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Abstract
In this article, we present a novel implementation of the equilibrated flux, the key ingredient

in designing a p-robust error estimator. Our algorithm involves two primary loops: one on
mesh cells and one on nodal patches. The loop on cells provides a setup phase that allows
to reduce memory allocations for the potentially more costly loop on patches. Both of these
loops involve mutually independent operations and are therefore amenable to parallelization
strategies. We present numerical results of both the correctness of our implementation as well
as evidence of the speedup due to parallelism. Our implementation is available as a registered
Julia package under an MIT open source license.

Keywords: finite elements, a posteriori error estimation, shared-memory parallelism, Julia pro-
gramming language

1 Introduction
A posteriori error estimation has become an indispensable tool in numerical analysis. However,
many popular error estimators such as the residual based estimator [22] or the so-called ZZ-
estimator [24, 23] are not robust with respect to the polynomial degree of the discretization. The
equilibrated flux is the key ingredient in designing an error estimator that is independent of the
polynomial degree p related to the discretization (p-robust). In this paper we present an efficient
parallel implementation of the equilibrated flux: a vector field σh ∈ H(div,Ω) with a prescribed
divergence where Ω ⊂ Rd is a spatial domain in dimension d ∈ {1, 2, 3}. We consider a fitted
conforming mesh Th of Ω with vertex set Vh. For each vertex a ∈ Vh, the algorithm consists in
solving local minimization problems of the form

σa
h := argmin

vh∈V a
h

∇·vh=ga

‖τ a
h + vh‖ωa , (1)

where ωa ⊂ Ω is the domain corresponding to a small subset of elements in Th (a nodal patch),
V a
h is a finite-dimensional H(div, ωa)-conforming space, −τ a

h is the local target vector field, and
ga is the local prescribed divergence. The global equilibrated flux is then built by summing over
the local contributions, i.e.,

σh(x) :=
∑
a∈Vh

σa
h(x), ∀x ∈ Ω. (2)

To solve the local minimization problem (1), the minimum is equivalently characterized as the
solution of a mixed finite element problem of the form: find (σa

h, rh) ∈ V a
h ×Qa

h satisfying

(σa
h,vh)ωa − (rh,∇·vh)ωa = −(τ a

h ,vh)ωa ∀vh ∈ V a
h (3a)

(∇·σa
h, qh)ωa = (ga, rh)ωa ∀qh ∈ Qa

h, (3b)
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where (·, ·)ωa denotes the L2-inner product on ωa and Qa
h ⊂ L2(ωa) is a finite-dimensional broken

space. We refer to the systems (3) for each a ∈ Vh as patch problems.
An important practical feature of this construction is the mutual independence of the patch

problems (3). This implies that the computation of the patch solutions σa
h is embarrassingly

parallel. However, to the best of our knowledge, an efficient parallel implementation has not been
realized. In this work, we present a concrete algorithm with minimal memory allocations that
uses the shared memory parallelism paradigm in the Julia programming language. Our algorithm
presents three main novelties that are not obvious from the mathematical construction:

1. a setup phase consisting of a loop on cells to compute all necessary data for the patch
problems;

2. reusing the standard local-to-global degree of freedom (DOF) mapping to construct a local-
to-patch DOF mapping;

3. pre-computing the largest patch system size and preallocating all necessary matrices and
vectors to be reused.

The resulting code is available under an open source MIT license in the EquilibratedFlux.jl
package1 and can be easily installed via the Julia package manager Pkg. The library naturally
interfaces with the Gridap.jl library [1, 21] both in terms of usage and reuse of basic finite element
library utilities.

The theory of the equilibrated flux is based on principles first established in Prager and Synge
[17] and more recently in the works of Ladevèze and Leguillon [14], Destuynder and Métivet [6],
Braess and Schöberl [2], and Ern and Vohralík [10]. The main application of the equilibrated flux
is in a posteriori error estimation. The equilibrated flux gives rise to an error estimator that is
reliable (constant free upper bound on the error) and efficient (lower bound on the error). As
demonstrated in [2] (in two spatial dimensions) and [11] (in three spatial dimensions) the efficiency
constant is independent of the polynomial approximation degree p. In particular, this means that
the quality of the estimation does not degrade as the polynomial degree increases.

The equilibrated flux has been used to provide error estimates in many contexts, notably for
diffusion problems [4], reaction-diffusion problems [19], the heat equation [9, 8], poro-elasticity
[18], the Richards equation [15], eigenvalue problems [5], and nonlinear elliptic partial differential
equations (PDEs) [12, 13].

The rest of this work is organized as follows. In §2 we give a precise description of the equili-
brated flux in the context of the Poisson equation. In §3 we give a description of a naive algorithm
for calculating the flux and discuss the associated trade-offs. In §4 we discuss our proposed efficient
algorithm, with examples from the source code. In §5 we present two possible use cases for the flux:
error estimation and driving adaptive mesh refinement. In §6 we demonstrate the performance of
shared memory parallelization for computing the flux on a test case with 10 million DOFs. Finally,
we conclude in §7 we acknowledge further optimizations to improve performance.

