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Branching Brownian motion versus Random Energy Model in the
supercritical phase: overlap distribution and temperature

susceptibility

Benjamin Bonnefont∗, Michel Pain† and Olivier Zindy‡

Abstract

In comparison with Derrida’s REM, we investigate the influence of the so-called decora-
tion processes arising in the limiting extremal processes of numerous log-correlated Gaussian
fields. In particular, we focus on the branching Brownian motion and two specific quan-
tities from statistical physics in the vicinity of the critical temperature. The first one is
the two-temperature overlap, whose behavior at criticality is smoothened by the decoration
process—unlike the one-temperature overlap which is identical—and the second one is the
temperature susceptibility, as introduced by Sales and Bouchaud, which is strictly larger in
the presence of decorations and diverges, close to the critical temperature, at the same speed
as for the REM but with a different multiplicative constant. We also study some general
decorated cases in order to highlight the fact that the BBM has a critical behavior in some
sense to be made precise.
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1 Introduction and results

1.1 Motivations

In order to shed some light on the mysteries of the Parisi theory for mean field spin glasses,
Derrida introduced in the 80’s the random energy models (REMs) [24], where the Gaussian
energy levels are assumed to be independent, and its generalizations, the generalized random
energy models (GREMs) [25], whose correlations are given by a tree structure of finite depth.
One question of central interest in spin glass theory is to understand the structure of pure states,
which translates into the analysis of the extremal process in the language of extreme value theory
of stochastic processes.

These two tractable models have been extensively studied and allowed, in particular, to
investigate the phenomenon of replica symmetry breaking. Indeed the REM seems to be the
foremost representative of a universality class: in spin glass terminology one may call this the
1-step replica symmetry breaking (1-RSB) class, or REM-class. More precisely, a spin glass
model displays a 1-RSB if there exists some critical βc > 0 such that, asymptotically, the
overlap between two points chosen independently according to the Gibbs measure at inverse
temperature β > 0 is concentrated at 0 for β ≤ βc, but is supported by 0 and 1, when β > βc.
This phenomenon is a consequence of the fact that the REM-class undergo what physicists refer
to as the REM-freezing transition: there is a phase transition for the free energy at some βc > 0
meaning that, for β ≤ βc, there is an exponentially large number of configurations, with energy
level strictly less than the extremes, contributing to free energy and the Gibbs measure is roughly
uniformly distributed among such configurations while, for β > βc, the relevant configurations
are the ones with the largest energies and the free energy becomes dominated by a relatively
small set of configurations. Another striking fact characterizing the REM-class is that, for
β > βc, the ordered weights of the pure states under the Gibbs measure at inverse temperature
β > 0 follow asymptotically a Poisson–Dirichlet distribution of parameter βc/β. We refer to
Bolthausen [11, 8] and Kistler [32] for surveys on the REMs, GREMs and connections to spin
glass theory. Finally, let us mention that, despite the simplicity of the freezing transition, rather
sophisticated models are known, or conjectured, to belong to the REM-class, such is the case
for the extremes of the Riemann zeta-function along the critical line, see Arguin [2] for a survey.

Natural hierarchical models with an infinite number of levels are the branching Brownian
motion (BBM) and the branching random walk (BRW), see e.g. the seminal paper by Derrida
and Spohn [27], who introduced directed polymers on trees (a BRW with i.i.d. displacements)
as an infinite hierarchical extension of the GREMs for spin glasses. Physicists suggested that
Gaussian BRW and BBM should belong to a universality class called log-correlated Gaussian
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fields, or log-REMs, which is in some sense a “subclass” of the REM-class. These models are
not necessarily hierarchical but admit correlations that decay approximately like the logarithm
of the inverse of the distance between index points. We refer to the works by Carpentier and Le
Doussal [18], Fyodorov and Bouchaud [29, 30] and Fyodorov & al [31] for connection between
log-REMs and spin glass theory. Furthermore, these processes play an essential role in Liouville
quantum gravity as well as models of three-dimensional turbulence or finance, see the review on
Gaussian Multiplicative Chaos by Rhodes and Vargas [44] for discussions.

Another line of research heavily relies on relations between log-REMs and traveling wave
equations of Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) type. Such a relation is exact for
a particular instance of log-REM: BBM mentioned above. Therefore BBM was studied over the
last 50 years as a subject of interest in its own right, with contributions by McKean [39], Bramson
[17, 14], Lalley and Sellke [34], Chauvin and Rouault [19, 20]. From the probabilistic point of
view, the full picture was recently obtained by Aïdékon & al [1] and Arguin & al [3] separately,
while Cortines & al [21, 22] obtained a third description of the decorations’ distribution. Indeed
it is now known that, in the thermodynamic limit, the extremal process tends to a randomly
shifted decorated Poisson point process (SDPPP), see [46] for a precise definition. Compared
with the Poisson point process which describes the extremes of the (uncorrelated) REM, the
decorations appearing here describe the internal structure of blocks of extreme values which share
a near ancestor, and thus are highly correlated. For instance, this confirms the observation made
by Bovier and Kurkova [13] that BBM is a particularly interesting example, lying right at the
borderline where correlations begin to influence the behavior of the extremes of the process.
Finally one can say that BBM is the prototype of hierarchical log-REMs and therefore will
naturally be the model of interest in this paper.

Let us also mention that another important and famous example of log-correlated Gaussian
fields is the two-dimensional discrete Gaussian Free Field (GFF),which possesses a complicated
(non-hierachical) structure of extreme values, but it turns out to be possible to compare it with
that of the branching random walk. By comparison to analoguous results for branching random
walks, many deep results have been recently established by Bolthausen, Deuschel and Giacomin
[9], Daviaud [23], Arguin and Zindy [4], Bolthausen, Deuschel and Zeitouni [10], Bramson and
Zeitouni [16], Bramson, Ding and Zeitouni [15], Biskup and Louidor [6, 7]. We refer to the
excellent notes by Biskup [5] for more details.

While from a probabilistic point of view, the difference between BBM and REM is perfectly
known, it is not the same when quantities from statistical physics are considered. Indeed it is
not clear when the decorations of the log-correlated models are felt at the level of the Gibbs
measure. For example, Bonnefont [12] recently proved for the BBM that the distribution of
the overlap between two points sampled independently according to Gibbs measures at different
temperatures is different than the REM’s one, while it is the same for both models if the two
points are sampled at the same temperature. This raises questions about the influence of these
decorations. Motivated by the recent work of Derrida and Mottishaw [26], one seeks to compare
both models by studying carefuly the overlap distribution in the neighborhood of the critical
temperature. Another quantity of interest is the notion of temperature susceptibility introduced
and studied for the REM (with exponentially distributed energies) by Sales and Bouchaud [45].

1.2 Definitions and some results

A probabilistic point of view. On one side, the (binary) branching Brownian motion (BBM)
is a branching Markov process defined on some general probability space (Ω,F ,P) as follows.
Initially, there is one single particle at the origin which moves according to a standard Brownian
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motion during an exponentially distributed time of parameter 1/21 and then splits into two
new particles. These new particles start the same process from their place of birth, behaving
independently of the others and the system goes on indefinitely. Let Lt denote the set of alive
particles at time t ≥ 0 and ht(x) the position of the particle x at time t. The position of the
highest particle has been studied by Bramson [17, 14] and Lalley and Sellke [34]. A new step
has recently been taken with the proof of the convergence of the extremal process in the space of
Radon measures on R endowed with the vague topology, to a randomly shifted decorated Poisson
point process. More precisely, Aïdékon et al. [1] and Arguin et al. [3] proved simultaneously that

∑
x∈Lt

δht(x)−t+ 3
2 log t−log(cdD∞)

(d)−−−→
t→∞

∑
i,j

δξi+dik , t→ +∞, (1.1)

for some positive constant cd > 0 and where D∞ := limt→+∞
∑
x∈Lt(t − ht(x)) eht(x)−t > 0

(almost-surely) is the limiting derivative martingale, ∑i≥1 δξi is a Poisson point process on R
with intensity measure e−x dx independent of (∑k≥0 δdik)i≥1, which are are i.i.d. copies of a point
process D on (−∞, 0] which has a.s. an atom at 0. The point process D is called decoration
process2.

On the other side, the REM of interest is defined as follows in order to be comparable to the
BBM introduced above: it consists of nt := bet/2c i.i.d. centered Gaussian random variables of
variance t, denoted by (gt(k) ; 1 ≤ k ≤ nt). It is well known that the extremal process for the
REM satisfies the following convergence in the space of Radon measures on R endowed with the
vague topology: ∑

1≤k≤nt
δgt(k)−t+ 1

2 log t−log c0

(d)−−−→
t→∞

∑
i

δξi , t→ +∞, (1.2)

for some numerical positive constant c0 > 0 and where again the (ξi)i≥1 are the atoms of a
Poisson point process on R with intensity measure e−x dx. We refer to Kistler [32] for a recent
survey on the REM.

Looking first at the convergences in Equations (1.1) and (1.2) allows to compare the BBM
and the REM from a probabilistic point of view: both model’s maxima share the same first
order t but the correlations for the BBM start to affect the second order, namely −3

2 log t for the
BBM is smaller than −1

2 log t for the REM. And finally Equations (1.1) and (1.2) also complete
the picture by telling that the limiting extremal process for the REM is a standard Poisson
point process while the BBM’s one is a randomly shifted decorated Poisson point process. The
additional ingredient for the BBM is mainly the decoration process, which describes the internal
structure of blocks of extremal particles sharing a near ancestor and thus highly correlated.

A statistical physics approach. In statistical physics, it is common to consider first the
partition function Zt,d(β) of the model, here the BBM (β stands for the inverse-temperature):

Zt,d(β) :=
∑
x∈Lt

eβht(x), ∀β > 0,

and the free energy
ft,d(β) := 1

t
logZt,d(β), ∀β > 0.

1This choice is made such that the critical inverse temperature introduced later in this article and denoted by
βc equals 1.

2We will also consider the case of general decoration processes, see Section 2.2 and use the same notation
(
∑

k≥0 δdik )i≥1. If the case of general decoration processes is studied, this will be specified, otherwise it is only
the BBM’s decoration process.
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It is well known, see [27], that the BBM exhibits a phase transition at the level of the free energy
and that this latter is the same as for the REM, namely

fd(β) := lim
t→∞

ft,d(β) =
{

1 + β2, if β < βc := 1,
2β, if β ≥ βc,

a.s. and in L1.

In particular, the model undergoes freezing above βc in the sense that the quantity f(β)/β is
constant. More importantly, one considers the Gibbs measure; this is the random probability
measure Gβ,t,d on Lt defined, at inverse temperature β > 0, by

Gβ,t,d(x) := eβht(x)

Zt,d(β) , ∀x ∈ Lt.

By design, the Gibbs measure concentrates at low temperature, i.e. when β > βc, on the high
points of the Gaussian field. With spin glasses in mind, one also considers the normalized
covariance or overlap

qt,d(x, y) := 1
t
E[ht(x)ht(y)] = 1

t
sup{s ≥ 0 : x, y share a common ancestor in Ls}, ∀x, y ∈ Lt.

A fundamental object, that records the correlations of high points, is the distribution function of
the overlap sampled from the Gibbs measure, i.e. Gβ,t,d⊗Gβ′,t,d(qt,d(u, v) ≥ a) for any a ∈ (0, 1),
where u (respectively v) is sampled according to Gβ,t,d (respectively Gβ′,t,d). Bonnefont [12]
recently proved that, if β ≤ βc or β′ ≤ βc, then Gβ,t,d⊗Gβ′,t,d(qt,d(u, v) ≥ a) tends to 0 in L1 for
all a ∈ (0, 1), while if β > βc and β′ > βc, then, for all a ∈ (0, 1),

Gβ,t,d ⊗ Gβ′,t,d(qt,d(u, v) ≥ a) (d)−−−→
t→∞

∑
i

(
eβξi∑k eβdik

)(
eβ′ξi∑k eβ′dik

)
(∑

i,k eβξieβdik
)(∑

i,k eβ′ξieβ′dik
) =: Qd(β, β′), (1.3)

where the (ξi)i and the (dik)i,k were introduced for the description of the limiting extremal
process of the BBM, see Equation (1.1). In other words, this result proves the convergence of the
pushforward of the measure Gβ,t,d⊗Gβ′,t,d on L2

t by the function qt,d, which is a random measure
on [0, 1]. The limit is either δ0 if β ∧ β′ ≤ βc, or (1−Qd(β, β′))δ0 +Qd(β, β′)δ1 otherwise. Note
that, when β > βc and β′ > βc, the random variables (eβξi∑k eβdik/∑j eβξj ∑k eβdjk)i≥1 are
the asymptotic weights of the clusters under Gβ,t,d, such that Qd(β, β′) is simply the probability
of choosing two points in the same cluster (when they are chosen proportionally to their Gibbs
weights with inverse temperature β and β′ respectively).

For the REM, the overlap is simply given by

qt(k, `) := 1
t
E[gt(k)gt(`)] = 1{k=`}, ∀ 1 ≤ k, ` ≤ nt,

and the Gibbs measure at inverse temperature β > 0 is defined by

Gβ,t(k) := eβgt(k)

Zt(β) , ∀ 1 ≤ k ≤ nt,

where Zt(β) := ∑
1≤k≤nt eβgt(k). Kurkova [33] proved that, if β ≤ βc or β′ ≤ βc, then Gβ,t ⊗

Gβ′,t(qt(u, v) ≥ a) tends to 0 in L1 for all a ∈ (0, 1), while if β > βc and β′ > βc, then, for all
a ∈ (0, 1),

Gβ,t ⊗ Gβ′,t(qt(u, v) ≥ a) (d)−−−→
t→∞

∑
i eβξieβ′ξi

(∑i eβξi)(∑i eβ′ξi) =: Q(β, β′).

It is well known that in the case β′ = β, the random variables Qd(β, β) and Q(β, β) have the
same distribution (see [42, Equation (1.2)] for more details). Therefore a natural question one
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may ask is whether Qd(β, β′) and Q(β, β′) still have the same distribution when β 6= β′ > βc.
Following the work by Pain and Zindy [42] for the two-dimensional discrete Gaussian free field,
Bonnefont [12] proved, for the BBM, that

Fd(β, β′) := E
[
Qd(β, β′)

]
< E

[
Q(β, β′)

]
=: F (β, β′), (1.4)

meaning that the answer is negative. In this paper, our aim is to study and compare the
functions β 7→ Fd(β, β′) and β 7→ F (β, β′), when β′ > βc is fixed. We will specially focus on
their behavior when β tends to β+

c .
Before introducing the second quantity of interest let us define, for any β > βc, the partition

functions associated with both limiting extremal processes

Z(β) :=
∑
i≥1

eβξi , Zd(β) :=
∑
i≥1

∑
k≥0

eβ(ξi+dik). (1.5)

Then, let us consider the correlation coefficient between the free energies at two temperatures,
introduced by Fisher and Huse [28] and given for both models by

C(β, β′) := Cov(logZ(β), logZ(β′))
σ(logZ(β))σ(logZ(β′)) , Cd(β, β′) := Cov(logZd(β), logZd(β′))

σ(logZd(β))σ(logZd(β′))
,

where σ(X) :=
√

Var(X). The susceptibility to temperature we are interested in is defined by
Sales and Bouchaud [45] as the coefficient κd(β) for the BBM and κ(β) for the REM such that

C(β, β + h) = 1− κ(β)h2 + o(h2), h→ 0,
Cd(β, β + h) = 1− κd(β)h2 + o(h2), h→ 0.

See Corollary 4.2 for a justification that this coefficient exists. Let us emphasize that Sales
and Bouchaud [45] work with a slightly different convention, which results in their temperature
susceptibility to equal κ(β)β2 with our notation.

Notation. Throughout the paper, C and c denote a positive constant that does not depend
on the parameters and can change from line to line. For f : (1,∞) → R and g : (1,∞) →
R∗+, we say, as β ↓ 1, that f(β) = o(g(β)) if limβ↓1 f(β)/g(β) = 0, that f(β) = O(g(β)) if
lim supβ↓1|f(β)|/g(β) < ∞, that f(β) ∼ g(β) if limβ↓1 f(β)/g(β) = 1 and that f(β) � g(β) if
0 < lim infβ↓1 f(β)/g(β) ≤ lim supβ↓1 f(β)/g(β) <∞.

1.3 Main results

Near-critical two-temperature overlap. Our first results concern the behavior of the mean
overlap F (β, β′) or Fd(β, β′) at two supercritical inverse temperatures β and β′. Recall from
Equation (1.4) that it has already been proved that Fd(β, β′) < F (β, β′). Our goal here is to
quantify this difference in the regime where β′ is fixed but β approaches the critical inverse
temperature βc = 1.

We start with the REM case. It is not hard to see that the function β 7→ F (β, β′) has an
infinite right-derivative at 1, see Remark 3.10. We establish a sharper estimate in the following
result.

Theorem 1.1 (REM case). For any β′ > βc = 1, as β ↓ 1,

F (β, β′) = (β − 1) log 1
β − 1 +O(β − 1).
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We compare this behavior to the one arising for the BBM. Surprisingly, the decorations have
the effect of smoothing the function β 7→ Fd(β, β′) at criticality: more precisely, Fd(β, β′) is of
order (β − 1) as β ↓ 1, as shown in the following result. It would be interesting to obtain an
asymptotic equivalent instead, which would prove that β 7→ Fd(β, β′) is right-differentiable at
β = 1, but this seems out of reach with the techniques used here.

