« Entanglement between Micro-Magnetism, Electromagnetism and the Tensor Magnetic Phase Theory (TMPT) – Symmetry, invariance and conservation laws analysis »

Physics Physics and its Applications

Olivier MALOBERTI

SSIAL

SYMADE - Unilasalle Amiens - FRANCE

18th of July 2023 in LA

CONTENT

- 1. Context State Of the Art Dilemma
- 2. From Micromagnetism to the Tensor Magnetic Phase Theory
- **3. Coupling with the Maxwell equations**
- 4. Derivation of the magnetic domains structuring
- 5. Symmetry, Invariance principles and analysis
- 6. Application examples: iron losses, surface laser treatements ...
- 7. Discussion, Conclusion and Forthcoming

Materials heterogeneity with subdivisions (domains and walls)

(Soft Magnetic) Materials with polarization(s)

Magnetic materials

1. Context

Magnetic structure Magnetic domains and walls Closure domains

Ferroelectric materials

Domains for the electric polarization

Multiferroïc materials

Domains for the electric polarization & domains for the magnetic polarization

MFM image of NGOES steel

MOKE image of GOES steel

Distribution of \vec{m} known only in a small area

Of The

State

e m

Magnetization reversal mechanisms with walls are ignored

2. From local to HOLISTIC Paradigm ?

Lagrangian Energy densities [J.m⁻³]

Micro-Magnetism (LLG equations)

 $\ell = \boldsymbol{t} - \boldsymbol{u} \approx -\boldsymbol{u} \left(f \ll GHz \right)$

 $\boldsymbol{u} = \boldsymbol{u}_{ex} + \boldsymbol{u}_{an} + \boldsymbol{u}_{\lambda s} + \boldsymbol{u}_{\lambda \varepsilon} + \boldsymbol{u}_{dm}$

 $\vec{h} = -\vec{\nabla}_{\vec{m}}(u)$

 $J_s = \mu_0 M_s$ [T] saturation polarization A_{ex} [J.m.A⁻²] exchange coefficient K_{an} [J.m⁻³] anisotropy constant

$$\begin{aligned} \boldsymbol{\mathcal{U}}(\boldsymbol{x},t) &= \langle \boldsymbol{u}(\boldsymbol{x},t) \rangle_{\boldsymbol{x}} \\ \boldsymbol{\overrightarrow{m}} \to \boldsymbol{\overrightarrow{M}}([\boldsymbol{V}^2], \boldsymbol{\overrightarrow{\varphi}}) \\ \boldsymbol{\mathcal{U}}([\boldsymbol{V}^2], \boldsymbol{\overrightarrow{\varphi}}) \\ \boldsymbol{\mathcal{U}}_i &= J_S^2 \left(\frac{\gamma_w}{K_{an}}\right)^4 \partial_{\varphi_i^2} \boldsymbol{\mathcal{U}} \end{aligned}$$

 $(\mathbf{x},t) = \langle (\mathbf{x},t) \rangle_{\mathbf{x}}$

MAGNETIC PHASES (TMPT)
$$\vec{L} = \vec{T} - \vec{H} \approx -\vec{H}$$
 (f << GHz)

$$\vec{u} = \vec{u}_{ex} + \vec{u}_{an} + \vec{u}_{\lambda s} + \vec{u}_{\lambda \varepsilon} + \vec{u}_{dm}$$

TENSOR STATE VARIABLE

$\left[V^2 \right] = \left[\Lambda^2 \right]^{-2}$
--

Materials parameters

 γ_w [J.m⁻²] walls energy density $\vec{K}_{an} = K_{an}\vec{u}_{an}$ [J.m⁻³] anisotropy vector

Lagrangian Energy densities [J.m⁻³]

Lagrangian energy densities [J.m⁻³]

+.