2 Problem description
2.1 Notation
For a subdomain ω ⊆ Ω, we denote the L2(ω) inner product by (·, ·)ω and ‖ · ‖ω the associated
norm. We omit the subscript when ω = Ω. We consider a fixed triangular mesh Th = ∪K{K} of
Ω such that ∪K∈Th

K = Ω. We enforce that the mesh is conforming in the sense that there are
no hanging nodes: the intersection of (the closure) two arbitrary elements K,K ′ ∈ Th is either
empty or an l-dimensional simplex for 0 ≤ l ≤ d − 1. Next, let Vh denote the set of vertices in
the mesh Th. We introduce the nodal patch Ta of a node a ∈ Vh by Ta := {K ∈ Th : a ∈ K}.
We denote the corresponding domain of Ta by ωa ⊂ Ω. Finally, we define the nodes of a element
VK := {a ∈ Vh : a ∈ K}.

1https://github.com/aerappa/EquilibratedFlux.jl
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We assume that we work with a fixed polynomial degree p ≥ 1. We introduce the continuous
Galerkin (cG) finite element space of of degree p by

V p
h := H1

0 (Ω) ∩ Pp(Th). (4)

We denote the hat function basis by {ψa}a∈Va ⊂ V 1
h . A given hat function ψa is fully determined

by its action on the vertices Vh of the mesh; indeed for a′ ∈ Va we have

ψa(a
′) =

{
1 if a′ = a,

0 otherwise.

See Figure 1 for an illustration for a nodal patch domain ωa and the associated hat function
ψa.

We also introduce, for an elementK ∈ Th, the Raviart–Thomas–Nédélec [3] mixed finite element
space,

V p
h (K) := [Pp(K)]d + xPp(K), (5)

as well as the H(div)-conforming counterpart for a collection of elements T ⊆ Th, and its corre-
sponding subdomain ω ⊆ Ω

V p
h (ω) := {vh ∈ H(div, ω) : vh

∣∣
K

∈ V p
h (K) ∀K ∈ T }, (6)

as well as the broken space

Qp
h(ω) := {v ∈ L2(ω) : v

∣∣
K

∈ Pp(K) ∀K ∈ T }. (7)

We denote the dimensions of the element-wise spaces by

nK := dim(V p
h (K)), mK := dim(Pp(K)). (8)

2.2 Poisson equation
To fix ideas, in this paper we consider the Poisson equation with homogeneous boundary conditions,
i.e., for a polygonal domain Ω ⊂ R2,

−∆u = f in Ω

u = 0 on ∂Ω,
(9)

where we make a simplifying assumption that f ∈ Pp(Th). The finite element approximation
uh ∈ V p

h of (9) satisfies
(∇uh,∇vh) = (f, vh) ∀v ∈ V p

h , (10)

This problem is well-posed thanks to the Lax–Milgram theorem. However, this method results in
a “nonconforming flux”, i.e.,

−∇·(∇uh) 6= f. (11)

2.3 Equilibrated flux for the Poisson equation
We now describe the post-processing procedure to produce the so-called equilibrated flux starting
from the approximate cG solution uh of (10).

Definition 1 (Equilibrated flux). Let uh ∈ V p
h solve (10). For each node a ∈ Vh, determine

σa
h ∈ V a

h and rh ∈ Qa
h by solving

(σa
h,vh)ωa − (rh,∇·vh)ωa = −(ψa∇uh,vh)ωa , (12a)

(∇·σa
h, qh)ωa = (fψa −∇uh · ∇ψa, qh)ωa , (12b)
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Figure 1: A nodal patch and its associated hat function.

for all (vh, qh) ∈ V a
h ×Qa

h. The spaces are defined as

V a
h := {vh ∈ V p

h (ωa) : vh · nωa = 0 on ∂ωa},
Qa

h := {qh ∈ Qp
h(ωa) : (qh, 1)ωa = 0},

a ∈ V int
h , (13a)

V a
h := {vh ∈ V p

h (ωa) : vh · nωa = 0 on ∂ωa \ ∂Ω},
Qa

h := Qp
h(ωa),

a ∈ Vext
h . (13b)

The global flux is then defined by
σh :=

∑
a∈Vh

σa
h. (14)

Remark 1 (Link with the general problem). The local flux given in (12) can be seen as a special
case of the general flux given in (3) with τ a

h = ψa∇uh and ga = fψa −∇uh · ∇ψa. Furthermore,
the global flux (14) satisfies

σh ∈ H(div,Ω), ∇·σh = f. (15)

Remark 2 (Estimator based on the flux). We can define an error estimator η using the equilibrated
flux via

ηK := ‖∇uh + σh‖K , η :=

( ∑
K∈Th

η2K

)1/2

. (16)

We then have the following bound on the error in the H1-seminorm (reliability):

‖∇(u− uh)‖ ≤ η. (17)

The estimator also provides a local lower bound (efficiency):

ηK .
∑
a∈VK

‖∇(u− uh)‖ωa . (18)

and the hidden constant is independent of (in particular) the polynomial degree p for spatial di-
mension d ≤ 3, see [2, 11].

