematical stand-

point more adapted for design purposes. Indeed, the first standpoint relies on a complex non-linear

computational step that can be numerically costly, whereas the new proposed mathematical stand-

point is based only on linear computations using the system symmetry and elastic strain energy only.

Both the traditional and the newly proposed methods for predicting bifurcated deformation modes of

architectured materials are presented in Figure 1. In these schematics, gear symbols indicate design

parameters that can be modified to attain different bifurcated patterns. As a consequence, a design

step, represented by a black back-loop, would need to modify these design parameters to obtain suit-

able bifurcated patterns. The attentive reader would notice that the new proposed method separates

the geometric design parameters from the material ones. This results in the generation of two short

design loops as opposed to just one long loop in the conventional approach. Moreover, neither of

these design loops depends on costly (represented by an hourglass symbol) non-linear computation

in the newly suggested method, thereby expediting the entire design procedure. As such, the new

design process is perfectly suited to be part of an optimisation process such as topology optimisation.

The layout of this paper is the following. Firstly, the appropriate group-theoretic background neces-

sary to understand and apply the EBL in section 2 is presented. Then in section 3, the new proposed

method for predicting the post-bifurcated deformation modes is detailed. This method is then applied

to the regular hexagonal honeycomb subject to uniaxial and equibiaxial in-plane loads in section 4.

Finally, a discussion and conclusion on this method and the presented results is proposed in section

5.

In the remaining of this paper, scalars, vectors and matrices will be respectively written with normal

typesetting A, bold text B and underlined bold text C.
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a)

b)

Figure 1: a) Traditional Mechanical based and b) New Mathematical based methods for predicting

bifurcated deformation modes of architectured materials. Gear symbols indicate design parameters

that can be modified to attain different bifurcated patterns while an hourglass symbol emphasizes a

computationally heavy step.

2 Group-theoretic preliminaries

As discussed in the introduction, the symmetry of an architectured material strongly determines

its post-bifurcated patterns. As a preliminary to the proposed method, this first section presents

the group-theoretical background necessary for applying the tool that allows us to assess the post-

bifurcated symmetry groups of the considered architectured material: the Equivariant Branching

Lemma.
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2.1 Symmetry of the problem: Equivariance property

2.1.1 Problem setting

Let us consider a standard problem in mechanics: an elastic body B in equilibrium occupying the

region Ω ∈ R3 with surface area Γ. The current state of the body B is represented by a state vector

u ∈ V, where V is the representation vector space (also called carrier space) of the problem. In the

framework of finite element, the body is discretised into a finite number N of points so that its current

state is described by the discrete displacement vector u = (u1, ..., un)T ∈ V ≡ RN , where ui, i = 1..N

is the degree of freedom vector of point i. In this framework, the state vector is then the discrete

displacement vector of the finite elements.

If the mechanical system is conservative, the body’s state can be described by a system of nonlinear

equations that derive from its potential energy which is a twice differentiable function defined as:

E : (V× R) −→ R

(u, λ) 7−→ E(u, λ)
(1)

with λ ∈ R the load parameter which acts as a multiplier of the problem’s loading condition.

The behaviour of the mechanical problem is therefore governed by the nonlinear equilibrium equations:

E ,u δu = 0, ∀ δu ∈ V (2)

with E ,u the Gateaux derivative of the potential energy function.

Note that if the problem is not conservative, its behaviour is still described by a system of nonlinear

equations that does not necessarily derive from a potential energy.

A solution of the nonlinear equilibrium equations is called an equilibrium solution. Equilibrium so-

lutions depend on the load parameter λ and can be plotted on a graph as functions of that load

parameter. All together, the equilibrium solutions for varying load parameters form a continuous line

in that graph, called the equilibrium path. The particular equilibrium path that passes through the

point in the graph of zero load parameter and null displacement vector is called the principal path

and denoted as (
0
u(λ), λ), often simplified as (

0
u, λ)

2.1.2 Symmetry of the problem and equivariance

The symmetry of a problem corresponds to the operations that leave the problem invariant. All these

operations are gathered in a set called a symmetry group and denoted G in this article. A group is

a set of elements G = {g1, ..., gn} together with an operation (∗) that maps the set to itself. In a

mechanical system, the symmetry of a problem is mathematically described by the equivariance of

its governing equations (here the equilibrium equations 2) with respect to the symmetry group G of

the system which is expressed as:

T(g) E ,u (u, λ) = E ,u (T(g)u, λ), ∀g ∈ G, ∀u ∈ V (3)
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where g is an element of the group G and T(g) is a matrix representation of the action of this

symmetry element on the vector space V. For example, if one considers the action of a rotation rθ of

angle θ on the vector space V = R2, then T(rθ) would simply be the well-know rotation matrix:

T(rθ) =

[
cos θ − sin θ

sin θ cos θ

]
The set of all matrices {T(g)|g ∈ G} form a faithful representation of the symmetry group G acting

on the vector space V meaning that distinct elements g of G are represented by distinct matrices

T(g). These matrices can generally be broken into smaller matrices called irreducible representations

of the action of G and denoted Tµ. These irreducible representations represent the action of group G

on irreducible subspaces Eµ. The irreducible representations for finite groups are in a finite number

and can be obtained through numerical procedures [25].

The equivariance property Equation 3 shows that transforming the governing equations is equivalent

to writing them on the transformed vector. For instance, if rθ, the rotation by an angle θ, is one of

the system’s symmetry, rotating the governing equations of the state vector u by an angle θ is equal

to writing the governing equations for the rotated state vector T(rθ)u.

On a side note, the equivariance property is established directly on the governing equations and, as

a consequence, does not require the system to be conservative. When working with a conservative

system, the equivariance property of the governing equations is a direct consequence of the invariance

of the potential energy due to the symmetry group G which writes: E(T(g)u, λ) = E(u, λ), ∀g ∈
G, ∀u ∈ V.

2.1.3 Critical points and stability operators

When following an equilibrium path by increasing the loading, critical points may arise that would

lead to significant changes in the system’s behaviour. A critical point on the principal equilibrium

path is formaly defined as an equilibrium state (
0
uc, λc) where the stability operator becomes singular.

Most of the time, this operator corresponds to the Jacobian matrix of the system. In this formalism,

a critical point (
0
uc, λc) arises when there exists at least one unit vector

1
u ∈ V such that:

(E ,uu (
0
uc, λc)

1
u) δu = 0, || 1u|| = 1, ∀ δu ∈ V (4)

Equation 4 merely states that a critical point is the state when at least one of the eigenvalues of

the Jacobian matrix becomes null. The unit vectors
1
u ∈ V of Equation 4 then correspond to the

eigenvectors associated with the null eigenvalues of the Jacobian matrix. They are usually called

critical eigenvectors. The set of all the critical eigenvectors
1
u ∈ V spans the kernel space of the

Jacobian matrix E ,uu. Therefore, at a critical point, this kernel space has a dimension at least equal

to 1. The kernel space of the Jacobian matrix is of interest because the bifurcated solutions exist in

this space.
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Critical points can be either limit points, where the solution to the non-linear governing equations

remains unique or bifurcation points where this solution loses its uniqueness and a bifurcated path

emerges from the critical point. In the remainder of this article, a distinction is made between pre

and post-critical solutions by noting them
i
u and

i+1
u , i ∈ N, respectively.