Micro-Magnetism (LLG equations)

Stress Induced Anistropy

$$\boldsymbol{u}_{s\varepsilon} = -\frac{3}{2} \frac{[\vec{\boldsymbol{m}} \otimes \vec{\boldsymbol{m}}]}{M_s^2} \circ \left([\lambda] \div [\boldsymbol{s}] \div \frac{[\vec{\boldsymbol{m}} \otimes \vec{\boldsymbol{m}}]}{M_s^2} \right)$$

Self Magneto-striction Energy

$$\boldsymbol{u}_{\lambda\varepsilon} = +\frac{9}{4} \frac{[\vec{\boldsymbol{m}} \otimes \vec{\boldsymbol{m}}]}{M_{S}^{2}} \circ \left(\left[\lambda^{2} \right] \div [\boldsymbol{C}] \div \frac{[\vec{\boldsymbol{m}} \otimes \vec{\boldsymbol{m}}]}{M_{S}^{2}} \right)$$

laSalle

Amiens

$$C_{\lambda s} \approx C_{\lambda \varepsilon} \approx 1$$
$$\begin{bmatrix} \vec{A} \otimes \vec{B} \end{bmatrix} \begin{bmatrix} \vec{A} \otimes \vec{B} \end{bmatrix} = A \cdot B$$

 $[A \otimes B], [A \otimes B]_{ij} = A_i B_j$ $[Y] \because [Z], [[Y] \because [Z]]_{ij} = Y_{ij} Z_{ij}$ $[Y] \circ [Z] = Y_{ij} Z_{ij} : \text{scalar product}$

MAGNETIC PHASES (TMPT)

$$\overline{\boldsymbol{\mathcal{U}}}_{\lambda \boldsymbol{s}} \propto -\frac{3}{2} C_{\lambda \boldsymbol{s}} \frac{\gamma_{w}^{4}}{K_{an}^{3}} [\boldsymbol{V}^{2}] \overrightarrow{\odot} \left(\frac{[\lambda] \cdot \cdot [\boldsymbol{s}]}{K_{an}} \cdot \cdot [\boldsymbol{V}^{2}] \right)$$

[s] [Pa] the stress tensor [λ] [n.u.] magnetostriction tensor

$$\vec{\boldsymbol{u}}_{\lambda\varepsilon} \propto + \frac{9}{4} C_{\lambda\varepsilon} \frac{\gamma_w^4}{K_{an}^3} [\boldsymbol{V}^2] \vec{\odot} \left(\frac{[\lambda^2] \cdot [\boldsymbol{C}]}{K_{an}} \cdot [\boldsymbol{V}^2] \right)$$

ESSIAL

[λ] [n.u.] magnetostriction tensor [C] [Pa] stiffness tensor

 $\vec{h}_{ed} = -\vec{\nabla}_{\partial_t \vec{m}}(\mathbf{r}_{ed})$

Lagrangian & dissipation functional

Micro-Magnetism (LLG equations)

Demagnetizing stray-field Energy

$$u_{dm} = -\overrightarrow{h_{dm}}, \overrightarrow{m}$$

Eddy currents lost Energy

$$\boldsymbol{r}_{ed} = \frac{1}{2} \eta \partial_t \vec{\boldsymbol{m}} . \partial_t \vec{\boldsymbol{m}}$$

 η magnetic damping parameter

$$\overrightarrow{h_{dm}} (\overrightarrow{m}. \overrightarrow{n}, \overrightarrow{\nabla}. \overrightarrow{m}) \overrightarrow{\nabla}. \overrightarrow{m} \approx 0 \Rightarrow \overrightarrow{\nabla}. \overrightarrow{M} \approx 0$$

 $\mathbf{\bullet}$

$$\begin{bmatrix} \vec{\nabla} \end{bmatrix} \cdot \begin{bmatrix} V^2 \end{bmatrix} = \mathbf{0} \\ \begin{bmatrix} \vec{\nabla} \end{bmatrix} \cdot \begin{bmatrix} \Lambda^2 \end{bmatrix} = \mathbf{0}$$

$$\overline{\vec{u}}_{dm} \propto C_{dm} \frac{K_{an}^4}{\gamma_w^3} \left(\vec{n} \cdot \left(\left[\Lambda^2 \right] \cdot \vec{n} \right)^T \right)^{\vec{\odot} 2}$$