2.4 Linear algebra representation
Once a basis {va

i }
na
i=1 of V a

h and {qai }
ma
i=1 of Qa

h are chosen, we can also write the patch system (12)
in matrix form,

AaXa = Fa (19)

with the block decomposition

Aa =

(
Ma BT

a

Ba 0

)
, Xa =

(
xa

xa

)
, Fa =

(
Fa

Fa

)
. (20)
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The block matrices Ma ∈ Rna×na and Ba ∈ Rma×na are given by

[Ma]ij := (va
j ,v

a
i )ωa (21a)

[Ba]ij := (∇·va
j , q

a
i )ωa , (21b)

while the right hand side vectors Fa ∈ Rna and Fa ∈ Rma are given by

[Fa]j := −(ψa∇uh,vj)ωa , (22a)
[Fa]j := (fψa −∇uh · ∇ψa, qj)ωa . (22b)

The degrees of freedom for the local equilibrated flux σa
h are contained in the vector xa.

3 Naive implementation of the equilibrated flux
We first consider in Algorithm 1 a possible implementation of the equilibrated flux assembly Defini-
tion 1 at a high level of abstraction. The algorithm follows closely to the mathematical formalism:
we are provided data −∇uh and f coming from the Poisson problem. We then initialize the final
flux object σh and enter a loop on nodes/patches. Inside the loop, we rely on a finite element
library that can create the required spaces V a

h and Qa
h as well as evaluate the bilinear forms in

(21) and (22). We then solve the linear problem (19) and scatter the local DOFs to the global
DOFs. We also ignore details like the fact that the geometrical and topological patch information
needs to be extracted from the mesh. Many libraries do not support this, as it is not part of the
standard assembly procedure.

3.1 Disadvantage of the naive implementation
While the Algorithm 1 is very simple to write down and has a nice correspondence with the
mathematical description, it is unfortunately inefficient. In particular, this algorithm inherently
requires many dynamic memory allocations inside the loop on patches. Firstly, at each iteration
of the loop on line 3, the finite element spaces are rebuilt completely from scratch, including,
in particular, all the information pertaining to the reference element (which is often the most
heavyweight in terms of allocation). In addition, on line 4 the matrix and vectors associated to
the patch system are not reused between iterations, invoking more dynamic allocations.

Dynamic memory allocation can be a significant performance bottleneck due to overhead and
data locality. Firstly, the process of allocating and deallocating memory dynamically may involve
system calls, which are substantially slower compared to accessing stack or pre-allocated heap
memory. This added computational overhead is particularly problematic in scenarios involving
frequent allocations/deallocations, such as in tight loops or high-frequency function calls. Secondly,
modern processors use a hierarchy of caches to speed up access to frequently used data. Good data
locality means that the data a program needs is either already in the cache or close together in
memory, allowing for efficient cache usage. Dynamic memory allocation can lead to poor data
locality because it often allocates memory in a non-contiguous manner. Objects that are logically
related in a program might end up being physically scattered in memory. This scattering can result
in more cache misses (where the required data is not in the cache), leading to slower performance
as the processor has to fetch data from the slower main memory.

These considerations are independent of the programming language, and apply just as much
to a statically compiled language with manual memory management like C as to Julia which uses
just-in-time (JIT) compilation and is garbage collected2. Thus, our approach to reduce dynamic
memory allocations is applicable and relevant to any choice of language for someone interested
in serial performance and even more so for parallel performance in a shared memory parallelism
paradigm. This is because the memory buses can quickly become congested with requests from
the various threads to main memory.

2This effect is more pronounced in the case of a garbage collected language, as frequent (de)allocations create
pressure on the garbage collector.
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3.2 Proposed solutions
As described in the introduction, we propose three main ways to reduce dynamic memory alloca-
tions:

1. Assemble cellwise versions of (21) and (22)

2. Introduce lightweight mappings from the cell DOF index space to the patch DOF index space

3. Reuse patch-local vectors and matrices

In the following section we show how these three steps lead to a much more efficient algorithm,
with very few, or even zero memory allocations inside the main loop on patches.

Algorithm 1: Naive equilibrated flux assembly
Input: Mesh Th, approximate flux −∇uh, source term f
Output: Global equilibrated flux σh

1 Initialize σh ∈ V p
h (Ω)

2 foreach node a ∈ Vh do
3 Instantiate the finite element spaces V a

h and Qa
h of (13)

4 Allocate patch matrix and vector Aa and Fa

5 Populate Aa and Fa using V a
h , Q

a
h

6 Solve Xa = A−1
a Fa

7 Scatter xa = DOFs(σa
h) to DOFs(σh)

8 return σh

4 Efficient algorithm
In this section we consider a more involved algorithm that relies less on the builtin functionality
provided by a standard finite element library. However, the result is a more efficient algorithm
that is also more amenable to shared memory parallelization.