Theorem 1.2 (BBM case). For any β′ > βc = 1,

0 < lim inf
β↓1

Fd(β, β′)
β − 1 ≤ lim sup

β↓1

Fd(β, β′)
β − 1 < +∞.

In order to shed some light on these different behaviors, we study in Section 3.1 the case of
general decoration processes D = ∑

k≥0 δdk . We do not state these results precisely here, some
of them having very technical assumptions, but rather give an informal description of some of
the conclusions:

• If the sum ∑
k≥0 eβdk has bounded (1 + ε)-moment as β ↓ 1, then the behavior of Fd(β, β′)

is the same as for the REM in Theorem 1.1, see Corollary 3.2.

• If the γ-th moment of the sum∑
k≥0 eβdk explodes like (β−1)−ψ(γ) as β ↓ 1, then different

behaviors appear depending on the value of ψ′(1) − ψ(1): the larger this value—in other
words, the more moments of ∑k≥0 eβdk are governed by rare events—the faster Fd(β, β′)
decreases as β ↓ 1. More precisely, when ψ′(1) − ψ(1) < 1, Fd(β, β′) is still of order
(β−1) log 1

β−1 like in the REM case, but possibly with another multiplicative constant. At
the critical value ψ′(1)−ψ(1) = 1, the first order constant vanishes and Fd(β, β′) becomes
of order (β − 1). Above the critical value, Fd(β, β′) decreases faster than (β − 1)1+η for
η > 0 in some explicit interval, see Corollary 3.5 for a precise statement.

It turns out that the BBM corresponds exactly to the critical case described in the second point.
This fact is a consequence of some fine properties of the decoration of the BBM, proved by
building upon results by Cortines, Hartung and Louidor [21, 22], who showed that the mean
of level sets of the decoration process is driven by rare events in which the decoration is much
bigger than its typical behavior. We believe that this should be the case of other models falling
in the log-correlated fields universality class, such as general branching random walks or the 2D
discrete Gaussian free field.

Temperature susceptibility. We now turn to results concerning the temperature suscep-
tibility. We first compute it explicitly for the REM in the supercritical phase and study its
asymptotic behavior close to the critical temperature, as well as in the low temperature regime.

Theorem 1.3 (REM case). For any β > βc = 1,

κ(β) = 1
2

 1
β2 − 1 + 6

π2β3(β + 1)

Γ′′
(
β−1
β

)
Γ
(
β−1
β

) −
Γ′

(
β−1
β

)
Γ
(
β−1
β

)
2− β2

(β2 − 1)2

 ,
and

κ(β) ∼
β↓1

( 3
2π2 −

1
8

) 1
(β − 1)2 , κ(β) ∼

β→+∞

( 6
π2 ζ(3)− 1

2

) 1
β5 .
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Remark 1.4. This question has already been studied in the physics literature by Sales and
Bouchaud [45] in the case of the REM with exponentially distributed energies. The formula
they obtain for κ(β) (see their appendix) does not seem to match the one above, but we are not
able to find the source of this discrepancy. In particular, the exponents appearing as β ↓ 1 and
β →∞ are different.

Then, we study the temperature susceptibility of the BBM. The following results shows
that it is strictly larger than the one of the REM and gives the behavior of the temperature
susceptibility close to the critical temperature, showing that it diverges at the same speed as
for the REM but with a different multiplicative constant. We do not investigate the behavior
at low temperature.

Theorem 1.5 (BBM case). For any β > βc = 1, one has κd(β) > κ(β). Moreover, we have
3

2π2 −
1
8 < lim inf

β↓1
(β − 1)2 κd(β) ≤ lim sup

β↓1
(β − 1)2 κd(β) ≤ 3

π2 −
1
8 .

As for the two-temperature overlap, we also investigate the general decorated case. Propo-
sition 4.5 shows that κd(β) can be written as the sum of κ(β) and a nonnegative term, which
is positive for most non-deterministic decoration processes. Showing that this additional term
is growing like (β − 1)−2 as β ↓ 1, in particular the lower bound, is the main task in the proof
of Theorem 1.5. In general, this term can be negligible w.r.t. (β − 1)−2 for “small enough”
decorations, and it can be much larger than (β − 1)−2 for “big enough” decorations. So again,
the BBM seems to belong to a critical window, even if here this critical window seems to include
more models than for the two-temperature overlap, see Example 4.6.

1.4 Organization of the paper

Section 2 includes preliminary results on the partition function of the REM, on a change of
measures used to study the decorated case and on the decoration process of the BBM. Section 3
is dedicated to the two-temperature overlap, including proofs of Theorems 1.1 and 1.2, as well
as results in more general decorated cases in Section 3.1. In Section 4, we investigate the
temperature susceptibility, proving Theorems 1.3 and 1.5. Appendix A contains the proof of
some results needed about the decoration process of the BBM throughout the paper.

2 Preliminaries

2.1 Properties of Z(β)
Recall that the partition function of the REM is given by Z(β) = ∑ eβξk where (ξk)k≥1 are
the atoms ranked in non-increasing order of a PPP(e−xdx). It will be convenient to use the
notation ηk := e−ξk because these are the atoms of a homogeneous Poisson point process on R+
and allows us to use the law of large numbers. Hence Z(β), can be rewritten

Z(β) =
∑
k≥1

η−βk , ∀β > 1. (2.1)

We first show that Z(β) has a stable distribution. We use the following convention: the stable
distribution Sα(c, s, µ)3 has a characteristic function given by

t 7→ exp{itµ− |ct|α(1− is sgn(t)Φ)}, where Φ =
{

tan
(
πα
2
)
, if α 6= 1,

− 2
π log |t|, if α = 1.

3Here we do not use β for the skewness parameter because the letter is used for the inverse temperature.
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Lemma 2.1. The Laplace transform of Z(β) is given, for any t ≥ 0, by

E
[
e−tZ(β)

]
= exp

{
−Γ
(
β − 1
β

)
t

1
β

}
.

In other words, the distribution of Z(β) is S1/β
((

Γ(1− 1
β ) cos π

2β
)β
, 1, 0

)
.

Proof. The formula for Laplace transforms of Poisson point processes applied to Equation (2.1)
gives

E
[
e−tZ(β)

]
= exp

{
−
∫ ∞

0
(1− e−tx−β ) dx

}
= exp

{
−Γ
(
β − 1
β

)
t

1
β

}
,

which is the Laplace transform of the desired stable law.

Lemma 2.2. For any β > 1 and any α > − 1
β ,

E
[
Z(β)−α

]
= Γ(αβ + 1)

Γ(α+ 1)Γ(β−1
β )αβ

.

Proof. For α > 0, this is proved by taking the expectation of

Z(β)−α = 1
Γ(α)

∫ ∞
0

tα−1e−tZ(β) dt,

and then applying Lemma 2.1. For −1/β < α < 0, we use instead the following representation

Z(β)−α = 1
Γ(1 + α)

∫ ∞
0

tαZ(β) e−tZ(β) dt,

and note that E[Z(β)e−tZ(β)] is obtained by differentiating E[e−tZ(β)] with respect to t.

The formula established in the previous lemma yields to the following moment estimates in
the regime β ↓ 1, which are used throughout the paper.

Corollary 2.3. Let α > −1. Then, as β ↓ 1,

E
[
Z(β)−α

]
= (β − 1)α

(
1 +O

(
(β − 1) log 1

β − 1

))
, (2.2)

E
[
Z(β)−α/β

]
= (β − 1)α(1 +O(β − 1)) , (2.3)

E
[
Z(β)−1/β log

(
Z(β)1/β

)]
= (β − 1) log 1

β − 1 +O(β − 1). (2.4)

Proof. The first two expansions are obtained by expanding the Gamma function in the formula
given by Lemma 2.2. For the third one, note that, for any β > 1 and α > −1/β, d

dαE[Z(β)−α] =
−αE[Z(β)−α logZ(β)].

The expansions in the previous corollary are governed by the fact that Z(β) concentrates
around 1/(β − 1) as β ↓ 1. More precisely, we have surprisingly the following almost sure
expansion.
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Lemma 2.4. When β ↓ 1, we have

Z(β) = 1
β − 1 + S + o(1), almost surely,

where S ∼ S1
(
π
2 , 1, 1− γ

)
and γ is the Euler constant.

Proof. With the Riemann ζ function defined by ζ(β) = ∑
k≥1

1
kβ
, one has

Z(β)− ζ(β) =
∑
k≥1

kβ − ηβk
kβηβk

.

If β ≤ 2, one has ∣∣∣kβ − ηβk ∣∣∣
kβηβk

≤
β
(
ηβ−1
k + kβ−1

)
|ηk − k|

kβηβk
≤ 5 |ηk − k|

k2 ,

for k large enough. This last term is summable since ηk = k+O(k 3
4 ) a.s. Hence, the dominated

convergence theorem (for series) implies that Z(β)− ζ(β) has an a.s. limit when β tends to 1.
The almost sure expansion follows from the fact that ζ(β) = 1

β−1 + γ + o(1) when β ↓ 1. Then,
computing the characteristic function enables to identify the limiting law: if t > 0, one has

E
[
eitZ(β)

]
= exp

{
−Γ
(
β − 1
β

)
cos π

2β t
1
β

(
1− i tan π

2β

)}
= exp

{
−Γ
(
β − 1
β

)
t

1
β e−i

π
2β

}
= exp

{
it

( 1
β − 1 − log(t) + 1− γ + i

π

2

)
+O(β − 1)

}
,

as β ↓ 1, therefore

E
[
eit
(
Z(β)− 1

β−1

)]
−→
β↓1

exp
{
it(1− γ)− π

2 t
(

1 + i
2
π

log t
)}

,

which is the expected characteristic function. The case t < 0 is similar.

Remark 2.5. These 1-stable fluctuations are reminiscent of some recent results on the BBM: such
fluctuations appear for the critical Gibbs measure [37, 38], as well as for the limiting extremal
process, when re-centered around a low position [41]. The result above shows that 1-stable
fluctuations already appear in the much simpler context of the extremal process of the REM.

2.2 Change of measure in the general decorated case

In the paper, we sometimes consider the general decorated case. This means that we work with
a limiting extremal process which is of the form∑

i≥1

∑
k≥0

δξi+dik ,

where the (ξi)i≥1 are the atoms of a PPP(e−x dx) independent of (∑k≥0 δdik)i≥1, which are i.i.d.
copies of a point process D = ∑

k≥0 δdk on (−∞, 0] which has a.s. an atom at 0, but we do
not assume that D is the decoration process of the BBM. In particular, for β, β′ > βc = 1 the
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limiting partition function Zd(β) is defined as in Equation (1.5) and the limiting mass at 1 of
the two-temperature overlap Qd(β, β′) is defined as in Equation (1.3).

Moreover, we set

Sβ :=
∑
k≥0

eβdk and Sβ,i :=
∑
k≥0

eβdik , ∀ i ≥ 1.

For β > 1, assuming E
[
S

1/β
β

]
<∞, we introduce a new probability measure Pβ such that

• the distribution of D under Pβ is characterized by

Eβ[F (D)] =
E
[
S

1/β
β F (D)

]
E
[
S

1/β
β

] , (2.5)

for any measurable bounded function F from the space of Radon measures on R to R;

• under Pβ, the (ξi)i≥1 are still the atoms of a Poisson point process on R with intensity
measure e−x dx independent of (∑k≥0 δdik)i≥1, which are i.i.d. copies of D under Pβ.

With this definition in hand, the following fact holds.

Lemma 2.6. Let β > 1. Assume E
[
S

1/β
β

]
<∞. Then, with cβ := logE

[
S

1/β
β

]
,∑

i≥0
δξi+ 1

β
logSβ,i ,

(∑
k≥0

δdik

)
i≥1

 under P (d)=

∑
i≥0

δξi+cβ ,

(∑
k≥0

δdik

)
i≥1

 under Pβ .

Proof. This can be obtained via a direct Laplace transform calculation, or as a consequence of
[43, Lemma 2.1] applied with ui = eβξi , m = 1/β, Xi = Sβ,i and Yi = ∑

k≥0 δdik .

As a consequence, we get the following simple distribution for the decorated partition func-
tion

Zd(β) :=
∑
i≥1

∑
k≥0

eβ(ξi+dik) =
∑
i≥1

eβξiSβ,i.

However, note that one cannot relate the joint distribution of (Zd(β), Zd(β′)) with the one
of (Z(β), Z(β′)) in such a way (otherwise the two-temperature overlap distribution would not
depend on the decoration).

Corollary 2.7. Let β > 1. Assume E
[
S

1/β
β

]
<∞. Then, under P,

Zd(β) (d)= E
[
S

1/β
β

]β
Z(β).

Proof. By Lemma 2.6, Zd(β) under P has the same distribution as eβcβZ(β) under Pβ. But
Z(β) has the same law under P and under Pβ, so the result follows.

Remark 2.8. When E[S1/β
β ] = ∞, one can show that Zd(β) = ∞ a.s. This follows for example

from the previous result applied to Sβ∧M and then lettingM →∞. Therefore, the assumption
that E[S1/β

β ] < ∞ for any β > 1 is a very minimalist one when working with the decorated
partition function.

11



2.3 The decoration of the BBM

A description of the decoration. In this section, we recall some results on the law of the
decoration point process

D =
∑
k≥0

δdk ,

appearing in the limit of the extremal process of the BBM. As mentioned in the introduction
(see Equation (1.1)), convergence of this extremal process has been established in [1] and [3],
which give two different descriptions of the law of D. However, we use here a third description
obtained in [21, Lemma 5.1], as well as several other results shown in this paper and its sequel
[22]. Note that the authors work with a BBM with branching rate 1 (instead of 1/2 for us here),
but that both processes have the same distribution up to a time-space scaling. In particular,
one can check that the decoration process C appearing in this case (branching rate 1) can be
related to D as follows:

C =
∑
k≥0

δdk/
√

2 .

For the sake of clarity, we give below the description of the law of C (instead of D) so that we
can work exactly in the same setting as [21] when we adapt some of their proofs.

We consider a BBM with a spine defined under a new probability measure P̃ as follows. It
starts with one particle at 0 at time 0 which is part of the spine. Particles along the spine
branch at rate 2 and move according to a standard Brownian motion. When they branch into
two particles, one of them, chosen uniformly at random, is part of the spine and the other one
starts a standard BBM with branching rate 1. We denote by Lt the set of particles alive at
time t, by Xt the particle at time t which is part of the spine, and by ht(x) for x ∈ Lt the
position of particle x at time t.

Moreover, we set
mt :=

√
2t− 3

2
√

2
log t ,

which is the position of the maximum of the BBM (with branching rate 1) at time t up to O(1)
fluctuations, and, for 0 < r ≤ t and x ∈ Lt,

Ct,r(x) :=
∑

y∈Lt : d(x,y)<r
δht(y)−ht(x) ,

where d(x, y) := inf{s ≥ 0 : x and y share a common ancestor in Lt−s}. For brevity, we intro-
duce the new probability measure

P̃t(·) := P̃
(
·
∣∣∣∣ ht(Xt) = max

x∈Lt
ht(x) = mt

)
, (2.6)

as well as
C∗t,rt := Ct,rt(Xt).

Then, for any positive function t 7→ rt such that both rt and t − rt tend to ∞ as t → ∞, [21,
Lemma 5.1] with u = 0 establishes that, for the vague convergence on the set of Radon measures
on R,

C∗t,rt under P̃t
(d)−−−→
t→∞

C under P. (2.7)

In their papers [21, 22], Cortines, Hartung and Louidor develop tools to study C∗t,rt under P̃t and
therefore obtain results on the distribution of C.
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Level sets of the decoration. Some of the main results in [21] concern the level sets of the
decoration point process itself. Recall that C is supported on (−∞, 0] and has a.s. an atom at 0.
In [21, Proposition 1.5], they prove the existence of constants C?, C > 0 such that

E
[
D([−

√
2x, 0])

]
= E[C([−x, 0])] ∼ C? e

√
2x, as x→∞, (2.8)

and, for any x ≥ 0,

E
[
D([−

√
2x, 0])2

]
= E

[
C([−x, 0])2

]
≤ C(x+ 1) e2

√
2x. (2.9)

Note also that, as a consequence of Equation (2.8), there exists C > 0 such that, for any x ≥ 0,

E
[
D([−

√
2x, 0])

]
= E[C([−x, 0])] ≤ C e

√
2x. (2.10)

As a consequence, Cortines, Hartung and Louidor deduce a law of large numbers for large level
sets of the whole limiting extremal process. This law of large numbers, as well as the 1-stable
fluctuations appearing at the next order, have been subsequently obtained via PDE techniques
by Mytnik, Roquejoffre and Ryzhik [41].

