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Abstract. We present a network emulator for dynamic link networks,
i.e., networks whose parameter values vary; for example, satellite com-
munication networks where bandwidth capacity varies. We describe the
design of the emulator, which allows replicating any network system,
through the use of state-of-the-art virtualization technologies. This paper
is also devoted to the verification of the datasets produced by monitoring
the network emulation. We propose a model-based design for a dynamic
link network emulator and discuss how to extract data for network pa-
rameters such as bandwidth, delay, etc. These data can be verified to
ensure a number of desired properties. The main goal is to try to guar-
antee that the emulator behaves as the real physical system. We rely
on model checking strategies for the dataset validation, in particular,
we utilize a Satisfiability Module Theories (SMT) solver. The properties
to check can include one or several network parameter values and can
contain dependencies between various network instances. Experimental
results showcase the pertinence of our emulator and proposed approach.

Keywords: Model-based Design, Dynamic link Networks, Emulator,
Many-sorted First Order Logic, Satisfiability Modulo Theories

1 Introduction

As the demand for interactive services, multimedia and network capabilities
grows in modern networks, novel software and/or hardware components should
be incorporated [6]. As a consequence, the evaluation and validation process of
these newly developed solutions is critical to determine whether they perform
well, are reliable (and robust) before their final deployment in a real network [1].
However, thorough testing or qualifying [29] the produced software under a wide
variety of network characteristics and conditions is a challenging task [9].

Currently, many of these tests are done through operational, controlled, and
small-scale networks (physical testbeds) or alternatively software-based testbeds.
Ideally, if available, such tests are performed on the original system in order to
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replicate the conditions in which a service or protocol will be used at the highest
level of fidelity [12]. Unfortunately, while system modeling is not needed, such
testbeds are not always desirable or pertinent due to several reasons [33]. For
example, there are difficulties in creating various network topologies, generating
different traffic scenarios, and testing the implementations under specific condi-
tions (network load or weather conditions that may affect the radio-physical links
in specific network technologies such as wireless or satellite communications).

A very well-known alternative method is the use of network simulators [15].
Through network simulation, researchers can mimic the basic functions of net-
work devices and study specific network-related issues on a single computer or
high-end server. However, the adequacy of simulated systems is always in ques-
tion due to the model abstraction and simplification. At the same time, not
simulation but emulation for the related networks can also be a solution [17].
Network emulation provides the necessary mechanisms to reproduce the behav-
ior of real networks at low infrastructure costs compared to physical testbeds.
Emulation is also capable of achieving better realism than simulations since it
allows interacting with interfaces, protocol stacks, and operating systems. More-
over, it is possible to perform continuous testing on the final implementation
without having to make any changes in the solution once it is deployed in a real
network. However, the emulation of dynamic link networks, i.e., networks whose
link parameters change, complicates the emulation architecture. For example,
certain radio-frequency links have different up/down bandwidth capacity [9],
large delays (due to distant transmitters), and the links’ capacities may change
due to external interference, propagation conditions (weather), traffic variations
(due to the shared medium), or others. Therefore, it is extremely important
to have methods that allow controlling key parts of the emulation over time,
such as the generation of traffic or the modification of the link property values
(capacity, delay). These are required in order to build a proper emulation en-
vironment of interest which is the main focus of this work. To cope with such
requirements, we herein propose a dynamic link network emulation and traffic
generation which combines the functional realism and scalability of virtualiza-
tion and link emulation to create virtual networks that are fast, customizable
and portable.

At the same time, the tool needs to ensure the emulation of dynamic link
networks exactly as expected and requested by an end user. There are a number
of ways to provide such kind of assurance. On the one hand, the emulator can be
permanently monitored and the captured data can be analyzed online to check if
they satisfy the necessary properties. We investigated this approach previously
and the interested Reader can find more details in [24]. With such an online
approach, verifying complex properties can be problematic, as the verification
time must be reasonable. On the other hand, it is also possible to analyze the
monitored data offline. If the generated dataset does not hold expected proper-
ties, the emulator should be updated accordingly. The latter strategy is applied
in the paper.



Dynamic link Network Emulation and Validation of Execution Datasets 3

We therefore present a design and architecture of the solution that meets
dynamic link emulation needs by the effective use of software technologies, such
as virtualization (containers and virtual machines) and Linux kernel capabili-
ties. Furthermore, our dynamic link network emulator provides a fast and user-
friendly workflow, from the installation to the configuration of scenarios by using
a formal model of the network.

We note that the emulator architecture was first presented in [25]. In this
paper, we extend the previous results through the validation of the data gener-
ated by the emulator in question. For the latter, we rely on the methodology we
proposed in [20]. This paper thus extends the two conference papers presented
in ENASE’2022 and IC3K’2021, respectively. The main contributions of the cur-
rent extension are the following: i) monitoring and data extraction within the
dynamic link network emulator; ii) creation of a large list of interesting network
properties that should be verified, and finally iii) experimental results on the
dynamic link dataset verification.

The structure of the paper is as follows. Section 2 describes existing network
emulators and simulators and their capabilities. Section 3 details the background
and concepts upon which this work is based on. Section 4 presents the dynamic
link emulator under design. Section 5 describes the monitoring and data col-
lection possibilities of the emulator, which is further used in the experimental
study. The dataset verification approach is presented in Section 6 while the ex-
perimental results are summarized in Section 7. Section 8 concludes the paper.

2 Related work

Several works have been devoted to the simulation and emulation of different
network types, to perform experiments on novel or existing protocols and algo-
rithms. Below, we briefly summarise some relevant existing solutions.

Ns-3 [11] is a widely used network simulator. Ns-3 simulates network de-
vices by compiling and linking C++ modules while providing data monitoring,
collection, and processing capabilities through the Data Collection Framework
(DCF). Thus, it simulates the behavior of components in a user-level executable
program. However, real-world network devices are highly complex (functionally
speaking) or cannot be compiled and linked together with Ns-3 to form a single
executable program. Therefore, Ns-3 cannot run real-world network devices but
only specific ones developed for it.

Emulab [31] is a network testbed with a minimum degree of virtualization,
aiming to provide application transparency and to exploit the hierarchy found
in real computer networks for studying networked and distributed systems. Its
architecture uses FreeBSD jail namespaces [13] to emulate virtual topologies.
Monitoring and data collection can be achieved by running software on each
node using a combination of .ns scripts (python for the latest version) and the
Emulab web interface. Similarly, Mininet [18] enables rapid testbeds by using
several virtualization features, such as virtual ethernet pairs and processes in
Linux container network namespaces. It emulates hosts, switches and controllers,
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which are simple shell processes that are given their network namespace and links
between them. Python is used to implement all the essential functions for the
monitoring and data collection process. However, both still present some limita-
tions, including the lack of support for dynamic features such as link emulation,
resource management and traffic generation.

