Beyond Model Performance: Can Link Prediction Enrich French Lexical Graphs?

Hee-Soo Choi, Priyansh Trivedi, Mathieu Constant, Karën Fort, Bruno Guillaume

To cite this version:
Hee-Soo Choi, Priyansh Trivedi, Mathieu Constant, Karën Fort, Bruno Guillaume. Beyond Model Performance: Can Link Prediction Enrich French Lexical Graphs?. The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING), May 2024, Turin, Italy. hal-04537462

HAL Id: hal-04537462
https://hal.science/hal-04537462
Submitted on 8 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Beyond Model Performance: Can Link Prediction Enrich French Lexical Graphs?

Hee-Soo Choi¹,², Priyansh Trivedi⁴, Mathieu Constant¹, Karen Fort²,³, Bruno Guillaume²
¹ATILF, CNRS, Université de Lorraine, ²LORIA, INRIA, Université de Lorraine, ³Sorbonne Université, ⁴Independent researcher

{hee-soo.choi, karen.fort, bruno.guillaume}@loria.fr, mathieu.constant@atilf.fr, mail@priyansh.page

Abstract

This paper presents a resource-centric study of link prediction approaches over French lexical-semantic graphs. Our study incorporates two graphs, RezoJDM16k and RL-fr, and we evaluated seven link prediction models, with CompGCN-ConvE emerging as the best performer. We also conducted a qualitative analysis of the predictions using manual annotations. Based on this, we found that predictions with higher confidence scores were more valid for inclusion. Our findings highlight different benefits for the dense graph RezoJDM16k compared to the sparser graph RL-fr. While the addition of new triples to RezoJDM16k offers limited advantages, RL-fr can benefit substantially from our approach.

Keywords: lexical graphs, French resources, link prediction, graph completion

1. Introduction

Since the early days of Natural Language Processing (NLP), lexical resources have been essential for the development of NLP systems. However, with the recent advancements in language models and deep learning, there has been a gradual shift away from these resources in favor of vast amounts of web-derived text. Nevertheless, lexical resources continue to hold value in related domains like linguistics and language education. In these areas, lexical resources are created manually by domain experts, a process that produces high-quality resources but is nevertheless time-consuming.

Creating machine-readable resources has been a major challenge of the French community of NLP in the last decades, resulting in a large number of freely available resources made by various semi-automatic techniques. For instance, the French lexicon Lefff was created by merging existing resources, automatically acquiring and manually validating corpus data and syntactic information (Clément et al., 2004; Sagot, 2010). Another example is the RezoJDM lexical-semantic graph made by crowdsourcing from GWAPs on the JeuxDeMots platform (Lafourcade and Joubert, 2008; Lafourcade and Le Brun, 2020). This approach has enabled the graph to be expanded to several million nodes and relations.

These lexical-semantic resources are often represented as a knowledge graph (KG), due to their interconnected nature. In these graphs, real-world entities are described from a linguistic point of view by specifying the lexical and semantic relations between them. That is, a fact is represented as a triple in the form (head, relation, tail) as in (dog, hyponymy, puppy). However, KGs and lexical-semantic graphs are almost always incomplete due to the impossibility of describing the world or a language exhaustively. This incompleteness can be in the form of coverage, i.e., not enough entities or relation types exist in the graph, or completeness i.e., there are missing links between existing entities in the graph. The field of Knowledge Graph Completion (see Sec. 3), which has seen a lot of advancement in recent years, aims to reduce this incompleteness in automated or semi-automated manner. It includes among others, the sub-tasks of entity prediction, relation prediction, and link prediction (Chen et al., 2020), the latter of which is the focus of our work.

In this paper, we adopt a computational linguistic point of view to approach the link prediction task. Our primary emphasis lies in the extraction of potential new triples from the model’s predictions, as opposed to solely maximizing model performance. Specifically, we focus our efforts improving the completeness of RL-fr (Lux-Pogodalla and Polguère, 2011), a relatively sparse lexical-semantic graph created manually by lexicographers. To better contrast the effectiveness of our approach, we also perform our experiments on the sub-graph of RezoJDM, RezoJDM16k (Mirzapour et al., 2022), which has significantly higher density than RL-fr.

