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Abstract. We investigate a possibility of producing the quantitative optical metrics to characterize the
evolution of gastric tissue from healthy conditions via inflammation to cancer by using Mueller microscopy
of gastric biopsies, regression model and statistical analysis of the predicted images. For this purpose the
unstained sections of human gastric tissue biopsies at different pathological conditions were measured with
the custom-built Mueller microscope. Polynomial regression model was built using the maps of transmitted
intensity, retardance, dichroism and depolarization to generate the predicted images. The statistical analysis
of predicted images of gastric tissue sections with multi-curve fit suggests that Mueller microscopy combined
with data regression and statistical analysis is an effective approach for quantitative assessment of the degree
of inflammation in gastric tissue biopsies with a high potential in clinical applications.

Keywords: Mueller microscopy, Optical anisotropy, Statistical image analysis, Gastric cancer.

1 Introduction

Chronic gastritis is a premalignant condition in a stomach
that, if left untreated, favors the development of gastric
cancer [1, 2|. Appropriate treatment of chronic gastritis
requires precise detection and quantification of gastric
mucosa inflammation during medical diagnosis. The gold
standard technique is the histology analysis by a patholo-
gist of thin sections of gastric biopsies taken randomly
during the endoscopy test [3]. The standard protocol of tis-
sue sections preparation is rather cumbersome and includes
many steps (tissue fixation, paraffin embedding, sectioning
and staining). Afterward, a pathologist examines prepared
thin tissue sections using a white light microscope. Micro-
scopy images of chronic gastritis tissue usually show infiltra-
tion of gastric epithelium and lamina propria with the
inflammatory cells [4]. In atrophic gastritis the highly differ-
entiated glands, epithelium, and cells are destroyed and
replaced by glands and epithelium with immature intestinal
properties [5]. However, this histopathology analysis of tis-
sue sections is time-consuming and operator-dependent.

* Corresponding author: tatiana.novikova@polytechnique.edu
* Co-first authors.

The development of a quantitative metric for the assess-
ment of the degree of gastric inflammation will be beneficial
to support the diagnosis of the pathologist [6].

It is known that polarized light is very sensitive to the
microstructure of an object under study. The interaction
of polarized light beam with a sample changes the polariza-
tion state of reflected /transmitted light or even depolarizes
it (partially or completely) depending on the optical proper-
ties of a sample. Thus, by measuring these modulations or
loss of polarization, we may deduce the polarimetric proper-
ties (e.g. diattenuation, birefringence, depolarization [7]) of
a sample and use them for its characterization. This
approach was widely explored in metrological applications
[8, 9], food quality control [10-12], pharmaceutical drug
studies [13, 14], biomedical diagnosis [15-20], etc. Using
changes in tissue depolarization with pathology develop-
ment for histology analysis and diagnosis was extensively
studied in [21-25] for different types of tissue. We suggest
using Mueller polarimetric microscopy [26, 27] combined
with regression model and statistical analysis of experimen-
tal data for the automated quantitative characterization of
unstained thin sections of gastric tissue biopsies for the
assessment of its degree of inflammation to support pathol-
ogist’s diagnosis.
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The basics of Mueller polarimetry, the description of
gastric tissue samples, the optical instrument (Mueller
Matrix (MM) microscope), and the algorithms of data
post-processing (non-linear compression of MM data and
regression model for image segmentation) are provided in
Section 2. The results of Mueller matrix decomposition,
application of the regression model to the microscopy
images of total transmitted intensity, linear retardance,
dichroism, and depolarization, as well as the statistical
analysis of the predicted images are presented and discussed
in Section 3. The conclusions of our study are presented in
Section 4.