The stability operator E ,uu in the case of discretised mechanical systems corresponds to the tangent

stiffness matrix. Differentiating the equivariance condition gives the commutation condition for the

tangent stiffness matrix E ,uu (u, λ):

T(g) E ,uu (u, λ) = E ,uu (u, λ)T(g), ∀g ∈ G, ∀u equilibrium solution (5)

which can be written equivalently as:

E ,uu (u, λ) = T−1(g) E ,uu (u, λ)T(g), ∀g ∈ G, ∀u equilibrium solution (6)

This latter form of the commutation condition corresponds to a change of basis for the tangent stiffness

matrix. Essentially, the equivariance condition, implies that the kernel space can be determined by

operating within a basis for the vector space V that is distinct from the inherent basis arising from

a finite element mesh. This basis, adapted to the symmetries of the system, will bring the stiffness

matrix into a block-diagonal form. The matrices that bring about this block-diagonalisation are

special representation matrices T. This is presented in detail in the coming section.

2.2 Bifurcation and symmetry group of solutions

2.2.1 Symmetry group of the solutions

The symmetry group of an equilibrium solution u is defined as the set of operations that map this

vector to itself. It is formally defined as the group Gu such that

Gu = {g ∈ G| T(g)u = u} (7)

where G is the symmetry group of the system.

The attentive reader would then notice that the symmetry group of an equilibrium solution is a

subgroup of the symmetry group of the system. This implies that it may possess a lower number of

symmetry elements.

In the previous section two types of critical points were introduced: the bifurcation point where the

solution loses its uniqueness and the limit point where it remains unique. Generically, in the presence

of a bifurcation point, a bifurcated solution
i+1
u will possess a lower symmetry than the pre-bifurcated

solution
i
u whereas in the presence of a limit point, the post-critical solution has the same symmetry

as the pre-critical one. The symmetries of a bifurcated solution form a subgroup of G called the

isotropy subgroup of
i+1
u ∈ V. By definition, an isotropy subgroup is the largest set of elements g ∈ G

which leaves the displacement vector solution to the equilibrium equations invariant.

7



The symmetry group of equilibrium states on the principal path is then G0
u

= G, while G i
u
⊂ G, i ∈ N∗

is the symmetry group of any post-bifurcated solution. More generally speaking, at a symmetry-

breaking bifurcation point one has Gi+1
u
⊂ G i

u
, ∀i ∈ N∗. This can be rephrased as follows: some sym-

metries have been lost at the bifurcation point and thus, the symmetry group of the post-bifurcated

solution is a subgroup of that of the pre-bifurcated solution.

As stated in the previous section, at a bifurcation point (uc, λc), the Jacobian matrix J(uc, λc) of the

system becomes singular and the dimension of its kernel space is at least equal to 1. It is possible to

define the symmetry group of the kernel space of the Jacobian matrix Jc(uc, λc) as:

Gker(E,uu(uc,λc)) = {g ∈ G |T(g)u = u, ∀ u ∈ ker(E ,uu (uc, λc)} (8)

Furthermore, the symmetry of the post-bifurcated solution
1
u is at least as high as the symmetry of

the kernel space, which leads to the following inclusions:

G
ker(E,uu(

0
u,λ))

⊆ G1
u
⊆ G0

u
= G (9)

As a conclusion, it is possible to frame the symmetry group of the post-bifurcated solution in between

the symmetry group of the system G and the symmetry group of the kernel space of the Jacobian

matrix G
ker(E,uu(

0
u,λ))

.

2.2.2 Isotypic decomposition and block diagonalisation

Now let us direct our attention to the various vector spaces in which it is possible to express our

solutions. Recall from subsection 2.1.2 that the action of the group on a vector space is represented

by representation matrices T and that it is possible to break these representation matrices into smaller

matrices called irreducible representations of the action of G and denoted Tµ. This decomposition

formally writes as a direct sum:

T =

m⊕
µ=1

mµT
µ (10)

with m the number of irreducible representations of the symmetry group G and mµ is the multiplicity

of the irreducible representation Tµ in the decomposition. The blocks mµT
µ are called isotypic

components of the representation T.

Each irreducible representation Tµ represents the action of the group G on an irreducible subspace

Eµ. As a consequence, the support of the isotypic component mµT
µ is a subspace Vµ of the full

vector space V called the isotypic subspace. This subspace decomposes itself as a direct sum of mµ

times the same vector space Eµ:

Vµ = mµEµ = Eµ ⊕ . . .⊕ Eµ︸ ︷︷ ︸
mµ terms

(11)
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Since in Equation 10, T is a representation of the action of the group G on the full vector space V
and since the support of the isotypic component mµT

µ is the vector subspace Vµ, one thus have:

V =

m⊕
µ=1

Vµ =

m⊕
µ=1

mµEµ (12)

The decomposition on the left-hand side of Equation 12 is called the isotypic decomposition and is

unique. On the contrary, the decomposition on the right-hand side is not unique since the choice of

the subspace Eµ, which carries the irreducible representation Tµ, is not unique.

Using the isotypic decomposition, a symmetry-adapted basis of vector space V can be built [26]. Then,

using the change of basis presented in Equation 6, the stability operator may be block-diagonalised,

each block being associated with one of the subspaces Vµ:

E ,uu (u, λ) =


V1

V2

. . .

Vm

 (13)

One special subspace V1 corresponds to the trivial irreducible representation and solutions belonging

to this subspace have the full symmetry G of the system. When the stability operator becomes

singular, in its block-diagonalised form, it corresponds to only one block related to one isotypic

subspace Vµ that becomes singular. If this block corresponds to the special subspace V1, the post-

critical solution will have the same symmetry group as the pre-critical solution and the critical point

is generically a limit point. On another hand, when a symmetry-breaking bifurcation point arises,

the unstable block corresponds to any other subspace Vµ, µ ∈ [[2,m]]. Then, since the subspace

Vµ is support of mµ-times the irreducible representations Tµ, the bifurcation point is said to be

associated with the irreducible representation Tµ. To be more precise, it is only one sub-block,

that corresponds to one of the G-irreducible subspace Eµ, that uniformly goes to 0 at the symmetry

breaking bifurcation point. Consequently, the kernel space of the Jacobian matrix corresponds to

that subspace Eµ. Therefore, the symmetry of the kernel space of the Jacobian matrix Gker(Jc(uc,λc))

coincides with the group Gµ, called the kernel of the irreducible representation Tµ, and defined as:

Gµ = {g ∈ G |Tµ(g) = Inµ} (14)

where Inµ is the square identity matrix of dimension nµ, nµ being the dimension of the G-irreducible

subspace Eµ. This kernel is nothing more than the set of all the operations of the irreducible rep-

resentation that are represented by identity matrices. It is directly determined from group-theoretic

considerations and does not require any prior knowledge of the Jacobian matrix.

Finally, using this information and putting it into the framing relation stated in Equation 9, lower

and upper bounds are obtained for the symmetry group of the bifurcated solution as follows:

Gµ ⊆ G1
u
⊆ G (15)
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2.3 Predicting possible symmetry groups of the bifurcated solution: the Equiv-

ariant Branching Lemma

The question is now how to determine the symmetry group G1
u

of the bifurcated solution
1
u. This

is done using to the Equivariant Branching Lemma (EBL) as stated by [17] which concludes on the

existence and symmetry of a bifurcated solution.

The EBL makes use of the dimension of the fixed-point subspace of the isotropy subgroups G1
u
. The

fixed-point subspace of a subgroup H is defined as the set of vectors u ∈ V which are invariant under

the actions of the group:

FixV(H) = {u ∈ V|T(g)u = u, ∀ g ∈ H} (16)

Its dimension can be found using the trace formula:

dim FixV(H) =
1

|H|
∑
h∈H

tr(T(h)) (17)

where T(h) is the matrix group representation of the action of group element h ∈ H on the vector

space V.

In Equation 17, tr(T(h)) is the trace of the matrix group representation T(h) for the group element

h. This is also known, in representation theory, as the character of this representation usually de-

noted χT(h). Characters of the most common finite group irreducible representations are tabulated

in standard textbooks.