EstiNet [35] is based on network simulation/emulation integration for differ-
ent kinds of networks. Unlike previous simulators, EstiNet allows not only moni-
toring but also configuration and data collection through a GUI. It also supports
wireless channel modeling. However, since EstiNet is a commercial solution, it
cannot be easily extended. Moreover, its features are limited and depend on the
EstiNet developers. Thus, the performance fidelity and the expansion to new fea-
tures are reduced. OpenNet [4] also merges simulation and emulation network
capabilities by connecting Mininet and Ns-3. As a result, monitoring and data
collection can also be achieved through the implementation of python functions
within each node. However, it also inherits the limitations of Ns-3 and Mininet.
Additionally, its main focus is software-defined wireless local area networks (SD-
WLAN).

More recently, the introduction of lightweight virtualization technologies (e.g.,
containers) has led to some few container-based emulation tools [30], [8], [27].
SDN Owl [30] is a network emulation tool to create simple SDN testbeds us-
ing few computers with Linux OSs. SDN Owl utilizes Ansible to send a set of
scripts to configure each virtual component properly and can also be used to set
up monitoring and data collection tasks. However, it fails to provide scalabil-
ity and isolation since experiments with different types of network topologies or
resource allocation are not shown. vSDNEmul [8] and ContainerNet [27] are net-
work emulators based on Docker container virtualization, allowing autonomous
and flexible creation of independent network elements, resulting in more realistic

NAME OS LN GUI EM SC PO DL AT FD MD DV

Ns-3 [11] C++/Python x x +++ x x x x

Mininet [14] Python + x x x x

Containernet [27] Python ++ x x x x

OMNet++ [34] x C++ x +++ x x x x

Emulab [31] C + x x x x

OpenNet [4] C++ x +++ x x x x

vSDNEmul [8] Python x ++ x x x x x

EstiNet [35] x - ++ - - x

SDN Owl [30] Python x ++ x x x x

NetEM [10] - x - x x x x x

Abbreviations: OS, Open Source; LN, Language; GUI, Graphical User Interface; EM, Emulation
Support; SC, Scalability; PO, Portability; DL, Dynamic Links; AT, Automatic Traffic Generation;
FD, Formal Description; MD, Monitoring and Data collection; DV, Dataset Verification

Table 1. Comparison of Software-based Network Testbeds
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emulations. Similar to other container-based tools, data collection and monitor-
ing tasks can be performed using the statistics collected by Docker or through
services implemented in any programming language that collects the information
within each container. However, these emulators can only create SDN networks.
Furthermore, the network descriptions remain rather informal and do not fa-
cilitate the emulator’s verification to guarantee that it properly replicates the
desired network.

A feature comparison is shown in Table 1. We therefore are not aware of
any work that meets all the required features to properly emulate dynamic link
networks in order to qualify novel engineered solutions. Moreover, none provided
a formal approach to verify that the extracted dataset (collected data from the
emulator) holds the expected properties to ensure that the produced network
behaves exactly as requested by an end user.

3 Background

3.1 Dynamic link networks

Examples of networks range from different types of connections or collaboration
between individuals (social networks [28]), products (distribution networks [7]),
computers (internet [22]) to software networks [19] where edges may represent
function calls. In this work, we focus on computer networks, i.e., a set of inter-
connected computing devices that can exchange data and share resources with
each other through links.

Computer networks [26] tend to be classified into many different types in
terms of size, distance, structure, connection type or even their function. Local
Area Networks (LAN) are perhaps one of the most frequently used and straight-
forward examples (under normal operation) of what we refer to as a static net-
work, i.e., a computer network with static link parameters. A LAN consists of an
interconnected group of computer devices, through a common communication
path, within a single limited area. In this scenario, network adapters are typically
configured (by default) to automatically negotiate the maximum transfer speed
with the device they are connected to. Usually, for LAN links, those values are
1Gbps, 100 Mbps or 10 Mbps for up/down connections (full/half duplex modes),
i.e., the whole LAN network operates at those constant values.

Unlike those networks, we focus on what we refer to as dynamic link networks,
i.e., a computer network where the link parameters may change at different time
instances. One example of such networks is a satellite communication network
[16]. For instance, Geostationary Orbit (GEO) satellite communication systems
usually have a high end-to-end latency (at normal operation) of at least 250
ms. Depending on several internal or external factors, it may vary as high as
400 ms, which has a great impact on the speed of their communication links.
Additionally, medium conditions may directly have an impact on the bandwidth
capacity of the link. However, we consider that the network topology does not
change (as for example in ad-hoc networks) in dynamic link networks.
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Modeling dynamic link networks We view a static network as a computer
network where each link has a set of parameters that do not change, for example
bandwidth (capacity) or delay. Differently from static networks, the parameters
of the links may change in dynamic link networks; such change can be the conse-
quence of the physical medium (e.g., in wireless / radio frequency networks) or
due to logical changes (e.g., rate limiting the capacity of a given link). Therefore,
static networks can be modeled as (directed) weighted graphs (V,E, p1, . . . , pk),
where V is a set of nodes, E ⊆ V × V is a set of directed edges, and pi is a link
parameter function pi : E → N, for i ∈ {1, . . . , k}; without loss of generality we
assume that the parameter functions map to non-negative integers (denoted by
N) or related values can be encoded with them. Similarly, dynamic link networks
can be modeled as such graphs, however, pi maps an edge to a non-empty set
of integer values, i.e., pi : E → 2N \ ∅, where 2N denotes the power-set of N,
and represents all the possible values pi can have. As an example, consider the
dynamic link network depicted in Fig. 1, and its model N = (V,E, p1(e), p2(e)),
where:

V = {1, 2, 3, 4}

E = {(1, 2), (2, 1), (1, 3), (3, 1), (1, 4),
(4, 1), (2, 4), (4, 2), (3, 4), (4, 3)}

p1(e) = b((s, d)) =

{
{4, 5, 6}, if d = 2

{2, 3, 4}, otherwise

p2(e) = d((s, d)) =

{
{1, 2, 3}, if d = 2

{9, 10, 1}, otherwise
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Fig. 1. Example dynamic network [25]

Semantically, this model represents a dynamic link network in which the
link’s available bandwidth can vary according to the function b (for bandwidth),
and the link’s delay can vary according to the function d (for delay). Note that
a dynamic link network snapshot, at a given time instance, is a static network,
and thus, both terms can be used interchangeably.