2 Methods and materials
2.1 Mueller polarimetry

Within the framework of the Stokes-Mueller formalism [7]
the polarization of a light beam can be described by a
real-valued 4 X 1 Stokes vectors S. Consequently, the inter-
action of a polarized light with any linear optical system is
described by a following equation:
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where the real-valued 4 x 4 Mueller matrix describes the
transformation of the input Stokes vector S into the out-
put Stokes vector S upon interaction with a sample. A
Stokes vector can describe any polarization state of light
(fully or partially polarized), hence, Mueller matrix con-
tains information on the polarimetric properties of any
sample (non-depolarizing or depolarizing). Despite the
complexity of light-matter interaction process, the polari-
metric response of a sample can be expressed in terms of
basic polarimetric properties, namely, diattenuation,
retardance, and depolarization by performing the decom-
position of sample’s Mueller matrix. The diattenuation
describes the variation of output intensity when changing
the probing beam polarization while keeping constant
input intensity. Propagation of light trough birefringent
medium results in different changes of optical phase for
the ordinary and extraordinary polarization components.
The difference in those phase shifts is called retardance.
The depolarization property is characterized by the
reduction in degree of polarization of incident beam upon
interaction with a sample.

2.2 Samples

Thin sections of human gastric tissue with different patho-
logical conditions (control healthy, gastritis, and cancer)
were prepared from the random biopsies taken during the
standard endoscopy tests. Patients with diagnosed chronic
gastritis were enrolled from the cohort GASTRIMED
(ClinicalTrials.gov identifier: NCT02325323 [28]) funded

by the French Gastroenterology Society for the studies of
link between the gastric mucosa changes in chronic gastritis
and the onset of cancer [29]. The patients included in this
clinical study (conducted according to the World Medical
Association Declaration of Helsinki [30]) were referred to
the endoscopic unit of Ambroise Paré Hospital, Boulogne-
Billancourt, France. All patients provided their written
informed consent (Approval of the Comité de Protection
des Personnes Sud-Est III Ethics committee on June
2019, registration number: 19.06.21.76520).

Two adjacent thin tissue sections of 6 pm thickness were
prepared for each of three biopsy specimens. One section
was stained with hematoxylin and eosin classical protocol
(H&E staining) and went through the conventional histol-
ogy analysis, the gold standard technique for assessing
pathological status of tissue. The adjacent unstained gastric
tissue section was dewaxed, and its polarimetric properties
were measured with a custom-built MM microscope operat-
ing in transmission geometry.

2.3 Mueller matrix microscope

The detailed description of this instrument is provided else-
where [31, 32|. For the sake of completeness, we recall the
operational principles of the instrument. The custom-built
transmission Mueller microscope operates in a visible wave-
length range and makes use of the Polarization State
Generator (PSG) for the polarization modulation of incident
light beam and Polarization State Analyzer (PSA) for the
analysis of the polarization state of light beam transmitted
by a sample. The PSG is built of a linear polarizer, a quarter
wave plate, and two electrically driven ferroelectric liquid
crystals and the PSA is composed of the same optical com-
ponents assembled in a reverse order and placed in the detec-
tion arm of the instrument after the microscope objective
(Nikon CFI LU Plan Fluor, 20X, Japan). The white light
LED (Stemmer Imaging, Germany) was used as a light
source and the measurement wavelength of 533 nm was
selected by using an interferential filter (spectral bandwidth
of 20 nm). Four different polarization states of the incident
light beam were generated sequentially by the PSG and pro-
jected onto four different polarization states of the PSA after
light beam passed through a thin transparent sample.
Finally, the light beam was detected by the CCD camera
(AV Stingray F-080B, Allied Vision, Germany, image reso-
lution 600 x 800 pixels). The implemented eigenvalue cali-
bration method [33] allows to calculate a 4 x 4 real-valued
Mueller matrix (or transfer matrix) of a sample from 16
raw intensity measurements.