The Equivariant Branching Lemma states:

Consider (uc, λc), a symmetry breaking bifurcation point associated with the irreducible representa-

tion Tµ. If H ⊂ G is an isotropy subgroup of G for u ∈ Eµ satisfying dim FixEµ(H) = 1, then a

bifurcating path with H-symmetry exists.

In other terms, bifurcation problems with symmetry group G generically exhibit solutions correspond-

ing to isotropy subgroups with one-dimensional fixed-point subspaces.

By definition, an isotropy subgroup is the largest set of elements g ∈ G which leaves the displacement

vector solution to the equilibrium equations invariant. As a consequence, an isotropy subgroup H is

maximal [27], meaning that no subgroup K of G can be found so that H ⊂ K ⊂ G. The idea behind

this lemma is that, since the symmetry group H = Gµ is a lower bound for the symmetry group of

the bifurcated solution G1
u
, if Gµ is maximal, then it has to be equal to G1

u
. Otherwise, a supergroup

K of Gµ is maximal and is then equal to G1
u
.

In practice, the list of all the isotropy subgroups with one-dimensional fixed-point subspaces gives

the symmetry groups of the bifurcated solution of the problem satisfying the initial symmetry. Note

that the given list is not exhaustive since the EBL gives a sufficient but not necessary condition for

a bifurcating branch to emerge from the principal path.
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3 Proposed group theoretic method

In this section, the new group theoretic method used for determining the post-bifurcated patterns

of a periodic architectured material is detailed. In the first step, the symmetry groups of the bifur-

cated solutions are determined using the EBL, and then the associated post-bifurcated patterns are

identified. In this section, it is assumed that the symmetry group G of the system is finite.

3.1 Symmetry analysis: determining symmetry groups of the bifurcated solutions

The determination of the symmetry groups of the bifurcated solutions is based on the EBL. The EBL

states that the symmetry group of a bifurcated solution belonging to an irreducible subspace Eµ is

an isotropy subgroup of the symmetry group of the problem with a one-dimensional fixed-point space.

It is therefore necessary to first establish the decomposition of the representation space V into irre-

ducible subspaces Eµ in order to determine if the subspace Eµ appears in this decomposition. Once

this decomposition is determined, the isotropy subgroups can be listed for each irreducible subspace

Eµ appearing in the isotypic decomposition. Indeed, these isotropy subgroups are candidates for the

symmetry groups of the solutions that satisfy the equilibrium equations [24]. In the last step, the

dimension of the fixed-point space of these isotropy subgroups for the irreducible subspace Eµ can be

computed in order to conclude on the existence of a bifurcated solution having this symmetry using

the EBL.

The symmetry group of the problem G is supposed to be finite. As a consequence, it has a finite

number of irreducible representations Tµ, µ ∈ [[1,m]] and a finite number of associated irreducible

subspaces Eµ. Since the EBL applies to fixed-point subspaces computed for the subspaces Eµ of the

decomposition presented in Equation 12, this decomposition has to be determined. In the right-hand

side of Equation 12, the subspace multiplicity mµ appears. This multiplicity can be computed using

the following formula:

mµ =
1

|G|
∑
g∈G

χTµ(g)χT(g) (18)

where it is reminded that χT(g) corresponds to the trace of the matrix representation T(g).

If the multiplicity mµ, computed by Equation 18, appears to be null then the irreducible subspace

Eµ does not appear in the decomposition and will not be considered for the rest of the procedure.

Once the decomposition into irreducible subspaces is determined, the EBL works on isotropy sub-

groups H of G for an irreducible subspace Eµ. The isotropy subgroups then have to be determined

for each irreducible subspace Eµ appearing in the decomposition, except for the isotypic subspace V1

related to the trivial irreducible representation and which corresponds to limit points preserving the

symmetry of the system and not symmetry breaking bifurcation points. The determination of the

isotropy subgroups for each irreducible subspace Eµ is done using the following algorithm:
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Algorithm 1 Computation of isotropy subgroups of group G of a given irreducible subspace Eµ
Input: Subgroups of G, irreducible representation Tµ associated with irreducible subspace Eµ
for each subgroup H ⊂ G do

for each subgroup K of G such that H ⊂ K ⊂ G do

if dim FixEµ(K) = dim FixEµ(H) or dim FixEµ(H) = 0 then

H is not an isotropy group for Eµ
end if

end for

end for

Output: list of isotropy subgroups

This algorithm is based on two criteria:

1. for a subgroup to be an isotropy subgroup, the dimension of its fixed-point space cannot be

equal to zero. Indeed, according to the definition of a fixed-point space given in Equation 16,

if the dimension of this space is equal to zero then there is no vector u ∈ Eµ that is invariant

under the action of the group and thus no action of the group leaves a vector u ∈ Eµ invariant

and the isotropy subgroup would be empty ;

2. the definition of an isotropy subgroup is the largest set of elements g ∈ G which leaves the

displacement vector u ∈ Eµ invariant. As such, if K is an isotropy supergroup of H and the

dimensions of the fixed-point spaces of both groups are equal, H cannot be an isotropy subgroup

of G as u is invariant by not only the elements of H but also those of K.

Authors point out that this algorithm is the same as the one proposed in [28].

The last step for applying the EBL is to check which isotropy subgroups have one-dimensional fixed-

point space using the trace formula stated in Equation 17. The list computed via the previous

algorithm is then reduced using the EBL: the isotropy subgroups whose fixed-point space dimension

is not equal to one cannot be considered as possible post-bifurcated subgroups.

Threfore, at the end of this step, a list of the N possible post-bifurcated subgroups {G1
1
u
, ..., Gk1

u
}, k ∈

N∗ is obtained, for a problem with symmetry group G. In other terms, this first step provides a

list of predicted post-bifurcated subgroups. Each of these subgroups contains a set of symmetry

operations that would leave a post-bifurcated equilibrium solution invariant. If the subgroup has a

high symmetry, i.e. it contains a large number of elements, then this subgroup may define uniquely,

up to an amplification factor, the state vector u ∈ V. However, in most cases, an additional step is

required to determine the post-bifurcation patterns.
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3.2 Determining patterns knowing symmetry groups of bifurcated solutions

Having computed the list of possible post-bifurcated symmetry groups, the question is now to deter-

mine the corresponding post-bifurcated deformation patterns. The procedure described in this section

first consists in reducing the number of unknowns in the displacement vector u = (u1, ..., un)T ∈ V
using the post-bifurcated symmetry groups found previously along with the knowledge of the associate

isotypic subspace Vµ to which this vector should belong to. Indeed, the symmetry elements contained

in the post-bifurcated symmetry groups will impose relationships between the independent degrees

of freedom of the displacement vector u thus leading to the definition of a reduced displacement

vector. And that vector should be in the isotypic vector space Vµ corresponding to the irreducible

representation associated with the bifurcation point of interest. Then an energy argument is used to

uniquely determine the pattern.

3.2.1 Reduction of DOF space

The reduction of the Degrees of Freedom (DOF) space is carried on in two steps. First using the

possible symmetry groups, a reduced vector defined by a reduced number of independent DOF is

defined for each symmetry group. Then, knowing that a bifurcation point is associated with a given

irreducible representation, the reduced vector is projected into the corresponding isotypic subspace.

Thus ensuring that this vector might belong to the null space of the (undefined) non-linear stiffness

matrix.