Remark 2.9. The second moment bound, see Equation (2.9), is actually of the right order,
as proved by Cortines, Hartung and Louidor in a second paper [22, Proposition 1.1], which
means that the first and second moments of C([−x, 0]) are dominated by an unlikely event, as
x→∞. This event already appeared in the proof of Equation (2.8) in [21], when working with
C∗t,rt([−x, 0]) under P̃t, before taking the limit t → ∞. It consists in the fact that the spine is
going sufficiently high at a time t − s with s of order x2, more precisely, it can be defined, for
some small η > 0 and large M > 0, as{

max
s∈[ηx2,η−1x2]

(ht−s(Xt−s)−mt +ms) ∈ [−M,M ]
}
, (2.11)

or in the same way but with [−M,∞) instead of [−M,M ]4. This event has a probability of order
1/x and, on this event, C∗t,rt([−x, 0]) is typically of order xe

√
2x. Moreover, it is the dominating

event in the first and second moments of C∗t,rt([−x, 0]) and this implies, up to multiplicative
constants, that

E
[
C∗t,rt([−x, 0])

]
' e
√

2x and E
[
C∗t,rt([−x, 0])2

]
' xe2

√
2x,

in accordance with Equations (2.8) and (2.9). See [22, Section 1.3] for a more detailed version
of this heuristic picture, which plays a crucial role in the arguments used in this paper for the
proofs of Theorems 1.2 and 1.5. We also mention here that the question of the typical size of
C([−x, 0]) has been investigated in the physics literature [40, 36], where it is conjectured that it
differs from e

√
2x by a stretched-exponentially small factor e−cx2/3 .

From these estimates on level sets of the decoration, we can deduce a first moment estimate
and a second moment bound for Sβ = ∑

k≥0 eβdk stated in the following proposition.

Proposition 2.10. Let C? > 0 be the constant appearing in Equation (2.8). As β ↓ 1, we have

E[Sβ] ∼ C?
β − 1 , (2.12)

and there exists a constant C > 0 such that, for any β ∈ (1, 2],

E
[
S2
β

]
≤ C

(β − 1)3 . (2.13)
4To see that both choices are roughly equivalent, note that, if ht−s(Xt−s) ' mt −ms + y, then the particles

branching from the spine around time s typically (under P̃) have descendants at time t close to mt + y. Hence,
the conditioning in the definition of P̃t implies that ht−s(Xt−s) cannot be much larger than mt −ms.
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Proof. We write Sβ =
∫∞

0 D([−x, 0])βe−βx dx. Therefore, by Fubini’s theorem and Equation
(2.8),

E[Sβ] =
∫ ∞

0
(C?ex + o(ex))βe−βxdx ∼

β↓1

C?
β − 1 .

Similarly, applying Fubini’s theorem and then Cauchy-Schwarz inequality together with Equa-
tion (2.9) yields

E
[
S2
β

]
=
∫ ∞

0

∫ ∞
0

E[D([−x, 0])D([−y, 0])]β2e−β(x+y)dxdy

≤ C
∫ ∞

0

∫ ∞
0

√
(x+ 1)(y + 1) ex+y β2e−β(x+y)dxdy

= C

(∫ ∞
0

√
x+ 1 ex βe−βxdx

)2
≤ C

(β − 1)3 ,

which concludes the proof.

Remark 2.11. As for the level sets of the decoration C (see Remark 2.9), the moments of Sβ are
governed by a rare event when β ↓ 1. Heuristically, everything behaves as if Sβ was of order 1
except on an event of small probability (β − 1) on which it is of order 1/(β − 1)2. This event
can be described when working on C∗t,rt (before taking the limit t→∞ in the description of the
decoration (2.7)) and is given by the event in Equation (2.11) with x = 1/(β−1). This heuristic
picture is consistent with Proposition 2.10 and also with the further results in Lemma 3.12 and
Corollary 3.13.

Corollary 2.12. Let C? > 0 be the constant appearing in Equation (2.8). As β ↓ 1, we have

E
[
S

1/β
β

]
∼ E

[
S

2−1/β
β

]
∼ C?
β − 1 .

Proof. This is a consequence of the following inequalities: for any real random variables X ≥ 1
and Y ≥ 0 and any ε ∈ (0, 1),

E[Y ]1+εE[XY ]−ε ≤ E
[
X−εY

]
≤ E[Y ] and E[Y ] ≤ E[XεY ] ≤ E[Y ]1−εE[XY ]ε, (2.14)

which follows on one side simply from the fact that X ≥ 1 and on the other side from Hölder’s
inequality. These inequalities with X = Y = Sβ and ε = 1− 1/β together with Proposition 2.10
yield the desired result.

To conclude this section we state two new results on level sets of the decoration. The first
one is a bound on cross-moments of level sets, which can be of independent interest. Its proof
is postponed to Section A.3.

Proposition 2.13. There exists C > 0 such that, for any v ≥ v′ ≥ 0,

E
[
C([−v, 0])C([−v′, 0])

]
≤ C(v′ + 1)e

√
2(v+v′).

The last result of this section is a uniform bound on the first and second moment of the level
sets at finite t, which follows from the proofs of Equations (2.8) and (2.9) in [21], as explained
in Section A.1.

Lemma 2.14. There exists C > 0 such that for any v ≥ 0 and t ≥ 1,

Ẽt
[
C∗t,rt([−v, 0])

]
≤ C e

√
2v,

Ẽt
[
C∗t,rt([−v, 0])2

]
≤ C(v + 1) e2

√
2v.
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3 Overlap distribution at two temperatures

3.1 Results in the general decorated case

We study here the influence of the decorations on the behavior of Fd(β, β′) = E[Qd(β, β′)], when
β′ > βc = 1 is fixed and β ↓ 1 and show that they can change the leading order drastically. We
work in the general decorated case (see Section 2.2) in order to highlight the fact that the BBM
has a critical behavior in some sense to be made precise below.

We assume that
E
[
S

1/β
β

]
<∞, ∀β > 1. (3.1)

Recall from Corollary 2.7 and Remark 2.8 that it is a necessary and sufficient condition to have
Zd(β) < ∞ almost surely. In particular, this ensures that Qd(β, β′), introduced in Equation
(1.3) and which can be written as

Qd(β, β′) =
∑
i e(β+β′)ξiSβ,iSβ′,i

(∑i eβξiSβ,i)
(∑

i eβ′ξiSβ′,i
) , (3.2)

is well-defined, and henceforth Fd(β, β′) as well.
In the following results, assumptions are stated in terms of the following random variables

Tβ :=
S

1/β
β

E
[
S

1/β
β

] , ∀β > 1.

Note that E[Tβ] = 1. The fact that the assumptions of the following results are stated in terms
of Tβ shows that the behavior of Fd(β, β′) as β ↓ 1 is not governed by the growth rate of E[S1/β

β ]
as β ↓ 1, but rather by how much S

1/β
β is fluctuating around its mean. In the forthcoming

assumptions, these fluctuations are controlled in terms of how fast E[T 1+ε
β ] explodes or E[T 1−ε

β ]
vanishes.

The first result concerns the case of weakly fluctuating decorations in which E[T 1+ε
β ] does

not explode too fast.

Theorem 3.1. Assume (3.1) and the following

(i) There exists α ∈ [0, 1] such that E[Tβ log Tβ] = (α+ o(1)) log 1
β−1 , as β ↓ 1.

(ii) There exists ε > 0 such that E[T 1+ε
β ] = O((β − 1)−ε), as β ↓ 1.

(iii) For any β′ > 1, E[Tβ log Tβ′ ] = O(1), as β ↓ 1.

Then, for any β′ > 1, as β ↓ 1,

Fd(β, β′) = (1− α+ o(1))(β − 1) log 1
β − 1 .

If moreover, we assume

(i’) There exists α ∈ [0, 1] such that E[Tβ log Tβ] = α log 1
β−1 +O(1), as β ↓ 1,

then, for any β′ > 1, as β ↓ 1,

Fd(β, β′) = (1− α)(β − 1) log 1
β − 1 +O(β − 1).
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Corollary 3.2. Assume there exists ε > 0 such that E[S1+ε
β ] = O(1), as β ↓ 1. Then, for any

β′ > 1, as β ↓ 1,
Fd(β, β′) = (β − 1) log 1

β − 1 +O(β − 1).

Proof. Noting that Tβ ≤ S1/β
β ≤ Sβ, log Tβ ≤ C T εβ and Sβ′ ≤ Sβ as soon as β ≤ β′, Assumptions

(i’)-(ii)-(iii) of Theorem 3.1 are satisfied with α = 0 and the result follows.

In the case α = 1, which we call the critical case, the previous theorem yields an upper
bound for Fd(β, β′), but does not identify the main order. The following result proves a lower
bound.

Theorem 3.3. Assume (3.1) and that there exists ε > 0 such that E[T 1+ε
β ] = O((β − 1)−ε), as

β ↓ 1. Then, for any β′ > 1,
lim inf
β↓1

Fd(β, β′)
β − 1 > 0.

Finally, we consider strongly fluctuating cases where Fd(β, β′) can vanish faster than (β−1),
as β ↓ 1. In that case, the function β 7→ Fd(β, β′) has a zero derivative at β = 1.

Theorem 3.4. Assume (3.1) and that there exists θ ∈ (0, 1) and η ≥ 0 such that

E
[
T 1−θ
β T θβ′

]
= O

(
(β − 1)θ+η

)
.

Then, for any β′ > 1, as β ↓ 1,

Fd(β, β′) = O
(
(β − 1)1+η

)
.

In the three theorems above, assumptions were stated exactly as we need them in the proof.
In the following corollary, we work instead under a more readable set of assumptions without
seeking any optimality. Recall that, for f : (1,∞) → R and g : (1,∞) → R∗+, we write f(β) �
g(β) if 0 < lim infβ↓1 f(β)/g(β) ≤ lim supβ↓1 f(β)/g(β) <∞.

Corollary 3.5. Assume there exist γ− < 1 < γ+ and a function ψ : (γ−, γ+) → [0,∞) such
that, for any γ ∈ (γ−, γ+),

E
[
Sγβ

]
� (β − 1)−ψ(γ), as β ↓ 1. (3.3)

Assume moreover that ψ is differentiable at 1. Then, the following holds, with all asymptotic
notation meant to hold as β ↓ 1.

(i) If ψ′(1) < ψ(1) + 1 and, for any β′ > 1, E[Sβ logSβ′ ] = O(E[Sβ]), then, setting α :=
ψ′(1)− ψ(1) ∈ [0, 1), we have, for any β′ > 1,

Fd(β, β′) ∼ (1− α)(β − 1) log 1
β − 1 .

(ii) If ψ′(1) = ψ(1) + 1, ψ is linear on a neighborhood of 1 and, for any β′ > 1, E[Sβ logSβ′ ] =
O(E[Sβ]), then, for any β′ > 1,

Fd(β, β′) � (β − 1).
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(iii) If ψ′(1) > ψ(1) + 1 and, for any γ ∈ (γ−, 1) and β′ > 1, E[SγβS
1−γ
β′ ] = O(E[Sγβ ]), then

η0 := sup
γ∈(γ−,1)

[ψ(1)γ − ψ(γ)− 1 + γ] > 0,

and, for any β′ > 1,
Fd(β, β′) ≤ (β − 1)1+η0+o(1).

Proof. Before distinguishing cases, we first make some general remarks. Firstly, for any γ ∈
(γ−, γ+), we have

E
[
S
γ/β
β

]
∼ E

[
Sγβ

]
� (β − 1)−ψ(γ), (3.4)

as a consequence of the first part of Equation (2.14) with X = Sγ0−γ
β , Y = Sγβ and ε =

γ(β − 1)/(β(γ0 − γ)) for some γ0 ∈ (γ, γ+). Secondly, recalling the definition of Pβ in Equation
(2.5), we have, for any h > 0,

E[Tβ logS1/β
β ] = 1

h

E[S1/β
β logSh/ββ ]

E[S1/β
β ]

= 1
h
Eβ[logSh/ββ ] ≤ 1

h
logEβ[Sh/ββ ] = 1

h
log

E[S(1+h)/β
β ]

E[S1/β
β ]

.

Similarly, we have

E[Tβ logS1/β
β ] = −1

h
Eβ[logS−h/ββ ] ≥ −1

h
logEβ[S−h/ββ ] = −1

h
log

E[S(1−h)/β
β ]

E[S1/β
β ]

.

By Assumption (3.3), we deduce the following inequalities, for any fixed h > 0 such that γ− <
1− h and 1 + h < γ+,

ψ(1)− ψ(1− h)
h

log 1
β − 1 +O(1) ≤ E[Tβ logS1/β

β ] ≤ ψ(1 + h)− ψ(1)
h

log 1
β − 1 +O(1). (3.5)

We now treat the different cases separately.

Part (i). First note that ψ′(1) ≥ ψ(1), as a consequence of the fact that E[Sγβ ] ≥ E[Sβ]γ
for any γ > 1. This implies α ≥ 0. We now check that the assumptions of Theorem 3.1 are
satisfied. First note that it follows from Equation (3.5) by letting h → 0 that E[Tβ logS1/β

β ] =
(ψ′(1)+o(1)) log 1

β−1 . Together with Equation (3.4), this shows Assumption (i). Then, Equation
(3.4) implies, for any ε ∈ (0, γ+ − 1),

E[T 1+ε
β ] � (β − 1)−ψ(1+ε)+(1+ε)ψ(1), (3.6)

so Assumption (ii) follows from ψ′(1) < ψ(1) + 1. Finally, Assumption (iii) follows from
E[Sβ logSβ′ ] = O(E[Sβ]), together with Equation (3.4) again. Therefore, the result follows
from Theorem 3.1.

Part (ii). We check again that the assumptions of Theorem 3.1 are satisfied. Since ψ is linear
in a neighborhood of 1, we have ψ(1 ± h) = ψ(1) ± hψ′(1) for h small enough and Equation
(3.5) implies E[Tβ logS1/β

β ] = ψ′(1) log 1
β−1 +O(1). Combining this with Equation (3.4), we get

Assumption (i’) with α = ψ′(1)−ψ(1) = 0. Assumption (ii) follows from Equation (3.6) and the
fact that ψ(1+ε)−(1+ε)ψ(1) = ε(ψ′(1)−ψ(1)) = ε, and Assumption (iii) is obtained as before.
Hence, Theorem 3.1 implies Fd(β, β′) = O(β − 1). But under these assumptions Theorem 3.3
can also be applied and yield the desired lower bound.
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Part (iii). The fact that η0 > 0 is a consequence of ψ′(1) > ψ(1) + 1. Now, for some fixed
η ∈ (0, η0), there exists γ ∈ (γ−, 1) such that ψ(1)γ − ψ(γ)− 1 + γ ≥ η. Then, with θ = 1− γ,
we have

E
[
T 1−θ
β T θβ′

]
=

E
[
S
γ/β
β S

(1−γ)/β
β′

]
E
[
S

1/β
β

]γ
E
[
S

1/β
β′

]1−γ ≤ E
[
SγβS

1−γ
β′

]
E
[
S

1/β
β

]γ = O

 E
[
Sγβ

]
E
[
S

1/β
β

]γ
,

using Sβ′ ≥ 1 in the inequality and then the assumption of Part (iii). Applying Equations (3.3)
and (3.4), we get

E
[
T 1−θ
β T θβ′

]
= O

(
(β − 1)−ψ(γ)+γψ(1)

)
= O

(
(β − 1)θ+η

)
,

by our choice of γ. Hence, we can apply Theorem 3.4 and get Fd(β, β′) = O((β − 1)1+η), which
proves the result.

Example 3.6. We introduce a family of decoration processes (Da,b)a,b>0 and study the behavior
of Fd(β, β′) for these cases. For a, b > 0, let Xa ≥ 1 be a random variable with law defined by

P(Xa ≥ x) = x−a, for x ≥ 1,

and let Da,b be a point process such that, conditionally on Xa, Da,b is the sum of a Dirac mass
at 0 and a Poisson point process with intensity |x|b−1e−x1x∈[−Xa,0] dx. This decoration is a toy
model of the decoration of the BBM when a = 1 and b = 2, see Remarks 2.9 and 2.11. We are
going to check that, for any β′ > 1, as β ↓ 1,

Fd(β, β′)



∼ (β − 1) log 1
β−1 , if b < a,

∼ (1− a)(β − 1) log 1
β−1 , if b > a and a < 1,

� (β − 1), if b > a = 1,
= O((β − 1)1+(a−1)(1−a

b
)+o(1)), if b > a > 1.

(3.7)

Note that one does not treat the case a = b, which do not fits in the theorems of this section.
In the last case, by taking for example b = 2a large enough, one can have Fd(β, β′) vanishing
faster than any power of (β − 1).

Let (dk)k≥0 be the atoms of Da,b ranked in decreasing order (with the convention dk = −∞
when there are no atoms left). One has

Sβ =
∑
k≥0

eβdk = 1 +
∫ Xa

0
xb−1e−(β−1)xdx︸ ︷︷ ︸

=:Rβ

+
∑
k≥1

eβdk −
∫ Xa

0
xb−1e−(β−1)xdx

︸ ︷︷ ︸
=:Vβ

.

One can check that E[V 2
β ] remains bounded when β ↓ 1, so we focus on the behavior of Rβ. Let

us write

Rβ = 1
(β − 1)b

∫ (β−1)Xa

0
ub−1e−udu = 1

hb
G(hXa),

where h := β − 1 and G(x) :=
∫ x

0 u
b−1e−udu. Then, if γ > 0, one has

E[Rγβ] = 1
hbγ

∫ ∞
1

G(hx)γ adx
xa+1 = a

hbγ−a

∫ ∞
h

G(t)γ
ta+1 dt.
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Using the fact that G is bounded and G(t) ∼ tb/b when t → 0, one gets, up to constants
C = C(a, b, γ),

E[Rγβ] ∼
β↓1


Cha−bγ , if bγ > a,

C log 1
h , if bγ = a,

C, if bγ < a.