4.1 High level view
As explained in the previous section, one key to the efficient implementation will be to perform
an initial cellwise assembly. For an element K and bases {vK

i }nK
i=1 of V p

h (K) as well as {qKi }mK
i=1 of

Qp
h(K), we define the cell block matrices MK ∈ RnK×nK and BK ∈ RmK×nK by

[MK ]ij := (vK
j ,v

K
i )K (23a)

[BK ]ij := (∇·vK
j , q

K
i )K . (23b)

The right-hand sides of (12) are slightly more involved because they depend on the hat functions
ψa, of which there are d + 1 for a d-dimensional simplex K. Thus, the right-hand sides are also
indexed by the node a,

[F a
K ]j := −(ψa

∣∣
K
∇uh,vK

j )K , (24a)
[F a

K ]j := (fψa

∣∣
K
−∇uh · ∇

(
ψa

∣∣
K

)
, qKj )K . (24b)

We now present Algorithm 2, which starts with a loop on cells creating the objects in (23)
and (24). This loop is a common paradigm in finite element codes, and in certain cases this
functionality is exposed. This is indeed the case in Gridap.jl, and in our implementation this
part of the algorithm relies mostly on existing technology in the library. We discuss this in more
detail in §4.3.

The next step of the algorithm is the pre-allocation of Aa and Fa, on line 5. This is nontrivial
since the dimensions of the patch problems are variable, and we will address this in §4.4. Next, we
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see that we only perform read operations on the matrices MK , BK inside the loop on patches. This
effectively reduces the number of allocations inside the loop on patches to zero. We also remark
that many details are missing, and in particular we have not discussed the scatters on lines 10,
11, and 14. This requires careful handling of indices. We will give more details about managing
indices in §4.5. We also need to remove allocations due to the resolution of the linear system on
line 13, which we discuss in §4.4. A prerequisite for all the aforementioned steps is some topological
information about the patches, which we discuss in §4.2.

Algorithm 2: Efficient equilibrated flux assembly
Input: Mesh Th, approximate flux −∇uh, source term f
Output: Global equilibrated flux σh

// Loop on cells
1 foreach cell K ∈ Th do
2 Build the cellwise matrices MK , BK of (23)
3 for each node a in the cell K do
4 Build the cellwise vectors F a

K , F a
K of (24)

5 Allocate Aa,Fa

6 Initialize σh ∈ V p
h (Ω)

// Loop on patches
7 foreach node a ∈ Vh do
8 Zero out Aa and Fa

9 foreach cell K ∈ Ta do
10 Scatter MK , BK to Aa

11 Scatter F a
K ,F

a
K to Fa

12 Impose boundary conditions on Aa,Fa

13 Solve Xa = A−1
a Fa

14 Scatter xa = DOFs(σa
h) to DOFs(σh)

15 return σh

4.2 Topological patch information
We construct a small type hierarchy, shown in Listing 1, that contains the necessary topological
information pertaining to patches.

The two types of patches DirichletPatch and InteriorPatch correspond to the differences in
the definitions of the spaces (13). The PatchData struct contains topological information related
to the patch which is extracted through the Gridap.Geometry.get_faces function. For example,
node_to_cell = Geometry.get_faces(topo, 0, 2) gives a vector of vectors for each node in
the mesh to the ids of the cells it belongs to.

4.3 Cellwise assembly
As established in §4.1, we want to compute cellwise matrices and vectors of (23) and (24). To
achieve this, we rely on existing machinery available in many finite element libraries, and in par-
ticular in the Gridap.jl library 3. Therefore, the code in Listing 2 is meant only to illustrate the
main steps of setting up the loop on cells in the setting of the Gridap.jl library in particular,
but the main ideas can be carried over to other libraries. Furthermore, including this construction
allows the final loop on patches to be self contained in the sense that all the data structures are
defined. Finally, we note that here the loop on cells is not explicit, but comes implcitly through
the definitions of objects that are defined cellwise on the entire mesh.

We first build the spaces V p
h (K) and Qp

h(K) on the reference element and then extend it to
the whole mesh Th via the code in Listing 2, lines 1–8.

3see, e.g., the low-level developer tutorial https://gridap.github.io/Tutorials/stable/pages/t013_poisson_
dev_fe/.
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1 # T is meant to be an integer type large enough to store all cell/node

2 # indices in the mesh

3 abstract type Patch{T} where {T <: Integer} end

4

5 struct PatchData{T <: Integer}

6 node_to_offsets::Vector{T}

7 patch_cell_ids::Vector{T}

8 bdry_edge_ids::Vector{T}

9 all_edge_ids::Vector{T}

10 end

11

12 struct DirichletPatch{T <: Integer} <: Patch{T}

13 data::PatchData{T}

14 end

15

16 struct InteriorPatch{T <: Integer} <: Patch{T}

17 data::PatchData{T}

18 end

Listing 1: Topological patch information

With these spaces in hand, we can evaluate bilinear forms cell-wise on the mesh. The ingredients
for this will be the basis of these respective spaces, as well as a CellQuadrature to perform cellwise
integration at quadrature points. We create these objects at lines 10–13.

The interface for evaluating the bilinear forms cellwise is then very straightforward, and is used
at lines 15–16 to construct the mass matrices {MK}K∈Th

, and the mixed form matrices {BK}K∈Th

as in (23).
The right-hand sides are more involved due to the fact that in two dimensions each triangle

has three vertices and therefore three hat functions are supported on it and must be accounted
for. First, we consider two helper functions to get the hat function basis (lines 18–31). Once these
two functions are in place to extract the hat functions, we can assemble the right-hand sides: one
for each hat function. This is done in lines 33–42.

