
HAL Id: hal-04536980
https://hal.science/hal-04536980

Submitted on 3 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Design of fractional MOIF and MOPIF controller using
PSO algorithm for the stabilization of an inverted

pendulum-cart system
Fatima Cheballah, Rabah Mellah, Abdelhakim Saim

To cite this version:
Fatima Cheballah, Rabah Mellah, Abdelhakim Saim. Design of fractional MOIF and MOPIF con-
troller using PSO algorithm for the stabilization of an inverted pendulum-cart system. IET Control
Theory and Applications, 2024, �10.1049/cth2.12648�. �hal-04536980�

https://hal.science/hal-04536980
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Received: 12 October 2023 Revised: 18 February 2024 Accepted: 13 March 2024 IET Control Theory & Applications

DOI: 10.1049/cth2.12648

ORIGINAL RESEARCH

Design of fractional MOIF and MOPIF controller using PSO

algorithm for the stabilization of an inverted pendulum-cart system

Fatima Cheballah1 Rabah Mellah1 Abdelhakim Saim2

1Laboratoire de Conception et Conduite des
Systèmes de Production (L2CSP), University
Mouloud Mammeri of Tizi Ouzou, Tizi Ouzou,
Algeria

2Institut de Recherche en Energie Electrique de
Nantes Atlantique, Nantes University, Saint Nazaire,
France

Correspondence

Abdelhakim Saim, Institut de Recherche en Energie
Electrique de Nantes Atlantique, Nantes University,
Saint Nazaire 44600, France.
Email: Abdelhakim.Saim@univ-nantes.fr

Abstract

The topic of this paper is the design of two fractional order schemes, based on a state
feedback for linear integer order system. In the first one of the state feedback is asso-
ciated with a fractional order integral (I 𝛼) controller. In the second structure the state
feedback is associated with a fractional order proportional integral (PI 𝛼) controller. With
such controllers, the closed loop system with state feedback described by the state equa-
tions splits in n-subsystems with different fractional orders derivatives of the state variable.
In order to find the optimal parameters value of both controllers (I 𝛼) and (PI 𝛼), a multi-
objective particle swarm optimization algorithm is used, with the integral of absolute error,
the overshoot Mp, the Buslowicz stability criterion are considered as objective functions.
The multi-objective integral fractional order controller and the multi-objective propor-
tional integral fractional order controller are applied to stabilize the inverted pendulum-cart
system (IP-C), and their performance is compared to the fractional order controller. The
simulation results of these innovative controllers are also compared with those obtained by
conventional proportional–integral–derivative and fractional order proportional–integral–
derivative controllers. The robustness of the proposed controllers against disturbances
is investigated through simulation runs, considering the non-linear model of the IP-C
system. The obtained results demonstrate that our approach not only leads to high effec-
tiveness but also showcases remarkable robustness, supported by both simulation and
experimental results.

1 INTRODUCTION

1.1 Literature review

The inverted pendulum-cart (IP-C) system has long been a
challenging control problem due to its inherent instability
and non-linearity. Traditionally, classical control methods such
as proportional–integral–derivative (PID) and linear quadratic
regulator (LQR) have been employed [1–3]. However, these
methods may fall short in providing satisfactory performance.
In recent years, there has been a growing interest in the
application of fractional-order control (FOC) techniques for
inverted pendulum systems, aiming to achieve better perfor-
mance and robustness compared to integer-order control [4–7].
Several advancements in control strategies, stability analysis, and
optimization methods for fractional-order controllers within
the context of the IP-C system have been achieved. Prior
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works have primarily focalized on commensurate order sys-
tems, with notable contributions addressing stability concerns
[8–10]. However, non-commensurate systems present a chal-
lenge, and recent approaches propose innovative methods for
stability analysis in the frequency domain, such as the argu-
ment principle [11–14]. These methods enable the asymptotic
stability analysis of non-commensurate systems described by
state-space models with different fractional orders of deriva-
tives of the state variables. To design fractional-order controllers
ensuring stability, the argument principle variation of a ratio-
nal function should tend to zero [11]. Moreover, the control
design problem becomes multi-objective, aiming to simultane-
ously minimize the variation of the argument principle, integral
of absolute error (IAE), and overshoot (Mp). To address this
complex optimization problem, various approaches have been
investigated, including classical methods extended for frac-
tional systems, artificial intelligence-based techniques [15, 16],
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and meta-heuristic approaches [17, 18]. Meta-heuristic meth-
ods, inspired by natural phenomena, offer promising solutions
for optimizing the parameters of fractional-order controllers.
Among these methods, particle swarm optimization (PSO)
stands out as a stochastic heuristic algorithm that mimics the
behaviour of species living in swarms [19–21]. Multi-objective
PSO (MOPSO) algorithms, integrating the concept of Pareto
optimality, have been applied to control design problems, pro-
viding a set of optimal parameters for fractional controllers
[22–26].