Let start with the definition of the reduced vector. For each post-bifurcated symmetry group predicted

at the end of the former state, the symmetry operations of the groups impose relationships between

the various degrees of freedom of the displacement vector. Indeed, the symmetry operations are

the operations that leave the displacement vector invariant. The action of a symmetry operation g

on the vector space V of the displacement vector is represented by the matrix T(g). As such, the

relationships between the DOF of the displacement vector can be determined by solving the following

system of linear equations:

{T(g)
1
u =

1
u} ∀g ∈ Gi1

u
, i ∈ [[1, k]] (19)

Solving Equation 19 results in a reduced number of degrees of freedom for the displacement vector
1
u that is symmetric under the action of the post-bifurcated subgroup Gi1

u
. This actually corresponds

to projecting the vector
1
u that was in the vector space V into the fixed-point space FixV(Gi1

u
) of

the post-bifurcated subgroup Gi1
u

with respect to the vector space V. Using only these independent

degrees of freedom, a reduced displacement vector
1

ũ can be defined.

In order to be a possible post-bifurcated mode, the reduced displacement vector
1

ũ, which is defined on

the full mesh vector space V has to belong to the null space of the non-linear stiffness matrix. Without

prior knowledge of the loading, the non-linear stiffness matrix cannot be defined. However, recall from
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section 2.2.2 that when the stiffness matrix becomes singular, it corresponds to only one isotypic

subspace Vµ that becomes singular. Therefore, the next step is to project the reduced displacement

vector
1

ũ from the full vector space V to the unstable isotypic subspace Vµ. This projection is done

using the projection operators, which are represented by matrices, into the symmetry adapted basis

defined in [26]:

Pµ =
1

|G|
∑
g∈G

χTµ(g)T(g) (20)

These projection matrices are then used to project the reduced vector
1

ũ into the appropriate vector

space Vµ as follows:
1
û = Pµ

1

ũ

All these operations can be carried out formally using symbolic computation tools.

In some rare cases, the projected reduced displacement vector only depends on one independent de-

gree of freedom and the post-bifurcated pattern can then be uniquely defined from that information

only. This would correspond to the case when the fixed-point space of the post-bifurcated subgroup

Gi1
u

with respect to the vector space V is the same as the fixed-point space of the same post-bifurcated

subgroup but with respect to the vector subspace Eµ. In that case, the only degree of freedom serves

as a mode amplitude parameter. In most cases, several independent degrees of freedom are involved

which could lead to several patterns depending on the chosen linear combination of these degrees of

freedom. Then, an additional step is necessary at this point to uniquely determine the post-bifurcated

pattern. This is done using the total potential energy of the system.

3.2.2 Elastic energy minimisation

The total potential energy of the system is generically given by:

E =
1

2

∫
D
σ : ε dΩ−

[∫
D
f · u dΩ +

∮
∂D

t · u dΓ

]
(21)

It is assumed that the system is free of body forces f = 0. Moreover, in the periodic cell, the rightmost

term of Equation 21 is cancelled out by the periodic boundary conditions:∮
∂D

t · u dΓ = 0 (22)

Therefore, the total potential energy simply corresponds to the strain energy of the unit cell:

E =
1

2

∫
D
σ : ε (23)

If one considers a finite element description of the problem. The strain energy corresponds to the

sum of the energies for all the finite elements inside the cell which can be expressed in terms of the

total stiffness matrix of the unit cell K:
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E =
1

2
uTKu (24)

From now on consider that some undetermined loading will bring the system to a bifurcation point

associated with irreducible representation Tµ. At that bifurcation point, as explained in subsection

2.2.2, the total stiffness matrix of the unit cell K becomes singular and its kernel space corresponds

to one of the irreducible subspaces Eµ. Then the post-bifurcated equilibrium solution is sought in

the intersection between this irreducible subspace and the fixed-point space of one of the possible

post-bifurcated symmetry groups associated with this irreducible representation. In fact, from the

end of the previous state, the projected reduced displacement vector belongs to the isotypic space Vµ
since the irreducible Eµ is unknown without non-linear computation. Then the following conjecture is

assumed: the null space of the stiffness matrix, for some loading, corresponds to the vector subspace

in the isotypic space Vµ. This subspace also corresponds to the smallest eigenvalue of the elastic

stiffness matrix Ke.

In practice, looking for an equilibrium solution comes back to minimizing the total energy. At the

bifurcation point, the principal branch and all the possible bifurcated branches have the same energy

which means that looking for a post-bifurcated energy comes back to looking for the minimum of

the incremental energy from the bifurcation point on the bifurcated branch. In our case, using the

previous conjecture, an equilibrium state on the bifurcated branch will belong to the previously

described intersection between the fixed-point space of the post-bifurcated symmetry group and the

kernel of the total stiffness matrix.

Consider an increment of displacement in this intersection δû ∈ Eµ ∩ FixV(Gi1
u
) due to an increment

of loading δλ. Then, the incremental energy computes as

Eδ =
1

2
(δû)T

(
K̂e + (λc + δλ)K̂g

)
(δû) (25)

where λc is the critical buckling load and the hat sign stands for the projection of the stiffness matrices

in the vector space of δû. In the former equation, the total stiffness matrix which is, in general, non-

linear with respect to the equilibrium state, is decomposed as a sum of the elastic stiffness matrix

K̂e and a non-linear geometric matrix K̂g depending linearly on the load. This hypothesis is also

known as linear buckling analysis and is applicable to systems composed of structural elements such

as beams, plates or shells.

Given that δû ∈ Eµ, it is in the kernel of the non-linear stiffness matrix at the bifurcation point:

K̂δû = 0⇔ (K̂e + λcK̂g)δû = 0. Consequently, the incremental energy can be reduced to

Eδ =
1

2
δλδûK̂gδû =

−δλ
2λc

δûK̂eδû (26)

Finally, the increment of displacement δû on the post-bifurcated branch has to be an equilibrium

solution for the incremental energy Êδ, meaning that it must minimise this energy. This corresponds

to finding the smallest eigenvalue of the elastic stiffness matrix in the reduced space K̂e.
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The energy minimisation uses the fact that the energy can then be re-written in terms of eigenvectors

η̂I and eigenvalues αI of the reduced elastic stiffness matrix K̂e. Indeed, the increment of displacement

δû on the post-bifurcated branch can be projected into the eigenspace of the elastic stiffness matrix

as follows: δû =
∑

I bI η̂I which induces:

Êδ =
1

2

∑
I

b2I η̂
T
I K̂eη̂I =

∑
I

b2I
1

2
αI η̂

T
I η̂I =

∑
I

b2I
αI
2

(27)

under the assumption of normalized eigenvectors η̂I .

Therefore the increment of displacement that minimises the energy from the bifurcation point corre-

sponds to the eigenvector η̂0 associated with the smallest eigenvalue α0 of K̂e.

The computation of the smallest eigenvalue of the elastic stiffness matrix, reduced to the fixed-point

space of Gi1
u
, cannot be realized analytically and requires numerical computation. Additionally, this

requires information on the material parameters that constitute the geometry of the architectured

material. At this stage only, the material parameters and inputted into the method.

The framework in which this method is proposed to be applied below uses beam elements which are

suitable for linear buckling hypothesis. The method could use plate and shell elements as well. It is

less clear if such an argument would hold in the case of solid 2D or 3D elements composed of soft

materials, for instance.

As a summary, in the newly proposed method, the possible post-bifurcated deformation modes are

predicted by an eigenvalue analysis of the reduced elastic stiffness matrix K̂e conducted for each

possible symmetry groups of bifurcated solutions. Gi1
u
. This eigenvalue analysis provides, in a unique

way, the post-bifurcated deformation patterns (or modes) that could emerge from a bifurcation point.