3.2 Satisfiability Modulo Theories based verification

In this subsection, we briefly describe some basic notions of SMT [3] (mostly the
syntax) and how it can be used for formal verification.
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SMT model, syntax, and semantics A signature is a tuple Σ = (S,C,
F, P ), where S is a non-empty and finite set of sorts, C is a countable set of
constant symbols whose sorts belong to S, F and P are countable sets of func-
tion and predicate symbols correspondingly whose arities are constructed using
sorts that belong to S. Predicates and functions have an associated arity in the
form σ1 × σ2 × . . .× σn → σ, where n ≥ 1 and σ1, σ2, . . . , σn, σ ∈ S.

A Σ-term of sort σ is either each variable x of sort (type) σ, where σ ∈ S,
or each constant c of sort (type) σ, where σ ∈ S; and f ∈ F with arity
σ1 × σ2 × . . . × σn → σ, is a term of sort σ, thus, for f(t1, . . . , tn), ti (for
i ∈ {1, . . . , n}) is a Σ-term of sort σi.

A Σ-atom (Σ-atomic formula) is an expression in the form s = t or p(t1, t2,
. . . , tn), where = denotes the equality symbol, s and t are Σ-terms of the same
sort, t1, t2, . . . , tn are Σ-terms of sort σ1, σ2, . . . , σn ∈ S, respectively, and p is a
predicate of arity σ1 × σ2 × . . .× σn.

A Σ-formula is one of the following: (i) a Σ-atom; (ii) if ϕ is a Σ-formula, ¬ϕ
is a Σ-formula, where ¬ denotes negation; (iii) if both ϕ, ψ are Σ-formulas, then,
ϕ∧ψ and ϕ∨ψ are Σ-formulas (likewise, the short notations ϕ→ ψ and ϕ↔ ψ
for ¬ϕ ∨ ψ and (ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ)); finally, (iv) if ϕ is a Σ-formula and x is a
variable of sort σ, then, ∃x ∈ σ ϕ (x ∈ σ is used to indicate that x has the sort σ)
is a Σ-formula (likewise, the short notation ∀x ∈ σ ϕ for ¬∃x ∈ σ ¬ϕ), where ∃
denotes the existential quantifier and ∀ denotes the universal quantifier, as usual.

We leave out the formal semantics of MSFOL formulas, their interpretations
and satisfiability as we feel it can unnecessarily load the paper with unused
formalism. However, we briefly discuss some aspects of MSFOL formula sat-
isfiability. For some signatures, there exist decision procedures, which help to
determine if a given formula is satisfiable. For example, consider the signature
with a single sort R, all rational number constants, functions +,−, ∗ and the
predicate symbol ≤; SMT will interpret the constants, symbols and predicates
as in the usual real (R) arithmetic sense. The satisfiability of Σ-formulas for this
theory (real arithmetic) is decidable, even for formulas with quantifiers [3, 21],
i.e., for some infinite domain theories, there exist procedures3 to decide if a
given quantified formula is satisfiable. Therefore, the satisfiability for formulas
as ∃n ∈ R ∀x ∈ R x+ n = x can be automatically determined (via a computer
program implementing the decision procedure, i.e., an SMT solver). If a formula
is satisfiable, there exists an interpretation (or model) for the formula, i.e., a set
of concrete values for the variables, predicates and functions of the formula that
makes this formula evaluate to true.

3 Often such procedures seek to “eliminate” the quantifiers and obtain an equivalent
quantifier-free formula
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Throughout this paper, we use the previously described syntax for the prop-
erties of interest (formulas). Note that for the experimental part, we use the
z3 solver [5]. This solver uses the SMT-LIB language, which possesses a syntax
that is very close to the described formalism (we do not detail it in this pa-
per, however, the interested Reader may refer to [2]). For example, the formula
∃n ∈ R ∀x ∈ R x+ n = x can be expressed in SMT-LIB as follows:

( e x i s t s ( (n Real ) ) ( f o r a l l ( ( x Real ) ) (= (x + n) x ) ) )

Listing 3. Example SMT-LIB code

4 Dynamic link network emulator

We hereafter present the first contribution of the work, namely, the emulation
platform design and architecture. It is based on well-known state-of-the-art tech-
nologies, such as virtualization (VMs and containers) and Linux kernel features
(namespaces or cgroups). When combined efficiently, these technologies provide
excellent capabilities for emulating a diverse set of network topologies alongside
dynamic links and interconnected network devices. The emulation platform ar-
chitecture [25], shown in Figure 2, consists of several independent, flexible and
configurable components. We describe each of these components in detail in the
following paragraphs.

Deployment 

Module

MemoryDisksCPU Hardware

CapabilitiesCgroupsNamespaces Host Operating System
Virtualization

Drivers

NIC

Monitoring 

Module

Dynamic link

Module

Traffic
Generator

Module

Network Model

Specifications

Dynamic Traffic
Model

VNF

VNF

VNF

VNF

VNF

VNF

Containers

Virtual
Machines

Debugg

Emulator Manager

Input/Output

I/O Processing 

Module

Topology
Validation

Traffic
Parser


Fig. 2. Emulation Platform Architecture [25]

The Emulator Manager is the main component and the central processing
unit. It has a single instance per physical machine and is composed of several
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independent modules in charge of the management, deployment and verification
of the emulator components for a given network description (input for the em-
ulation). In addition, it is responsible for providing, within the same physical
host, the containers or virtual machines required for each emulated device as
well as their own emulated network specifications.

The Input/Output Processing Module fulfills several tasks. First, since
our emulation platform relies on state-of-the-art virtualization (or container-
based) solutions, it is in charge of creating and maintaining a network model
that is later used by other modules to implement the necessary infrastructure
elements for each emulation. To achieve this, we utilize a formal network descrip-
tion (specification) in terms of first-order logic formulas verified throughout the
emulation by an SMT solver. The interested Reader can find more details in [24].
Indeed, the network topology can be verified using model checking strategies be-
fore its actual implementation, as well as at run-time, to ensure that certain
properties of interest hold for the static network instances. Finally, the module
is also in charge of parsing and verifying the file to generate dynamic traffic
scenarios between the components of an emulated network as well as the debug-
ging output of the platform. An example of a network description is given in
Listing 4 [25] (for the network in Figure 1).