1.2 Research gap

The existing literature primarily focalize on systems with com-
mensurate order, leaving a notable gap in the availability
of analytical methods for investigating the stability of non-
commensurate order systems. Despite a recent proposal for
an innovative approach, grounded in the argument principle,
to study stability in the frequency domain, it is underscored
that no analytical methods currently exist for assessing stability
in non-commensurate systems. The introduction of fractional-
order control for linear time-invariant (LTI) systems adds a
layer of intricacy, particularly in attaining specific performance
objectives. The challenge lies in crafting controllers that ensure
stability while simultaneously meeting diverse performance cri-
teria. Specifically in the context of controlling an IP-C system,
the importance of adopting a multi-objective optimization
approach is emphasized. This necessity arises from the simul-
taneous consideration of three pivotal objectives: the variation
of the argument principle, IAE, and Mp. This highlights the
intricate nature of crafting controllers that can adeptly meet a
diverse array of performance criteria. Furthermore, the paper
suggests the essentiality of integrating meta-heuristic methods
such as PSO to confront the complex optimization challenges
ingrained in the design of fractional-order controllers.

1.3 Motivation

The inspiration behind this research stems from the impera-
tive to tackle significant hurdles in controlling an IP-C system,
notorious for its inherent instability and non-linearity. Tradi-
tional control methods have been utilized, but their efficacy in
consistently achieving satisfactory performance in the dynamic
and complex IP-C system is questioned. The growing inter-
est in fractional-order control techniques, as outlined in the
[6, 27–29], arises from their potential to provide superior
performance and robustness compared to conventional integer-
order control methods. The unique challenge of determining
unknown parameters in fractional controllers, especially in the
non-commensurate order case, adds a layer of complexity. The
motivation for this work is to contribute innovative solutions
to these challenges by proposing a novel approach based on
the argument principle in the frequency domain for the stabil-
ity analysis of non-commensurate systems. The main focus of

this endeavour centres on the strategic use of MOPSO to grap-
ple with the intricacies of designing fractional-order controllers
for the IP-C system. The ultimate goal is to seamlessly inte-
grate theoretical advancements with practical applications and
thereby contribute to the advancement of control strategies in
dynamic systems.

1.4 Contribution

Our present work brings several notable contributions to the
field of control systems, particularly in the context of the IP-C
system:

1.4.1 The use of stability analysis for
non-commensurate systems

The paper proposes a novel approach based on the argument
principle in the frequency domain for the stability analysis of
non-commensurate systems. This innovative method, as pre-
sented in [11, 12, 30], addresses a significant gap in the literature
where stability analyses have primarily focused on commen-
surate order systems. The contribution lies in providing a
theoretical framework for understanding and ensuring stability
in non-commensurate fractional-order systems.

1.4.2 Multi-objective optimization for fractional
controllers

This work introduces a multi-objective optimization problem
in the design of fractional-order controllers, with objectives
including the variation of the argument principle, IAE, and Mp.
This contribution advances the field by framing the control
design problem as a multi-objective optimization task and pro-
poses the use of meta-heuristic methods, specifically MOPSO,
to address these conflicting objectives. The introduction of a
MOPSO algorithm based on the Pareto principle, to our hum-
ble mind, is a key contribution. This algorithm is employed
to compute the parameters of both the MOIF and MOPIF
controllers. The integration of a meta-heuristic optimization
approach contributes to the efficient determination of optimal
control parameters considering multiple conflicting objectives.

1.4.3 Development of fractional control laws

This paper proposes two controllers fractional order with state
feedbacks, namely the MOIF order u(t ) = kiI

𝛼e(t ) + Kxx(t )
and the MOPIF controller, where a proportional gain is added
in parallel to the fractional integral part of the first con-
troller [u(t ) = (kp + kiI

𝛼 )e(t ) + Kxx(t )]. The challenge is then,
to design the parameters Kx , kp, ki , and the non-integer order
(𝛼) for both controllers so as to best fulfil the requirements and
desired performances and ensure the controllers efficiency.
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CHEBALLAH ET AL. 3