Let us write ‖Y ‖γ := E[|Y |γ ]1/γ , for any γ > 0. One has

‖Rβ‖γ − ‖1 + Vβ‖γ ≤ ‖Sβ‖γ ≤ ‖Rβ‖γ + ‖1 + Vβ‖γ ,

which extends the previous results to Sβ when γ ≤ 2 using that E[V 2
β ] = O(1):

E[Sγβ ] �
β↓1


ha−bγ , if bγ > a,

log 1
h , if bγ = a,

1, if bγ < a.

Note that, if b < a, then there exists γ > 1 such that E[Sγβ ] = O(1), so the first part of (3.7)
follows from Corollary 3.2.

So we now focus on the case b > a. Then, we have E[Sγβ ] � (β − 1)−ψ(γ) with ψ(γ) = bγ − a
for γ ∈ (a/b, 2]. We want to apply Corollary 3.5 noting that ψ′(1)− ψ(1) = a. For this we first
prove that, for any β′ > 1 and γ ∈ (0, 1], as β ↓ 1,

E
[
SγβSβ′

]
= O

(
E
[
Sγβ

])
. (3.8)

To see this, we first use subadditivity of x 7→ xγ to get

E
[
SγβSβ′

]
≤ E

[(
1 +Rγβ + |Vβ|γ

)(
1 +Rβ′ +

∣∣Vβ′ ∣∣)] ≤ C(1 + E
[
Rγβ

]
+ E

[
Rγβ ·

∣∣Vβ′ ∣∣]),
where C = C(a, b, β′) and we used E[V 2

β ] ≤ C and Rβ′ ≤ C. Then, we bound

E
[
Rγβ ·

∣∣Vβ′ ∣∣] = E
[
Rγβ E

[
|Vβ′ |

∣∣Xa
]]
≤ E

[
Rγβ E

[
V 2
β′

∣∣∣Xa

]1/2]
≤ CE

[
Rγβ

]
.

Since E
[
Rγβ

]
� E

[
Sγβ

]
, this implies Equation (3.8). In particular, this proves E[Sβ logSβ′ ] ≤

E[SβSβ′ ] = O(E[Sβ]), so we can apply Corollary 3.5.(i) if a < 1 and Corollary 3.5.(ii) if a = 1
to get the second and third parts of Equation (3.7). On the other hand, Equation (3.8) implies
E[SγβS

1−γ
β′ ] = O(E[Sγβ ]) for γ ∈ (0, 1], so we can apply Corollary 3.5.(i) if a > 1, with

η0 = sup
γ∈(a/b,1)

[(b− a)γ − (bγ − a)− 1 + γ] = (a− 1)
(

1− a

b

)
,

which yields the fourth part of Equation (3.7).

3.2 Some tools for the proofs

The starting point for the proof of the results stated in the previous section is the following
expression for Fd(β, β′).
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Lemma 3.7. Let β, β′ > 1. Define

R = R(β, β′) :=
(
Zd(β)
Sβ

)1/β( Sβ′

Zd(β′)

)1/β′

.

Then, we have

Fd(β, β′) = E
[(

Sβ′

Zd(β′)

)1/β′ ∫ ∞
0

dx
(1 + (Rx)β)(1 + xβ′)

]
.

Proof. Starting from Equation (3.2) and recalling that ηk = e−ξk , we get

F (β, β′) = E

∑
k≥1

η
−(β+β′)
k Sβ,kSβ′,k

1(
η−βk Sβ,k +∑

j 6=k η
−β
j Sβ,j

)(
η−β

′

k Sβ′,k +∑
j 6=k η

−β′
j Sβ′,j

)


=
∫

(R+)3
E
[
x−(β+β′)ss′

1
(x−βs+ Zd(β))(x−β′s′ + Zd(β′))

]
dx dν(s, s′),

where ν denotes the law of (Sβ, Sβ′) and one applied Palm formula (see Proposition 3.8 stated
below) to the Poisson point process∑i δ(ηi,Sβ,i,Sβ′,i) on (R+)3, which has intensity dx⊗dν(s, s′).
Using Fubini’s theorem together with the fact that (Sβ, Sβ′) is independent of (Zd(β), Zd(β′))
yields

Fd(β, β′) = E
[∫ ∞

0

dx
(1 + xβZd(β)/Sβ)(1 + xβ′Zd(β′)/Sβ′)

]
.

Then the result follows from an obvious change of variable.

Proposition 3.8 (Palm formula, see Theorem 4.1 in [35]). Let Π be a PPP(µ) where µ is a
non-zero σ-finite positive measure on R. Let M denote the set of Radon measures on R and
f : R×M→ R be a positive mesurable function. Then, we have

E

∑
X∈Π

f(X,Π \ {X})

 =
∫
R
E[f(x,Π)]µ(dx) .

We now study the integral appearing in Lemma 3.7 in a deterministic fashion.

Lemma 3.9. Let β′ ≥ β > 1. For r ≥ 0, we set

I(r) :=
∫ ∞

0

dx
(1 + (rx)β)(1 + xβ′) .

(i) For any r ≥ 0, 0 ≤ I(r) ≤ C(β′), where C(β′) denotes a constant depending only on β′.

(ii) For any r ≥ 1, ∣∣∣∣I(r)− log r
r

∣∣∣∣ ≤ 4
r

+ (β − 1) log2 r

2r .

(iii) For any δ ∈ (0, 1) there exists C(β′, δ), depending only on β′ and δ such that, for any
r > 0, ∣∣∣∣I(r)− log r

r

∣∣∣∣ ≤ C(β′, δ)
(1
r

+ (β − 1)
r1−δ + 1

r1+δ

)
.

(iv) For any r ≥ 0, I(r) ≥ 1
4(1 ∧ 1

r ).
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(v) For any δ ∈ (0, 1), there exists C(β′, δ) depending only on β′ and δ such that, for any
r > 0, I(r) ≤ C(β′, δ)rδ−1.

Proof. Part (i). The fact that I(r) is nonnegative is trivial and the upper bound follows from
the inequality I(r) ≤

∫∞
0

dx
1+xβ′ .

Part (ii). We first split I(r) into three pieces, keeping the central part as the main one:∣∣∣∣∣I(r)−
∫ 1

1/r

dx
(1 + (rx)β)(1 + xβ′)

∣∣∣∣∣ ≤
∫ 1/r

0
dx+

∫ ∞
1

dx
rβxβ+β′ ≤

2
r
,

using 1/rβ ≤ 1/r (recall that r is assumed to be larger than 1). We now focus on the integral
from 1/r to 1. Using that for any u, u′ > 0,∣∣∣∣ 1

(1 + u)(1 + u′) −
1
u

∣∣∣∣ = 1 + u′ + uu′

u(1 + u)(1 + u′) ≤
1
u2 + u′

u
,

we get ∣∣∣∣∣
∫ 1

1/r

dx
(1 + (rx)β)(1 + xβ′) −

∫ 1

1/r

dx
(rx)β

∣∣∣∣∣ ≤
∫ ∞

1/r

dx
(rx)2β +

∫ 1

0

xβ
′ dx

(rx)β ≤
2
r
.

Finally, note that ∫ 1

1/r

dx
(rx)β = rβ−1 − 1

rβ(β − 1) = 1− e−(β−1) log r

r(β − 1) ,

which yields Part (ii) using
∣∣1− e−t − t

∣∣ ≤ t2/2.
Part (iii). For r ≥ 1, we apply Part (ii) and use that log2 r ≤ C(δ)rδ. For r ∈ (0, 1), we

write ∣∣∣∣I(r)− log r
r

∣∣∣∣ ≤ I(r) + |log r|
r
≤ C(β′) + C(δ)

r1+δ ,

using Part (i), and then, using 1 ≤ 1/r for the first term on the right-hand side proves Part (iii).
Part (iv). For x ∈ [0, 1 ∧ 1

r ], we have (1 + (rx)β)(1 + xβ
′) ≤ 4. So keeping only this part of

the integral yields Part (iv).
Part (v). This follows from Part (i) if r ∈ (0, 1], and from Part (ii) if r ≥ 1.

3.3 Proof of the general theorems

In this section, we prove Theorems 3.1, 3.3 and 3.4.

Proof of Theorem 3.1. Applying Lemma 3.7 and Lemma 3.9.(iii) we get, for some fixed δ ∈ (0, 1)
to be chosen small enough later,

Fd(β, β′) = E
[(

Sβ′

Zd(β′)

)1/β′ logR
R

]
+O

(
E
[(

Sβ′

Zd(β′)

)1/β′( 1
R

+ (β − 1)
R1−δ + 1

R1+δ

)])
=: E0 +O(E1 + E2 + E3). (3.9)

We estimate these four terms successively, in increasing order of difficulty.
Term E1. Using the definition of R and then Corollary 2.7 together with the independence

of Sβ and Zd(β), we get

E1 = E
[(

Sβ
Zd(β)

)1/β
]

= E
[
Z(β)−1/β

]
∼ β − 1, (3.10)
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by Equation (2.3).

Term E3. We use first the definition ofR and the independence of (Sβ, Sβ′) and (Zd(β), Zd(β′)),
and then Sβ′ ≥ 1 and Cauchy–Schwarz inequality to get

E3 = E

S(1+δ)/β
β

S
δ/β′

β′

E[ Zd(β′)δ/β
′

Zd(β)(1+δ)/β

]
≤ E

[
S

(1+δ)/β
β

]
E
[
Zd(β′)2δ/β′

]1/2
E
[ 1
Zd(β)2(1+δ)/β

]1/2
.

Using Corollary 2.7, Lemma 2.2 and E[S1/β′
β′ ] < ∞, we get E[Zd(β′)2δ/β′ ] = O(1) as soon as

δ < 1/2. Therefore, by Corollary 2.7 and Equation (2.3),

E3 = O

E[S(1+δ)/β
β

]
· (β − 1)1+δ

E[S1/β
β ]1+δ

 = O(β − 1), (3.11)

by Assumption (ii) as soon as δ ≤ ε. Indeed, if Assumption (ii) holds for some ε > 0 then, for
any δ ∈ (0, ε] it holds with δ replacing ε by Hölder’s inequality5.

Term E2. We proceed as for E3, using Cauchy–Schwarz inequality to bound the second
expectation below:

E2 = (β − 1)E
[
S

(1−δ)/β
β S

δ/β′

β′

]
E
[
Zd(β′)−δ/β

′

Zd(β)(1−δ)/β

]
= O

E[S(1−δ)/β
β S

δ/β′

β′

]
· (β − 1)2−δ

E[S1/β
β ]1−δ

.
Using E[X1−δY δ] ≤ E[X]1−δE[Y ]δ with X = S

1/β
β and Y = S

1/β′
β′ yields E2 = O(β − 1).

Term E0. We split this term into three parts:

E0 = E

( Sβ
Zd(β)

)1/β
log Zd(β)1/β

S
1/β
β

+ 1
β′

logSβ′ −
1
β′

logZd(β′)

 =: E00 + E01 − E02,

where E00 is the main term. By Corollary 2.7, we get

E00 = E
[

logZ(β)1/β

Z(β)1/β

]
− E

[
Z(β)−1/β

]
E

 S
1/β
β

E[S1/β
β ]

log
S

1/β
β

E[S1/β
β ]

.
Then, using Equations (2.4) for the first term and Equation (2.3) together with Assumption (i)
or (i’) for the second one, we get

E00 =

(1− α+ o(1))(β − 1) log 1
β−1 under Assumption (i),

(1− α)(β − 1) log 1
β−1 +O(β − 1) under Assumption (i’).

On the other hand, we have E01 = O(β − 1) by Corollary 2.7 together with Equation (2.3) and
Assumption (iii) (note that it implies E[Tβ logSβ′ ] = O(1)). Finally, we have

E02 = 1
β′
E
[
S

1/β
β

]
E
[ logZd(β′)
Zd(β)1/β

]
= O

(
E
[
log2

(
Z(β′)E

[
S

1/β′
β′

])]1/2
E
[
Z(β)−2/β

]1/2)
,

using Cauchy–Schwarz inequality and Corollary 2.7. The first expectation on the right-hand
side is a O(1) so Equation (2.3) implies E02 = O(β − 1). This concludes the proof.

5More precisely this follows from the inequality E[T 1+δ
β ] ≤ E[T 1+ε

β ]δ/εE[Tβ ](ε−δ)/ε = E[T 1+ε
β ]δ/ε.
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Proof of Theorem 3.3. Applying Lemma 3.7 and Lemma 3.9.(iv), we get

Fd(β, β′) ≥
1
4E
[(

Sβ′

Zd(β′)

)1/β′(
1 ∧ 1

R

)]
= 1

4E
[(

Sβ′

Zd(β′)

)1/β′

∧
(

Sβ
Zd(β)

)1/β
]
. (3.12)

Moreover, for any a, b, δ > 0 and M > 1, we have

a ∧ b ≥ (Ma) ∧ b
M

≥ b

M
1b≤Ma = 1

M
(b− b1b>Ma) ≥

1
M

(
b− b1+δ

(Ma)δ

)
.

Applying this to (3.12) yields, for any δ > 0 and M > 1,

Fd(β, β′) ≥
1

4M

E[( Sβ
Zd(β)

)1/β
]
− 1
M δ

E

(Zd(β′)
Sβ′

)δ/β′(
Sβ

Zd(β)

)(1+δ)/β
. (3.13)

The first expectation in Equation (3.13) equals the term E1 appearing in the proof of Theorem
3.1, and hence is asymptotically equivalent to β−1, see Equation (3.10). The second expectation
equals the term E3 and so is a O(β − 1) if δ ≤ 1

2 ∧ ε with ε given by the assumption of the
theorem. Choosing M large enough, the first expectation dominates and the result follows.

Proof of Theorem 3.4. Let θ ∈ (0, 1) be given by the assumption of the theorem. Applying
Lemma 3.7 and Lemma 3.9.(iii) with δ = θ, we get

Fd(β, β′) = O

(
E
[(

Sβ′

Zd(β′)

)1/β′ 1
R1−θ

])
= O

(
E
[
S

(1−θ)/β
β S

θ/β′

β′

]
E
[
Zd(β′)−θ/β

′

Zd(β)(1−θ)/β

])
, (3.14)

using the definition of R and the independence of (Sβ, Sβ′) and (Zd(β), Zd(β′)). By Cauchy–
Schwarz inequality and Corollary 2.7,

E
[
Zd(β′)−θ/β

′

Zd(β)(1−θ)/β

]
≤

E
[
Z(β′)−2θ/β′

]1/2
E
[
S

1/β′
β′

]θ E
[
Z(β)−2(1−θ)/β

]1/2
E
[
S

1/β
β

]1−θ = O

 (β − 1)1−θ

E
[
S

1/β′
β′

]θ
E
[
S

1/β
β

]1−θ
,

by Equation (2.3). Coming back to Equation (3.14) and applying the assumption of the theorem
concludes the proof.

3.4 The REM case

First note that Theorem 1.1 is simply a particular case of Corollary 3.2.

Proof of Theorem 1.1. For the REM, Sβ = 1 so the result follows from Corollary 3.2.

In this subsection, we add some comments and further results concerning the REM case.

Remark 3.10. It follows from Lemma 2.4 that a.s., as β ↓ 1,

Q(β, β′) = Z(β + β′)
Z(β)Z(β′) ∼

Z(1 + β′)
Z(β′) (β − 1),

proving that the function Q( · , β′) is almost surely right differentiable at 1. On the other hand,
Theorem 1.1 implies that F ( · , β′) = E[Q( · , β′)] has an infinite right-derivative at 1. There
is however a simple way to show this, without aiming for the first order of F (β, β′) as β ↓ 1:
indeed, using Fatou’s lemma,

lim inf
β↓1

F (β, β′)
β − 1 ≥ E

[
lim inf
β↓1

Q(β, β′)
β − 1

]
= E

[
Z(1 + β′)
Z(β′)

]
,

and it is not hard to see that this last expectation is infinite using Palm formula.
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We have seen in the previous remark that, as β ↓ 1, Q(β, β′) is of order β−1, but Theorem 1.1
shows that E[Q(β, β′)] is much larger. Hence, the expectation is dominated by an unlikely event,
in which the highest point in the extremal process is exceptionally high, more precisely at a
position of order log 1

β−1 , but not higher than log 1
β−1 , as proved in the following proposition.

Proposition 3.11. Let ε > 0 and

Eβ :=
{
ξ1 ∈

[
ε log 1

β − 1 , log 1
β − 1

]}
.

Then, as β ↓ 1,
E
[
Q(β, β′)1Ec

β

]
≤ ε(β − 1) log 1

β − 1 +O(β − 1).

Proof. On the one hand, noting that Q(β, β′) ≤ 1, we have

E
[
Q(β, β′)1{ξ1>log 1

β−1}

]
≤ P

(
ξ1 > log 1

β − 1

)
= 1− exp

{
−
∫ ∞

log 1
β−1

e−x dx
}

= O(β − 1).