( dec la re−datatypes ( ) ( ( Edge (mk−edge ( s r c Int ) ( dst Int ) ) ) ) )
( dec la re−fun bandwidth (Edge ) Int )
( dec la re−fun delay (Edge ) Int )
; ; Node s to rage omitted on purpose to reduce the space ,
; ; s e e edge s to rage
( dec la re−const edges ( Array Int Edge ) )
( dec la re−const e d g e s s i z e Int )
( a s s e r t (= ( s t o r e edges 1 (mk−edge 1 2) ) edges ) )
; ; Edge s to rage omitted on purpose to reduce the space ,
; ; s e e f i r s t and l a s t edge
( a s s e r t (= ( s t o r e edges 10 (mk−edge 4 2) ) edges ) )
( a s s e r t (= ed g e s s i z e 10))
( a s s e r t

( f o r a l l ( ( x Int ) )
(=>

( and (> x 0) (<= x edg e s s i z e ) )
( and

(=> (= ( dst ( s e l e c t edges x ) ) 2)
; ; i t e not used on purpose

( and
(>= ( bandwidth ( s e l e c t edges x ) ) 4)
(<= ( bandwidth ( s e l e c t edges x ) ) 6)
(>= ( delay ( s e l e c t edges x ) ) 1)
(<= ( delay ( s e l e c t edges x ) ) 2)

)
)
(=> ( not (= ( dst ( s e l e c t edges x ) ) 2 ) )

( and
(>= ( bandwidth ( s e l e c t edges x ) ) 2)
(<= ( bandwidth ( s e l e c t edges x ) ) 4)
(>= ( delay ( s e l e c t edges x ) ) 9)
(<= ( delay ( s e l e c t edges x ) ) 10)

)
) ) ) ) ) ; ; c l o s i n g parenthese s

Listing 4. Example of a Network Model description (SMT-LIB) [25]



10 E.Petersen et al.

The Deployment Module is in charge of converting the previously gener-
ated network model into running instances of emulated network devices. In order
to achieve this, the module makes use of the Pod Manager tool (podman) for the
management and support of containers and libvirt for different virtualization
technologies such as KVM, VMware, LXC, and virtualbox. The first step takes
the input specification and creates the required nodes with their corresponding
images and properties. Each emulated node is deployed by means of a VM or
a container attached to its own namespace and acts according to the software
or service running inside of it (as requested by the input specification). For ex-
ample, if it is desired to run a virtual switch as a container, the Deployment
Module creates the proper container and executes the corresponding Virtual
Network Function (VNF) via a container image (e.g., Open vSwitch). There-
fore, each node has an independent view of the system resources such as process
IDs, user names, file systems and network interfaces while still running on the
same hardware. It can also hold several individual (virtual) network interfaces,
along with its associated data, including ARP caches, routing tables and inde-
pendent TCP/IP stack functions. This gives excellent flexibility and capabilities
to the emulator: it can execute any real software, just as real physical systems.

In the last step, the module creates the links between the nodes to complete
the emulation topology. The links are emulated with Linux virtual networking
devices; TUN/TAP devices are used to provide packet reception and transmis-
sion for user space processes (applications or services) running inside each node.
They can be seen as simple Point-to-Point or Ethernet devices, which, instead of
receiving (and transmitting, correspondingly) packets from a physical medium,
read (and write, correspondingly) them from a user space process. veth (virtual
Ethernet) devices are used for combining the network facilities of the Linux ker-
nel to connect different virtual networking components together. veth are built
as pairs of connected virtual Ethernet interfaces and can be thought of as a
virtual “patch” cable. Thus, packets transmitted on one device in the pair are
immediately received on the other device. When either device is down, the link
state of the pair is down too.

The Dynamic Link Module is in charge of establishing and modifying
the dynamic properties of the links (between the nodes) during the emulation’s
execution time. An asymmetric link between two nodes, as shown in Figure 3 [25],
is emulated by a set of nesting queues; in the simplest case - two queues.

eth0 Queue

ifb0

eth0
ifb0

Link Emulation

Node BNode A

VNF VNF
Delay

Bandwidth

QueueDelay

Bandwidth

Fig. 3. Asymmetric Link emulation model [25]
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In the first step, packets are queued or dropped depending on the size of the
first queue. This queue is drained at a rate corresponding to the link’s bandwidth.
Once outside, packets are staged in a delay line for a specific time (propagation
delay of the link) in the second queue and then finally injected into the network
stack. This module uses the Linux Advanced traffic control tc, to control and
set these properties by using filtering rules (classes) to map data (at the data
link or the network layer) to queuing disciplines (qdisc) in an egress network
interface. Note that since tc can be used only on egress, traffic Intermediate
Functional Block devices (IFB) are created to allow queuing disciplines on the
incoming traffic and thus use the same technique.

The Traffic Generation Module is in charge of converting the dynamic
description of the traffic (see an example of it in Listing 2) into a timed sequence
of network packets. This sequence is then introduced into the deployed nodes
during the emulation. For the generation of network packets, the module uses
nmap at each node, particularly nping, allowing to generate traffic with headers
from different protocols. This is achieved using virsh commands using libvirt

for virtual machines or by passing execute commands through the podman tool
(for containers). It is important to note that nping can be replaced for any
other software to generate traffic. Additionally, multiple instances of the same
or different traffic generators can be executed inside each emulated node. Finally,
the Monitoring Module retrieves and collects information from the nodes and
their links (see Section 5 for more details). This information is used, for example,
to verify that the emulation process is executed correctly (see Section 7).

5 Monitoring and Dataset Extraction

Monitoring is always an important element in the management of any type of
network. Indeed, it can be used for planning, resource provisioning, anomaly de-
tection, or simply to ensure their proper operation. In contrast to real networks,
monitoring in simulated/emulated environments is generally only used to assess
the performance of solutions under test. However, it does not consider the moni-
toring of the network emulator tool itself, which may also present problems. For
example, bugs in the emulation framework or few available resources could lead
to results that may diverge from a real scenario. With this objective, we imple-
ment a monitoring module, see Figure 4, which not only retrieves and collects
information from each emulated node and its links but, also extracts a dataset
to perform further verification or to be used by other modules, e.g., a learning
module.

The Monitoring module, Figure 4, is organized by a control manager (CM)
and several Points of Observation (POs) installed inside each emulated node
to inspect its traffic and link dynamics. Each PO is responsible for generating
and listening packet events, reporting those events to the CM and collecting its
own parameters. The control manager (CM) has a global view of the emulated
network and is responsible for coordinating the POs, collecting, computing and
keeping the relevant parameters and data structures for the dataset extraction



12 E.Petersen et al.

Dataset
Extraction

Data
Collector

Node 2

Node 3

Node 4

Node 1

PO1
Services

PO2

PO..

PO4

Services

Services

Services

PO1 PO2

PO4 PO3

1

2
3

U: 5Mbps, 2ms
D: 10Mbps, 2ms

Control Manager (CM) packets

Fig. 4. Monitoring module and dataset extraction

in memory. For example, in order to monitor and extract parameters on links 1,
2 and 3 points of Observation PO1, PO2,PO3,PO4 are installed in each node.
Then, PO1 initiates packet events towards each neighboring PO (bold arrows),
computes and reports to the CM its local measurements. Finally, the CM collects
and stores that information and extracts the desired dataset.