2.4 Data post-processing

Mueller matrix contains all information on polarization and
depolarization properties of a sample; however, the physical
interpretation of the elements of Mueller matrix is not
always straightforward. We used the differential (or loga-
rithmic) Mueller matrix decomposition (DMMD) method
described in [34] for the interpretation of experimental
Mueller matrices of thin sections of gastric tissue measured
in transmission configuration. This method represents the
algorithm of non-linear compression of Mueller matrix
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Fig. 1. White light microscopy images of H&E stained thin sections of three different human gastric endoscopy biopsies: (a) healthy
control (c) chronic gastritis; (e) gastric cancer. The insets (b), (d) and (f) show the enlarged black box zones of the images (a), (b) and
(e), respectively. The scale bar is 200 um in (a), (c) and (e) and 100 pm in (b), (d) and (f).

and is particularly suited for the description of polarimetric
properties of biological tissue, because it does not imply the
sequential appearance of polarimetric effects, namely, diat-
tenuation, retardation, and depolarization in a sample
under study. Assuming that scattering anisotropic medium
is homogenous along the trajectory of probing polarized
light beam (a reasonable assumption for a few pum thick tis-
sue section) and applying the DMMD to the recorded
Mueller matrix pixel-wise, we obtained the maps of linear
and circular dichroism, linear and circular retardance, and
depolarization parameters oo, 033, and oy [26].

Regression analysis is a supervised predictive machine
learning approach that evaluates the relation between the
independent variables in a given dataset and the dependent
variables labelled as the target. There are different types of
regression analysis techniques (e.g. linear regression, logistic
regression, polynomial regression, etc.) that are applied for
data processing [35-39]. For example, the choice of an
appropriate algorithm depends on whether a linear or
non-linear relationship exists between the target and
independent variables.

In our study we applied a polynomial regression
model for the diagnostic segmentation of polarimetric
images of thin gastric tissue sections [40]. For the sake of
completeness we recall the main steps of building such
a regression model. We need to define the target value
vector Y first. Then we define a training dataset

X =1[Z,, Z,,... Z,]. Our primary goal is to calculate the
regression model of the target value vector Y from the
training dataset X. In general, a dataset X depends non-
linearly on the target value vector Y. We used the polyno-
mial basis functions of the second degree to create a new
feature space Z =1, 7, Ty, ... Ty, T2, 13, m_%] It is
necessary to find the solution f = [Bos Bis-- - Bu] " of the

following equation:
y=1p, (2)

where m is the dimension of a feature space Z. We built a
regression model by optimizing the mean squared error
MSE calculated for the target value vector Y and the
predicted value for vector y [41].

1 & R 1

MSE(B) = > (5, - )" = (V= 2B) (V- ZP)
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= ]iv(?T Y- YTZp - BTZTY + BTZTZB)  (3)
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To minimize the MSE, we set the derivative to zero and
solve for f3:

0= % (—2ZT v 2ZTZB), (5)
B=(2z"2"2"Y. (6)

The elements of vector i can be considered as the weight
coefficients of the corresponding functions of the feature
space Z that assure the best approximation of the target
vector Y.

Then the built regression model with the feature space
Z of training data and the target value vector Y is imple-
mented on the test datasets to generate a predicted image

~

using the feature space Z of the test dataset and vector f.

3 Results and discussion

The microscopy images of the H&E stained thin sections of
three different types of human gastric endoscopic biopsies:
healthy control, chronic gastritis, and gastric cancer tissue
are shown in Figure 1. We observe the presence of gastric
tissue glands (rounded structures with the mucous cells
inside) in the images of healthy control (Figs. 1la and 1b)
and chronic gastritis (Figs. lc and 1d) tissue sections
whereas these glands proliferate a lot in cancer (Figs. le
and 1f). The infiltration of gastric epithelium by inflamma-
tory cells (lymphocytes), already visible in the image of
chronic gastritis, becomes very pronounced in the image
of gastric cancer tissue. The histology analysis of gastric tis-
sue diagnosis is based on the assessment of these structural
differences.

The corresponding adjacent unstained gastric tissue
sections were measured with a custom-built MM micro-
scope. The recorded Mueller matrix images were decom-
posed by applying DMMD and the maps of retardance,
diattenuation and depolarization were calculated. Different
type of contrast was observed compared to the white light
microscopy images. Figure 2 shows the images of total
transmitted intensity and scalar retardance measured for
all three types of gastric tissue biopsies. The “honey-comb”
pattern highlights the zones of optical anisotropy in the
images of scalar retardance for both healthy and chronic
gastritis tissue. This pattern is related to the presence of
fibers in connective tissue forming the walls of gastric gland
walls (so-called form birefringence). The zones of higher
retardance values in the image of scalar retardance of gas-
tric cancer tissue demonstrate different spatial pattern
and reflect the re-arrangement of gastric tissue stroma by
malignancy.