On the other hand, recalling that ηk = e−ξk for all k ≥ 1,

E
[
Q(β, β′)1{ξ1<ε log 1

β−1}

]
≤ E

∑
k≥1

η
−(β+β′)
k 1{ηk>(1−β)ε}

1(
η−βk +∑

j 6=k η
−β
j

)(
η−β

′

k +∑
j 6=k η

−β′
j

)


= E
[∫ ∞

(1−β)ε

dx
(1 + xβZ(β))(1 + xβ′Z(β′))

]
,

by Palm’s formula as in the proof of Lemma 3.7. This is at most

E
[∫ 1

(1−β)ε

dx
xβZ(β) +

∫ ∞
1

dx
xβ+β′Z(β)Z(β′)

]
≤ E

[
Z(β)−1

]
ε log 1

β − 1 + E
[
Z(β)−1Z(β′)−1

]
= ε(β − 1) log 1

β − 1 +O(β − 1),

using Cauchy–Schwarz inequality for the second term and then Lemma 2.2 and Equation (2.2)
to estimate the two expectations.

3.5 The BBM case

In this section, we work in the BBM case and prove Theorem 1.2 as an application of The-
orems 3.1 and 3.3. In order to check the assumptions of these theorems, we first prove the
following upper bounds for small moments of Sβ. Only the case γ ∈ (1/2, 1) is useful for our
purposes, but the other bounds follow from the same proof, so we include them as well. In partic-
ular, by the monotone convergence theorem, this shows that the random variable S1 = ∑

k≥0 edk
is in Lγ for γ ∈ (0, 1/2) and therefore is finite a.s. for the BBM.

Lemma 3.12 (BBM case). For any γ ∈ (0, 1), there exists C = C(γ) > 0 such that, for any
β ∈ (1, 2],

E
[
Sγβ

]
≤


C(β − 1)1−2γ , if γ ∈ (1/2, 1),
C log 1

β−1 , if γ = 1/2,
C, if γ ∈ (0, 1/2).
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Proof. We postpone most of the work to Lemma A.7. With this result in hand, setting fβ(x) =
eβ
√

2x, we have Sβ = C(fβ) and therefore it is enough to show

E[C(fβ)γ ] ≤ lim sup
t→∞

Ẽt
[
C∗t,rt(fβ)γ

]
. (3.15)

To see this, we consider, for K > 0, a continuous function χK such that 1[−K,K] ≤ χK ≤
1[−(K+1),K+1]. On the one hand, it follows from the vague convergence stated in Equation (2.7)
that C∗t,rt(χKfβ) under P̃t converges in distribution to C(χKfβ) under P. On the other hand, we
have C∗t,rt(χKfβ)γ ≤ eγβ

√
2(K+1)C∗t,rt([−(K+1), 0])γ , which is bounded in L2 by Lemma 2.14. So

C∗t,rt(χKfβ)γ is uniformly integrable in t and we get

E[C(χKfβ)γ ] = lim
t→∞

Ẽt
[
C∗t,rt(χKfβ)γ

]
≤ lim sup

t→∞
Ẽt
[
C∗t,rt(fβ)γ

]
.

Applying the monotone convergence theorem to letK →∞ on the left-hand side yields Equation
(3.15) and concludes the proof.

We note in the following corollary that combining the estimates from Proposition 2.10 and
Lemma 3.12, we get the order of E[Sγβ ] for any γ ∈ (1/2, 2].

Corollary 3.13. For any γ ∈ (1/2, 2], there exists 0 < c < C such that, for any β ∈ (1, 2],

c(β − 1)1−2γ ≤ E
[
Sγβ

]
≤ C(β − 1)1−2γ .

Proof. The result holds for γ = 1 by Proposition 2.10. The upper bound holds for γ ∈ (1/2, 1)
by Lemma 3.12 and for γ = 2 by Proposition 2.10. For γ ∈ (1, 2), the upper bound then follows
from Hölder’s inequality:

E
[
Sγβ

]
≤ E[Sβ]2−γE[S2

β]γ−1.

It remains to prove the lower bound for γ ∈ (1/2, 2] \ {1}. If γ ∈ (1/2, 1), it follows from this
consequence of Hölder’s inequality

E
[
Sγβ

]
≥ E[Sβ]2−γ

E[S2
β]1−γ ,

together with the lower bound on E[Sβ] and the upper bound on E[S2
β]. If γ ∈ (1, 2], it follows

from from this consequence of Hölder’s inequality, for some γ0 ∈ (1/2, 1) (γ0 = 3/4 for example),

E
[
Sγβ

]
≥ E[Sβ](γ−γ0)/(1−γ0)

E[Sγ0
β ](γ−1)/(1−γ0) .

together with the lower bound on E[Sβ] and the upper bound on E[Sγ0
β ].

Proof of Theorem 1.2. We prove that the decoration of the BBM satisfies the assumptions of
Corollary 3.5.(ii). Assumption (3.3) has been checked in Corollary 3.13, with ψ(γ) = 2γ − 1 for
γ ∈ (1/2, 2). In particular, we have ψ′(1) = 2 = ψ(1)+1 and ψ is linear on a right-neighborhood
of 1. It remains to check that, for any β′ > 1, as β ↓ 1, E[Sβ logSβ′ ] = O(E[Sβ]). To prove this,
note that

E[Sβ logSβ′ ] ≤ E[SβSβ′ ] = ββ′
∫ ∞

0

∫ ∞
0

E[D([−x, 0])D([−y, 0])]e−βxe−β′y dx dy

≤ Cββ′
∫ ∞

0

∫ ∞
0

((x ∧ y) + 1)ex+ye−βxe−β′y dx dy,

where we used Proposition 2.13. Integrating first w.r.t. y and then w.r.t. x, it follows that
E[Sβ logSβ′ ] = O( 1

β−1), which is enough since E[Sβ] ∼ C?/(β − 1) by Proposition 2.10.
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4 Temperature susceptibility

4.1 A first formula for κd

We work here in the general decorated case (see Section 2.2) to prove a first formula for the
susceptibility, which is useful for both the REM and the BBM. Recall that we consider

Cd(β, β + h) = Cov(logZd(β), logZd(β + h))
σ(logZd(β))σ(logZd(β + h)) (4.1)

and define the susceptibility in temperature, if it exists, as the coefficient κd(β) such that

Cd(β, β + h) = 1− κd(β)h2 + o(h2), h→ 0. (4.2)

The main technical tool to prove existence of κd(β) is the following lemma.

Lemma 4.1. Assume that E[Sβ] <∞, for every β > 1. Then, for any β′ > 1, the functions

β ∈ (1,∞) 7→ f1(β) := E
[
logZd(β′) logZd(β)

]
,

β ∈ (1,∞) 7→ f2(β) := E
[
log2 Zd(β)

]
,

β ∈ (1,∞) 7→ f3(β) := E[logZd(β)],

are of class C2 and their first and second derivatives are given by taking the derivative under E.

Proof. Let us write
Zd(β) = eβξ1

∑
k≥1

eβEk ,

where (Ek)k≥1 is the decreasing reordering of {ξi + di,j − ξ1 ; i, j}. Note that E1 = 0 and rewrite
f1 as

f1(β) = E
[
logZd(β′) log

(
eβξ1

∑
eβEk

)]
= β E

[
ξ1 logZd(β′)

]
+ E

[
logZd(β′) log

∑
eβEk

]
.

Thus f1 is C1 with

f ′1(β) = E
[
ξ1 logZd(β′)

]
+ E

[
logZd(β′)

∑
Ek eβEk∑ eβEk

]
,

since, for any given β1 > 1, one has, for all β > β1,∣∣∣∣∣logZd(β′)
∑
Ek eβEk∑ eβEk

∣∣∣∣∣ ≤ ∣∣logZd(β′)
∣∣∑ |Ek| eβ1Ek∑ eβ1Ek

,

and those two last terms have finite second moments. The first one because logZd(β′) has the
same law as logZ(β) up to translation and the second one since(∑

|Ek| eβ1Ek∑ eβ1Ek

)2

≤
∑
E2
k eβ1Ek∑ eβ1Ek

≤
∑

E2
k eβ1Ek ≤ C

∑
eβ2Ek ,
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for some β2 ∈ (1, β1) and C > 0. For the second derivative, one has

f ′′1 (β) = E

logZd(β′)

∑E2
k eβEk∑ eβEk −

(∑
Ek eβEk∑ eβEk

)2
,

since, for any given β1 > 1, one has, for all β > β1,∣∣∣∣∣∣logZd(β′)

∑E2
k eβEk∑ eβEk −

(∑
Ek eβEk∑ eβEk

)2
∣∣∣∣∣∣ ≤ ∣∣logZd(β′)

∣∣∑E2
k eβ1Ek∑ eβ1Ek

,

which has again finite expectation with the same reasoning as above. One can then check that
the first and second derivatives are the same than the ones obtained by derivating under E. The
computations are very similar for f2 and f3, the only extra argument one needs for f2 is

∣∣∣log
∑

eβEk
∣∣∣∑E2

k eβEk∑ eβEk ≤
∣∣∣log

∑
eβ1Ek

∣∣∣∑E2
k eβ1Ek∑ eβ1Ek

,

for β > β1 > 1 using the fact β 7→ log∑ eβEk is decreasing and positive.

We can now deduce the main result of this section.

Corollary 4.2. Assume that E[Sβ] < ∞, for every β > 1. Then, for any β > 1, κd(β) is
well-defined and given by

κd(β) = 1
2

 Var
(
Z′d(β)
Zd(β)

)
Var (logZd(β)) −

Cov
(
logZd(β), Z

′
d(β)

Zd(β)

)
Var (logZd(β))


2.

Proof. We expand Cd(β, β + h) as h → 0, starting from Equation (4.1) and using Lemma 4.1,
writing Zd instead of Zd(β) for brevity,

Cd(β, β + h) =
Cov

(
logZd, logZd + Z′d

Zd
h+

(
Z′′d
Zd
−
(
Z′d
Zd

)2)
h2
)

σ(logZd)σ
(

logZd + Z′
d

Zd
h+

(
Z′′
d
Zd
−
(
Z′
d

Zd

)2)
h2
) + o

(
h2
)

= 1− 1
2

 Var Z
′
d

Zd

Var logZd
−

Cov
(
logZd,

Z′d
Zd

)
Var logZd


2h2 + o

(
h2
)
,

which yields the result.

4.2 The REM case

In the case of the REM, the quantities appearing in the expression for the susceptibility given
in Corollary 4.2 are explicit. To see this, we start by establishing the following formulae. Note
that the formula for E[logZ(β)] already appears in the initial paper by Derrida [24].
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Lemma 4.3. For any β > 1,

E[logZ(β)] = γ(β − 1) + β log Γ
(

1− 1
β

)
, (4.3)

Var(logZ(β)) = π2

6
(
β2 − 1

)
. (4.4)

Proof. Let β > 1 be fixed. The Laplace transform of logZ(β) has been computed in Lemma 2.2
and is finite in a neighborhood of 0. Hence, differentiating it at 0 yields the formula for
E[logZ(β)], and differentiating once more, we get

E
[
log2 Z(β)

]
= π2

6
(
β2 − 1

)
+ γ2(β − 1)2 + β log Γ

(
1− 1

β

)(
2γ(β − 1) + β log Γ

(
1− 1

β

))
,

which yields the formula for the variance.

The following formula is a bit more tricky to obtain.

Lemma 4.4. For β > 1, we have

Var
(
Z ′(β)
Z(β)

)
= π2

6 + β − 1
β3

Γ′′
(
β−1
β

)
Γ
(
β−1
β

) −
Γ′

(
β−1
β

)
Γ
(
β−1
β

)
2 .

Proof. To lighten notations, let us denote Γ = Γ(β−1
β ) and similarly Γ′ = Γ′(β−1

β ), Γ′′ = Γ′′(β−1
β ).

Differentiating once Equation (4.3) gives

E
[
Z ′(β)
Z(β)

]
= log Γ + 1

β

Γ′
Γ + γ , (4.5)

and differentiating once more yields

E
[
Z ′′(β)
Z(β) −

(
Z ′(β)
Z(β)

)2]
= 1
β3

(
Γ′′
Γ −

(Γ′
Γ

)2)
. (4.6)

Therefore, we now aim at computing E[Z ′′(β)/Z(β)]. Applying Palm formula (see Proposi-
tion 3.8), we get

E
[
Z ′′(β)
Z(β)

]
=
∫ ∞

0
log2(x)E

[ 1
1 + xβZ(β)

]
dx

=
∫ ∞

0
dx log2(x)

∫ ∞
0

e−t E
[
e−txβZ(β)

]
dt

=
∫ ∞

0
dte−t

∫ ∞
0

log2(x)e−Γ t1/βx dx

= 1
Γ

∫ ∞
0

dt t−1/β e−t
∫ ∞

0

(
log u− log t1/β Γ

)2
e−u du

= 1
Γ

∫ ∞
0

dt t−1/β e−t
(
Γ′′(1)− 2 t1/β Γ′(1) log Γ + t1/β log2 Γ

)
= γ2 + π2

6 + 2γ log Γ + log2 Γ + 2γ
β

Γ′
Γ + 2

β

Γ′
Γ log Γ + 1

β2
Γ′′
Γ .

Combining this with Equation (4.6) gives

E
[(

Z ′(β)
Z(β)

)2]
= γ2 + π2

6 + 2γ log Γ + log2 Γ + 2γ
β

Γ′
Γ + 2

β

Γ′
Γ log Γ + β − 1

β3
Γ′′
Γ + 1

β3

(Γ′
Γ

)2
,

which together with Equation (4.5) yields the result.
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We can now conclude the section by proving Theorem 1.3 concerning the susceptibility for
the REM.

Proof of Theorem 1.3. We start from the formula given by Corollary 4.2. Differentiating Equa-
tion (4.4) shows that

Cov
(

logZ(β), Z
′(β)
Z(β)

)
= 1

2
d

dβ Var(logZd(β)) = π2

6 β.

Together, with Equation (4.4) and Lemma 4.4, this yields

κ(β) = 1
2

 1
β2 − 1 + 6

π2β3(β + 1)

Γ′′
(
β−1
β

)
Γ
(
β−1
β

) −
Γ′

(
β−1
β

)
Γ
(
β−1
β

)
2− β2

(β2 − 1)2

 ,
and using the asymptotic expansion of Γ at 0 and at 1 together with extra computations yield
the desired asymptotic equivalents of κ(β) as β ↓ 1 and β →∞.

4.3 Comparison wih the REM in the general decorated case

In this section, we come back to the general decorated case. Our aim is to prove the following
proposition which compares the temperature susceptibility κd(β) with the one of the REM.

Proposition 4.5. Assume that E[Sβ] <∞, for every β > 1. Then, for any β > 1,

κd(β) = κ(β) + 3
π2β(β + 1) Varβ

(
1
β

logSβ −
S′β
Sβ

)
,

where Varβ denotes the variance under Pβ, which was introduced in Subsection 2.2, and S′β =∑
k≥0 dkeβdk .

Proof. We start from the expression given by Corollary 4.2. By Corollary 2.7, we have

Var (logZd(β)) = Var
(

log
(
E
[
S

1/β
β

]β
Z(β)

))
= Var (logZ(β)) = π2

6 (β2 − 1)

and, by differentiating with respect to β,

Cov
(

logZd(β), Z
′
d(β)

Zd(β)

)
= 1

2
d

dβ Var (logZd(β)) = 1
2

d
dβ Var (logZ(β)) = Cov

(
logZ(β), Z

′(β)
Z(β)

)
.

Therefore, we get

κd(β) = κ(β) + 3
π2(β2 − 1)

(
Var

(
Z ′d(β)
Zd(β)

)
−Var

(
Z ′(β)
Z(β)

))
. (4.7)

We shall now focus on Var
(
Z′d(β)
Zd(β)

)
. Notice first that

Z ′d(β) =
∑
i,k

(ξi + dik)eβ(ξi+dik).
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Therefore, it follows from Lemma 2.6 that

Z ′d(β)
Zd(β) under P (d)=

∑
i,k

(
ξi + cβ − 1

β logSβ,i + dik
)
eβ(ξi− 1

β
logSβ,i+dik)∑

i eβξi under Pβ.

Moreover, the quantity on the right-hand side of the last equation equals

cβ +
∑
i ξieβξi∑
i eβξi +

∑
i eβξi(S′β,i/Sβ,i − 1

β logSβ,i)∑
i eβξi .

Hence, using the law of total variance, we get

Var
(
Z ′d(β)
Zd(β)

)
= Varβ

(
Eβ

[∑
i ξieβξi∑
i eβξi +

∑
i eβξi(S′β,i/Sβ,i − 1

β logSβ,i)∑
i eβξi

∣∣∣∣∣ ξ
])

+ Eβ

[
Varβ

(∑
i ξieβξi∑
i eβξi +

∑
i eβξi(S′β,i/Sβ,i − 1

β logSβ,i)∑
i eβξi

∣∣∣∣∣ ξ
)]
.

Then, using the fact that the (Sβ,i, S′β,i)i≥0 are i.i.d. and independent of ξ, we get

Var
(
Z ′d(β)
Zd(β)

)
= Varβ

(∑
i ξieβξi∑
i eβξi

)
+ Eβ

[ ∑
i e2βξi

(∑i eβξi)2

]
Varβ

(
S′β
Sβ
− 1
β

logSβ
)

= Var
(
Z ′(β)
Z(β)

)
+
(

1− 1
β

)
Varβ

(
S′β
Sβ
− 1
β

logSβ
)
.

Coming back to Equation (4.7), this concludes the proof.

Example 4.6. We investigate here the behavior of the temperature susceptibility for the family
of decoration processes (Da,b)a>0,b>0 introduced in Example 3.6. By Proposition 4.5, one has

κd(β) = κ(β) + 3
π2β(β + 1) Varβ

(
1
β

logSβ −
S′β
Sβ

)
.