MAGNETIC PHASES (TMPT)

 C_{dm} (grain size, boundaries and surface treatments) **n**: unit vector normal to $\partial \Omega$

ESSIAL

$$\left| \overrightarrow{\mathcal{R}}_{ed} \propto \frac{1}{2} \frac{\gamma_w^4}{K_{an}^3} \tau \partial_t \left[V^2 \right] \overrightarrow{\odot} \tau \partial_t \left[V^2 \right] \right]$$

 τ [s] time delay of domains structure

UniLaSalle

3. Coupling with the Maxwell equations?

4. Derivation of the domains structuring

Principle of stationary Vectorial Action [J.s] QS conservative Formulation (Euler Lagrange equations)

$$\vec{S} = \iiint \int \vec{\mathcal{L}} \left([\mathbf{V}^2], \partial_t [\mathbf{V}^2], t \right) dt \, dx \text{ or } S_j = \iiint \int \mathcal{L}_j (V_{ij}^2, \partial_t V_{ij}^2, t) dt \, dx \qquad \overrightarrow{\mathcal{R}}_{ed} = \vec{0}$$

$$\delta \vec{S} = 0 \Leftrightarrow \delta S_j = 0 \Leftrightarrow \left(\frac{\partial \mathcal{L}_j}{\partial V_{ij}^2} - \partial_t \left(\frac{\partial \mathcal{L}_j}{\partial \partial_t V_{ij}^2} \right) \right) = 0 \rightleftharpoons (\vec{f} \ll GHz) \left(-\frac{\partial \mathcal{U}_j}{\partial V_{ij}^2} \right) = 0 \qquad [\vec{\nabla} \cdot [\mathbf{Y}] = (\vec{\nabla} \cdot \vec{Y}_1, \vec{\nabla} \cdot \vec{Y}_2, \vec{\nabla} \cdot \vec{Y}_3]^T \\ \left[\Delta] [\mathbf{Y}^2] - \frac{C_{an}}{C_{ex}} \left(\frac{K_{an}}{\gamma_w} \right)^2 \left([\mathbf{V}^2] - \left(\frac{\vec{K}_{an} \cdot ([\mathbf{V}^2] \cdot \vec{K}_{an}]^T}{|\vec{K}_{an}|^2} \right)^T \right) + \frac{3}{2} \frac{C_{\lambda s}}{C_{ex}} \left(\frac{K_{an}}{\gamma_w} \right)^2 \left(\frac{[\lambda] \because [\sigma]}{K_{an}} \div [\mathbf{V}^2] \right) - \frac{9}{4} \frac{C_{\lambda s}}{C_{ex}} \left(\frac{K_{an}}{\gamma_w} \right)^2 \left(\frac{[\lambda^2] \because [C]}{K_{an}} \div [\mathbf{V}^2] \right) = [\mathbf{0}]$$

Application to electrical steels (GOES & NGOES)

2D CALCULATION AT QUASI-STATIC EQUILIBRIUM WITH THE FINITE ELEMENT METHOD

4. Derivation of the domains structuring

Principle of stationary Vectorial Action [J.s] Dynamic dissipative Formulation (Noëther equations)

$$\delta \vec{S} = 0 \Leftrightarrow \delta S_{j} = 0 \Leftrightarrow \left(\frac{\partial \mathcal{L}_{j}}{\partial V_{ij}^{2}} - \partial_{t} \left(\frac{\partial \mathcal{L}_{j}}{\partial \partial_{t} V_{ij}^{2}} \right) \right) \delta V_{ij}^{2} + \frac{d}{dt} \left(\frac{\partial \mathcal{L}_{j}}{\partial \partial_{t} V_{ij}^{2}} \delta V_{ij}^{2} \right) + \frac{\partial \mathcal{L}_{j}}{\partial t} \delta t = 0$$