The main contributions of our work can be summarized as follows:

1. We studied the effectiveness of seven link prediction models on two French lexical graphs, and provide state-of-the-art results.

2. We added a confidence score to the predictions generated by CompGCN-ConvE model
to extract potential new triples.

3. Finally, we conducted a qualitative analysis of these predictions with manual annotations.

Our experiments provide encouraging results and chart a new path towards semi-automated lexical-semantic resource enrichment.

2. Link Prediction Task

The link prediction task consists of predicting missing triples in a graph. There are two primary variants of the task: transductive and inductive link prediction. In transductive prediction, both training and inference occur on the same graph. Conversely, in inductive prediction, inference can take place on a different graph, and the test set may include unseen nodes (Galkin et al., 2022). This paper focuses on transductive link prediction.

KGs can be described as a set of interconnected triples, typically denoted as \((h, r, t)\) for head, relation, and tail. Given incomplete triples like \((h, r, ?)\) or \((?, r, t)\), the model is required to predict the missing entity. To achieve this, neural models are trained to score true triples higher than false ones using negative sampling (Bordes et al., 2013). It consists of corrupting positive triples by replacing the head or the tail entity by another randomly chosen entity. The aforementioned scores are determined according to the model’s score function, which depends on the type of model. In this section, we provide broad overview of some of these types. We refer interested readers to the comprehensive review of Chen et al. (2020) for a more in-depth understanding of neural approaches for link prediction.

Translation models These models use translation distance between node and relation embeddings as their score function. TransE (Bordes et al., 2013) uses Euclidean distance, with subsequent models like TransH (Wang et al., 2014), TransR (Lin et al., 2015), and TransD (Ji et al., 2015) offering various extensions. Some, like RotatE (Sun et al., 2019), use complex vector spaces to represent entities, and define relations as rotations between them. This enables them to model more complex relation patterns like symmetry/asymmetry, inversions and compositions.

Semantic-matching models These models use a score function derived from semantic similarity to discover potential semantic connections between entities and relations. Notable examples include RESCAL (Nickel et al., 2011), which can capture pairwise interactions between entities, DistMult (Yang et al., 2015) that reduces the computational overhead but is constrained to symmetrical relations, and ComplEx (Trouillon et al., 2016), which introduces complex vector space based embeddings for broader modeling capacity.

Deep Neural Architectures for Graphs The approaches introduced above are limited to using simple mathematical operations like inner products or matrix multiplications, over entity and relation embeddings. As a result, their modeling capacity can only be increased by changing the embedding dimensions. The application of deep neural networks however on these graphs is non-trivial, and was underexplored until the following two developments. First, Dettmers et al. (2018) proposed ConvE which applies convolution layers over the latent embedding space to model entity-relation interactions and uses a dense layer to calculate the score. In parallel, Graph Convolution Networks (GCNs), proposed in Kipf and Welling (2017), enabled information from different nodes to be propagated across paths in the graph, leading to neighbourhood aware representations of entities and relations. Models like R-GCN (Schlichtkrull et al., 2018) and CompGCN (Vashishth et al., 2020) propose further modifications to handle multi-relational graphs i.e., KGs. Note that GCNs themselves do not solve the link prediction task but provide richer ways to encode the graph. In this work, we also include a CompGCN and ConvE based approach for our context.

Metrics Inspired by information retrieval (IR), the traditional metrics for the link prediction task are based on the ranking of the scores of the correct predictions among all the predictions generated:

- Mean Rank (MR): Given a set of predicted triples, MR computes the average rank of the true ones. Lower MR signifies better performance.
- Mean Reciprocal Rank (MRR): MRR is the average of the reciprocals of ranks of the true triples. Higher MRR indicates better performance.
- Hits@k: This metric computes the proportion of true triples that appear in the top \(k\) of the ranked list of predicted triples. A higher Hits@\(k\) value denotes superior prediction accuracy for the top \(k\) triples.

3. Related Work

While the task of lexical-semantic graph completion remains under-explored, there is a vast literature surrounding the enrichment of lexical graphs.