The main contribution as β ↓ 1 will comes from Varβ(S′β/Sβ). In order to keep the example
relatively concise, we make the estimates for Varβ(R′β/Rβ), where

Rβ :=
∫ X

0
xb−1e−(β−1)xdx

approximates well Sβ (see Example 3.6). We expect the same results to hold for Sβ.
As in Example 3.6, using Gb(x) :=

∫ x
0 u

b−1e−udu, one has

Rβ = 1
hb
Gb(hX), R′β = − 1

hb+1Gb+1(hX),

Therefore,

E
[

(R′β)2

Rβ

]
= 1
hb+2E

[
Gb+1(hX)2

Gb(hX)

]
= 1
hb−a+2

∫ ∞
h

Gb+1(t)2

Gb(t)
a

ta+1 dt.

Then,

E
[

(R′β)2

Rβ

]
∼
β↓1


ca,b

hb−a+2 , if b− a > −2,

ca,b log 1
h , if b− a = −2,

ca,b, if b− a < −2,
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where ca,b :=
∫+∞

0
Gb+1(t)2

Gb(t)
a

ta+1 dt if b− a > −2. Similarly, one finds

Eβ

(R′β
Rβ

)2
 = 1

E
[
R

1/β
β

] · E
 (R′β)2

R
2−1/β
β

 ∼
β↓1



c′a,b
h2 , if b− a > 0,
c′a,b

hb−a+2 , if b− a ∈ (−2, 0),

c′a,b, if b− a < −2,

where c′a,b :=
∫+∞

0
Gb+1(t)2

Gb(t)
a

ta+1 dt
(∫+∞

0 Gb(t) a
ta+1 dt

)−1
if b− a > 0, and

Eβ

[
R′β
Rβ

]2

= 1

E
[
R

1/β
β

]2 · E
 R′β

R
1−1/β
β

2

∼
β↓1



c′′a,b
h2 , if b− a > 0,
c′′a,b

h2(b−a)+2 , if b− a ∈ (−1, 0),

c′′a,b, if b− a < −1,

with c′′a,b :=
(∫+∞

0 Gb+1(t) a
ta+1 dt

)2(∫+∞
0 Gb(t) a

ta+1 dt
)−2

when b − a > −1. Now notice that by
Cauchy-Schwarz inequality, one has(∫ +∞

0
Gb+1(t) adt

ta+1

)2
<

∫ +∞

0

Gb+1(t)2

Gb(t)
adt
ta+1

∫ +∞

0
Gb(t)

adt
ta+1 ,

thus c′a,b > c′′a,b and one gets, up to constants,

Varβ
(

1
β

logRβ −
R′β
Rβ

)
∼
β↓1


1
h2 , if b− a > 0,

1
hb−a+2 , if b− a ∈ (−2, 0),

1, if b− a < −2.

Therefore, we see mainly two behaviors for the temperature susceptibility κd(β) as β ↓ 1. If
b < a, then the contribution of the variance above is negligible and we have κd(β) ∼ κ(β) by
Proposition 4.5. On the other hand, if b > a, then the variance grows at the same speed as κ(β)
as β ↓ 1, so κd(β) is of the same order as κ(β), but with a different multiplicative constant.

4.4 The BBM case

In this section, our goal is to prove Theorem 1.5 which concerns the BBM.

Lemma 4.7. For the decoration arising in the BBM and the constant C? appearing in Equation
(2.8), we have, as β ↓ 1,

E
[
S′β

]
∼ − C?

(β − 1)2 and E
[
S′′β

]
∼ 2C?

(β − 1)3 .

Proof. This follows from Equation (2.8) in a similar way as the proof of Proposition 2.10.
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Proof of Theorem 1.5. We first prove that κd(β) > κ(β), when β > 1 is fixed. By Proposi-
tion 4.5, it is sufficient to show that

Varβ
(

1
β

logSβ −
S′β
Sβ

)
> 0. (4.8)

We proceed by contradiction and assume that this variance equals zero. Then, there exists c ∈ R
such that, Pβ-a.s.,

1
β

logSβ =
S′β
Sβ

+ c, (4.9)

But P is absolutely continuous w.r.t. Pβ such that Equation (4.9) holds also P-a.s. On the one
hand, using Sβ = ∑

k≥0 eβdk , we have

Sβ logSβ >
∑
k≥0

eβdkβdk = βS′β.

Thus, we necessarily have c > 0. On the other hand, fix some β′ ∈ (1, β). Then, there exists
C > 0 such that

∀x ≤ 0, (1 ∨ |x|) eβx ≤ C eβ′x. (4.10)
Now, for some ε > 0, consider the event∑

k≥1
eβ′dk ≤ ε

.
This event has positive P-probability by [12, Proposition 3.4]. So, on this event intersected with
the one where Equation (4.9) holds (this intersection being non-empty), we have

c = 1
β

logSβ −
S′β
Sβ
≤ 1
β

log

1 +
∑
k≥1

eβdk
+

∑
k≥1

dkeβdk ≤
1
β

log(1 + Cε) + Cε,

using Equation (4.10). Letting ε → 0 shows c ≤ 0, which contradicts c > 0 and concludes our
proof of Equation (4.8).

We study now the regime β ↓ 1. Since the asymptotics of κ(β) are given by Theorem 1.3, it
remains to study the behavior of

Varβ
(

1
β

logSβ −
S′β
Sβ

)
= 1
β2 Varβ (logSβ)− 2

β
Covβ

(
logSβ,

S′β
Sβ

)
+ Varβ

(
S′β
Sβ

)
. (4.11)

As we will see, the main term is the third one, which is of order (β−1)−2, while the other terms
are negligible.

For the first term on the right-hand side of Equation (4.11), observe that

Varβ (logSβ) ≤ Eβ
[
log2 Sβ

]
≤ Eβ

[
log2(e + Sβ)

]
≤ log2(e + Eβ[Sβ]),

by Jensen’s inequality. Then, by definition of Eβ, we get

Eβ[Sβ] =
E
[
S

1+1/β
β

]
E
[
S

1/β
β

] ≤ E
[
S2
β

]
E
[
S

1/β
β

] = O

( 1
(β − 1)2

)
,

as β ↓ 1 by Equation (2.13) and Corollary 2.12. This proves

Varβ (logSβ) = O

(
log2 1

β − 1

)
. (4.12)

32



We now consider the third term on the right-hand side of Equation (4.11). Using the defini-
tion of Eβ and then that Sβ ≥ 1, we get

Eβ

[
S′β
Sβ

]
=

E
[
S

1/β−1
β S′β

]
E
[
S

1/β
β

] ∼ − 1
β − 1 , (4.13)

as β ↓ 1 by Corollary 2.12 and the fact that E
[
S

1/β−1
β (−S′β)

]
∼ C?(β − 1)−2 as a consequence

of the first part of Equation (2.14) (with X = Sβ and Y = −S′β) together with Lemma 4.7. On
the other hand, it follows from Cauchy–Schwarz inequality that

S′2β
Sβ

= Sβ ·

∑
k≥0

dk
eβdk
Sβ

2

≤ Sβ ·
∑
k≥0

d2
k

eβdk
Sβ

= S′′β ,

and therefore

Eβ

(S′β
Sβ

)2
 =

E
[
S

1/β−2
β S′2β

]
E
[
S

1/β
β

] ≤
E
[
S′2β /Sβ

]
E
[
S

1/β
β

] ≤ E
[
S′′β

]
E
[
S

1/β
β

] ∼ 2
(β − 1)2 , (4.14)

using Lemma 4.7 and Corollary 2.12. For the lower bound, using the first part of Equation
(2.14) with X = Sβ and Y = (S′β)2/Sβ, we get

Eβ

(S′β
Sβ

)2
 =

E
[
S

1/β−2
β S′2β

]
E
[
S

1/β
β

] ≥
E
[
S′2β /Sβ

]2−1/β

E
[
S

1/β
β

]
E[Sβ]1−1/β .

Hence, applying Lemma 4.8, Proposition 2.10 and Corollary 2.12, we get

lim inf
β↓1

(β − 1)2Eβ

(S′β
Sβ

)2
 > 1. (4.15)

Combining Equations (4.13), (4.14) and (4.15) yields

0 < lim inf
β↓1

(β − 1)2 Varβ
(
S′β
Sβ

)
≤ lim sup

β↓1
(β − 1)2 Varβ

(
S′β
Sβ

)
≤ 1. (4.16)

Finally, for the second term on the right-hand side of Equation (4.11), by Cauchy–Schwarz
inequality and then Equations (4.12) and (4.16), we get∣∣∣∣∣Covβ

(
logSβ,

S′β
Sβ

)∣∣∣∣∣ ≤
(

Varβ(logSβ) Varβ
(
S′β
Sβ

))1/2

= O

(
log 1

β−1
β − 1

)
,

which proves that this term is negligible in Equation (4.11) and concludes the proof.

Lemma 4.8. We have

lim inf
β↓1

(β − 1)3 E
[

(S′β)2

Sβ

]
> C?.

33



Remark 4.9. A lower bound with a weak inequality could be easily obtained via Cauchy–Schwarz
inequality:

E
[

(S′β)2

Sβ

]
≥

E[S′β]2

E[Sβ] ∼
C?

(β − 1)3 ,

using Lemma 4.7 and Proposition 2.10. Equality at the first order in this inequality would
suggest that S′β and Sβ are colinear at first order (on the events that are significant for the first
moment). Therefore, the idea of the proof below is to find an event such that the first moments
of S′β and Sβ given this event have a different ratio than the one for the non-conditional first
moments.

Proof. Step 1: Working at finite t. Fix some β > 1. Setting fβ(x) := eβ
√

2x and ∂βfβ(x) :=
√

2xeβ
√

2x, note that Sβ = C(fβ) and S′β = C(∂βfβ). Our first aim in this step is to show

E
[

(S′β)2

Sβ

]
= lim

t→∞
Ẽt

[
(C∗t,rt(∂βfβ))2

C∗t,rt(fβ)

]
. (4.17)

For K > 0, let χK denote a continuous function such that 1[−K,K] ≤ χK ≤ 1[−(K+1),K+1]. It
follows from the vague convergence stated in Equation (2.7) that(

C∗t,rt(χKfβ), C∗t,rt(χK∂βfβ)
)
under P̃t

(d)−−−→
t→∞

(C(χKfβ), C(χK∂βfβ)) under P.

Moreover, recalling C∗t,rt is supported on (−∞, 0] under P̃t we get∣∣∣∣∣C∗t,rt(χK∂βfβ)2

C∗t,rt(χKfβ)

∣∣∣∣∣ ≤ 2(K + 1)2C∗t,rt(χKfβ) ≤ 2(K + 1)2C∗t,rt([−(K + 1), 0]) ,

which is bounded in L2 by Lemma 2.14. Hence, (C∗t,rt(χK∂βfβ)2/C∗t,rt(χKfβ))t is uniformly
integrable and we get

E
[
C(χK∂βfβ)2

C(χKfβ)

]
= lim

t→∞
Ẽt

[
C∗t,rt(χK∂βfβ)2

C∗t,rt(χKfβ)

]
. (4.18)

We now control the differences between the expectations in Equation (4.17) and Equation (4.18)
and show they are small when K is large. We have∣∣∣∣∣C(∂βfβ)2

C(fβ) − C(χK∂βfβ)2

C(χKfβ)

∣∣∣∣∣ ≤
∣∣C(∂βfβ)2 − C(χK∂βfβ)2∣∣

C(fβ) + C(χK∂βfβ)2
∣∣∣∣∣ 1
C(fβ) −

1
C(χKfβ)

∣∣∣∣∣
≤ 2 C(∂βfβ) C

(
1(−∞,−K] ∂βfβ

)
+ (K + 1)2C

(
1(−∞,−K] ∂βfβ

)
,

(4.19)

where, for the first term, we used C(fβ) ≥ 1 and the fact that ∂βfβ is of constant sign on
(−∞, 0] which is the support of C and, for the second term, we used |C(χK∂βfβ)|/C(fβ) ≤
|C(χK∂βfβ)|/C(χKfβ) ≤ K + 1. Then, writing ∂βfβ(x) =

∫ x
−∞
√

2(β
√

2y+ 1)eβ
√

2y dy and using
Fubini’s theorem, we have

E
[
C(∂βfβ)C(1(−∞,−K]∂βfβ)

]
=
∫ 0

−∞

∫ −K
−∞

E[C([y, 0]) C([z,−K])] 2(β
√

2z + 1) eβ
√

2z(β
√

2y + 1)eβ
√

2y dz dy

≤ C(β)(K + 1)3/2e−(β−1)
√

2K ,
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where we bounded the last expectation by (|y| + 1)1/2(|z| + 1)1/2e−
√

2(y+z) using Cauchy–
Schwarz inequality and Equation (2.9), and where C(β) denotes a constant depending only
on β and which can change from line to line. Similarly, we have E[C(1(−∞,−K]∂βfβ)] ≤
C(β)(K + 1)e−(β−1)

√
2K by using Equation (2.10). Coming back to Equation (4.19), we get∣∣∣∣∣E

[
C(∂βfβ)2

C(fβ)

]
− E

[
C(χK∂βfβ)2

C(χKfβ)

]∣∣∣∣∣ ≤ C(β)(K + 1)3e−(β−1)
√

2K ,

and the same holds true for C∗t,rt instead of C, uniformly in t ≥ 1, by replacing Equations (2.9)
and (2.10) by Lemma 2.14 in the proof. Therefore, letting K → ∞ in Equation (4.18) yields
Equation (4.17).

Step 2: Using Cauchy–Schwarz inequality conditionally on a well-chosen event. We fix some
parameters a > 0 and 0 < b < B. For any β > 1, letting r = r(β) := a(β − 1)−2, and for any
t > r, we introduce the event

Br,t =
{
ht−r(Xt−r)−mt +mr ∈ [−B

√
r,−b

√
r]
}
. (4.20)

Then, we use Cauchy–Schwarz inequality given Br,t or given Bc
r,t to get

Ẽt

[
(C∗t,rt(∂βfβ))2

C∗t,rt(fβ)

]
= Ẽt

[
(C∗t,rt(∂βfβ))2

C∗t,rt(fβ)

∣∣∣∣∣ Br,t
]
P̃t(Br,t) + Ẽt

[
(C∗t,rt(∂βfβ))2

C∗t,rt(fβ)

∣∣∣∣∣ Bc
r,t

]
P̃t
(
Bc
r,t

)

≥
Ẽt
[
C∗t,rt(∂βfβ)

∣∣∣ Br,t]2
Ẽt
[
C∗t,rt(fβ)

∣∣∣ Br,t] P̃t(Br,t) +
Ẽt
[
C∗t,rt(∂βfβ)

∣∣∣ Bc
r,t

]2
Ẽt
[
C∗t,rt(fβ)

∣∣∣ Bc
r,t

] P̃t
(
Bc
r,t

)

=
Ẽt
[
C∗t,rt(∂βfβ)1Br,t

]2
Ẽt
[
C∗t,rt(fβ)1Br,t

] +
Ẽt
[
C∗t,rt(∂βfβ)1Bcr,t

]2
Ẽt
[
C∗t,rt(fβ)1Bcr,t

] , (4.21)

which yields a lower bound for the right-hand side of Equation (4.17), that we now have to
estimate.

Step 3: Estimating the expectations. Let ε > 0. Our aim in this step consists in proving that,
for β > 1 close enough to 1, there exists t0 > r such that, for any t ≥ t0,∣∣∣(β − 1)Ẽt

[
C∗t,rt(fβ)1Br,t

]
− C?κ

∣∣∣ ≤ ε,∣∣∣(β − 1)2Ẽt
[
C∗t,rt(∂βfβ)1Br,t

]
+ C?κ

′
∣∣∣ ≤ ε, (4.22)

where κ, κ′ are constants depending only on the parameters a, b, B defined as follows

κ := 1
2
√
π

∫ ∞
0

ϕb,B

(
a ∨ w
|a− w|

)(∫ ∞
0

ue−u−u2/(4w) du
) dw
w3/2 ,

κ′ := 1
2
√
π

∫ ∞
0

ϕb,B

(
a ∨ w
|a− w|

)(∫ ∞
0

u2e−u−u2/(4w) du
) dw
w3/2 , (4.23)

with ϕb,B defined by

ϕb,B(v) :=
∫ B
√
v

b
√
v

√
2
π
y2e−y2/2 dy , v ≥ 0. (4.24)

Note that κ, κ′ ∈ (0, 1) and they tend to 1 as b → 0 and B → ∞ (which means 1Br,t → 1). To
prove the first inequality in Equation (4.22), we write

Ẽt
[
C∗t,rt(fβ)1Br,t

]
=
∫ ∞

0
Ẽt
[
C∗t,rt([−x, 0])1Br,t

]
β
√

2 e−β
√

2x dx.
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Then, we apply Lemma 4.10 for some θ ∈ (0, 1) and with ε > 0 introduced earlier to estimate the
part x ∈ [θ

√
r, θ−1√r] of the integral and use Lemma 2.14 to bound the remaining part. Note

also that ϕb,B ≤ 1 and
∫∞

0
xe−x2/(2s)
√

2πs3/2 ds = 1. Therefore, for β > 1 close enough to 1 (equivalently
r large enough), there exists t0 > r such that, for any t ≥ t0,∣∣∣∣∣Ẽt[C∗t,rt(fβ)1Br,t

]
− C?