$$\Leftrightarrow \delta S_{j} = 0 \Leftrightarrow \delta S_{j} = 0 \Leftrightarrow \left(\frac{\partial \mathcal{L}_{j}}{\partial V_{ij}^{2}} - \partial_{t} \left(\frac{\partial \mathcal{L}_{j}}{\partial \partial_{t} V_{ij}^{2}} \right) \right) \delta V_{ij}^{2} + \frac{d}{dt} \left(\frac{\partial \mathcal{L}_{j}}{\partial \partial_{t} V_{ij}^{2}} \right) + \frac{\partial \mathcal{L}_{j}}{\partial t} \delta t = 0$$

$$\Leftrightarrow \delta S_{j} = 0 \Leftrightarrow \left(\frac{\partial \mathcal{L}_{j}}{\partial t} - \frac{\partial \mathcal{L}_{j}}{\partial V_{ij}^{2}} \right) = 0$$

$$\left[\Delta \left[|V^{2}| - \frac{\partial \mathcal{R}_{ed,j}}{\partial t \partial_{t} V_{ij}^{2}} \right] + \frac{\partial \mathcal{R}_{ed,j}}{\partial t \partial_{t} V_{ij}^{2}} \right] = 0$$

$$\left[\Delta \left[|V^{2}| - \frac{C_{an}}{C_{ex}} \left(\frac{K_{an}}{\gamma_{w}} \right)^{2} \left(\left[|V^{2}| - \left(\frac{\vec{K}_{an} \cdot \left(|V^{2}| \cdot \vec{K}_{an} \right)^{T}}{|\vec{K}_{an}|^{2}} \right) \right) + \frac{\partial \mathcal{L}_{j}}{\partial t \partial t V_{ij}^{2}} \right] \right] + \frac{\partial \mathcal{L}_{j}}{\partial t \partial t} \right]$$

2D DYNAMIC MAGNETOHARMONIC CALCULATION WITH THE FINITE ELEMENT METHOD

Symac

5. Symmetries and Invariance

CPT properties of TMPT Lagrangian ($\infty \rightarrow -\infty$; $t \rightarrow -t$; $\overrightarrow{M} \rightarrow -\overrightarrow{M}$; $\overrightarrow{\varphi} \rightarrow -\varphi$)

Dual Lorentz transformation \mathbb{V} of referential frame (galilean motion at speed \vec{v}) that keeps invariant the action $\begin{pmatrix} \vartheta t' \\ x'_1 \\ x'_2 \end{pmatrix} = \mathbb{V}\begin{pmatrix} \vartheta t \\ x_1 \\ x_2 \end{pmatrix}$ Aterial constant

Material constant « Speed of magnetization » : $\vartheta = \gamma_W K_{an}^{-1} \tau^{-1}$ Lorentz factors : $\vec{\beta} = \frac{\vec{v}}{\vartheta}$ and $\alpha = \left(1 + |\vec{\beta}|^2\right)^{-1/2}$ Metrics: , Invariant 4-vectors: $g_{\mu\nu} = diag(1,1,1,1)$ $\alpha(\vartheta, \vec{v}), \alpha(\vec{\beta} \cdot \vec{F}, \vec{F}), \alpha\left(\frac{\vartheta}{\sigma}, \vec{j}\right)$ $Metrics = \frac{1}{2} \left(\alpha - 1\right) \frac{\beta_2 \beta_1}{\beta^2} (\alpha - 1) \frac{\beta_1 \beta_2}{\beta^2} (\alpha - 1) \frac{\beta_1 \beta_3}{\beta^2} (\alpha - 1) \frac{\beta_2 \beta_3}{\beta^2} (\alpha - 1) \frac{\beta_3 \beta_2}{\beta^2} (\alpha - 1) \frac{\beta_3 \beta_3}{\beta^2} (\alpha - 1)$