Broadly, these approaches aim to increase the coverage of the underlying resource i.e., add new
There are countless approaches which per-
(see Sec. 4.3). Meanwhile the number of refined nodes to the graph. They rely on new or exist-
ing external resources and propose ways to do so. One of the first approaches leveraged statistical co-
ocurrences to bootstrap existing lexical-semantic graphs (Biemann et al., 2004). These, and other early approaches (Riloff and Shepherd, 1997) re-
sulted in significant manual intervention due to low quality of predictions. Perhaps one of the most im-
portant advancements in the field came in the form of BabelNet (Navigli and Ponzetto, 2012) which ex-
tended WordNet (Miller, 1995) by cross referencing word senses with Wikipedia articles, and leveraging its multilingual nature. Machine transla-
tion models were further used by them, as well as other approaches (Oliver and Climent, 2012; Lam et al., 2014) in varying capacity. Another set of ap-
proaches (Taghizadeh and Faili, 2016; Arcan et al., 2016) leverages advancements in Word Sense Dis-
ambiguation (WSD), and existence of parallel corpora or dictionaries to enrich non-English Wordnets from English WordNet.

On the other hand, approaches which aim to opti-
mize the completeness of these graphs rarely adopt a resource-centric perspective. That is to say that while there are countless approaches which perform transductive link prediction models on these graphs (as discussed in Sec. 2), very few of these have led to concrete additions to the underlying resource. One exception to this is the work of Fell-
baum (1998) on adding links between WordNet nodes based on pattern mining from text corpora.

It is worth mentioning that this field has a signif-
ican bias towards English resources, as demon-
strated by the use of benchmark datasets such as WN18RR (Dettmers et al., 2018) and FB15K-
237 (Toutanova and Chen, 2015). While most tech-
niques are in theory, transferable to any graph, very few empirical efforts have been made. For French resources, Mirzapour et al. (2022) study the effect-
iveness of contemporary link prediction approaches on lexical-semantic graph, although they focus on evaluating models on a French dataset rather than enriching the resource.

This remains an important gap in the field since the effectiveness of graph machine-learning algo-
rithms varies greatly based on the nature of graphs (see Sec. 4.3).

4. French Lexical Graphs

4.1. RezoJDM and RezoJDM16k

RezoJDM is a French lexical-semantic network de-
volved using various methods, including GWAPs (Game With A Purpose), contributory approaches, and inference mechanisms (Laforcade and Jou-
bert, 2008; Laforcade and Le Brun, 2020). The platform called JeuxDeMots1 (Games of Words) offers a variety of games with distinct objectives. Some games are designed to expand the network by adding new entries, while others are focused on verifying the information within the network. For instance, the main game in JeuxDeMots prompts players to input terms within a specific time frame based on a given term and relation type (cf. Figure 1). Using GWAPs and crowdsourcing for con-
struction has resulted in a highly dense directed graph. Initiated in 2006, this resource has under-
gone consistent updates and presently includes more than 537 million relations and six million nodes2.

There are different types of nodes and relations in RezoJDM. Nodes mainly represent terms(type n_term) but can also carry other information such as part-of-speech tags (type n_pos) or inflected forms (type n_form). Relations are divided into three categories: lexical relations (synonymy, antonymy...), ontological relations (hyperonymy, meronymy...) and predicative relations (agent, consequences...). Nodes and relations have the particularity of being assigned weights based on the dynamics of the game. For relations, a positive weight codes a true relation and conversely a neg-
ative weight codes a false relation, which is rather uncommon in KGs.

In the resource, the polysemy of a term is ex-
pressed by distinguishing a generic node from its refinement nodes. Figure 1 shows the various refinements of the term accord (agreement) that the player can choose. However, as the game asks the player to enter as many terms as possible in a limited time, players tend not to refine their answers, which leads to a low density of refined nodes. For instance, the generic node accord has a degree of 10,549, while the degrees of refined nodes accord>pact (agreement>pact) and accord>acceptation (agreement>acceptance) are 194 and 123 respectively.

Mirzapour et al. (2022) created the sub-graph RezoJDM16k to provide a dataset for the link pre-
diction task. It has been created by applying various filters to the nodes and relations of RezoJDM. For instance, only nodes of type n_term and weight greater than 50 were retained. The same weight filter was applied to the relations and some types were also removed. Furthermore, relation types occurring fewer than 100 times and nodes with a degree less than 45 have been excluded to enhance a better efficiency of the models. At the end of this process, the graph is composed of 15,746 nodes and 832,093 relations and is the one used in the following experiments.