Multiple link parameters are measured and added to our dataset, particularly
delays, bandwidth and packet loss. Delays are measured using packet exchanges
between the source and destination POs, see Figure 5; this measurement is done
using the ping tool. For a single measure, a request packet is sent from a source
to the destination node that answers with a response packet. This packet is
identified by modifying the header type field. Particularly, the ICMP protocol
uses the headers 8 (for request) and 0 (for reply). The reception of the response
packet ensures that the communication was successful at the destination. It also
allows us to extract parameters of interest, such as the round trip time (RTT)
delay, i.e., the time it takes for a packet to reach its destination from a source and
then reach back from destination to source. In addition, other delay types can be
measured, including: (a) Transmission delay: the time taken to transmit a packet
from source to the transmission medium; (b) Propagation delay: the time taken
by the packet to reach the destination through the medium; (c) Queueing delay:
the time a packet waits in queue, also called buffer time, before being processed
by destination; (d) Processing delay: the time taken to process a packet (i.e.,
packet forward time); (e) Latency: the sum of all possible delays a packet can
encounter during data transmission.

Packet loss is computed by sending a specific number of packets and mea-
suring the percentage of those packets that fail to reach their destination. Band-
width is estimated by continuously sending, over a TCP connection, data packets
of known size to a specific destination node. Bandwidth capacity is the maxi-
mum amount of transmittable data over a communication channel for a specified
amount of time. To estimate this value, it is necessary to know the number of
bytes (data packets) sent through the channel and divide it by the time it took
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to receive them without any loss. For that purpose, few packets are transmit-
ted initially. Over time, the number of transmitted packets is increased until a
transmission error occurs. The main idea is to send as much data as possible
until an error occurs to obtain the transmission time; bandwidth and packet loss
are measured using the iperf tool. Other parameters such as the link source
node, link destination node, total number of nodes and the network density (the
proportion of possible links in the network that are actually present) are also
included; these parameters are calculated (taken from the network description)
by our native software.

An example of a dataset is given in Table 2. It is composed of rows (measures,
at a specific time instance) and columns (the parameters or features measured).
For instance, let us consider the first link measure. It is composed of 10 param-
eters or features (columns) with different values. It is important to note that
between rows, the difference in time is one second. It is the minimum value that

SRC DST BND PL MRTT ARTT XRTT DRTT TN DEN LB

1 2 0.00 0.00 1.67 22.30 107.29 39.62 4.00 0.83 0
1 2 0.00 10.00 1.67 28.52 125.89 50.09 4.00 0.83 0
1 2 0.00 0.00 1.69 1.75 1.96 0.09 4.00 0.83 0
2 3 0.00 0.00 1.68 3.93 22.95 6.34 4.00 0.83 0
2 3 0.95 0.00 1.65 1.71 1.80 0.04 4.00 0.83 0
2 3 0.94 10.00 1.68 1.71 1.73 0.01 4.00 0.83 0
2 3 0.95 10.00 1.67 19.20 158.71 49.32 4.00 0.83 0

Abbreviations: BND, Bandwidth; PL, Packet loss; MRTT, Min RTT; ARTT, Avg RTT; XRTT,
Max RTT; DRTT, Mdev RTT; TN, Number of nodes; DEN, Network Density; LB, Label

Table 2. Dataset example
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allows the proper time to execute the probes and obtain the measurements. In
each row, the first 2 columns represent the link; first, the source node (SRC)
with a value of 1, and second, the destination node (DST) with a value of 2.
Then, the following columns represent the measured parameters assigned to this
link: Bandwidth (BND) equal to 0.00 Mbps; Packet loss (PL) equal to 0.00%;
Minimum Round trip time (MRTT) equal to 1.67 ms; Average Round trip time
(ARTT) equal to 22.30 ms; Maximum Round trip time (XRTT) equal to 107.29
ms; Standard deviation round trip time (DRTT) equal to 39.62 ms; network
total number of nodes equal to 4, and network density equal to 0.83. Lastly, a
label is assigned to 0, without loss of generality. Note that this label is required
to be present in our dataset as explained in the next section.

6 Dataset verification using STM solvers

6.1 Structured datasets

We consider that a structured dataset contains examples and their expected out-
puts. In our work, we assume that the expected outputs are always present.
Thus, a dataset that does not require them (for example, for unsupervised ma-
chine learning where there are no expected outputs) has the same expected
output for all training examples. Further, we consider only structured datasets.

The inputs are called features or parameters. A feature vector, denoted as X,
is an n-tuple of the different inputs, x1, x2, . . . , xn. The expected output for a
given feature vector is called a label, denoted simply as y, and the possible set
of outputs is respectively denoted as Y . The set of examples, called a dataset,
consists of pairs of a feature vector and a label; each pair is called a training
example, denoted as (X, y). For convenience, we represent the dataset as a matrix
Dm×n and a vector Om where D contains the feature vectors and O contains
the expected outputs for a dataset of cardinality m. The vector representing the
i-th row (training vector) is denoted as Di, and its associated expected output
as Oi. Likewise, the j-th feature (column vector) is denoted as DT

j (DT denotes
the transpose of the matrix D). Finally, the j-th parameter of the i-th training
example is denoted by the matrix element di,j .

6.2 Verifying properties over datasets

Note that the definition of the matrix D does not specify the type of each feature
in the dataset. In general, there is no theoretical limitation over the type of these
features. Nonetheless, for practical reasons, we consider that all features are real-
valued. The main reason is that, otherwise, additional information would be
required for each feature. Moreover, in practice, well-known libraries work with
real-valued features. As usual, for those features which are not naturally real, an
encoding must be found (for example, one hot encoding for categorical features,
etc.). Thus, we consider that di,j , oi ∈ R ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. If a
dataset is not labeled, then ∀i, k ∈ {1, . . . ,m} oi = ok.
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Algorithm 1: dataset encoding [20]

Input : A dataset DM×N (with N features and M training examples), and
its expected output vector OM

Output: A MSFOL formula representation of the dataset, ϕ
Step 0: Set ϕ← true, set labels←Array(), and set L← 0;
Step 1: Set ϕ← ϕ ∧ (m,n, l ∈ Z) ∧ (m = M) ∧ (n = N);
Step 2: Set ϕ← ϕ ∧ (D ∈ AZ,AZ,R) ∧ (O ∈ AZ,R) ∧ (L ∈ AZ,R);
Step 3: for i← 0; i < M ; i← i+ 1 do

Set add←true;
for j ← 0; i < N ; j ← j + 1 do

Set ϕ← ϕ ∧ (D[i][j] = di,j);

Set ϕ← ϕ ∧ (O[i] = oi);
for k ← 0; k < L; k ← k + 1 do

if labels[k] = oi then
Set add←false;

if add then
Set labels[L]← oi;
Set ϕ← ϕ ∧ (L[L] = oi);
Set L← L+ 1;

Step 4: Set ϕ← ϕ ∧ (l = L) and return ϕ

Encoding a dataset as a MSFOL formula. Having a convenient formal descrip-
tion for a dataset eases the encoding of this dataset as a MSFOL formula. To en-
code the data as a formula, we make use of the theory of arrays4. We denote that
an object a is of sort array with indices of type (sort) T 1 and holding objects of
type T 2 as a ∈ AT 1,T 2. Indeed, a dataset can be encoded using Algorithm 1 [20];
the algorithm creates a formula that is satisfiable by an interpretation of arrays
representing the dataset.