Ferroelectric and Multiferroïc Materials

Both magnetically and electrically polarized domains

Theory v.s. Observations

GOES model

 $K_{an} = K_{an} u_{an} = K_{an} (1, 0, 0)^T$

$$\begin{split} \kappa &= (C_{an}/C_{ex})^* (K_{an}/\gamma_w)^2 + (C_{\lambda e}/C_{ex})^* (K_{an}/\gamma_w)^2 (9\lambda^2 C/4K_{an}) - (C_{\lambda s}/C_{ex})^* (K_{an}/\gamma_w)^2 (3\lambda s/2K_{an}) \text{ defines the space variations of } [V^2] = [\Lambda^2]^{-1}. \end{split}$$

J.W. Shilling, JR. L. Houze, "Magnetic properties and domain structure in grain-oriented 3% Si-Fe", Trans. on Magnetics, vol. MAG-10, no. 2, pp. 195, 1974.
Masaaki Inamura, "AC magnetostriction in Si-Fe single cristal close to (110)[001]", IEEE Transactions on Magnetics", vol. MAG-19, no. 1, january 1983.

O. Maloberti, M. Nesser, E. Salloum, S. Panier, J. Fortin, P. Dassonvalle, C. Pineau, T. Nguyen, J-P. Birat, I. Tolleneer, "The Tensor Magnetic Phase Theory for mesoscopic volume structures of soft magnetic materials - Quasi-static and dynamic vector polarization, apparent permeability and losses", *conférence SMM 24th*, Poznan, Poland, 2019.

Symade

7. Discussions: Theory v.s. Measurements

UniLaSalle

Amiens

7. Conclusion and Forthcoming

- <u>Results:</u> Invariant Energy Formulation for the
 - Geometry, field and stress dependant domains and flux at long distance
 - Variability of magnetic domains with phases, dynamics and losses
 - Anisotropic behaviour intrinsic in the tensor variables

Forthcoming:

- Couple NL TMPT and classical fields at boundaries and in the volume
- Consider Variability, *i.e.* different types of anisotropy (cubic ...)
- Rebuild vector Hysteresis loops with memory and dynamics ...
- Dual wave equations at high frequencies (BN noise, spin waves ...)

ESSIAL Thank you

OLIVIER MALOBERTI Materials of Electrical Engineering (0033-6-46-39-19-23) <u>olivier.maloberti@unilasalle.fr</u> <u>olivie.maloberti@gmail.com</u>

TENSOR PARAMETERS

MAGNETOSTRICTION

STIFFNESS

(C_{11})	C_{12}	C_{13}	C_{14}	C_{15}	C_{16}	(ε_1)
C_{21}	C_{22}	C_{23}	C_{24}	C_{25}	C_{26}	ε_2
C_{31}	C_{32}	C_{33}	C_{34}	C_{35}	C_{36}	ε_3
C_{41}	C_{42}	C_{43}	C_{44}	C_{45}	C_{46}	ε_4
C_{51}	C_{52}	C_{53}	C_{54}	C_{55}	C_{56}	ε_5
$\setminus C_{61}$	C_{62}	C_{63}	C_{64}	C_{65}	C_{66} /	$\langle \varepsilon_6 \rangle$
	$\begin{pmatrix} C_{11} \\ C_{21} \\ C_{31} \\ C_{41} \\ C_{51} \\ C_{61} \end{pmatrix}$	$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \\ C_{31} & C_{32} \\ C_{41} & C_{42} \\ C_{51} & C_{52} \\ C_{61} & C_{62} \end{pmatrix}$	$\begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \\ C_{41} & C_{42} & C_{43} \\ C_{51} & C_{52} & C_{53} \\ C_{61} & C_{62} & C_{63} \end{pmatrix}$	$\begin{pmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{41} & C_{42} & C_{43} & C_{44} \\ C_{51} & C_{52} & C_{53} & C_{54} \\ C_{61} & C_{62} & C_{63} & C_{64} \end{pmatrix}$	$\begin{pmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} \\ C_{61} & C_{62} & C_{63} & C_{64} & C_{65} \end{pmatrix}$	$\begin{pmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\ C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66} \end{pmatrix}$