1https://www.jeuxdemots.org
2As of October 2023.
Figure 1: Example of the game JeuxDeMots where the player has to enter terms associated with the term consentement (consent). The last term entered is accord (agreement) and the game presents its different meanings (refinements). The player can then refine his answer by choosing one of the meanings.

4.2. RL-fr

RL-fr (Réseau Lexical du Français) is a French lexical-semantic network created by lexicographers, where nodes correspond to lexical units and edges to semantic or combinatorial lexical relations (Lux-Pogodalla and Polguère, 2011). The resource is based on the principles of Explanatory Combinatorial Lexicology, the lexical component of the Meaning-Text Theory (Mel’čuk, 1996). In this section, we present information regarding the version 2.1 of RL-fr, the version used for our experiments.

The lexical units in RL-fr are the fundamental entities for lexicographic description and can be either a lexeme or an idiom. Lexemes are monolexemic lexical units and correspond to word senses. Therefore a polysemic word, called a vocable, is represented as collections of lexical units connected through a copolysemy relation. Version 2.1 of the RL-fr contains 29,220 lexical units and 18,625 vocables. Here are the lexemes for the vocable jambe, leg as examples:

• Jambe I.1: Marc attend patiemment, les jambe croisées. Marc waits patiently, his legs crossed.
• Jambe I.2a: Le cheval s’est blessé à la jambe. The horse hurt its leg.
• Jambe I.2b: Il y a de la jambe de porc au menu. There is pork leg on the menu.

• Jambe II: La jambe droite du pantalon est déchirée. The right leg of the trouser is torn.
• Jambe III: Une des jambes de suspension doit être changée. One of the suspension legs must be replaced.

Unlike conventional dictionaries, where the senses of a word are generally only listed, RL-fr represents the types of relation between the senses with the notion of copolysemy, described as the relation among various senses of a word, opposed to polysemy which is the property of words to express several meanings (Polguère, 2018). Therefore, several copolysemy relations exist, as shown in Figure 2 for the vocable jambe.

Both paradigmatic and syntagmatic relations are encoded with lexical functions (Mel’čuk, 1996).
Some examples of paradigmatic lexical functions are given below:

- **Synonymy (Syn):** vélo → bicyclette
 \[\text{bicycle} \rightarrow \text{bicycle} \]
- **Antonymy (Anti):** accord → désaccord
 \[\text{agreement} \rightarrow \text{disagreement} \]
- **Hyperonymy (Gener):** amour → sentiment
 \[\text{love} \rightarrow \text{feeling} \]

Syntagmatic relations include, among others, collocations and support verbs:

- **Intensifier (Magn):** boire → comme un trou
 \[\text{drink} \rightarrow \text{like a fish} \]
- **Support verb (Oper):** danger → courir
 \[\text{danger} \rightarrow \text{run}, \text{for the expression "courir un danger" which means "take a risk".} \]

Lexical functions can be used to represent simple and complex semantic relations, resulting in 689 different lexical functions, in RL-fr 2.1. For our experiments, we used the families of lexical functions to reduce the number of relation types, corresponding to 95 types of lexical functions. For copolysemy relations, we conserved the 11 existing relations. In total, there are 62,641 relations encoded by lexical functions and 9,413 copolysemy relations.

4.3. Different yet complementary graphs

Despite having a common network format, RezoJDM16k and RL-fr exhibit significant differences in terms of their creation, scope, and the way in which they represent polysemy. Table 1 illustrates the contrast in topology between these two graphs: RezoJDM16k is very dense with an average node degree of 105.7 and boasting over 10 times the number of edges compared to RL-fr. On the other hand, RL-fr presents more nodes, due to the representation of word senses in distinct nodes. Figure 3 shows an overview of the RL-fr network around the vocable accord, represented with two nodes accord 1 and accord 2. Notice the difference with RezoJDM16k, which has a central generic node and refined nodes (cf. Figure 1).

The method of resource creation inherently impacts the graph structure, with manual enrichment being a time-consuming process. However, it ensures controlled, high-quality content verified by domain experts. Regarding RezoJDM16k, the quality of the resource is not necessarily lower, as it is contributed by volunteers who are driven by their interest for the language (Lafourcade and Le Brun, 2020), but does present some noise despite the semi-automatic checks.