3.3 Summary of the method

Figure 1 b) presents a graphic summary of the newly proposed method for determining the post-

bifurcated patterns of architectured materials. In this schematic, the gear symbols indicate design

parameters that can be modified to attain different bifurcated patterns. It appears obvious that the

new proposed method separates the geometric design parameters from the material ones. Indeed,

up to the reduction of the DOF space, the only information necessary for the computation is the

specification of the geometry of the architectured material periodic cell and the computations can

be done analytically. The material parameters are only inputted for the elastic energy minimisation

step. This creates two separate design loops that are available to the designer or an optimisation

process. These two steps are represented by two dashed boxes on the Figure 1 b). Moreover, the

method does not perform any non-linear computation. As such, it is fast and perfectly suited for

design applications as part of a topology optimisation process, for instance.

Finally, the mechanical load design parameter is removed from the proposed method. This prevents
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the load from selecting a given post-bifurcated pattern and allows our method to predict all the

post-bifurcated patterns that could appear for a given architectured material. It is then left to the

designer or to an optimisation algorithm, in a final step, to find the appropriate loading that will

select one or another target pattern.

4 Application on the regular hexagonal honeycomb

The new method presented in the previous section is now applied to the regular hexagonal honeycomb

structure. This example has been chosen because, as presented in the introduction, it is a well-studied

example that will allow us to validate the method and also to show its interest since the proposed

method will predict new possible bifurcated patterns. Two loading conditions will be considered for

this application: an equibiaxial loading and a uniaxial or biaxial loading. These loadings will be taken

into account by only considering their symmetry groups and their intersection with that of the initial

geometry of the honeycomb.

4.1 Symmetry analysis of the initial geometry

The infinite honeycomb can be described by a tessellation in the plane of the regular hexagon. The

regular hexagon has symmetry group D6. This symmetry group possesses 12 symmetry elements and

can be generated by a rotation of order 6 (i.e. by the angle 2π
6 ), noted r6 around the out-of-plane

axis passing through the centre of the hexagon and a mirror symmetry s with respect to a vertical

plane passing through that same centre. From these two generators, the whole set of 12 symmetry

elements of the symmetry group D6 can be constructed using the Cayley table of this group. The

chosen notation for the name of the group follows the classical notation from crystallography [26].

It uses the letter D when a mirror symmetry is one of the group elements (letter C would be used

otherwise) and the number 6 to indicate the rotational order of the rotational generator element r6.

This group is also named C6v in the Schoenflies notation. Such a group which contains only point-wise

operations is called a point-group.

As presented in the introduction, it has been shown in the literature that the post-bifurcated patterns

require more than one hexagonal tile, also called primitive cell, to be captured [3, 4, 5, 15]. Indeed,

at least 2×2 primitive cells are necessary to show the diversity of the modes observed experimentally

(see Figure 2). Consequently, it is chosen to work with the symmetry group: D6 n (Z2 × Z2) for the

regular hexagonal honeycomb. In this notation, a semi-direct product n is used to combine the point

group D6 of the regular hexagon with the cyclic group (Z2 ×Z2). The reader is directed to standard

mathematical textbooks for the definition of the semi-direct product [29]. The cyclic group (Z2×Z2)

represents the inner translation symmetries along with the 2 × 2 periodicity of the chosen unit cell.

This unit cell is presented on the right-hand side of Figure 2. It is periodic along the periodicity

vectors α1 and α2 and composed of 4 primitive cells: 2 primitive cells along the first lattice vector

p1 and 2 primitive cells along the second lattice vector p2. As a consequence, it has inner translation
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symmetries that allow it to go from one primitive cell to another along both lattice vectors p1 and

p2 and along the vector built from the sum of these two vectors. After two such translations in each

direction, the unit cell has been brought back to itself by periodicity. This means that the symme-

try group of the inner translations of this unit cell is (Z2 × Z2), a group composed of 4 elements

{e, p1, p2, p1 ∗ p2}, where e represents the identity element. The generators of this group are noted

p1 and p2 and represented Figure 2. These generators correspond to the periodicity vectors of the

primitive cell. The symmetry group (Z2×Z2) has 4 symmetry elements and, as such, combined with

point group D6 of 12 elements, the resulting symmetry group: D6 n (Z2 × Z2) is composed of 48

elements and generated by four symmetry elements chosen to be r6, s, p1 and p2.

Figure 2: Difference between primitive and unit cells when considering the bifurcation of an infinite

2D honeycomb medium.

The reader’s attention is drawn to the fact that a modelling choice has to be made at that point on

the size of the unit cell leading to the cyclic group (Z2×Z2). Indeed, contrary to other studies [15, 30]

that make use of specific analysis known as Bloch-wave analysis to determine that size during the non-

linear computation, the proposed method does not have such a tool implemented. This is a limitation

of the method but authors believe that its numerical efficiency will make it possible to overcome that

limitation by scanning rapidly using for instance parallelisation methods for the various unit-cell sizes.

Finally, the irreducible representations for the symmetry group D6n(Z2×Z2) have to be determined.

The irreducible representations for finite groups are in a finite number and can be obtained through

numerical procedures [25]. In the present case, they have been obtained using the Groups, Algorithms,

Programming (GAP) software [31]. Symmetry group D6n(Z2×Z2) has 10 irreducible representations:

4 one-dimensional denominated with symbols A1, A2, B1, B2 and 2 two-dimensional, named E1 and

E2. Together, all these 6 irreducible representations are identical to the irreducible representations of

the point group D6. The 4 additional three-dimensional irreducible representations, named T1, T2, T3

and T4, are due to the semi-direct product with the translation group. GAP also tells us that group

D6n(Z2×Z2) can be decomposed into 33 subgroups classes. Inside a subgroup class, groups are related

by conjugacy relations, meaning that they only differ by the orientation of their generator elements.
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They are, in a sense, the same groups but expressed in a different basis. As a consequence, the

subsequent analysis will be conducted in terms of symmetry classes more than in terms of symmetry

groups. In order to help the reader understand the meaning of the various groups belonging to the

same symmetry class, the symmetry patterns for the three groups of the symmetry class D2n(Z2×Z2)

are presented in Table 4 on the line corresponding to the irreducible representation E1.

4.2 Modeling

The unit cell is modelled using standard Euler-Bernoulli beam finite elements, the parameters of

which are summarized in Table 1.

Beam parameters

L 0.5 cm Strut length

h 0.05 cm Strut thickness

b 1 cm Strut depth

S 0.05 cm2 Strut cross-sectional area

I 1.041667× 10−5 cm4 Strut moment of inertia

E 69MPa Material’s Young modulus

Table 1: Table summarising the beam parameters

Employing linear interpolation for the axial displacement and cubic interpolation for the transverse

displacement, the conventional shape functions from finite element beam theory are applied. These

shape functions link the beam’s end nodal displacements ui, vi and rotations θi (referred to as degrees

of freedom or DOFs) with the displacement of any point and rotation of the cross-section located

inside the beam u(x), v(x), θ(x). The three DOFs for each node are gathered into the displacement

vector u = [u1, v1, θ1, . . . , uN , vN , θN ], where N is the number of finite elements nodes in the mesh.

As a consequence, the representation vector space of consideration is thus V = R3N .

The mesh used to apply the method is presented in Figure 3. A mesh convergence study has been

performed and the selected mesh provides converged results in terms of predicted bifurcated deforma-

tion patterns. The isolated points at the centre of each hexagon are only reference points introduced

to track the inner translations and are not attached to any matter. As a consequence, they do not

correspond to any finite element node.