6.3 Formal verification of datasets

A dataset can be formally defined as an MSFOL formula ϕds which holds the
following properties: ϕds is a conjunction of five main parts, that is, i) the asser-
tion that an integer variable m is of the size of the number of training examples,
a variable n is of the size of the features and a variable l is of the size of the
distinct labels, ii) the assertion that D is a two-dimensional (integer indexed)
real-valued array (of size m×n) and O,L are integer indexed real-valued arrays
(of size m, and l, respectively), iii) D[i][j] contains the j-th feature value for the
i-th training example, iv) O[i] contains the expected output for the i-th training
example, and v) L[i] contains the i-th (distinct) label.

We assume that we want to verify k properties over the dataset and, fur-
thermore, that these properties are also expressed in MSFOL. Indeed, MSFOL

4 The theory of arrays considers basic read and write axioms [32]
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allows to express many properties of interest (we showcase its expressiveness in
Section 6.4). Therefore, we assume that we are given π1, . . . , πk MSFOL formulas
to verify. These properties involve the variables in ϕds. Additionally, we assume
that these formulas should all hold independently over the dataset, and their con-
junction is satisfiable. This fact imposes a restriction that πx ∧ πy is satisfiable,
for x, y ∈ {1, . . . , k}; we call this set of properties the dataset specification σ. This
means that two properties should not contradict each other. For example, it can-
not be required that the dataset has more than 30 training examples and at the
same time that it must have at most 20 ((π1 ↔ (m > 30)) ∧ (π2 ↔ (m ≤ 20))).
Further, the fact that the conjunction of properties must be satisfiable means
that there is an interpretation that makes this formula (the conjunction) evaluate
to true, i.e., there exists a dataset that can satisfy this specification. Otherwise,
the verification of any dataset is useless as no dataset can hold such set of prop-
erties.

The formal dataset verification problem can be reduced to the following: given
a dataset formula ϕds (created using Algorithm 1 from D and O) and a dataset

specification σ =
∧k

l=1 πl, is ϕds ∧ σ satisfiable? If the conjunction of these for-
mulas is satisfiable then each of the properties must hold for the dataset, and we
say that the dataset holds the properties π1, . . . , πk or that the dataset conforms
to the specification σ. Perhaps this is quite an abstract view of the problem.
For that reason, in the following subsection we provide concrete examples that
should help the Reader to understand better.

6.4 Example dataset and properties

Let us consider a very small dataset as shown in Table 2. We assume that the
dataset D is presented in the first part of the table and the last column O keeps
the expected outputs/labels. After applying Algorithm 1 to D and O, the output
(ϕds) is:

(m,n, l ∈ Z) ∧ (m = 7) ∧ (n = 2) ∧ (D ∈ AZ,AZ,R) ∧ (O ∈ AZ,R) ∧ (L ∈ AZ,R)∧
(D[0][0] = 1) ∧ (D[0][1] = 2) ∧ (D[0][2] = 0.00) ∧ (D[0][3] = 0) ∧ (D[0][4] = 1.666)∧
(D[0][5] = 22.297) ∧ (D[0][6] = 107.294) ∧ (D[0][7] = 39.622) ∧ (D[0][8] = 4)∧
(D[0][9] = 0.83) ∧ (O[0] = 0) ∧ (L[0] = 0)

(D[1][0] = 1) ∧ (D[1][1] = 2) ∧ (D[1][2] = 0.00) ∧ (D[1][3] = 10) ∧ (D[1][4] = 1.672)∧
(D[1][5] = 28.520) ∧ (D[1][6] = 125.892) ∧ (D[1][7] = 50.092) ∧ (D[1][8] = 4)∧
(D[1][9] = 0.83)

(D[2][0] = 1) ∧ (D[2][1] = 2) ∧ (D[2][2] = 0.00) ∧ (D[2][3] = 0) ∧ (D[2][4] = 1.687)∧
(D[2][5] = 1.753) ∧ (D[2][6] = 1.964) ∧ (D[2][7] = 0.090) ∧ (D[2][8] = 4)∧
(D[2][9] = 0.83)

(D[3][0] = 2) ∧ (D[3][1] = 3) ∧ (D[3][2] = 0) ∧ (D[3][3] = 0) ∧ (D[3][4] = 1.684)∧
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(D[3][5] = 3.927) ∧ (D[3][6] = 22.946) ∧ (D[3][7] = 6.343) ∧ (D[3][8] = 4)∧
(D[3][9] = 0.83)

(D[4][0] = 2) ∧ (D[4][1] = 3) ∧ (D[4][2] = 0.95) ∧ (D[4][3] = 0) ∧ (D[4][4] = 1.653)∧
(D[4][5] = 1.708) ∧ (D[4][6] = 1.801) ∧ (D[4][7] = 0.037) ∧ (D[4][8] = 4)∧
(D[4][9] = 0.83)

(D[5][0] = 2) ∧ (D[5][1] = 3) ∧ (D[5][2] = 0.94) ∧ (D[5][3] = 10) ∧ (D[5][4] = 1.676)∧
(D[5][5] = 1.707) ∧ (D[5][6] = 1.727) ∧ (D[5][7] = 0.014) ∧ (D[5][8] = 4)∧
(D[5][9] = 0.83)

(D[6][0] = 2) ∧ (D[6][1] = 3) ∧ (D[6][2] = 0.95) ∧ (D[6][3] = 10) ∧ (D[6][4] = 1.665)∧
(D[6][5] = 19.204) ∧ (D[6][6] = 158.710) ∧ (D[6][7] = 49.322) ∧ (D[6][8] = 4)∧
(D[6][9] = 0.83) ∧ (l = 1)

We now showcase some very simple properties together with the formal ver-
ification process. Suppose that the specification consists of a single property:
“the dataset must contain at least 100 training examples.” This property can
be expressed in MSFOL simply as π# ↔ (m ≥ 100). Notice how ϕds ∧ π# is
not satisfiable as there does not exist an interpretation that makes it evaluate
to true; particularly, if m is greater than 99, then the clause (in ϕds) m = 7
cannot evaluate to true and since this is a conjunction, ϕds ∧ π# evaluates to
false. Similarly, if m is 7, then the π# makes the conjunction evaluate to false.
Thus, we say that the dataset does not hold the property π#.