∫ ∞
0

(∫ ∞
0

ϕb,B

(
r ∨ s
|r − s|

)
xe−x2/(2s)
√

2πs3/2 ds
)
β
√

2 e−(β−1)
√

2x dx
∣∣∣∣∣

≤ ε
∫ ∞

0
β
√

2e−(β−1)
√

2x dx+ C

∫
[θ
√
r,θ−1√r]c

β
√

2 e−(β−1)
√

2x dx

= β

β − 1
(
ε+ C

(
1− e−θ

√
a + e−θ−1√a

))
, (4.25)

recalling that r = a(β − 1)−2. Choosing θ small enough and considering β < 2, the right-hand
side of Equation (4.25) is smaller that 3ε/(β − 1). Then, we rewrite the double integral on
the left-hand side of Equation (4.25) by using Fubini’s theorem and changing variables with
u = (β − 1)

√
2x and w = s(β − 1)2, which shows that this double integral equals βκ/(β − 1).

This proves the first inequality in Equation (4.22) (with 4ε instead of ε). The second inequality
is proved by writing

Ẽt
[
C∗t,rt(fβ)1Br,t

]
= −

∫ ∞
0

Ẽt
[
C∗t,rt([−x, 0])1Br,t

]√
2(β
√

2x− 1)e−β
√

2x dx

and then proceeding similarly (note that β
√

2x− 1 can be replaced by β
√

2x up to a negligible
error as β ↓ 1).

Step 4: Conclusion. We first claim that for θ ∈ (0, 1) and ε > 0, there exists r0 > 0 such
that, for any r ≥ r0, there exists t0 > 0 such that, for any t ≥ t0 and any v ∈ [θ

√
r, θ−1√r],∣∣∣Ẽt[C∗t,rt([−v, 0])

]
− C?e

√
2v
∣∣∣ ≤ ε e

√
2v.

This is a slightly stronger version of [21, Lemma 5.2] where no uniformity for v ∈ [θ
√
r, θ−1√r]

is stated: however, the aforementioned claim follows from their proof (more precisely, it follows
from [21, Lemma 5.6] in the same way as Lemma 4.10 below follows from Lemma A.1). Then,
we deduce from this claim that, for β > 1 close enough to 1, up to a modification of t0, we also
have, for any t ≥ t0, ∣∣∣(β − 1)Ẽt

[
C∗t,rt(fβ)

]
− C?

∣∣∣ ≤ ε,∣∣∣(β − 1)2Ẽt
[
C∗t,rt(∂βfβ)

]
+ C?

∣∣∣ ≤ ε,
where these inequalities are obtained in the same way as Equations (4.22) have been obtained
from Lemma 4.10 in Step 3. Combining this with Equations (4.17), (4.21) and (4.22), we get

E
[

(S′β)2

Sβ

]
≥ 1

(β − 1)3

(
(C?κ′ − ε)2

C?κ+ ε
+ (C?(1− κ′)− ε)2

C?(1− κ) + ε

)
.

Letting ε→ 0, this proves

lim inf
β↓1

(β − 1)3 E
[

(S′β)2

Sβ

]
≥ C?

(
(κ′)2

κ
+ (1− κ′)2

1− κ

)
. (4.26)

By Lemma 4.11, we can choose a, b, B such that κ 6= κ′ and, together with the fact that
κ, κ′ ∈ (0, 1), this implies that the right-hand side of Equation (4.26) is larger than C?.
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The proof of the following lemma is postponed to Subsection A.2.

Lemma 4.10. Let θ ∈ (0, 1), ε, a > 0 and 0 < b < B. There exists r0 > 0 such that, for any
r ≥ r0, there exists t0 > 0 such that, for any t ≥ t0 and any v ∈ [θ

√
r, θ−1√r],∣∣∣∣∣Ẽt[C∗t,rt([−v, 0])1Br,t

]
− C?e

√
2v
∫ ∞

0
ϕb,B

(
r ∨ s
|r − s|

)
ve−v2/(2s)
√

2πs3/2 ds
∣∣∣∣∣ ≤ εe√2v.

Lemma 4.11. Recall the definition of κ and κ′ in Equation (4.23). There exist a > 0 and
0 < b < B such that κ 6= κ′.

Proof. We proceed by contradiction: assume that, for any a > 0 and 0 < b < B, κ = κ′. Then,
differentiating the relation κ = κ′ w.r.t. B, we get, for any a,B > 0, the following quantity is
the same for k = 1 and k = 2:∫ ∞

0

a ∨ w
|a− w|

exp
(
−B

2

2
a ∨ w
|a− w|

)(∫ ∞
0

uke−u−u2/(4w) du
) dw
w3/2 .

On the other hand, a direct calculation shows that, for k ∈ {1, 2},∫ ∞
0

(∫ ∞
0

uke−u−u2/(4w) du
) dw
w3/2 = 2

√
π

and therefore is the same for k = 1 and k = 2. Therefore, we deduce that the following quantity
is the same for k = 1 and k = 2:∫ ∞

0

(
exp

(
−B

2

2
a ∨ w
|a− w|

)
− e−B2/2

)(∫ ∞
0

uke−u−u2/(4w) du
) dw
w3/2 . (4.27)

Our goal is now to study the behavior as a → 0 of this quantity, to find a contradiction. We
decompose the main integral in Equation (4.27) into a part w ∈ [0, a) in which we change w to
x = a/(a−w) and u to v = u(x/(a(x− 1)))1/2, and a part w ∈ (a,∞) in which we change w to
x = w/(w − a) and u to v = u((x − 1)/(ax))1/2. This yields that the following quantity is the
same for k = 1 and k = 2:

ak/2
∫ ∞

1

(
xe−xB2/2 − e−B2/2

)((x− 1)k/2−1

xk/2+1

∫ ∞
0

vke−v2/4−v(a(x−1)
x

)1/2 dv

+ xk/2−1

(x− 1)k/2+1

∫ ∞
0

vke−v
2/4−v( ax

x−1 )1/2
dv
)

dx.
(4.28)

For k = 1, both integrals w.r.t. v in (4.28) converge as a → 0 towards
∫∞
0 ve−v2/4 dv = 2 by

dominated convergence. Hence, by dominated convergence again but in the integral w.r.t. x,
(4.28) equals

2a1/2
∫ ∞

1

(
xe−xB2/2 − e−B2/2

)((x− 1)−1/2

x3/2 + x−1/2

(x− 1)3/2

)
dx+ o(a1/2),

as a → 0. For k = 2, we cannot use the same argument: the second domination cannot be
justified. Instead, we bound the first integral w.r.t. v by a constant and, for the second one, for
some ε > 0, we write∫ ∞

0
v2e−v

2/4−v( ax
x−1 )1/2

dv =
(
x− 1
ax

)3ε ∫ ∞
0

u2e−u
2(x−1

ax
)2ε/4−u( ax

x−1 )1/2−ε
du ≤ C

(
x− 1
ax

)3ε
,
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by bounding the last integral by
∫∞

0 u2e−u2/4 du if (x−1)/ax ≥ 1 and by
∫∞
0 u2e−u du otherwise.

With ε < 1/6, this proves that (4.28) is a o
(
a1/2

)
for k = 2. Since (4.28) is the same for k = 1

and k = 2, this implies

∫ ∞
1

(
xe−xB2/2 − e−B2/2

)((x− 1)−1/2

x3/2 + x−1/2

(x− 1)3/2

)
dx = 0, (4.29)

for any B > 0. But the left-hand side of Equation (4.29) tends to infinity as B →∞, so this is
a contradiction and concludes the proof.

A Proof of technical results on the decoration of the BBM
This section is dedicated to the proof of several technical results concerning the decoration of
the branching Brownian motion, mostly based on ideas introduced in [21]. Therefore, we explain
how to adapt their argument and use their notation without introducing it.

A.1 Uniform bounds for moments of level sets

Proof of Lemma 2.14. The bound on the second moment is a direct consequence of Lemma A.6,
so we focus here on the first moment. However, it could also be deduced from the proof of [21,
Lemma 5.3], in a similar way as what is done below for the first moment.

To bound uniformly Ẽt[C∗t,rt([−v, 0])], we follow the proof of [21, Lemma 5.2], which estab-
lishes an asymptotic equivalent for the first moment of C∗t,rt([−v, 0]) as t→∞ and then v →∞.
The proof begins by writing

Ẽt
[
C∗t,rt([−v, 0])

]
=

Ẽ
[
C∗t,rt([−v, 0])1{maxx∈Lt ht(x)≤mt}

∣∣∣ ht(Xt) = mt

]
P̃( maxx∈Lt ht(x) ≤ mt | ht(Xt) = mt)

, (A.1)

where the denominator satisfies, for some constant C1 > 0, as t→∞,

P̃
(

max
x∈Lt

ht(x) ≤ mt

∣∣∣∣ ht(Xt) = mt

)
∼ C1

t
, (A.2)

by [21, Lemmata 3.1 and 3.4] (the constant C1 equals 2f (0)(0)g(0) with notation of [21, Lemma
3.4]). In particular, there exists a constant c > 0 such that the probability in Equation (A.2) is
at least c/t for any t ≥ 1. Therefore, it remains to prove that there exist C > 0 and t0 ≥ 0 such
that, for any t ≥ t0 and v ≥ 0,

Ẽ
[
C∗t,rt([−v, 0])1{maxx∈Lt ht(x)≤mt}

∣∣∣ ht(Xt) = mt

]
≤ C

t
e
√

2v. (A.3)

Indeed, for t ≤ t0, bounding the indicator function by 1 and C∗t,rt([−v, 0]) ≤ #Lt0 , the left-hand
side of Equation (A.3) is at most

Ẽ[#Lt0 | ht(Xt) = mt] = Ẽ[#Lt0 ] =
∫ t0

0
et0−s · 2 ds = C(t0), (A.4)

where the first equality follows from the fact that displacement of the spine and branching of the
BBM are independent and the second equality uses the facts that the spine branches at rate 2,
giving birth to standard BBMs and that a standard BBM has in mean er particles at time r.
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We now focus on proving Equation (A.3). Applying successively [21, Lemmata 5.4 and 5.5]
(note that jt,v(s) = j≥0

t,v (s)), we get for any t such that rt ≤ t/2 and any v ≥ 0,

Ẽ
[
C∗t,rt([−v, 0])1{maxx∈Lt ht(x)≤mt}

∣∣∣ ht(Xt) = mt

]
= 2

∫ rt

0
jt,v(s) ds

≤ C

t
(v + 1) e

√
2v
∫ ∞

0

e−v2/(16s) + e−v/2
(s+ 1)

√
s

ds.

This last integral is smaller than C((v + 1)−1 + e−v/2) for any v ≥ 0 (see [21, Equations (5.44)-
(5.45)] for details) and so we get Equation (A.3).

A.2 First moment of level sets on a particular event

We prove in this subsection Lemma 4.10. This is a (non-trivial) refinement of the proof of [21,
Lemma 5.2].

Proof of Lemma 4.10. Recalling the definition of P̃t in Equation (2.6), we first have

Ẽt
[
C∗t,rt([−v, 0])1Br,t

]
=

Ẽ
[
C∗t,rt([−v, 0])1Br,t1{maxx∈Lt ht(x)≤mt}

∣∣∣ ht(Xt) = mt

]
P̃(maxx∈Lt ht(x) ≤ mt | ht(Xt) = mt)

. (A.5)

Recall from Equation (A.2) that the denominator in Equation (A.5) is asymptotically equivalent
to C1/t, so we now focus on the numerator.

We introduce the event
Br,t :=

{
Ŵt,r ∈ [−B

√
r,−b

√
r]
}
,

which is analog to Br,t (see Equation (4.20)) but for the process (Ŵt,s)s∈[0,t] defined in [21,
Equation (3.1)] as

Ŵt,s := Ws − γt,s, with γt,s := 3
2
√

2

(
log+ s−

s

t
log+ t

)
, (A.6)

for any 0 ≤ s ≤ t, with W a standard Brownian motion under P. Defining, for v ≥ 0 and
0 ≤ s, r ≤ t,

jt,v,r(s) := E
[
Jt,v(s)1Br,t

∣∣∣Ŵt,0 = Ŵt,t = 0
]
,

where Jt,v(s) is introduced in [21, Equation (5.9)], it follows from the proof of [21, Lemma 5.4],
that

Ẽ
[
C∗t,rt([−v, 0])1Br,t1{maxx∈Lt ht(x)≤mt}

∣∣∣ ht(Xt) = mt

]
= 2

∫ rt

0
jt,v,r(s) ds. (A.7)

As in [21, Equation (5.17)], for any M ≥ 0, we split jt,v,r(s) into

j<Mt,v,r(s) := E
[
Jt,v(s)1Br,t1{|Ŵt,s|<M}

∣∣∣Ŵt,0 = Ŵt,t = 0
]
,

j≥Mt,v,r(s) := E
[
Jt,v(s)1Br,t1{|Ŵt,s|≥M}

∣∣∣Ŵt,0 = Ŵt,t = 0
]
.

We postpone the estimate of j<Mt,v,r(s) to Lemma A.1 (which replace Lemma 5.6 in [21]). With
this lemma in hand, we can conclude the proof. Let δ ∈ (0, θ ∧ 1

2) and M > 0. Considering t
large enough such that δ−1r ≤ rt, we decompose the right-hand side of Equation (A.7) as

2
∫

[δr,δ−1r]
j<Mt,v,r(s) ds+ 2

∫
[δr,δ−1r]

j≥Mt,v,r(s) ds+ 2
∫

[δr,δ−1r]c
jt,v,r(s) ds,
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where the two last terms are negligible. Indeed, it is proved in [21, Equation (5.41)] (and the
paragraph around) that

lim sup
η→0

lim sup
M→∞

lim sup
v→∞

lim sup
t→∞

t

e
√

2v
·
(

2
∫

[ηv2,η−1v2]
j≥Mt,v (s) ds+ 2

∫
[ηv2,η−1v2]c

jt,v(s) ds
)

= 0,

and therefore

lim sup
δ→0

lim sup
M→∞

lim sup
r→∞

lim sup
t→∞

sup
v∈[θ
√
r,θ−1√r]

(
2
∫

[δr,δ−1r]
j≥Mt,v,r(s) ds+ 2

∫
[δr,δ−1r]c

jt,v,r(s) ds
)

= 0.

(A.8)
Now, setting Sδ := [δr, (1− δ)r] ∪ [(1 + δ)r, δ−1r], we have

2
∫

[δr,δ−1r]
j<Mt,v,r(s) ds = 2

∫
Sδ

j<Mt,v,r(s) ds+ 2
∫ (1+δ)r

(1−δ)r
j<Mt,v,r(s) ds.

This last integral is also negligible for δ small enough (in the same sense as in Equation (A.8)),
because

j<Mt,v,r(s) ≤ jt,v(s) = j≥0
t,v (s) ≤ C (v + 1)e

√
2v

s3/2t
≤ C(θ) e

√
2v

rt
,

for any M > 0, 0 ≤ r ≤ t/4, s ∈ [(1 − δ)r, (1 + δ)r] and v ∈ [θ
√
r, θ−1√r] by [21, Lemma 5.5].

Finally, using Lemma A.1, we have, as t → ∞, then r → ∞ and then M → ∞, uniformly in
v ∈ [θ

√
r, θ−1√r],

2
∫
Sδ

j<Mt,v,r(s) ds ∼ 2C2
t
ve
√

2v
∫
Sδ

e−v2/(2s)

s3/2 ϕb,B

(
r ∨ s
|r − s|

)
ds.

Coming back to Equation (A.5) and letting δ → 0, this proves that there exists r0 > 0 such
that, for any r ≥ r0, there exists t0 > 0 such that, for any t ≥ t0 and any v ∈ [θ

√
r, θ−1√r],∣∣∣∣∣Ẽt[C∗t,rt([−v, 0])1Br,t

]
− 2C2

C1
ve
√

2v
∫ ∞

0
ϕb,B

(
r ∨ s
|r − s|

)e−v2/(2s)

s3/2 ds
∣∣∣∣∣ ≤ ε e

√
2v. (A.9)

Using the relation6 C? = 2
√

2π C2/C1 gives the desired result.

Lemma A.1. Let a > 0, 0 < b < B and δ ∈ (0, 1/2). As t → ∞, then r → ∞ and then
M →∞, we have

j<Mt,v,r(s) ∼
C2
ts3/2 ve

√
2v−v2/(2s) ϕb,B

(
r ∨ s
|r − s|

)
,

uniformly s ∈ [δr, (1− δ)r] ∪ [(1 + δ)r, δ−1r] and v ∈ [δ
√
r, δ−1√r], with

C2 := 2
√

2
π

f (0)(0)g(0)
∫
R
f(z)g(z)2e

√
2z dz ∈ (0,∞),

where f (0), f, g are positive functions introduced in [21, Lemma 3.4].

6The authors of [21] do not keep precisely track of constants but this relation can be deduced from a careful
reading of their paper. Alternatively letting b→ 0 and B →∞, we have 1Br,t → 1 and ϕb,B → 1 and Equation
(A.9) gives an alternative proof of their [21, Lemma 5.2], showing that the constant C appearing there equals
2
√

2πC2/C1. Then, a quick look at the proof of [21, Proposition 1.5] ensures that this constant C is actually C?.
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Proof. We follow ideas from the proof of [21, Lemma 5.6], but instead of only distinguishing
according to the value of Ŵt,s, we also distinguish according to the value of Ŵt,r. For comparison,
the constant C appearing in the statement of [21, Lemma 5.6] equals C2 introduced here.