Orhtotropic material

$$\begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \varepsilon_{6} \end{bmatrix} = \begin{bmatrix} \frac{1}{E_{1}} & -\frac{v_{21}}{E_{2}} & -\frac{v_{31}}{E_{3}} & 0 & 0 & 0 \\ -\frac{v_{12}}{E_{1}} & \frac{1}{E_{2}} & -\frac{v_{32}}{E_{3}} & 0 & 0 & 0 \\ -\frac{v_{13}}{E_{1}} & -\frac{v_{23}}{E_{2}} & \frac{1}{E_{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2G_{23}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2G_{13}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2G_{12}} \end{bmatrix}^{\sigma_{1}} \begin{bmatrix} c_{11} - c_{12} & c_{44} & c_{55} \\ c_{44} & c_{22} - c_{23} & c_{66} \\ c_{55} & c_{66} & c_{33} - c_{13} \end{bmatrix}$$

25

VECTOR & TENSOR OPERATORS

 $[Y] = \begin{bmatrix} \vec{Y}_1, \vec{Y}_2, \vec{Y}_3 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{bmatrix}, \quad [n] = [\vec{n}, \vec{n}, \vec{n}] : [Y]^T \text{ means to transpose the matrix } [Y]$ $\begin{bmatrix} \vec{\nabla} \end{bmatrix} (\vec{A}) = \begin{bmatrix} \vec{\nabla} \otimes \vec{A} \end{bmatrix}, \begin{bmatrix} [\vec{\nabla}] (\vec{A}) \end{bmatrix}_{ij} = \begin{bmatrix} \vec{\nabla} \otimes \vec{A} \end{bmatrix}_{ij} : \text{ tensor gradient on a vector,}$ $\begin{bmatrix} \vec{\nabla} \cdot [Y] = (\vec{\nabla} \cdot \vec{Y}_1, \vec{\nabla} \cdot \vec{Y}_2, \vec{\nabla} \cdot \vec{Y}_3)^T : \text{ vector divergence on a tensor,} \\\\ \begin{bmatrix} \vec{\nabla} \end{bmatrix} \times [Y] = \begin{bmatrix} \vec{\nabla} \times \end{bmatrix} [Y] = \begin{bmatrix} \vec{\nabla} \times \vec{Y}_1, \vec{\nabla} \times \vec{Y}_2, \vec{\nabla} \times \vec{Y}_3 \end{bmatrix}^T : \text{ tensor rotational on a tensor,} \\\\ \begin{bmatrix} \Delta \end{bmatrix} [Y] = \begin{bmatrix} \vec{\Delta} (\vec{Y}_1), \vec{\Delta} (\vec{Y}_2), \vec{\Delta} (\vec{Y}_3) \end{bmatrix}^T : \text{ tensor Laplacian on a tensor,} \\\\ \vec{\nabla} \cdot = (\partial_1 \cdot, \partial_2 \cdot, \partial_3 \cdot)^T : \text{ Nabla operator,} \\\\ \vec{\Delta} \cdot = (\partial_1 \partial_1 \cdot, \partial_2 \partial_2 \cdot, \partial_3 \partial_3 \cdot)^T : \text{ Laplacian operator} \\\end{bmatrix}$