The arrays cell_RHS then correspond to {F a
K}K∈Th

and {F a
K}K∈Th

of (24). We add a Lagrange
multiplier row to handle the mean free condition in the case of interior patches (see (13a)) and
then collect all the cellwise objects in a NamedTuple called co (lines 44-45).

4.4 Patch-level linear algebra
In this section, we detail our strategy for reusing the matrices and vectors of the patch system
between iterations. The dimensions of the spaces on the reference element are known and calculated
via the function get_dofs_per_cell in Listing 3, lines 1–5.

Next, we need to know the maximum number of cells in a patch. We obtain this information
during the initial creation of the Patch objects of §4.2, which we call max_patch_cells (lines
7–17). We now collect all the patchwise matrices and vectors into a NamedTuple as we did for the
cellwise data (line 19).

Finally, we note that we also instantiate a pivot vector ws. This is required for the library
FastLapackInterface.jl4 which allows efficient (in terms of allocation) calls to the underlying
LAPACK solver. Listing 4 shows how these preallocated objects are ultimately re-used during the
loop on patches, where n_free_dofs depends on the patch currently being considered.

4.5 The DOF manager
We now discuss the required bookkeeping for the patch indexed DOFs. In particular, the cell objects
of §4.3 are all cell-locally indexed. The Gridap.jl library exposes the so-called element-local to
mesh-global DOF map (accessed via Gridap.FESpaces.get_cell_dof_ids) that is standard in

4https://github.com/DynareJulia/FastLapackInterface.jl
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1 # Assume we already have a desired polynomial degree p

2 # and Triangulation 𝓣ₕ

3 reffeRT = ReferenceFE(raviart_thomas, Float64, p)

4 reffeP = ReferenceFE(lagrangian, Float64, p)

5 # Raviart−Thomas space for the flux

6 RT_space = FESpace(𝓣ₕ, reffeRT, conformity = :HDiv)

7 # Broken L^2 space for the Lagrange multiplier

8 L2_space = FESpace(𝓣ₕ, reffeP, conformity = :L2)

9

10 Qₕ = CellQuadrature(𝓣ₕ, quad_order)

11 dvp = get_trial_fe_basis(L2_space)

12 duRT = get_fe_basis(RT_space)

13 dvRT = get_trial_fe_basis(RT_space)

14

15 cell_mass_mats = ∫(duRT ⋅ dvRT) ∗ Qₕ

16 cell_mixed_mats = ∫((∇ ⋅ duRT) ∗ dvp) ∗ Qₕ

17

18 function _get_hat_function_cellfield(i, basis_data, 𝓣ₕ)

19 cell_to_ith_node(c) = c[i]

20 A = lazy_map(cell_to_ith_node, basis_data)

21 return GenericCellField(A, 𝓣ₕ, ReferenceDomain())

22 end

23

24 function _get_hat_functions_on_cells(𝓣ₕ)

25 # Always degree 1

26 reffe = ReferenceFE(lagrangian, Float64, 1)

27 V0 = TestFESpace(𝓣ₕ, reffe; conformity = :H1, dirichlet_tags = "boundary")

28 fe_basis = get_fe_basis(V0)

29 bd = Gridap.CellData.get_data(fe_basis)

30 return bd

31 end

32

33 hat_fns_on_cells = _get_hat_functions_on_cells(𝓣ₕ)

34 RHS_RT_form(ψ) = ∫(-ψ ∗ (∇uₕ ⋅ dvRT))∗Qₕ

35 RHS_L²_form(ψ) = ∫((f ∗ ψ - ∇uₕ ⋅ ∇(ψ))∗dvp)∗Qₕ

36 cur_num_cells = num_cells(𝓣ₕ)

37 nodes_per_cell = 3

38 for i = 1:nodes_per_cell

39 ψᵢ = _get_hat_function_cellfield(i, hat_fns_on_cells, 𝓣ₕ)

40 cell_RHS_RTs[i] = RHS_RT_form(ψᵢ)

41 cell_RHS_L2s[i] = RHS_L²_form(ψᵢ)

42 end

43

44 cell_Λ_vecs = ∫(1 ∗ dvp) ∗ Qₕ

45 co = (; cell_mass_mats, cell_Λ_vecs, cell_mixed_mats, cell_RHS_RTs, cell_RHS_L²s)

Listing 2: Cellwise assembly
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1 function get_dofs_per_cell(p, d)

2 RT_dofs_per_cell = (p + d + 1) ∗ binomial(p + d - 1, p)

3 L²_dofs_per_cell = binomial(p + d, p)

4 (RT_dofs_per_cell, L²_dofs_per_cell)

5 end

6

7 (RT_dofs_per_cell, L²_dofs_per_cell) = get_dofs_per_cell(p, d)