1.4.4 Simulation and experimental
implementation and validation

The simulation of the non-linear model of the IP-C system
constitutes a crucial step in this study, aiming to illustrate the
similarity of its results with experimental results. This approach
also allows the evaluation of robustness of the proposed con-
trols in the face of disturbances and a 40% variation in the cart’s
mass. A comprehensive comparative study of the proposed con-
trollers is also undertaken, comparing their performances to
those of PID controllers and FOPID controller. The objective
of this comparison is to highlight the significant advantages of
the proposed controls. The next stage of the work is the exper-
imental implementation of these two controllers on an IP-C
system. The achieved experimental tests practically emphasize
the chosen and developed approach. Additionally, we com-
pare the results obtained from these experiments with those
from a previous study [6], where a FOC was utilized. Notably,
our comparison reveals substantial enhancements in key per-
formance elements, including a notable reduction in overshoot
(Mp), minimized static error (𝜀(x )), and an improved control
mean value (Ūm). This comparative analysis highlights tangible
advancements achieved through the implementation of the pro-
posed fractional-order control laws in contrast to the use of a
conventional FOC controller.

1.5 Organization

The paper is outlined as follows: main generalities and reviews
on fractional calculus are given in Section 2. Section 3 addresses
the stability of the fractional order systems. The optimiza-
tion based control design problem is stated and formulated
in Section 4. The applied PSO algorithm is briefly described
in Section 5. Section 6 is devoted to the description of
the inverted pendulum-cart system and the discussion of
the obtained simulation and experimental results. Finally, a
conclusion summarizes the paper contribution in Section 7.

2 STABILITY OF FRACTIONAL ORDER
SYSTEM

A continuous time linear system of fractional orders is described
by the homogeneous state Equation [11, 12]:

0D𝛼̄
t x(t ) = A x(t ) (1)

with

x(t ) =

⎡⎢⎢⎢⎣
x1(t )

⋮

xn(t )

⎤⎥⎥⎥⎦, 0D𝛼̄
t x(t ) =

⎡⎢⎢⎢⎣
0D

𝛼1
t x1(t )

⋮

0D
𝛼n
t xn(t )

⎤⎥⎥⎥⎦ (2)

A =

⎡⎢⎢⎢⎣
A11 ⋯ A1n

⋮ ⋱ ⋮

An1 ⋯ Ann

⎤⎥⎥⎥⎦ (3)

and xk(t ) ∈ ℜnk , k = 1, … , n,Akr ∈ ℜnk×nr (k, r = 1… n).

0D𝛼̄x(t ) is the fractional derivative of non-integer order 𝛼 of
x(t ) according to the Caputo definition of the derivative, given
as follows [31]:

0D
𝛼k
t xi (t ) =

1
Γ(pk − 𝛼k ) ∫

t

0

x
(pk )
i (𝜏)d𝜏

(t − 𝜏)𝛼k − pk + 1
(4)

Γ is Euler’s gamma function and pk is the positive integer [32].
The Laplace transform of 0D𝛼̄

t x(t ) with zero initial conditions
is defined by:

𝔏{0D𝛼̄
t x(t )} =

⎡⎢⎢⎢⎣
s𝛼1 X1(s)

⋮

s𝛼n Xn(s)

⎤⎥⎥⎥⎦ (5)

where Xk(s) is the Laplace transform of xk(t ) with k = 1, … n.
The characteristic matrix of Equation (1) is given as

follows:

H (s) =

⎡⎢⎢⎢⎢⎣
In1

s𝛼1 − A11 ⋯ −A1n

−A21 ⋮ −A2n

⋮ ⋱ ⋮

An1 ⋯ Inn
s𝛼n − Ann

⎤⎥⎥⎥⎥⎦
(6)

The characteristic polynomial of A is:

𝜔(s) = det(H (s)) (7)

𝜔(s) is a polynomial of fractional degree 𝛿 given by:

𝛿 = n1𝛼1 + n2𝛼2 +⋯+ nn𝛼n (8)

For studying the stability of system (1), three cases are con-
sidered in [11]: the commensurate order, the rational order and
a non-commensurate order.

2.1 Stability of a commensurate-order
system

The fractional-order system is commensurate order if there
exists a real number 𝛼 > 0, such that:

𝛼i = Ki𝛼, i = 1, … , n. Ki ∈ Z+ (9)

by taking:

𝜆 = s𝛼, (10)

Equations (6) and (7) take the following form:

H (𝜆) = I (𝜆) − A (11)

with

I (𝜆) =

⎡⎢⎢⎢⎢⎣
In1
𝜆K1 0 ⋯ 0

0 In2
𝜆K2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ Inn
𝜆Kn

⎤⎥⎥⎥⎥⎦
(12)
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4 CHEBALLAH ET AL.

and the characteristic polynomial 𝜔(𝜆) is an integer order
polynomial given by:

𝜔(𝜆) = det(H (𝜆)) = 𝜆p + ap−1𝜆
p−1 +⋯+ a0 (13)

where ak (k = 0, 1, … , p− 1) are a real numbers and

p =

n∑
i=1

niki (14)

The linear fractional-order system (1) is stable if and only if
the condition of Matignon

|arg(𝜆i )| > 𝛼
𝜋

2
(15)

is satisfied for all roots 𝜆i of the polynomial w(𝜆) given by
Equation (13) and it is demonstrated in [12] and [33] that the
polynomial w(s) is unstable for all 𝛼 > 2.