26

VECTOR & TENSOR OPERATIONS

$$\begin{split} & [\vec{A} \otimes \vec{B}], [\vec{A} \otimes \vec{B}]_{ij} = A_i B_j: \text{tensor} \text{product} \text{between} \text{two} \text{vectors}. \P \\ & [[Y] \because [Z]], [[Y] \because [Z]]_{ij} = Y_{ij} Z_{ij}: \text{tensor} \text{product} \text{type} \cdot 1 \text{ between} \cdot 2 \text{ tensors}. \P \\ & [[Y] \times [Z]] = [\vec{Y}_1 \times \vec{Z}_1, \vec{Y}_2 \times \vec{Z}_2, \vec{Y}_3 \times \vec{Z}_3]^T: \text{tensor} \text{product} \text{type} \cdot 2 \text{ between} \cdot 2 \text{ tensors}. \P \\ & ([Y] \bullet [Z]) = (\vec{Y}_1 \cdot \vec{Z}_1, \vec{Y}_2 \cdot \vec{Z}_2, \vec{Y}_3 \cdot \vec{Z}_3)^T, ([Y] \bullet [Y]): \text{vector} \text{product} \text{between} \cdot 2 \text{ tensors}. \P \\ & [Y] \circ [Z] = Y_{ij} Z_{ij}: \text{scalar} \text{product} \text{between} \text{two} \text{tensors}. \P \end{split}$$

VECTOR & TENSOR PROPERTIES

$$\begin{split} [\overrightarrow{\nabla} \times] [\overrightarrow{\nabla} \times] [Y] &= [\overrightarrow{\nabla}] (\overrightarrow{\nabla} \cdot [Y]) - [\Delta] [Y] \P \\ [X] \overrightarrow{\bullet} ([Y] \times [Z]) &= [Z] \overrightarrow{\bullet} ([X] \times [Y]) = [Y] \overrightarrow{\bullet} ([Z] \times [X]) \P \\ \overrightarrow{\nabla} \cdot ([Y] \overrightarrow{A}) &= (\overrightarrow{\nabla} \cdot [Y]) \cdot \overrightarrow{A} + [Y] \circ [\overrightarrow{\nabla} \otimes \overrightarrow{A}] \P \\ \iint_{\Omega} (\overrightarrow{\nabla} \cdot \overrightarrow{A}) d^{3}x &= \oiint_{\partial\Omega} (\overrightarrow{A} \cdot \overrightarrow{n}) d^{2}x \P \\ \iint_{\Omega} (\overrightarrow{\nabla} \times \overrightarrow{A}) d^{3}x &= \oiint_{\partial\Omega} - (\overrightarrow{A} \times \overrightarrow{n}) d^{2}x \P \\ \iint_{\Omega} (\overrightarrow{\nabla} \cdot [Y]) d^{3}x &= \oiint_{\partial\Omega} ([Y] \overrightarrow{\bullet} [n]) d^{2}x \P \\ \iint_{\Omega} ([\overrightarrow{\nabla}] \times [Y]) d^{3}x &= \oiint_{\partial\Omega} - ([Y] \times [n]) d^{2}x \P \\ \iint_{\Omega} ([\overrightarrow{\nabla}] \times [Y]) d^{2}x &= \oiint_{\partial\Omega} ([Y] \overrightarrow{\bullet} [n]) d^{2}x \P \\ \iint_{\Sigma} ([\overrightarrow{\nabla}] \times [Y]) d^{2}x &= \oint_{\partial\Sigma} ([Y] \overrightarrow{\bullet} [n]) dx \P \end{split}$$

APPENDIX – discussion about saturation

Mochanisms & Limits

TOWARDS SATURATION

Limit study

 $\overrightarrow{\varphi_{J}} = \left(\left[\Lambda_{J}^{2} \right] - \left[\Lambda_{J}^{2} \right] \right) J_{s} \overrightarrow{\mathbf{1}}$