8 M = zeros(RT_dofs_per_cell ∗ max_patch_cells, RT_dofs_per_cell ∗ max_patch_cells)

9 B = zeros(RT_dofs_per_cell ∗ max_patch_cells, L²_dofs_per_cell ∗ max_patch_cells)

10 A = [M B; transpose(B) zeros(size(B)[2], size(B)[2])]

11 # Pre−allocate the pivot vector for the matrix A

12 ws = LUWs(A)

13 RHS_RT = zeros(max_patch_cells ∗ RT_dofs_per_cell)

14 RHS_L² = zeros(max_patch_cells ∗ L²_dofs_per_cell)

15 RHS = [RHS_RT; RHS_L²]

16 Λ = similar(RHS_L²)

17 σ_loc = similar(RHS)

18

19 linalg = (; M, B, A, ws, Λ, RHS_RT, RHS_L², RHS, σ_loc)

Listing 3: Patch-level linear algebra: pre-allocation of re-usable objects

1 A_free_dofs = @view linalg.A[1:n_free_dofs, 1:n_free_dofs]

2 RHS_free_dofs = @view linalg.RHS[1:n_free_dofs]

3 σ_free_dofs = @view linalg.σ_loc[1:n_free_dofs]

4 ldiv!(σ_free_dofs, LU(LAPACK.getrf!(linalg.ws, A_free_dofs)...), RHS_free_dofs)

Listing 4: Patch-level linear algebra: re-use of pre-allocated objects for each patch

1 struct DOFManager{T, M <: Matrix{T}, V <: Vector{T}}

2 # All the cell dofs stored as a matrix

3 all_cell_dofs_gl::M

4 # The current patch dofs in the global ennumeration

5 patch_dofs_gl::V

6 # The current free dofs in patch local ennumeration for slicing

7 # into the patch local objects

8 free_patch_dofs_loc::V

9 # The current cell's dofs in the patch local ennumeration

10 cell_dofs_loc::V

11 end

12

13 function update_cell_local_dofs!(dm::DOFManager, cellid)

14 empty!(dm.cell_dofs_loc)

15 for id in cur_cell_dofs_gl

16 new_id = findfirst(n -> n == id, dm.patch_dofs_gl)

17 new_id isa Nothing && error("Cannot update cell local dofs!")

18 push!(dm.cell_dofs_loc, new_id)

19 end

20 end

Listing 5: DOF manager
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finite element codes. This map allows the scatter procedure from the cell-locally indexed objects
to objects with mesh global indexing. We will be able to reuse this information to create a local-
to-global map where the global index space is a patch ωa and not the full mesh Th. To this end,
we introduce the struct defined in Listing 5, lines 1–11.

The DOFManager is built on the cell-local to mesh-global map to construct cell-local to patch-
global maps for each patch. The field all_cell_dofs_gl stores the cell-to-global DOF mapping
which is a ncells × ndofs vector of vectors. Here, ndofs represents the number of DOFs on a
cell. The other fields of the DOFManager are updated dynamically using geometric information, but
with no memory allocations using the empty! and push! methods (the convention in Julia is to
append non-allocating function names with an exclamation point and modify the first argument).
For example, the function defined at lines 13–20 updates cell_dofs_loc in place.

4.6 The loop on patches

1 for patch in patches

2 # Change the local numbering for the current patch

3 update_patch_dofs!(dm_RT, patch.data)

4 update_patch_dofs!(dm_L², patch.data)

5 # Scatter the cell based matrices in cell_objects to linalg

6 matrix_scatter!(linalg.M, co.cell_mass_mats, dm_RT, dm_RT, patch.data)

7 matrix_scatter!(linalg.B, co.cell_mixed_mats, dm_L², dm_RT, patch.data)

8 # Idem for vectors

9 vector_scatter!(linalg.RHS_RT, co.cell_RHS_RTs, dm_RT, patch.data)

10 vector_scatter!(linalg.RHS_L², co.cell_RHS_L²s, dm_L², patch.data)

11 single_vector_scatter!(linalg.Λ, co.cell_Λ_vecs, dm_L², patch.data)

12 # Now that scatter to local system is complete, remove fixed dofs

13 remove_homogeneous_neumann_dofs!(dm_RT, patch.data, degree)

14 # Count the free dofs for this patch once the BCs are imposed

15 n_free_dofs_RT = count_free_dofs(dm_RT)

16 n_free_dofs_L² = count_free_dofs(dm_L²)

17 n_free_dofs = n_free_dofs_RT + n_free_dofs_L²

18 # Use the sub−matrices and vectors generated from the scatters to build

19 # the monolithic objects

20 setup_patch_system!(linalg.A, linalg.RHS, linalg, dm_RT, dm_L²)

21 # Handle the pure Neumann case

22 if patch isa InteriorPatch

23 add_lagrange!(linalg.A, dm_RT, dm_L², linalg.Λ)

24 n_free_dofs += 1

25 end

26 solve_patch!(linalg, n_free_dofs)

27 # Scatter to the global FE object's free_values

28 scatter_to_global_σ!(σ_gl, dm_RT, linalg.σ_loc, n_free_dofs_RT)

29 end

Listing 6: Loop on patches

We now consider the heart of the code, i.e., the loop on patches. The efforts up to this point
have been so that this part of the algorithm can be completely free of memory allocations so that
the shared memory parallelism is efficient. We only show in Listing 6 a serial version of this loop
for simplicity.