Several pixels rendered in red in the images of linear
retardance represent high values of these parameters,
whereas these pixels are not contrasted in the corresponding
transmitted intensity image. The phenomenon of the intra-
nuclear birefringent inclusions (IBI), found in tissue sections
prepared using paraffin embedding step, is commonly con-
sidered to be a tissue processing artifact. This artifact is
related to the presence of residual paraffin left in some cell

Linear retardance
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Fig. 2. Mueller microscopy images of unstained thin sections of
three different human gastric endoscopy biopsies. Normalized
transmitted intensity — (a) healthy control, (c) chronic gastritis;
(e) gastric cancer. Map of scalar retardance — (b) healthy
control, (d) chronic gastritis; (f) gastric cancer. Field of view is
about 250 um in diameter.

nuclei because of insufficient deparaffinization and clearing
during tissue processing. Based on the results of [42], we
attribute the presence of the pixels which demonstrate high
polarimetric values to a paraffin intake by the nuclei of the
specific cells. Furthermore, we expect these cells to be the
inflammatory ones as they are aligned along the walls of
gastric glands [43].

The polynomial regression model was built and applied
to generate the predicted microscopic images of unstained
thin sections of gastric tissue biopsies recorded with trans-
mission Mueller microscope. First, we selected the region
of interest (ROT) to build the regression model. The original
image resolution is 800 x 600 pixels, and the selected ROI
contains 400 x 300 pixels (see Fig. 3). The training dataset
consists of the normalized transmitted intensity image and
the maps of the linear retardance, linear dichroism, and
circular depolarization calculated by DMMD of the experi-
mental MM images of healthy control gastric tissue section.
Based on this information, we look for the efficient image
segmentation algorithm to increase the contrast between
the zones of connective tissues and gastric tissue glands in
order to produce the quantitative metrics for gastric tissue
diagnosis.

As was mentioned above, it is required to set the target
image because the data regression technique is a supervised
machine learning algorithm. The pixels corresponding to
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Fig. 3. Selection of the region of interest (red box — 400 x 300 pixels, left panel) and corresponding training dataset (size of
4 x 400 x 300) — the images of transmitted intensity, linear retardance, linear dichroism, and circular depolarization of healthy

control gastric tissue.
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Fig. 4. The main steps of building the regression model using training set of the intensity and polarimetric images of healthy control

gastric tissue section.

the linear retardance values >0.1 radians were tagged with
the label 3. It is worth to note that those pixels also demon-
strate large value of dichroism and large absolute value of
depolarization. Since the glands and the mucus cells within
the glands have similar optical properties, the pixels with
the normalized intensity values > 0.65 were tagged with
the label 2 in the target image. The remaining pixels were
tagged with the label 1. The defined target image demon-
strates the enhanced contrast between the connective tissue
and zones with large polarimetric values (see Fig. 4, left
bottom panel).

Then the polynomial regression model described by
equations (2)—(6) was constructed based on this target
image, and applied to the testing datasets (polarimetric
images of chronic gastritis and gastric cancer sections) for
the automated image processing and diagnostic segmenta-
tion. The main steps of building the regression model are

illustrated in Figure 4. First, we apply the vectorization
of training images of the normalized transmitted intensity
M11, linear dichroism LD, linear retardance LR and
circular depolarization oy, of healthy control gastric tissue
section in order to transform each 400 x 300 matrix into
a 120 000 x 1 vector. The data standardization (so-called
zscore) is required to account for different vectors’ units
[44]. The vectorization was also applied to the target image.
Based on this training set and the target vector values, we
calculate the coefficients of the polynomial regression model
as was described in Section 2. We used the polynomial basis
functions of the second degree to avoid overfitting. The
training step for the selected dataset of the size of
4 x 400 x 300 took 2.73 s using the computer with the
processor Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz
and 16.0 GB of RAM. The polynomial regression model
was further used on the testing sets of polarimetric images
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Fig. 5. Predicted images (400 x 300 pixels) of gastric tissue sections: (a) healthy, (b) chronic gastritis, (c¢) gastric cancer), (d—f)
histograms of the corresponding predicted images; (g—i) insets with the enlarged view of the second Gaussian peak.

of chronic gastritis and gastric cancer sections to generate
the corresponding predicted images.