A slightly more complex property to verify is: “the dataset must be min-
max normalized,” which can be expressed in MSFOL as π± ↔ ∄(i, j ∈ Z)((i ≥
0)∧ (i < n)∧ (j ≥ 0)∧ (j < m)∧ ((D[i][j] < min)∨ (D[i][j] > max))). Certainly,
min and max are defined constants (e.g., -1 and 1) an either these variables
must be defined or the value must be replaced; for min = 0 and max = 1000,
ϕds holds the property π± (as ϕds ∧ π± is satisfiable).

We have showcased the flexibility of the proposed approach with somewhat
standard properties to check. Nonetheless, it is interesting to point out that the
approach is generic and domain-specific properties coming from expert knowl-
edge can also be used. This is the primary motivation for the dataset verification
in our work. As previously stated, we focus on guaranteeing that the behavior
of the emulator fulfills the requirements of the physical system; the goal is to
reduce the behavioral differences between the emulator and the real system. In
general, as the properties to check can be added or removed arbitrarily, checking
a given set of those for a particular dataset is possible.

7 Experimental results

This section discusses an experimental evaluation of our emulator and dataset
verification approach. The main objectives of this experimental evaluation are:
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i) to check the execution of the emulator w.r.t. a set of real physical properties;
ii) to check the performance of the proposed approach (in terms of execution
time and used space). For this reason, datasets of different sizes were extracted
from our emulator; these datasets were verified over a large set of properties with
various degrees of dependencies between data. Our dataset verification tool [20]
makes use of the z3 theorem prover. In order to replicate our experiments, z3
versions 4.8.11 until 4.11.0 should be avoided, as they contain an incompatibility
issue. At the time of this writing, we recommend version 4.8.10. However, future
versions (after 4.8.11) should contain a bug fix as per our issue report (issue
6304 on z3’s GitHub repository).

Experimental setup All experiments were executed on an Ubuntu 22.04LTS,
running on an AMD Ryzen 1900X (8-core/16-thread) @ 3.8GHz, and 64GB of
RAM. An extracted dataset was used by executing our emulator with the topol-
ogy shown in 1. The data collection time was 20 minutes. As the monitoring
interval is one second, this yields a dataset with 1200 training examples. The
properties of interest are divided into three different groups. Group#1 – con-
tains properties that verify features within one training example (line, row) but
without dependencies between features. For example, the delay in all measures
must not exceed a certain threshold. This verification can be done over a training
example or all of them but, it is usually interesting to make it for all. Group#2
– contains properties that verify some dependencies between the network fea-
tures within one training example. For instance, if in a training example, the
source is s and the destination is d, then the delay of this link must not exceed a
given constant. Finally, Group#3 – contains properties that reflect dependencies
between training examples. For example, for a given link (a, b) the bandwidth
must be greater than that on an adjacent link (b, c). The verified properties are
written in the SMT-LIB language and are available in our repository [23].

Experimental results In the following figures and tables, we show the grouped
properties and the performance results. Figures 6a and 6b, show the execution
time and maximal required space (respectively) for properties shown in Table 3.
Correspondingly, Figures 7a and 7b, show the execution time and maximal re-
quired space (respectively) for properties shown in Table 4. Likewise, Figures 8a
and 8b, show the execution time and maximal required space (respectively) for
properties shown in Table 5.

The time taken to verify increases with each group. This is expected and nat-
ural as the more complex properties take longer to be checked. However, note
that oftentimes properties that are natural to verify for the domain of computer
networks mostly fall under the groups #1 and #2. Furthermore, our offline ap-
proach is pertinent as verifying properties takes a comparable amount of time
w.r.t. the emulation execution time (especially for properties with small execu-
tion time results). This is promising, especially for highly sensitive emulations
whose correct functioning must be guaranteed and/or certified. The memory
consumption of the verification process is confirmed to be polynomial w.r.t. to
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Description Formula

The delay (average round trip time) be-
longs to the range [min,max] (min and max
are given constants, e.g., 0 and 300), for all
measures (training examples) in the dataset

π1 = ∄i ((i ≥ 0) ∧ (i <
m − 1) ∧ ((D[i][AV G RTT ] <
min) ∨ (D[i][AV G RTT ] > max)))

The bandwidth capacity belongs to the
range [min,max] (e.g., 0 and 50), for all
measures (training examples) in the dataset

π2 = ∄i ((i ≥ 0) ∧ (i < m −
1) ∧ ((D[i][BANDWIDTH] < min) ∨
(D[i][BANDWIDTH] > max)))

The average packet loss of all measures
(training examples) in the dataset must not
exceed a given constant M (for example,
0.3)

π3 = ( 1
m

∑m−1
i=0 D[i][PACKET LOSS]) ≤

M

The minimum bandwidth capacity of all
measures (training examples) in the dataset
must be greater or equal to a given constant
µ (for example, 10)

π4 = min{D[i][BANDWIDTH]|i ∈ {1,
. . . ,m− 1}} ≥ µ (for readability we do not
include the implementation of functions de-
noted in bold as min, however, the inter-
ested Reader may refer to our repository
[23] to check the code implementations)

The maximum delay of all measures (train-
ing examples) in the dataset must not ex-
ceed a given constantM (for example, 300)

π5 = max{D[i][BANDWIDTH]|i ∈ {1,
. . . ,m− 1}} ≤ M

Table 3. Group#1 network properties
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the dataset size. Finally, the verification yields a satisfiable verdict over our em-
ulation in 86.66% of the verified properties (that is 130 out of 150 properties
satisfied).
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Description Formula

For all measures (training examples) in the
dataset, the delay (average round trip time)
belongs to the range [min,max] (min and
max are given constants, e.g., 0 and 200)
if the source node is s and the destination
node is d, for a given particular link (s, d)

ρ1 = ∄i ((i ≥ 0) ∧ (i < m) ∧ (D[i][SRC] =
s)∧(D[i][DST ] = d)∧((D[i][AV G RTT ] <
min) ∨ (D[i][AV G RTT ] > max)))

For all measures (training examples) in the
dataset, the bandwidth capacity belongs
to the range [min,max] (min and max are
given constants, e.g., 10 and 20), if the
source node is s and the destination node
is d, for a given particular link (s, d)

ρ2 = ∄i ((i ≥ 0) ∧ (i < m) ∧
(D[i][SRC] = s) ∧ (D[i][DST ] =
d) ∧ ((D[i][BANDWIDTH] <
min) ∨ (D[i][BANDWIDTH] > max)))