$$\vec{J} = \begin{bmatrix} V_J^2 \end{bmatrix} \vec{\varphi_J} = \begin{bmatrix} V_J^2 \end{bmatrix} \left(\begin{bmatrix} \Lambda_{J\uparrow}^2 \\ I \uparrow \end{bmatrix} - \begin{bmatrix} \Lambda_{J\downarrow}^2 \end{bmatrix} \right) J_s \vec{\mathbf{1}}$$
$$\left(\begin{bmatrix} \Lambda_{J\uparrow}^2 \\ I \uparrow \end{bmatrix} - \begin{bmatrix} \Lambda_{J\downarrow}^2 \end{bmatrix} \right) J_s \vec{\mathbf{1}} \xrightarrow{saturation} \begin{bmatrix} \Lambda_J^2 \end{bmatrix} \vec{J_s}$$
$$\vec{J} \xrightarrow{saturation} \begin{bmatrix} V_J^2 \end{bmatrix} \begin{bmatrix} \Lambda_J^2 \end{bmatrix} \vec{J_s} = \vec{J_s}$$

		i .		
GO grain orientation Magnetic polarization direction Polarization components	GO grain 0° RD $J_{ff} \rightarrow J_s$ $J_{\perp} \rightarrow 0$	$ \begin{array}{c} \text{GO grain } \theta^{\circ} \\ \text{RD} \\ J_{II} \rightarrow J_s \cos \theta \\ J_{\perp} \rightarrow J_s \sin \theta \end{array} $	GO grain 0° TD $J_{\perp} \rightarrow J_s$ $J_{1/} \rightarrow 0$	
Walls density $n_{wa} < n_w$		$\rightarrow 0$	1	
Walls surface $A_w < S_w$	$\rightarrow \infty$			
Walls mobility η_w	$\rightarrow \infty$			
Domains autocorrelation surface S _{DMR}	$\rightarrow 0$	$\rightarrow \propto \zeta g$	$\rightarrow 0$	
• <u>Domain Walls Displacement</u> $\Lambda_{DWD} = \sqrt{\frac{n_w S_w J_s}{2\eta_w n_{wa}^2 A_w^2 (J_s^2 - J_s^2)}} \left(\frac{\partial_t J_{//} - \frac{J_{//} \cdot \partial_t \left(\sqrt{J_s^2 - J_s^2}\right)}{\sqrt{J_s^2 - J_s^2}}}{\partial_t B_{//}} \right)$		$\rightarrow \frac{0}{0} = finite$ $\rightarrow 0$ Classical limit	→ 0	
• <u>D</u> omains <u>M</u> agnetic <u>R</u> otation $\Lambda_{DMR} = \sqrt{S_{DMR} \frac{J_s^2}{J_s^2 - J_s^2}} \left(\frac{\partial_t J}{\partial_t B}\right)$	→ 0	$\rightarrow \propto \zeta g \tan \theta$ $\rightarrow 0$ Classical limit	$\rightarrow \frac{0}{0} = finite$	
$\eta_{w} = \frac{8\pi^{2} S_{w} J_{s\perp}}{\sigma J_{s}^{2}} \left(\iiint \left(\iint_{w} \frac{(z - z_{w})}{ r - r_{w} ^{3}} d^{2} \right)^{2} d^{3} r \right)^{-1}; S_{DMR}$	$= \frac{n_d}{4\pi} \iiint_d \iiint_d G(r)$	$(r,r)d^3r'd^3r$, G is th	e Green function	

nwo: active walls volume density, nwo: active wall mobility, Aw: wall effective area, g: grain size, O. grain orientation (-7°<0++7°)

29

CONTACTS

OLIVIER MALOBERTI Research Fellow

Materials of Electrical Engineering

Tél. 0033-6-46-39-19-23

@ <u>olivier.maloberti@unilasalle.fr</u> <u>olivie.maloberti@gmail.com</u> MANAR NESSER Research Fellow <u>Manar.nesser@unilasalle.fr</u>

PRESCILLIA DUPONT Post-Doc Researcher Prescillia.dupont@unilasalle.fr

ELIAS SALLOUM Research Fellow - Lebanon salloumelias.es@gmail.com