5. Experiments

5.1. Datasets pre-processing

Transductive link prediction implies that all the nodes in the validation and test sets must be present in the training set. To do so, Mirzapour et al. (2022) checked whether the head and the tail of each triple were involved in at least one other triple. If so, the triple was placed in the validation set. Once the desired validation set size was reached, the same process is repeated on the remaining triples to obtain the test and the training sets.

Despite ensuring the inclusion of all nodes of the graph in the training set, this method is not suitable for sparse graphs such as RL-fr. Hence, we decided to split randomly the triples into training, validation and test sets (80%, 10%, 10%) and check if all the nodes in the validation and test sets were present in the training set. If not, we removed the triple from the set. For a highly dense graph such as RezoJDM16k, no triple was lost even after ten different random splits. On the other hand, a sparse graph such as RL-fr implies edge and node losses (- 2,152 nodes, - 1,037 edges). Therefore, we obtained a final graph of 27,068 nodes and 71,017 edges, which we call RLF27k. Table 2 presents RezoJDM16k and RLF27k and their respective training, validation and test sets.

<table>
<thead>
<tr>
<th></th>
<th>RezoJDM16k</th>
<th>RL-fr</th>
</tr>
</thead>
<tbody>
<tr>
<td># nodes</td>
<td>15,746</td>
<td>29,220</td>
</tr>
<tr>
<td># edges</td>
<td>832,093</td>
<td>72,054</td>
</tr>
<tr>
<td># edge types</td>
<td>150</td>
<td>106</td>
</tr>
<tr>
<td>Mean node degree</td>
<td>105.7</td>
<td>5.2</td>
</tr>
<tr>
<td>Min node degree</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Max node degree</td>
<td>10,403</td>
<td>187</td>
</tr>
</tbody>
</table>

Table 1: Statistics on RezoJDM16k and RL-fr.

![Figure 3: Vocabule accord (agreement) represented in RL-fr.](image)
5.2. Comparing models performance

We evaluated the performance of link prediction models on both datasets using the same six models as described by Mirzapour et al. (2022). We replicated their experiments on RezoJDM16k and conducted them on RLF27k. Additionally, we trained a ConvE model with CompGCN (Vashishth et al., 2020) encoder (referred to as CompGCN-ConvE hereafter) to explore the efficacy of a graph neural network approach on these French datasets.

The results for RezoJDM16k are presented in Table 3. We find that CompGCN-ConvE outperforms all the other models in almost all metrics. Notably, it achieves an Hits@1 of 0.357, which is more than twice that of RotatE. Its Hits@3,10 and MRR scores are consistently best as well and the MR closely matches the best score achieved by TransD.

Table 4 displays the results for RLF27k. Once again, CompGCN-ConvE stands out with an MRR of 0.515, and highest Hits@k scores. However, it’s worth noting the high MR, which suggests a notable disparity in the ranks of correct triples: 60% of them rank within the top 10, while the remaining 40% are positioned significantly lower.

5.3. Confidence-aware predictions

With CompGCN-ConvE being the best model on both datasets, we performed a more in-depth analysis of its predictions. Beyond assessing the model’s performance in predicting the test set triples, we examined all predictions made by the model for a given head entity and relation by ranking the predictions according to their score.

In the example in Figure 4, we generated the top-20 predictions for the head entity *bonnet* and the relation *synonym* of RLF27k dataset. The model logically predicts a triple present in the training set with a high score (0.893), then predicts two triples from the test set with scores around 0.08. We assume that the remaining triples, which do not exist in the original graph, might be potential candidates. Nevertheless, the score function does not provide a meaningful way to evaluate the relevance of these triples, given that all scores are very low (around 0.01).