The prediction of the regression model for the healthy
control gastric tissue section is shown in Figure 5 (top
row, left panel). The connective tissue and mucus cells are
clearly visible as well as the zones that correspond to the
large values of linear retardance.

We also applied the regression model trained on the
images of healthy control tissue sections to the images of
chronic gastritis (Fig. 5a) and gastric cancer (Fig. 5b) tissue
sections. The connective tissue of gland walls is distinguish-
able in the predicted image for chronic gastritis, whereas all
glands are erased in the predicted image of cancerous
gastric tissue (Fig. 5¢). The zones with large values of scalar
retardance are still present in the predicted images of both
chronic gastritis and gastric cancer biopsies.

We performed two Gaussians fit to the histograms of
predicted image values for three different types of the
gastric samples (e.g. healthy, chronic gastritis, and gastric
cancer) to compare them quantitatively. We focus on the
analysis of the position, width and height of the Gaussian
peaks. The parameters of a first Gaussian do not demon-
strate significant variation with pathological status of gas-
tric tissue. The position of second peak and its full width
at half maximum (FWHM) also do not show strong varia-
tions, being 2.45 and 0.2, respectively. On the contrary, the
height of a second Gaussian increases for chronical gastritis
and cancerous gastric tissue sections compared to healthy
gastric tissue. The value of height of a second peak is equal
to 80 for healthy control gastric tissue. This value increases
up to 150 (almost twice) for the chronic gastritis tissue and

becomes equal to 200 for gastric cancer tissue. We suggest
using this parameter as a quantitative metric for unstained
gastric tissue section diagnosis in order to provide an
accurate grading of gastric tissue inflammation to support
pathologist’s analysis.

Conclusions

The ultimate goal of this study is the development of the
procedure for an automated fast analysis of the polarimetric
images of thin unstained sections of gastric tissue biopsies
for tissue diagnosis (i.e., detection of different pathology
conditions: gastric cancer, inflammation, gastritis and its
quantification). For this purpose, we have implemented
and tested an automated image processing algorithm based
on the regression model of intensity, total scalar retardance,
and depolarization images obtained with MM microscopy
for gastric tissue diagnosis to support the gold standard
analysis by a pathologist. The polynomial regression model
was implemented for the image segmentation. Further, the
statistical analysis of the predicted images was performed
by a two-Gaussian fit to provide the quantitative metrics
for gastric tissue diagnosis. The height of a second Gaussian
peak was shown to be sensitive to the pathological status of
measured sample, thus, holding the promise to become a
quantitative metric for the digital histology analysis. It is
worth to mention that the suggested approach does not
require tissue staining and, thus, can reduce the time of
tissue section preparation.
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The perspectives for future studies include the gold
standard histology analysis of the pathological status of
high-paraffin intake cells. We expect the high value of scalar
retardance for the high-paraffin intake cells to be a possible
marker of the inflammatory cells. The statistical analysis of
the predicted images has to be performed on a larger data-
set of gastric tissue biopsies at different health conditions to
test the detection performance of optical polarimetric diag-
nosis and estimate the variability and standard deviation of
the suggested metrics of tissue pathological status. It will be
the subject of our subsequent studies.

The obtained results suggest that Mueller-matrix
polarimetry can be an effective approach for screening
optical anisotropy variations in tissue-like highly scattering
media, with a high potential in clinical application for
diagnosis of cancerous tissues. Using thick blocks of excised
tissue for the preliminary optical analysis by pathologist
may considerably reduce the time and cost of diagnostics.
To capitalize on our initial findings the measurements
and statistical, correlation and fractal analysis of larger
number of paraffin-embedded tissue samples will be under-
taken in a future work.
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