In this loop, it is assumed that DOFManagers dm_RT and dm_L2 have been created out of their
respective spaces. It is also important to note that the various scatter functions are non-allocating.
This is illustrated in Listing 7, which details the implementation of vector_scatter.
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1 function vector_scatter!(patch_vec, cell_vecs, dm, patch_data)

2 fill!(patch_vec, 0)

3 node_to_offsets = patch_data.node_to_offsets

4 for (i, cellid) in enumerate(patch_data.patch_cell_ids)

5 cell_vec_all_nodes = @view cell_vecs[cellid, :]

6 offset = node_to_offsets[i]

7 update_cell_local_dofs!(dm, cellid)

8 cell_vec = cell_vec_all_nodes[offset]

9 for i in axes(cell_vec, 1)

10 patch_vec[dm.cell_dofs_loc[i]] += cell_vec[i]

11 end

12 end

13 end

Listing 7: Example of a non-allocating scatter function

5 Example use cases of the equilibrated flux
The following two sections closely follow the tutorials which can be found online in the documen-
tation for the EquilibratedFlux.jl package5.

5.1 Error estimation
In this tutorial we show how the equilibrated flux can be used to create an error estimator (16).
We consider the following example data for the discrete Poisson problem (10):

• Ω = (0, 1)

• Th uniform 10× 10× 2 triangular mesh

• u(x, y) = sin(2πx) sin(πy)

• f(x, y) = 5π2 sin(2πx) sin(πy)

• Polynomial degree p = 1

We assume that the discrete solution uh has been computed via Gridap.jl. Then assembling
an cellwise version of the estimator (16) can be achieved very easily using EquilbratedFlux.jl
as demonstrated in the code snippet in Listing 8.

We then plot the square root of each of these quantities cellwise in Figure 2. We see that indeed,
they are in very good agreement, even locally on each element. This property will be crucial for
informing an adaptive mesh refinement procedure (as we will see in §5.2) where the local error
distribution is used to bisect and generate new elements.

Next, we consider how well the flux we compute approximates the divergence, which we measure
by ‖∇·σh − Πhf‖, where Πh denotes the orthogonal projection onto the space P1(Th). In fact,
mathematically this quantity should be identically zero, and we show in Figure 3 that it is close
to machine precision. This acts as a validation that the algorithm is working correctly.

5.2 Mesh adaptivity
In this section we show how the error estimator defined in the previous section can be used inside
the standard adaptive finite element (AFEM) loop, i.e.,

SOLVE → ESTIMATE → MARK → REFINE. (25)
We demonstrate this for the classical corner singularity using the following data:

• Ω = (−1, 1) \ ([0, 1)× (−1, 0])

5https://aerappa.github.io/EquilibratedFlux.jl/dev/
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1 # uh is the finite element solution on the mesh 𝓣ₕ

2 using EquilibratedFlux

3 σ = build_equilibrated_flux(-∇(uh), f, model, degree)

4 # Define some helper functions

5 L2_inner_product(f, g, dx) = ∫(f ⋅ g) ∗ dx

6 L2_norm_squared(f, dx) = L2_inner_product(f, f, dx)

7 η² = L2_norm_squared(σ_eq + ∇(uh), dx)

8 H1err² = L2_norm_squared(∇(u - uh), dx)

9 η_cellwise = sqrt.(getindex(η_eq², 𝓣ₕ)) # Vector{Float64}

10 H1err_cellwise = sqrt.(getindex(H1err², 𝓣ₕ)) # Vector{Float64}

Listing 8: Example use case: error estimation

Figure 2: Element-wise error ‖∇(uh − u)‖K (left) and estimator ‖∇uh + σh‖K (right).

Figure 3: The element-wise divergence misfit ‖∇·σh −Πhf‖K for the equilibrated flux.
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1 function estimate_laplace(uh, dx, model, degree)

2 σ = build_equilibrated_flux(-∇(uh), x -> 0.0, model, degree)

3 η² = L2_norm_squared(σ + ∇(uh), dx)

4 Ω = Triangulation(model)

5 getindex(η², Ω)

6 end

7

8 while η > tol

9 # SOLVE

10 uh, dx, dofs = solve_laplace(model, degree, g)

11 # ESTIMATE

12 η_arr = estimate_laplace(uh, dx, model, degree)

13 # MARK

14 cells_to_refine = dorfler_marking(η_arr)

15 # REFINE

16 model = refine(model, refinement_method = "nvb",

17 cells_to_refine = cells_to_refine)

18 end

Listing 9: Example use case: mesh adaptivity

• u(r, θ) = rα sin(αθ), α = 2/3

• f = 0

The AFEM loop takes the form presented in Listing 9 (removing some details for simplicity)
where the estimate_laplace function uses the build_equilibrated_flux function to compute
an error estimator. The other modules, e.g., dorfler_marking for a Dörfler marking strategy [7],
are standard and are fully detailed in the online documentation6.