Based on this, we aim to approximate the predictive distribution for a given point from our parameterized model. The predictive distribution

\[
p(y^*|x^*, X, Y) = \int p(y^*|x^*, \theta)p(\theta|X, Y) \, d\theta
\]

Here, the first term is the likelihood of observing the output \(y^*\) given the input \(x^*\) and model parameters \(\theta\), and second term is the posterior distribution of the parameters given the data. Computing the latter is intractable for deep neural networks due to its high dimensional parameter space. Monte-Carlo (MC) Dropout (Gal and Ghahramani, 2016) allows us to approximate this intractable integral. By performing \(T\) stochastic forward passes through the network with dropout enabled, we obtain \(T\) predictions for each test input \(x^*\). The empirical distribution of these predictions approximates the predictive distribution \(p(y^*|x^*, X, Y)\). Mathematically, this can be expressed as:

\[
p(y^*|x^*, X, Y) \approx \frac{1}{T} \sum_{t=1}^{T} p(y^*|x^*, \theta_t)
\]

More practically, while we typically disable dropout during inference, to ensure deterministic and less noisy predictions. However, under MC Dropout based inference, we draw multiple predictions for the same input, by sampling a different dropout mask each time. This yields a predictive distribution for a given model, and inputs, which
<table>
<thead>
<tr>
<th>Model</th>
<th>MRR</th>
<th>MR</th>
<th>Hits@10</th>
<th>Hits@3</th>
<th>Hits@1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TransE</td>
<td>0.180</td>
<td>200.78</td>
<td>0.437</td>
<td>0.242</td>
<td>0.040</td>
</tr>
<tr>
<td>TransH</td>
<td>0.217</td>
<td>173.28</td>
<td>0.503</td>
<td>0.293</td>
<td>0.064</td>
</tr>
<tr>
<td>TransD</td>
<td>0.216</td>
<td>168.18</td>
<td>0.500</td>
<td>0.290</td>
<td>0.065</td>
</tr>
<tr>
<td>DistMult</td>
<td>0.219</td>
<td>194.16</td>
<td>0.446</td>
<td>0.252</td>
<td>0.109</td>
</tr>
<tr>
<td>ComplEx</td>
<td>0.256</td>
<td>190.79</td>
<td>0.539</td>
<td>0.309</td>
<td>0.119</td>
</tr>
<tr>
<td>RotatE</td>
<td>0.312</td>
<td>177.04</td>
<td>0.587</td>
<td>0.409</td>
<td>0.155</td>
</tr>
<tr>
<td>CompGCN-ConvE</td>
<td>0.461</td>
<td>171.26</td>
<td>0.659</td>
<td>0.514</td>
<td>0.357</td>
</tr>
</tbody>
</table>

Table 3: Results of KGE link prediction models on RezoJDM16k.

<table>
<thead>
<tr>
<th>Model</th>
<th>MRR</th>
<th>MR</th>
<th>Hits@10</th>
<th>Hits@3</th>
<th>Hits@1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TransE</td>
<td>0.278</td>
<td>2594.24</td>
<td>0.624</td>
<td>0.497</td>
<td>0.033</td>
</tr>
<tr>
<td>TransH</td>
<td>0.250</td>
<td>2957.59</td>
<td>0.581</td>
<td>0.465</td>
<td>0.011</td>
</tr>
<tr>
<td>TransD</td>
<td>0.255</td>
<td>2752.03</td>
<td>0.587</td>
<td>0.472</td>
<td>0.016</td>
</tr>
<tr>
<td>DistMult</td>
<td>0.373</td>
<td>2748.25</td>
<td>0.613</td>
<td>0.502</td>
<td>0.216</td>
</tr>
<tr>
<td>ComplEx</td>
<td>0.413</td>
<td>3447.98</td>
<td>0.593</td>
<td>0.524</td>
<td>0.284</td>
</tr>
<tr>
<td>RotatE</td>
<td>0.399</td>
<td>3650.92</td>
<td>0.490</td>
<td>0.454</td>
<td>0.336</td>
</tr>
<tr>
<td>CompGCN-ConvE</td>
<td>0.515</td>
<td>2808.68</td>
<td>0.627</td>
<td>0.559</td>
<td>0.450</td>
</tr>
</tbody>
</table>

Table 4: Results of KGE link prediction models on RLF27k.

provides a richer set of information about model predictions such as the ability to compute confidence scores for any prediction.
Consider for example the incomplete triple (bonnet i, syn, ?). Given the original predictive distribution of the model, as shown in Figure 4, we apply MC Dropout to generate $n = 100$ new distributions for the triple. Then, we set an inclusive criterion to turn real valued predictions to binary decisions, i.e., we check whether the predicted entity is in the top-10 scored predictions. Finally, we calculate the confidence score as the ratio of the number of times the predicted entity appears in the top-10 to the number of predictive distributions n.
This enables us to draw confidence scores about model predictions, and make claims like “according to this model, the tail entity kepi is in the top-10 predictions for the input head entity bonnet i and relation synonymy with 75% confidence”. We outline the use of these confidence scores in Sec. 6.2.