The mesh and the choice of the Euler-Bernoulli beam element modelling impose a representation

vector space. Given this representation vector space, the action of the symmetry group on this

representation space has to be defined. It consists of defining the representation matrices T(g) for

each symmetry element g in the symmetry group of the initial geometry D6n (Z2×Z2). Since all the

48 elements of this symmetry group are generated by only four elements, it is enough to define the

representation matrices T(g) only for the four chosen generators r6, s, p1 and p2. The representation
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Figure 3: Mesh of the honeycomb unit cell. The isolated points at the centre of each hexagon are

only reference points introduced to track the inner translations and are not attached to any matter.

As a consequence, they do not correspond to any finite element node.

matrices carry information on both node permutations under the action of the symmetry element on

the mesh and changes in displacement directions after applying a group action to the three degrees of

freedom of a node. In particular, the group actions are first applied to the nodes of the unit cell and

a nodal permutation matrix P(g) is generated by checking the finite element nodes which coincide

with each other before and after the group action. This nodal permutation matrix is then combined

with a 3 × 3 matrix describing how the nodal degrees of freedom are affected by the group actions.

As an example, the action of the rotational group generator r6 on the mesh is presented in Figure 4

where the rotated unit cell is surrounded by purple lines while the initial unit cell, reproduced by

periodicity is represented delimited by grey lines. The purple-to-grey identification leads to the nodal

permutation matrix P(r6). The cyan arrows represent the degrees of freedom of each node modified

by the action of the group generator r6. These rotated degrees of freedom can be deduced from the

initial ones using the following 3× 3 matrix:

t(r6) =

cos(
π
3 ) −sin(π3 ) 0

sin(π3 ) cos(π3 ) 0

0 0 1

 =


1
2 −

√
3
2 0

√
3
2

1
2 0

0 0 1

 (28)

4.3 Equibiaxial loading

The symmetry group of the problem is the intersection between the symmetry group of the archi-

tectured material and the symmetry group of its loading conditions. For equibiaxial loading, the

boundary condition’s symmetry group is very symmetric since the macroscopic loading is isotropic.

As a consequence, the boundary conditions are O(2)-symmetric. Therefore the symmetry group of

the problem is D6 n (Z2 × Z2) ∩O(2) = D6 n (Z2 × Z2) (see Figure 5).
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Figure 4: Example of the action of rotational group generator r6 on the finite element mesh and

degrees of freedom. The rotated unit cell is surrounded by purple lines while the initial unit cell,

reproduced by periodicity is represented surrounded by grey lines. The cyan arrows represent the

degrees of freedom of each node modified by the action of the group generator r6

Figure 5: Schematic representation of a biaxial macroscopic load (O(2) symmetry) on the honeycomb

lattice.

As stated in the symmetry analysis section along with the group-theoretic preliminaries, D6n(Z2×Z2)

has 10 irreducible representations, but only one subspace Eµ associated with one irreducible repre-

sentation will contain the singularity of the stability operator on the principal equilibrium path. The

computation of the isotypic decomposition Equation 12 states that all of the isotypic subspaces ap-

pear in the decomposition. The Equivariant Branching Lemma will thus be applied to all of these

subspaces since bifurcation is susceptible to happen in any of them.

Out of the 33 possible subgroup classes, only 23 are isotropy subgroup classes (counting the ini-

21



tial group) among which only 17 have one-dimensional fixed-point subspaces. These possible post-

bifurcated subgroup classes for each irreducible representation are presented in Table 3. They are

named using the name of one of the groups in the class. The superscripts s or h are used to iden-

tify whether the mirror symmetry generator corresponds to a vertical or a horizontal mirror whereas

superscripts g, g2 and g3 indicate various types of glide generators combining a mirror symmetry

element with a translation. The number of groups in the class is given in parenthesis and the gener-

ators of the representative group are indicated in braces. In order to help the reader understanding

the signification of the various names for the groups present in Table 3, a table presenting these

names along with various shapes illustrating the symmetry groups is proposed Table 2. Indeed, the

symmetry groups presented correspond to symmetry groups of well-known polygons except for sym-

metry group C6, which corresponds to the symmetry of a hexagon that would have lost its mirror

symmetries. The proposed shape for this group could be called a chiral hexagon. Moreover, note that

the two groups Ds
3 and Dh

3 are both groups of an equilateral triangle but that triangle is standing

up in the first case and rotated in the second, meaning that the mirror symmetry of Ds
3 is vertical,

whereas it is horizontal for Dh
3 . The same happens for groups Ds

1 and Dh
1 . These shapes will be used

at several places in the remaining of this article as a visual reminder of the meaning of the group

theoretic names.

D6 C6 Ds
3 Dh

3 D2 C2 Ds
1 Dh

1

Table 2: Table presenting shapes illustrating the signification of the names for the symmetry groups

used later in the chapter.

At this point, results presented in Table 3 are difficult to interpret. However, one can still extract

information from this table based on understanding of its group-theoretic content. For instance, if

a subgroup class includes the translations p1 and p2 as generators (or equivalently if their subgroup

class name is composed with a semi-direct product with the group Z2 × Z2), then all four primitive

cells inside the 2× 2 cell will deform in a similar manner. This is the case for the first six irreducible

representations inherited from the point group D6 and located above the dashed line in Table 3. For

the remaining four irreducible representations, the deformed pattern will be expected to have all four

cells deformed in a different manner, except when a one of the translation remains in the generator

(or equivalently when a semi-direct product with Z2 is present in the name of the subgroup class.

Moreover, if a class has the symmetry element s as a generator, then the deformation pattern presents

a vertical mirror symmetry. The integer n associated with the symmetry element cn represents the

order of the generating rotation. For example, a r6 symmetry is a rotation by an angle of 2π
6 whereas

a r3 symmetry is a rotation by an angle of 2π
3 . Further comments can be made on the number of

subgroup classes, i.e. the number of possible patterns, available for a given irreducible representa-
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Irreducible

representation

Possible post-bifurcated subgroup classes (nb groups in class)

{generators}

A1 D6 n (Z2 × Z2) (1) {p1, p2, r6, s}
A2 C6 n (Z2 × Z2) (1) {p1, p2, r6}
B1 Ds

3 n (Z2 × Z2) (1) {p1, p2, r3, s}
B2 Dh

3 n (Z2 × Z2) (1) {p1, p2, r3, h}
E1 D2 n (Z2 × Z2) (3) {p1, p2, r2, s}
E2 Dh

1 n (Z2 × Z2) (3) {p1, p2, h} | Ds
1 n (Z2 × Z2) (3) {p1, p2, s}

T1 D6 (4) {r6, s} | D2 n Z2 (3) {p2, r2, s}
T2 Dg

2 n Z2 (3) {sp1, p2, r2} | D2 (6) {r2, s} | C6 (4) {r6}
T3 Dg2

2 n Z2 (3) {r2p1, p2, s} | Ds
3 (4) {r3, s} | Dg2

2 (6) {r2p2, s}
T4 Dg3

2 nZ2 (3) {sp1, r2p1, p2} | Dh
3 (4) {r3, h} | Dg2

2 (6) {r2p2, s}

Table 3: Table of isotropy subgroup classes for each irreducible representation of D6 n (Z2 × Z2).

A dashed line separates irreducible representations inherited from the point group D6 from the ones

that are due to the semi-direct product with the translation group

tion. The first five irreducible representations provide only one available deformation pattern, while

the irreducible representations E2 and T1 provide two patterns each and the last three irreducible

representations generate three patterns each.