With this AFEM procedure, we can explore solving the problem for increasing polynomial
degree p. The result of running this code for p ∈ {1, 2, 3, 4, 5} is given in Figure 5 where we plot
the estimator and error as a function of total degrees of freedom (DOFs) of the linear system.
Instead of using this estimator as a stopping criterion as indicated in the AFEM loop, we simply
stop the iteration when the mesh contains 3000 triangles. We observe the theoretically optimal
rate of convergence with respect to DOFs, see e.g., [16]. Finally, we remark that the refinement
strategy is markedly different with respect to the polynomial degree, as seen in Figure 4.

Figure 4: The final refined mesh with 3000 triangles using adaptive refinement for polynomial
degrees p = 1 (left) and p = 5 (right).

6https://aerappa.github.io/EquilibratedFlux.jl/dev/examples/Lshaped/Lshaped/

14

https://aerappa.github.io/EquilibratedFlux.jl/dev/examples/Lshaped/Lshaped/


101 102 103 104
10−8

10−6

10−4

10−2

100

DOFs

Er
ro

r
an

d
es

tim
at

or
Error p = 1

Estimator p = 1

O(DOFs−1/2)
Error p = 2

Estimator p = 2

O(DOFs−2/2)
Error p = 3

Estimator p = 3

O(DOFs−3/2)
Error p = 4

Estimator p = 4

O(DOFs−4/2)
Error p = 5

Estimator p = 5

O(DOFs−5/2)

Figure 5: Optimal rate of convergence for both the estimator and the error for varying polynomial
degree p on the L-shaped domain example using adaptive mesh refinement of §5.2.

6 Performance test
We now consider an experiment similar to the one conducted in [12, Appendix B] but with more
details. In particular, we reconsider the data of §5.1 but with a variable mesh size so as to
have approximately 10 millions DOFs for the Poisson problem (10) with polynomial degrees p ∈
{1, 2, 3, 4, 5}. We conduct our experiments on dual socket cluster node equipped with two Cacade
Lake Intel Xeon 5218, each with 16 2.4GHz cores, and 192 GB of 2667 MHz RAM. We consider
the following metric to evaluate the parallel scalability of Algorithm 2:

Speedup :=
T1

TP
≤ P, (26)

where TP is the time required for P processors and perfect scaling would result in Speedup = P. In
Figure 6 we plot the speedup for the two main loops described in Algorithm 2: the loop on cells
starting on Line 1 and the loop on patches starting on Line 7. We first note that in both cases, the
parallelization does indeed provide a speedup. The speedup is however much larger for the loop on
patches which we have optimized to avoid allocations. At this stage, we have not fully optimized
the setup phase involving the loop on cells. Nevertheless, a speedup is observed for the loop on
cells, with a maximum speedup of 10x using 16 cores for polynomial degree p = 5. In contrast, the
maximum speedup for the loop on patches is 13x using 16 cores for polynomial degree p = 4.

We also plot the wall time for the two loop in Figure 7. The times for the loop on cells vary
between 1 minute for p = 3 and 16 threads and 1782.2 seconds (30 minutes) for p = 1 in serial.
The loop on patches varies between 29 seconds for p = 2 with 16 threads, and 855 seconds (14
minutes) for p = 5 in serial. The overall time decreases with polynomial degree for the loop on
cells, but increases for the loop on patches. However, the parallel scaling is also better for higher
order for the loop on patches.

For both loops, we see that increasing the polynomial degree p improves the parallel scalability.
We attribute this to the positive correlation between arithmetic intensity (number of floating point
operations divided by the number of bytes accessed) and polynomial degree of discrete spaces.
Higher arithmetic intensity typically leads to better performance both in serial and in parallel on
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Figure 6: Parallel speedup for the two main loop in Algorithm: the loop on patches of Line 7 (left)
and the loop on cells of Line 1 (right).

modern architectures. The increase of arithmetic intensity due to higher polynomial degree for
matrix assembly has been studied in, e.g., [20]. For the loop on patches, the cost is dominated by
the resolution of the local patch problem on Line 13. We use a direct solver (LU decomposition) for
this step, and the complexity depends on the number of non-zeros in the matrix. As the polynomial
degree increases, so does the matrix band b and direct solvers generally take O(b2n) where n is
the number of unknowns. Thus, the arithmetic intensity increases asymptotically as b increases
because the storage cost is only O(bn).

7 Conclusions and future work
In this paper, we have introduced a novel algorithm for computing the equilibrated flux and
demonstrated its correctness by reconstructing a vector field with a prescribed divergence (up to
a polynomial projection) as well achieving the theoretical optimal rate of convergence for varying
polynomial degree. We also present results for improved performance as measured in terms of
parallel speedup. The corresponding open source library is written entirely in Julia and interfaces
directly with the Gridap.jl finite element library.

The setup phase of the algorithm consisting in a loop on cells has not been fully optimized,
and this is reflected in less dramatic speedup in the numerical results presented herein. This
could therefore be an additional improvement at the implementation level, most likely by reducing
allocations. Another improvement would be to cache information for elements shared between
multiple patches.
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