6. Qualitative analysis

6.1. Extracting candidates

Our goal is to determine whether this confidence score can be used to identify relevant triples that could be incorporated into graphs.
First, we generated all the possible combinations of triples for both datasets and we removed triples already in the graphs. In total, 533,551 predictions were generated for RLF27k and 1,720,454 for RezoJDM16k. We specifically focused on triples whose entities are not linked by any directed path.

For RLF27k, we obtained 95,766 final triples.
In the case of RezoJDM16k, due to the high density of the graph, all entities are linked via shortest paths ranging from 1 to 4. To apply a similar methodology as for RLF27k, we kept triples with paths of lengths 3 and 4, resulting in a total of 154,168 triples.

6.2. Manual annotations

To evaluate the confidence score, 240 triples per dataset were annotated by four annotators, each of whom annotated 120 triples, thus obtaining two annotations for each triple and calculating an inter-annotator agreement (IAA). Confidence scores are homogeneously represented in the samples of each annotator, grouped by 0.1.
The annotation task consists of determining whether a semantic or syntactic link exists between two entities, without taking into account the relation. Annotators have no information outside the triple. Three annotation tags are possible:
• 1: there is a link between the entities,
• -1: there is no link,
• 0: the link is ambiguous or questionable.

Figures 5 and 6 show the pairwise IAA with a Cohen’s kappa, respectively in RezoJDM16k and RLF27k samples, with A1, A2, A3 and A4 referring to the four annotators. The IAA appears notably stronger in the RLF27k sample with the highest agreement at 0.84 against 0.61 for RezoJDM16k. The minimum agreement in RezoJDM16k is particularly low at 0.1, in contrast to RLF27k’s 0.49.
6.3. Results discussion

The difference in the IAA between RezoJDM16k and RLF27k can be attributed to the unequal distribution of annotation tags, more specifically to the overrepresentation of the tag -1 in RezoJDM16k. Of the 240 triples, the annotators agreed on 183. Of these 183 triples, 85% (156 triples) were annotated as -1 and 15% (27) as 1. The high density of the graph implies that nodes semantically unrelated are connected by a relatively short maximum path of 4, which explains the high proportion of -1 annotations. Figure 7 presents the comparison between the manual annotations and the confidence scores of the triples in the sample. Notably, rare triples that were manually annotated as accurate tend to exhibit high confidence scores. However, due to the prevalence of -1 annotations, a robust correlation is challenging to establish.

On the other hand, in the RLF27k sample, out of the 200 triples where both annotators agreed, 56.5% (113) were annotated as -1, 39% (78) as 1 and 4.5% (9) as 0. We can observe that triples annotated as -1 have a low confidence score, while those annotated as 1 have higher confidence score.

Figure 7: Correlation between annotation values and confidence scores in RezoJDM16k sample. The triples considered are those where both annotators agreed.

Figure 8: Correlation between annotation values and confidence scores in RLF27k sample. The triples considered are those where both annotators agreed.
increasing the confidence threshold leads to a higher proportion of correct triples. For instance, choosing a confidence threshold of 0.95 would result in all the triples being correct. On the complete RLF27k graph, there are 95,766 triples whose entities are not connected by a directed path and 398 of them have a confidence score greater than 0.95, which can therefore be considered as potential new triples. Here are some examples of relevant candidates:

- (kidnappeur, Syn, ravisseur I) (kidnapper, Syn, abductor I)
- (marchande, Syn, débitante) (merchant, Syn, retailer)
- (motocycliste n-fem, Syn, motarde) (motorcyclist n-fem, Syn, biker)

The limitation in RLF27k lies in the fine-grained representation of polysemy. A large part of the candidates are triples where the model predicted the wrong sense of the target entity, which is probably due to the copolysemy relations between the senses of a vocable. Thus, another experiment would be to train a model without these relations to reduce this phenomenon.