Among these isotropy subgroup classes, three are of particular interest to us since they have already

been reported in the literature. Indeed, [16] computed, from a non-linear finite element simula-

tion, the post-bifurcated patterns of a hexagonal honeycomb subjected to equibiaxial loading. They

provided the symmetry elements of their three computed post-bifurcated patterns for the regular hon-

eycomb with circular cells under equibiaxial loading. By comparing the symmetry elements of these

non-linearly predicted post-bifurcated patterns and the symmetry elements of the various predicted

possible symmetry groups, it is possible to conclude that these predicted post-bifurcated groups are

also found in the list of isotropy subgroup class of Table 3 for irreducible representation T2: Mode

I (also called alternating band mode) is group Dg
2 n Z2, Mode II (butterfly mode) corresponds to

group D2 and finally Mode III (flower mode) is group C6. It is then possible to quantitatively confirm

that both the post-bifurcated groups of the patterns from the literature, stemming from a non-linear

finite element simulation, and from the new proposed method are exactly the same even though the

processes for obtaining them are completely different since the present study is conducted without

any non-linear buckling analysis.

The second step of the method allows us to determine the possible post-bifurcated patterns of the
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regular hexagonal honeycomb subjected to equibiaxial loading. These patterns are presented in

Table 4. In order to help the reader understand the meaning of the various groups belonging to the

same symmetry class, the three symmetry groups belonging to the same symmetry class D2n(Z2×Z2)

are presented for the irreducible representation E1 whereas only one group representative per class

has been chosen for the other irreducible representations.

Irreducible
Post-bifurcated patterns for each irreducible representation

Representation

A1

A2

B1

B2

E1

the 3 symmetry

groups of the

same class
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E2

T1

T2

T3

T4

Table 4: Post-bifurcated patterns predicted for the equibiaxial loading of the regular hexagonal

honeycomb.

Some preliminary observations are possible when studying results presented in Table 4. As expected,

the pattern predicted for irreducible representation A1 is undeformed. Indeed, the symmetry group
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of that pattern is the same as the one of the undeformed hexagon and it has already been assessed

that irreducible representation A1 is associated with a symmetry-preserving limit point and not a

bifurcation point. However, it can also be observed that irreducible representation B1 associated

with symmetry class Ds
3 n (Z2 × Z2) seems to produce the same undeformed pattern that the one of

irreducible representation A1. This is confusing because this symmetry group corresponds to the one

of an upright equilateral triangle ( ) repeated twice along both lattice vectors and a deformation

pattern could be expected to appear for this group. This post-bifurcation pattern actually corresponds

to the axial displacement of the central node of each beam along the beam direction as presented in

Figure 6. It cannot be observed on the nodeless representation proposed in Table 4.

Figure 6: Visualization of post-bifurcated pattern with symmetry group Ds
3 n (Z2 × Z2). Dots

correspond to finite element nodes.

Furthermore, a thorough observation of Table 4 allows us to confirm that some predicted post-

bifurcation patterns are the same as patterns already reported in the literature but obtained through

non-linear numerical simulations or experiments. The three post-bifurcated patterns (alternating

band Mode I, butterfly Mode II and flower Mode III) corresponding to the equibiaxial loading first

symmetry-breaking bifurcation point reported in [13, 14, 15] and obtained by various numerical

methods in these articles, are retrieved for the irreducible representation T2 using the new proposed

method. Additionally, the groups Dh
3 n (Z2 × Z2), belonging to irreducible representation B2, and

C6 n (Z2 × Z2), belonging to irreducible representation A2, both produce post-bifurcated patterns

qualitatively similar to those found by [6]. Finally, the three modes presented in [15] Fig. 22 cor-

responding to the deformation patterns after the fifth bifurcation point along the principal path are

retrieved by the new proposed method and all three belong to the last irreducible representation T4.

On this note, this computation invalidates the analysis proposed in [15] to see these modes as higher

versions of the alternating band Mode I, butterfly Mode II and flower Mode III. Indeed these modes

belong to a different irreducible representation and to different groups. A side-by-side comparison of
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the modes obtained in the literature and the ones predicted by the present method is proposed in Fig-

ure 7. Note that the modes predicted by the new method may be plotted with a larger amplification

factor resulting in more deformed patterns than the ones proposed in the literature. Nevertheless,

the qualitative agreement is satisfying.

a) b)

c) d)

e)

f)

Figure 7: Side by side comparison of modes presented in the literature (left-hand side) and modes

predicted by the present method (right-hand side). a) alternating band mode I from [15], b) butterfly

mode II from [15], c) flower mode III from [15] d) triangle mode from [6] e) chiral mode from [6] f)

three unnamed modes top from higher bifurcation point in [15] and bottom predicted by the new

method for irrep T4.
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The yellow dotted lines in the experimental images taken from [6] visible on Figure 7 d) and e)

represent phase shifts where the deformed mode shifts from one group to another one of the same

class. Recall that groups belonging to the same class correspond to rotated or mirrored versions of

the same deformation pattern. This is visible on the experimental image where the mode on the

left of the yellow dotted line in Figure 7 d) corresponds to the mode predicted by the new method

and the one on the right of the yellow dotted line is the same pattern but rotated by 2π
3 . The same

happens on Figure 7 e) where the two groups from the same class are mirror images of each other due

to the fact that these groups are chiral. These phase shifts cannot be predicted by the present method.

Finally, thanks to the eigenvalue analysis of the stiffness matrix, higher-order post-bifurcation pat-

terns are accessible by plotting eigenvectors corresponding to non-minimal eigenvalues. The modes

corresponding to the second lowest eigenvalue for irreducible representation T2 are plotted in Figure 8.

These modes are in perfect accordance with the modes presented in [15] Fig.22 for the fourth bifurca-

tion point along the principal path. As a consequence, these modes are indeed higher-order versions

of the alternating band Mode I, butterfly Mode II and flower Mode III. This hypothesis raised from

[15] is thus confirmed for the modes of the fourth bifurcation point but not those stemming from the

fifth bifurcation point. This additional information results from the use of the present method.

a)

b)

Figure 8: Comparison of a) the post-bifurcated patterns corresponding to the second lowest eigenvalue

of the stiffness matrix for the three symmetry groups of the irreducible representation T2 and b) the

computed post-bifurcated deformation modes belonging to the fourth bifurcation point along the

principal path from [15]

As a conclusion for this analysis of equibiaxial loading conditions , for the minimum eigenvalue

a total of seventeen possible post-bifurcation patterns are predicted by the method. Eight post-

bifurcated patterns, already reported in the literature and obtained through non-linear finite element

simulations or experimental realisations, have been retrieved by the new proposed method thus serving
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as a validation for our method. Nine additional new patterns are predicted. The presented method

also gives access to higher energy patterns that may correspond to higher-order bifurcation points

happening further away along the principal path. Indeed, three of such patterns, all associated with

the same irreducible representation, have been reported to happen further along the principal path

in non-linear numerical simulations in the literature.

4.4 Uniaxial and Biaxial loadings

The attention is now focused on uniaxial or biaxial loadings. For both these cases, The symmetry

group of the boundary conditions is D2, the symmetry group of the rectangle. This group is composed

of four elements: two reflections and two rotations which leave the boundary conditions invariant

(Figure 9). The symmetry group to study is again the intersection between the symmetry group of

the geometry and that of the loading. In this case it corresponds toD6n(Z2×Z2)∩D2 ≡ D2n(Z2×Z2).

The reader’s attention is drawn to the fact that, if the mirror axes of symmetry for the loading are

not aligned with those of the initial geometry, the resulting intersection symmetry group might be

lower. This case will not be considered here.

(a) Schematic representation of an uniaxial

macroscopic load on the honeycomb lattice.

(b) Schematic representation of a biaxial

macroscopic load on the honeycomb lattice.

Figure 9: D2 (rectangular ) loading conditions.

According to the GAP software, the symmetry group D2 n (Z2 × Z2) possesses 10 irreducible repre-

sentations: eight one-dimensional, named Ai or Bi for i ∈ 1..4, and two two-dimensional named E1

and E2. For this group, the new method predicts only 12 possible post-bifurcated symmetry classes.