For all measures (training examples) in the
dataset, the packet lost belongs to the range
[min,max] (min and max are given con-
stants. e.g., 0 and 0.5) if the source node is
s and the destination node is d, for a given
particular link (s, d)

ρ3 = ∄i ((i ≥ 0) ∧ (i < m) ∧
(D[i][SRC] = s) ∧ (D[i][DST ] =
d) ∧ ((D[i][PACKET LOST ] <
min) ∨ (D[i][PACKET LOST ] > max)))

For all measures (training examples) in the
dataset, the bandwidth capacity must be
greater or equal than a given constant B,
if the source node is s and the destination
node is d, i.e., for a given particular link (s,
d)

ρ4 = ∀i (((i ≥ 0) ∧ (i < m) ∧
(D[i][SRC] = s) ∧ (D[i][DST ] = d)) =⇒
(D[i][BANDWIDTH] ≥ B))

For all measures (training examples) in the
dataset, the packet loss must not exceed a
given constant L if the source node is s and
the destination node is d, for a given par-
ticular link (s, d)

ρ5 = ∀i (((i ≥ 0) ∧ (i < m) ∧
(D[i][SRC] = s) ∧ (D[i][DST ] = d)) =⇒
(D[i][PACKET LOSS] ≤ L))

Table 4. Group#2 network properties

The violated properties are properties related to bandwidth, the reason is
that our emulator allows a dynamic change in bandwidth. Thus, the measures
that are taken when the bandwidth changes report a capacity of 0mbps (as
sending data report a failure). This is a technical limitation and the expected
behavior. The failed properties verified that the bandwidth should always be
above a given constant (10mbps in our experiments). This showcases the utility
of our tool as it helps reveal important details of emulated solutions.

8 Conclusion

In this paper, we have showcased the design and architecture for a dynamic link
network emulator. Moreover, we have presented an approach for verifying that
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Description Formula

For a given (valid) path (a → b → c) the
average delay does not differ more than C
time units from its return path (c→ b→ a)

ϕ1 = | 1
m
((cond sum(AV G RTT,

a, b) + cond sum(AV G RTT, b,
c)) − (cond sum(AV G RTT, c, b) +
cond sum(AV G RTT, b, a)))| ≤ C, where
cond sum(f, s, c) =

∑
{D[i][f ]|i ∈ {1, . . . ,

m− 1} ∧ D[i][SRC] = s ∧ D[i][DST ] = d}

For a given (valid) path (a→ b→ c) the av-
erage packet loss does not differ more than
C units from its return path (c→ b→ a)

ϕ2 = | 1
m
((cond sum(PACKET LOSS,

a, b) + cond sum(PACKET LOSS,
b, c)) − (cond sum(PACKET LOSS,
c, b) + cond sum(PACKET LOSS, b,
a)))| ≤ C

For a given (valid) path (a → b → c)
the minimum outgoing (upload) bandwidth
does not exceed more than C times the min-
imum incoming bandwidth (download, re-
turn path) (c→ b→ a)

ϕ3 = min{cond min(BANDWIDTH,
a, b), cond min(BANDWIDTH, b, c)) ≤
C ∗min{cond min(BANDWIDTH, c, b),
cond min(BANDWIDTH, b, a)}, where
cond min(f, s, c) = min{D[i][f ]|i ∈ {1,
. . . ,m− 1} ∧D[i][SRC] = s∧D[i][DST ] =
d}

For a given (valid) path (a → b → c) the
minimum outgoing (upload) bandwidth-
delay product (the bandwidth-delay prod-
uct is a common data communications met-
ric used to measure the maximum amount
of data that can be transmitted and not
yet received at any time instance) does not
exceed more than C times the minimum
incoming bandwidth-delay product (down-
load, return path) (c→ b→ b)

ϕ4 = min{cond min prod(a,
b), cond min prod(b, c)) ≤
C ∗ min{cond min prod(c, b),
cond min prod(b, a)}, where
where cond min prod(s, c) =
min{D[i][BANDWIDTH] ∗
D[i][AV G RTT ]|i ∈ {1, . . . ,
m− 1} ∧ D[i][SRC] = s ∧ D[i][DST ] = d}

For all measures in the dataset, for a given
link ((s, d)) the delay (average round trip
time) does not differ more than C time
units from its return link ((d, s)), for each
observation in the dataset

ϕ5 = ∀i, j(((i ≥ 0)∧(i < m)∧(j ≥ 0)∧(j <
m) ∧ (D[i][SRC] = s) ∧ (D[i][DST ] = d) ∧
(D[i][SRC] = D[j][DST ]) ∧ (D[i][DST ] =
D[j][SRC])) =⇒ (|D[i][AV G RTT ] −
D[j][AV G RTT ]| ≤ C))

Table 5. Group#3 network properties

the emulation execution respects certain properties of interest; this is useful to
reduce the difference between the behavior of the emulated and the real system.
It is important to note that the emulator is flexible and can run any existing
software; additionally, it can dynamically change the link parameter values.

In its current state, the tool proposes a solid framework for the emulation
of dynamic link networks. However, certain aspects can be improved and new
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Fig. 8. Results properties group #3

features can be incorporated. For instance, it is desirable to reduce the monitor-
ing time, to better guarantee that the emulator always holds the properties of
interest. Nonetheless, it is technologically difficult to address this issue, which
is an interesting avenue for future work. Furthermore, we plan to incorporate
more features into the architecture so that it becomes more controllable and
realistic. For example, we consider incorporating link state scenarios to qual-
ify the solutions under different conditions (degraded links, weather conditions,
etc.). Additionally, enhancing the verification strategies may allow performing
the verification in larger time lapses or closer to runtime monitoring.
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20. López, J., Labonne, M., Poletti, C.: Toward formal data set verification for build-
ing effective machine learning models. In: Cucchiara, R., Fred, A.L.N., Filipe,
J. (eds.) Proceedings of the 13th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management, IC3K 2021, Vol-
ume 1: KDIR, Online Streaming, October 25-27, 2021. pp. 249–256. SCITEPRESS
(2021). https://doi.org/10.5220/0010676500003064

21. Manna, Z., Zarba, C.G.: Combining decision procedures. In: Formal Methods at
the Crossroads. From Panacea to Foundational Support, pp. 381–422. Springer
(2003)

22. Nurlan, Z., Zhukabayeva, T., Othman, M., Adamova, A., Zhakiyev, N.: Wireless
sensor network as a mesh: Vision and challenges. IEEE Access 10, 46–67 (2022).
https://doi.org/10.1109/ACCESS.2021.3137341
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