7. Discussion

In this study, we aimed to identify potential new triples for two lexical-semantic graphs, RezoJDM16k and RLF27k, using link prediction models. Initially, we assessed seven KGE models on both the dense graph RezoJDM16k and the sparser graph RLF27k. The model CompGCN-ConvE yielded the best performance on these datasets, showing state-of-the-art results for French datasets. We further studied the use of MC Dropout to generate confidence-aware predictions. Based on this, we chose predictions from the best performing model (CompGCN-ConvE), as potential triples to be added to the graph and finally, we evaluated the confidence score using manual annotations.

There is a marked difference between the two graphs in terms of density. For a dense graph like RezoJDM16k, adding new triples might not yield significant benefits, given that even entities with slight semantic proximity are connected via short paths. Yet, our approach may prove useful for refining general relations and identifying errors in the graph, especially since it derives its data from a less controlled process of GWAPs. Notably, RezoJDM16k heavily features the general associated relation, constituting 31% of the edges, which could be refined through the model’s predictions. For instance: (infirmière, associated, personne), (nurse, associated, person) is refined as (infirmière, is_a, personne), (herpès, associated, médecine), (herpes, associated, medecine) as (herpès, domain, médecine) and (ouvrir, associated, fermer), (open, associated, close) becomes (ouvrir, antonym, fermer).

On the other hand, for a sparse graph created manually by linguists such as RL-fr, our approach holds greater significance as it offers a valuable way to enrich the resource. In a final step, we asked annotators to verify the predictions yielded from our aforementioned technique. Based on their results, we find that predictions with high confidence scores are more likely to be selected as valid additions to the graph. As a result, several triples could potentially be integrated into the resource, subject to expert validation.

While the results of our approach are promising, we maintain that manual verification is an important step, as the representation of polysemy into separate nodes directly affects predictions. Given that the model only relies on the graph’s structure and neighboring nodes to grasp semantics, there are inherent limitations in predicting the precise entity among the various senses of a vocable.

In subsequent research, beyond intrinsic evaluation methodologies, we intend to conduct extrinsic evaluation using augmented or corrected lexical-semantic graphs in NLP tasks, notably Word Sense Disambiguation (WSD). Furthermore, from a resource-centric perspective, we aim to explore the potential mutual benefit and enhancement between the two French lexical-semantic networks.

All associated code for our experiments and manual annotations are available in this repository: https://github.com/hschoi4/fr-link-prediction.
8. Ethical Considerations

In order to run all the experiments in this study, we estimated that a total of 485 kWh of electricity were used. This gives about 14.5 kg CO₂, using the estimation of carbon intensity (30 g CO₂ eq/kWh). These values were collected with a carbon tracker (Anthony et al., 2020).

We also want to emphasize that while we tried to make this study as reproducible as possible, we are aware that this may not be practical due to the necessary hardware resources. To train the models, a computer with at least 96 GB of system memory (or GPU memory) was needed and we used a cluster of 113 computers with 18-core CPUs during 10 hours to compute all the predictions. This also required the storage of 2 TB of data.

9. Acknowledgments

We thank the reviewers for their useful comments which allowed to improve this paper. We also thank Vincent Tournier (LORIA, INRIA) for all his help with technical manipulations. Experiments presented in this paper were carried out using the Grid’5000 testbed, supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr). This work has been partially funded by the French Agence Nationale pour la Recherche, through the SELEXINI project (ANR-21-CE23-0033-01).

10. Bibliographical References

Marie Candito and Djamé Seddah. 2012. Le corpus sequoia : annotation syntaxique et exploita-

Mikhail Galkin, Max Berrendorf, and Charles Tapley Hoyt. 2022. An open challenge for inductive link prediction on knowledge graphs.

Pengcheng Jiang, Shivam Agarwal, Bowen Jin, Xuan Wang, Jimeng Sun, and Jiawei Han. 2023. Text augmented open knowledge graph completion via pre-trained language models. In Findings of the Association for Computational Linguistics: ACL 2023, pages 11161–11180, Toronto, Canada. Association for Computational Linguistics.

11. Language Resource References

Sagot, Benoît. 2010. *The Lefff, a freely available and large-coverage morphological and syntactic lexicon for French*.