We start with the case r ≤ s, that is s ∈ [(1 + δ)r, δ−1r]. Then, we have, with the notations
from [21],

j<Mt,v,r(s) =
∫ −b√r
−B
√
r

∫ M

−M
pt((r, y);(s, z))qt((0, 0);(r, y))qt((r, y);(s, z))qt((s, z);(t, 0))es,v(z) dz dy.

The function (y, z) 7→ pt((r, y);(s, z)) is the density of (Ŵt,r, Ŵt,s) given Ŵt,0 = Ŵt,t = 0. It is
explicitly given by (recall the definition of γt,s in Equation (A.6))

pt((r, y);(s, z)) = 1
2π

√
t

r(s− r)(t− s) exp
(
−(s(y + γt,r)− r(z + γt,s))2

2rs(s− r) − t(z + γt,s)2

2s(t− s)

)

∼ 1
2π
√
r(s− r)

exp
(
− sy2

2r(s− r)

)
,

as t → ∞ and then r → ∞, uniformly in s ∈ [(1 + δ)r, δ−1r], y ∈ [−B
√
r,−b

√
r] and z ∈

[−M,M ]. Furthermore, it follows from [21, Lemma 3.4] that

qt((0, 0);(r, y)) = qr((0, 0);(r, y)) ∼ 2(−y)f (0)(0)
r

,

qt((r, y);(s, z)) = qs((r, y);(s, z)) ∼ 2(−y)g(z)
s− r

,

qt((s, z);(t, 0)) ∼ 2f (s)(z)g(0)
t− s

∼ 2f(z)g(0)
t

,

as t → ∞ and then r → ∞, uniformly in s, y and z as before. Finally, it follows from [21,
Lemma 4.2] (see also [21, Equation (5.37)]) that

es,v(z) ∼ ve
√

2v−v2/(2s) g(z)√
π

e
√

2z,

as r →∞, uniformly in v ∈ [δ
√
r, δ−1√r] and s, z as before. Altogether, this proves

j<Mt,v,r(s) ∼
4

π3/2
f (0)(0)g(0)

tr3/2(s− r)3/2 ve
√

2v−v2/(2s)
∫ −b√r
−B
√
r
y2e−sy2/(2r(s−r)) dy

∫ M

−M
f(z)g(z)2e

√
2z dz,

as t → ∞ and then r → ∞, uniformly in s and v as before. A change of variable in the first
integral and letting M → ∞ in the second integral (the fact that this integral converges to a
finite limit is justified at the end of the proof of [21, Lemma 5.6]) yields the result.

The case s ≤ r, that is s ∈ [δr, (1− δ)r] is similar: we write

j<Mt,v,r(s) =
∫ −b√r
−B
√
r

∫ M

−M
pt((s, z);(r, y))qt((0, 0);(s, z))qt((s, z);(r, y))qt((r, y);(t, 0))es,v(z) dz dy

and use the same asymptotics as before, the main difference being

pt((s, z);(r, y)) = 1
2π

√
t

s(r − s)(t− r) exp
(
−(r(z + γt,s)− s(y + γt,r))2

2rs(r − s) − t(y + γt,r)2

2r(t− r)

)

∼ 1
2π
√
s(r − s)

exp
(
− y2

2(s− r)

)
.

This yields the result in that case.
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A.3 Cross-moments of level sets

Our aim in this section is to prove Proposition 2.13. For this, we follow the proof of [21,
Proposition 1.5], which bounds E[C([−v, 0])2]. This proof is based on a series of five lemmas,
that we re-state here in a new version tuned for our purpose of dealing with two level sets of
different levels v and v′.

In the following lemma, as in [21, Lemma 4.3], we work with a 2-spine BBM defined under
the probability measure P̃(2) as follows. It starts with one particle at 0 at time 0 which is part
of the spines 1 and 2. Particles belonging to m spines branch at rate 2m and move according
to a standard Brownian motion. At a branching point, for each k ∈ {1, 2}, if the parent was
part of spine k, then one of both children is chosen uniformly at random to be part of spine k.
We denote Xt(k) the particle at time t which is part of the spine k.y For x, y ∈ Lt, we write
d(x, y) = r if the most recent common ancestor of x and y died at time t− r.

Lemma A.2. There exists C > 0 such that, for any 0 ≤ r ≤ t and v ≤ v′ ≤ u,

P̃(2)
(
ĥt(Xt(1)) ≥ v , ĥt(Xt(2)) ≥ v′ , ĥ∗t ≤ u

∣∣∣ d(Xt(1), Xt(2)) = r
)

≤ Ce−t−r
1 + (r ∧ (t− r))3/2 (u+ + 1)e

√
2u(u− v + 1)(u− v′ + 1)e−

√
2(v+v′)

(
e−(u−v)2/(4t) + e−(u−v)/2

)
.

Proof. This is a new version of [21, Lemma 4.3] and we explain how to adapt its proof. Similarly
as [21, Equation (4.15)], the probability in the statement equals∫

R
P̃
(
ĥr(Xr) ≥ v − z, ĥ∗r ≤ u− z

)
P̃
(
ĥr(Xr) ≥ v − z, ĥ∗r ≤ u− z

)
× P̃

(
ĥt−r(Xt−r)−mt,r ∈ dz, ĥ∗t (B(Xt)c) ≤ u

)
. (A.10)

Following [21], we split the integral according to z ≤ u and z > u.
For z > u, using [21, Equation (4.2)] for the first one and [21, Equation (4.3)] for the second

one, we bound the product of the two first probabilities in Equation (A.10) by

Ce−2r(u− v + 1)(u− v′ + 1)e−
√

2(v+v′)e2
√

2z− 3
2 (z−u)

(
e−(v−z)2/(4t) + e(v−z)/2

)
.

This is exactly the same as [21, Equation (4.20)] up to the factor (u−v′+1)e−
√

2v′ where primes
have been added. Therefore, this part of the integral is dealt with exactly the same way as
in [21].

For z ≤ u, we use [21, Equation (4.2)] for both first probabilities in Equation (A.10) and
note that, because v ≤ v′,(

e−(v−z)2/(4t) + e(v−z)/2
)(

e−(v′−z)2/(4t) + e(v′−z)/2
)
≤
(
e−(v−z)2/(4t) + e(v−z)/2

)(
1 + e(v−z)/2

)
≤
(
e−(v−z)2/(4t) + ev−z + 2e(v−z)/2

)
.

This shows the product of the two first probabilities in Equation (A.10) is at most

Ce−2r(u− v + 1)(u− v′ + 1)e−
√

2(v+v′)e2
√

2z(u− z + 1)2
(
e−(v−z)2/(4t) + e(v−z)/2 + e(v−z)/2

)
.

There are two differences with [21, Equation (4.19)]: the factor (u− v′+ 1)e−
√

2v′ where primes
have been added (but this adds no new difficulty), and the additional term e(v−z)/2 in the last
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parentheses. This latter gives rise to the following new term, which should be added to the
integral in [21, Equation (4.21)],∫ u

−∞
e
v
2 +(
√

2− 1
2 )z)(u− z + 1)3 dz ≤ Ce

√
2ue−(u−v)/2,

which can be included in the upper bound of the statement of the lemma after taking care of
the other factors (see [21, Equation (4.22)]: this is exactly how another part of the integral in
[21, Equation (4.21)] is bounded).

Lemma A.3. There exists C > 0 such that, for any t ≥ 0 and v ≤ v′ ≤ u,

E
[
Et([v,∞))Et([v′,∞)); ĥ∗t ≤ u

]
≤ C(u+ + 1)e

√
2u(u− v + 1)(u− v′ + 1)e−

√
2(v+v′)

(
e−(u−v)2/(4t) + e−(u−v)/2

)
.

Proof. This follows from Lemma A.2 in the same way as [21, Lemma 4.4] follows from [21,
Lemma 4.3].

Lemma A.4. For any v, v′ ≥ 0,

Ẽ
[
C∗t,rt([−v, 0]) C∗t,rt([−v

′, 0]) ; ĥ∗t ≤ 0
∣∣∣ ĥt(Xt) = 0

]
= 4

∫ rt

0

∫ rt

0
jt,v,v′(s, s′) ds′ ds+ 2

∫ rt

0
jt,v,v′(s, s) ds,

where jt,v,v′(s, s′) := Êt[Jt,v(s)Jt,v′(s′)].

Proof. This follows directly from the proof of [21, Lemma 5.4].

Lemma A.5. There exists C > 0 such that, for any t ≥ 0, s, s′ ∈ [0, t/2] and v ≥ v′ ≥ 0,

jt,v,v′(s, s′) ≤
C(v + 1)(v′ + 1)e

√
2(v+v′)

t(s ∧ s′ + 1)
√
s ∧ s′(|s′ − s|+ 1)

√
|s′ − s|+ 1s=s′

(
e−v2/(16s) + e−v/4

)
.

Proof. This is a new version of [21, Lemma 5.5].
For the case s 6= s′, we first assume that s < s′ but do not assume v ≥ v′. Then it follows

directly from the proof in [21] that

jt,v,v′(s, s′) ≤
C(v + 1)(v′ + 1)e

√
2(v+v′)

t(s+ 1)
√
s(s′ − s+ 1)

√
s′ − s+ 1s=s′

(
e−v2/(16s) + e−v/4

)(
e−(v′)2/(16s′) + e−v′/4

)
.

Then, we use jt,v,v′(s, s′) = jt,v′,v(s′, s) to cover the case s > s′ (this is fine because we removed
the assumption v ≥ v′). Finally, for v ≥ v′, we bound e−(v′)2/(16s′) + e−v′/4 ≤ 2. This yields the
desired result.

The case s = s′ is also identical to the proof of [21, Lemma 5.5], applying here Lemma A.3
instead of [21, Lemma 4.4].
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Lemma A.6. There exists C > 0 such that, for any t ≥ 1 and v ≥ v′ ≥ 0,

Ẽ
[
C∗t,rt([−v, 0])C∗t,rt([−v

′, 0])
∣∣∣ ĥ∗t = ĥt(Xt) = 0

]
≤ C(v′ + 1)e−

√
2(v+v′).

Proof. Proceeding as in Equations (A.1), (A.2), (A.3) and (A.4)7, it is enough to prove that
there exist C > 0 and t0 ≥ 0 such that, for any t ≥ t0 and v ≥ 0,

Ẽ
[
C∗t,rt([−v, 0])C∗t,rt([−v

′, 0])1
ĥ∗t≤0

∣∣∣ ĥt(Xt) = 0
]
≤ C

t
(v′ + 1)e

√
2v. (A.11)

We choose t0 such that, for any t ≥ t0, rt ≤ t/2. Using Lemmas A.4 and A.5, the left-hand side
of Equation (A.11) is at most

C

t
(v + 1)(v′ + 1)e

√
2(v+v′)

(∫ rt

0

∫ rt

0

(e−v2/(16s) + e−v/4)
(s ∧ s′ + 1)

√
s ∧ s′(|s′ − s|+ 1)

√
|s′ − s|

ds′ ds

+
∫ rt

0

(e−v2/(16s) + e−v/4)
(s+ 1)

√
s

ds
)

≤ C

t
(v + 1)(v′ + 1)e

√
2(v+v′)

∫ rt

0

(e−v2/(16s) + e−v/4)
(s+ 1)

√
s

ds,

by integrating w.r.t. s′ first. Then, proceeding as in the proof of [21, Lemma 5.3], this last
integral is at most C/(v + 1) and this yields the result.

Proof of Proposition 2.13. This follows from Lemma A.6 in the same way as [21, Proposition
1.5] follows from [21, Lemma 5.3].

A.4 Small moments of Sβ
Lemma A.7. For any γ ∈ (0, 1), there exists C = C(γ) > 0 and t0 ≥ 0, such that, for any
t ≥ t0 and any β ∈ (1, 2],

Ẽt
[
C∗t,rt(fβ)γ

]
≤


C(β − 1)1−2γ if γ ∈ (1/2, 1),
C log 1

β−1 if γ = 1/2,
C if γ ∈ (0, 1/2),

where fβ : x ∈ R 7→ eβ
√

2x.

Proof. Proceeding as in Equations (A.1) and (A.2), it is enough to prove that there exist C > 0
such that, for any t ≥ t0 and β ∈ (1, 2],

Ẽ
[
C∗t,rt(fβ)γ1{ĥ∗t≤0}

∣∣∣ ĥt(Xt) = 0
]
≤ C

t
×


(β − 1)1−2γ if γ ∈ (1/2, 1),
log 1

β−1 if γ = 1/2,
1 if γ ∈ (0, 1/2),

(A.12)

where t0 is chosen such that, for any t ≥ t0, rt ≤ t/2.
7For this step note that we end up here with E[(#Lt0 )2], which is also a finite constant depending on t0 using

similar arguments, including the fact that the second moment of the number of particles at time r in a standard
BBM is finite (more precisely it equals 2e2r − er).
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We first decompose C∗t,rt(fβ) along the spine as it is done for level sets in [21, Lemma 5.4].
Setting (this replaces Jt,v(s) defined in [21, Equation (5.9)])

Kt,β(s) := Ess (fβ( · + Ŵt,s))× 1{ĥs∗s ≤−Ŵt,s}
× 1At ,

and P̂t := P( · |Ŵt,0 = Ŵt,t = 0), we have

C∗t,rt(fβ)1{ĥ∗t≤0} under P̃( · |ĥt(Xt) = 0) (d)=
∫ rt

0
Kt,β(s)N (ds) under P̂t,

where N is a Poisson point process on R+ with intensity 2 ds. Using subadditivity of x 7→ xγ

(note that the integral above is actually a finite sum) and then proceeding as in the proof of [21,
Lemma 5.4], we get

Ẽ
[
C∗t,rt(fβ)γ1{ĥ∗t≤0}

∣∣∣ ĥt(Xt) = 0
]
≤ Êt

[∫ rt

0
Kt,β(s)γN (ds)

]
= 2

∫ rt

0
kt,β,γ(s) ds, (A.13)

with kt,β,γ(s) := Êt[Kt,v(s)γ ].
We now aim at proving that there exists C > 0 such that, for any t ≥ 0, s ∈ [0, t/2] and

β ∈ (1, 2],
kt,β,γ(s) ≤ C

t(s+ 1)
√
s

(
(s+ 1) ∧ (β − 1)−2

)γ
. (A.14)

For this, we follow the ideas from the proof of [21, Lemma 5.5] (in the caseM = 0). Conditioning
on Ŵt,s, we get, similarly as [21, Equation (5.20)],

kt,β,γ(s) =
∫
R
qt((0, 0);(s, z))E

[
Es(fβ( · + z))γ1{ĥ∗s≤−z}

]
qt((s, z);(t, 0))pt(s, z) dz. (A.15)

The single difference with [21] is inside the expectation. Using Jensen’s inequality and then
writing fβ(x+ z) =

∫∞
0 β
√

2e−β
√

2v
1{x≥−v−z} dv for x ≤ −z, we get

E
[
Es(fβ( · + z))γ1{ĥ∗s≤−z}

]1/γ
≤ E

[
Es(fβ( · + z))1{ĥ∗s≤−z}

]
=
∫ ∞

0
β
√

2e−β
√

2vE
[
Es([−v, 0]− z)1{ĥ∗s≤−z}

]
dv. (A.16)

Using [21, Lemma 4.2], the right-hand side of Equation (A.16) is at most

C(z− + 1)e
√

2z
∫ ∞

0
(v + 1)e−(β−1)

√
2v
(
e−(v+z)2/4s + e−(v+z)/2

)
dv.

The part of the last integral due to the term e−(v+z)/2 is bounded by Ce−z/2. For the other
part, it can be bounded by

∫∞
0 (v+1)e−(β−1)

√
2v dv ≤ C(β−1)−2 or by

∫
R(v+1)e−(v+z)2/4s dv ≤

C(|z|+ 1)(s+ 1). Therefore, we proved

E
[
Es(fβ( · + z))γ1{ĥ∗s≤−z}

]
≤ C(|z|+ 1)2γeγ

√
2z
(
e−z/2 +

(
(s+ 1) ∧ (β − 1)−2

))γ
.

Coming back to Equation (A.15) and bounding the other factors in the integrand as in [21,
Equations (5.23) and (5.24)], we get

kt,β,γ(s) ≤ C

t(s+ 1)
√
s

∫
R

(
z− + e−

3
2 z+
)
(|z|+ 1)2γ+1eγ

√
2z
(
e−

γ
2 z +

(
(s+ 1) ∧ (β − 1)−2

)γ)
dz,

and Equation (A.14) follows.
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Finally, we come back to Equation (A.13) and apply Equation (A.14) (we use here rt ≤ t/2)
to get

Ẽ
[
C∗t,rt(fβ)γ1

ĥ∗t≤0

∣∣∣ ĥt(Xt) = 0
]
≤ C

t

∫ ∞
0

1
(s+ 1)

√
s

(
(s+ 1) ∧ (β − 1)−2

)γ
ds

≤ C

t

(∫ (β−1)−2

0

ds
(s+ 1)1−γ√s

+ (β − 1)−2γ
∫ ∞

(β−1)−2

ds
(s+ 1)

√
s

)

and Equation (A.12) follows.
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