For the first 8 irreducible representations, only one post-bifurcated subgroup class may exist, whereas

two classes compete for the 9th and 10th irreducible representations. These classes along with the as-

sociated predicted post-bifurcated patterns are presented in Table 5. Most of these symmetry classes

have the symmetry of a rectangle except for group C2 which is a chiral group i.e. it does not have

any mirror symmetry but only the half-turn rotational symmetry. It could be represented by the

symmetry group of a rectangular helix as presented in Table 2.
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Irreducible
Symmetry class Post-bifurcated patterns

Representation

A1 D2 n (Z2 × Z2)

A2 C2 n (Z2 × Z2)

A3 Ds
1 n (Z2 × Z2)

A4 Dh
1 n (Z2 × Z2)

B1 D2 n Z2
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B2 Dg
2 n Z2

B3 Dg2
2 n Z2

B4 Dg3
2 n Z2

E1 D2 | C2 n Z2

E2 Dg2
2 | Dg2

2

Table 5: Symmetry classes and associated Post-bifurcated patterns predicted for the uniaxial or

biaxial loading of the regular hexagonal honeycomb.

From observing results presented in Table 5, the first observation is that the deformed mode predicted

for the trivial irreducible representation A1 is not a bifurcation mode, it simply corresponds to the

deformed configuration of a regular hexagonal honeycomb loaded along its mirror symmetry axes.
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A more interesting phenomenon is observed for irreducible representations A2 and A4. Indeed for

these irreducible representations, the predicted pattern belongs to a symmetry group that has more

symmetries than the predicted symmetry group. See for instance the post-bifurcated deformed pattern

arising from irreducible representation A2 that appears to be C6n(Z2×Z2) which is a supergroup (i.e.

it has more symmetry elements) of its predicted symmetry group C2 n (Z2 × Z2). Indeed, C6 group

encompasses symmetry elements corresponding to rotations by 2kπ
6 , k ∈ [1, .., 6] where C2 group only

has the rotation by 2π
2 = π. This interesting phenomenon is explained by the fact that the energy

minimisation argument cannot prevent the solution from having more symmetry than its symmetry

class.

For validation purposes, the results are now compared to previously obtained patterns from the

literature. The alternating band mode I has been obtained both experimentally and numerically in

previous literature studies [1, 16] using uniaxial compression loading. It appears when the structure

is loaded parallel to the struts and arises from a one-dimensional irreducible representation. Using

the new proposed method, this mode appears as the post-bifurcated pattern related to irreducible

representation B2 which is indeed one-dimensional. This mode seems to be also identified in the two-

dimensional irreducible representation E1 but with a different orientation. It is important to note that,

even if alternating band modes from irreducible representations B2 and E1 seem identical they are in

fact not since tilted ovals of the E1 mode are different in sizes from one orientation to another. For

this irreducible representation two possible post-bifurcated patterns are identified which correspond

quantitatively to the two modes presented in [16] since they share the same generators. The D2

butterfly mode has also been observed experimentally by [1] using biaxial loading. Figure 10 presents

side-by-side comparisons of the experimental observations by [1] and the predicted modes using the

new method. The qualitative comparison shows a good agreement. Finally, the new proposed method

predicts 8 new possible bifurcation patterns for uniaxial or biaxial loadings.

a) b)

Figure 10: Side by side comparison of modes presented in the literature (left-hand side) and modes

predicted by the present method (right-hand side). a) alternating band mode I obtained experimen-

tally under uniaxial compression from [1], b) butterfly mode II obtained experimentally under biaxial

compression from [1]
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5 Conclusion

In this work, a new method for predicting the post-bifurcated patterns of architectured material is

presented. This method is based on group-theoretic tools. It predicts a larger number of possi-

ble post-bifurcated patterns than other proposed methods in the literature without performing any

nonlinear computation thus making it suitable for integration into design processes. Additionally,

the method is carried out entirely independently of any imperfection parameter or any asymptotic

method. Obtaining the post-bifurcated patterns is easily achieved by a simple eigenvalue analysis of

the stiffness matrix once the degrees of freedom have been reduced.

The method still admits some limitations that are listed now. The periodicity of the post-bifurcated

patterns has to be postulated at the beginning of the study when the unit cell is chosen. Authors

believe that this limitation could be lifted using some additional group-theoretic tools to represent the

unit-cell periodicity. However, in the current state, authors advise taking advantage of the speed of

the method along with its possible parallelisation to assess various unit-cell sizes iteratively. Another

limitation of this method is that it is not exhaustive since it relies on the application of the Equivariant

Branching Lemma which is only a sufficient condition for the existence of an emerging bifurcated path

with a given symmetry group. To the authors’ knowledge, this limitation cannot be lifted yet since the

most generalised version of the Equivariant Branching Lemma has already been used in the present

method. A last limitation is the fact that the present method cannot discriminate between the

various post-bifurcated patterns appearing for multiple-dimensional irreducible representations nor

can predict which invariant subspace will become unstable first along the principal path. Authors are

currently working on energy arguments to uniquely determine the effective post-bifurcated pattern

arising at the multiple bifurcation points corresponding to these multiple-dimensional irreducible

representations. The first limitation is easily lifted by any linear or non-linear bifurcation analysis

and will require precisely defining the loading. This can be done in an additional step of the process

after using this method. This process has been already tested and will be presented in a coming

companion article.

Furthermore, the authors are emphasizing that, even if the method has been presented in the appli-

cation using finite beam elements, it is not limited to these elements and can be implemented using

any other type of finite element keeping in mind that the energy minimisation argument is mostly

justified when linear buckling analysis is applicable. Similarly, the considered application is on 2D

architectured materials but the method is applicable without modification to any 3D architectured

material. Finally, the presented post-bifurcated patterns only correspond to the periodic part of the

real pattern and are predicted close to the bifurcation point. Their evolution along the bifurcated

path is not predicted and, if localization phenomenon or phase shifts appears this cannot be captured

by this method.

The method has been implemented in Python and is coupled with the Group, Algorithms, Program-
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ming software for handling the group-theoretic computations. With its current state of implemen-

tation, the method only requires from the user the basic knowledge of group theory that consists in

being able to identify the symmetry group of the working unit-cell provided at the first step of the

method. The method then automatically takes care of the remaining group theoretical computations

and analysis and provides the possible post-buckling patterns as an output. The Python program is

available on the Zenodo plateform [32].

A validation of the method by application to the regular hexagonal honeycomb has been presented.

Observed patterns from experimental and numerical studies of the literature are retrieved along with

nine new post-bifurcated patterns for this type of honeycomb. The method can adequately take into

account the loading by considering the intersection of its symmetry group with the one of the initial

geometry at the beginning of the process. Authors believe that the predicted post-bifurcated buckling

modes of a given architectured material can be used as an input to homogenisation methods in order

to predict the behaviour of a full structure composed of such material. A first step in this direction has

been attempted in [33] where it has been found that a micromorphic model should be preferred over

strain-gradient models in order to take into account periodic bifurcation in the equivalent homogenised

model. Using the three modes of equibiaxial loading, a numerical micromorphic hmogenisation process

has been implemented and successfully captured the appropriate buckling modes [34].

Finally, in view of designing architectured material in a Material-by-design approach, the proposed

method introduces the design parameters at two separate stages as presented in Figure 1 b). As a

consequence, a specific design loop can assess material parameters at an intermediate stage of the

process thus making the new method perfectly suited for design applications. The loading being an

additional design parameter of its own to induce a given post-bifurcated pattern in an architectured

material, its precise definition is not needed in the current method and can be added as a separate

third stage in order to determine the first bifurcation point along the principal path.
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