2.2 Stability of non-commensurate-order
system

For this kind of system, the frequency domain method is
applied. This method is proposed in [11] for asymptotic stability
analysis of continuous time linear systems.

Theorem 1 [11]. System (1), with non-commensurate fractional order is

asymptotically stable if and only if:

Δ𝜔∈(−∞,+∞)Arg[𝜓( j𝜔)] = 0 (16)

with

𝜓(s) =
𝜔(s)
𝜔r(s)

=
det(I (s) − A)

𝜔r(s)
(17)

where 𝜔r (s) is the reference asymptotically stable polynomial
of fractional degree with:

𝜔r(s) = (s + c )𝛿, c > 0 (18)

and 𝜓( j𝜔) = 𝜓(s) for s = j𝜔. Equation (16) holds, means it
that the plot of 𝜓( j𝜔) does not encircle or cross the origin
of complex plane (Nyquist plots) as 𝜔 runs from −∞ to +∞.
From Equations (16) and (17) we have

𝜓(∞) = lim
𝜔→+∞

𝜓( j𝜔) = 1 (19)

and

𝜓(0) =
det(−A)

c𝛿
(20)

Lemma 1 [11]. if det(−A) ≤ 0, then the fractional order system (1)

is unstable.

Before applying Theorem 1 to study the stability of system
(1), we have to verify the condition given by Lemma 1. Then

FIGURE 1 Block diagram of MOIF control.

if this condition is satisfied we deduce directly that system (1)
is unstable.

3 PROBLEM FORMULATION

3.1 Fractional order integral with a state
feedback control

In this section, a MOIF controller with state feedback is
introduced (Figure 1).

In this study, a control system based on fractional calculus
and state feedback. The system under consideration is rep-
resented by a (SISO) system denoted as G . The control law
governing the system is expressed as follows:

u(t ) = kiI
𝛼 (e(t )) + Kxx(t ) (21)

where ki denotes the integral gain, 𝛼 represents the frac-
tional order of the integrator with 0 < 𝛼 < 1, and Kx is the
proportional gain vector associated with the state feedback
(Kx = [Kx1

,Kx2
, …Kxn

]). The state space model describing the
closed-loop system is as follows:[

ẋ

D𝛼xr

]
=

[
(A + BKx ) Bki

−C 0

][
x

xr

]
+

[
0
1

]
r (22)

We notice that

[
(A + BKx ) Bki

−C 0

]
takes the same form as

Equation (3), allowing us to employ Theorem 1 to analyse the
stability of system. The characteristic matrix corresponding to
Equation (22) is:

H1(s) =

[
I11s − [A + BKx ] −Bki

−C I22s𝛼 − 0

]
(23)

and according to Theorem 1 we have:

𝜓1(s) =
det(H1(s))

(s + c )𝛿
(24)

In order to meet the stability requirements given by Theo-
rem 1 and simultaneously minimize both the error and over-
shoot, the control law parameters, specifically 𝛼, ki , and Kx are
determined using a Pareto-based multi-objective optimization
approach. This optimization method employs the PSO.
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CHEBALLAH ET AL. 5

FIGURE 2 Block diagram of MOPIF control.

3.2 Fractional order proportional integral
with a state feedback control

In this section, a MOPIF controller with state feedback is intro-
duced. In order to increase the capabilities of the controller
defined by Equation (21), a PI 𝛼 controller is used as depicted
in Figure 2. The objective of this modification is to harness
the benefits offered by fractional calculus, by combining both
proportional and fractional integral components. This hybrid
approach provides better adaptability to complex and dynamic
systems, such as an inverted pendulum.

the corresponding control law is defined by:

u(t ) = kpe(t ) + kiI
𝛼e(t ) + Kxx(t ) (25)

The determination of parameters kp, ki ,Kx and 𝛼 adheres
to a similar formulation as presented in Equations (22)–(24),
employing the PSO multi-objective optimization algorithm.
This methodology ensures an iterative exploration of the
parameter space to achieve optimal values, considering multiple
objectives simultaneously.

The state representation of the closed-loop system is then
given by:[

ẋ

D𝛼xr

]
=

[
(A + BKx − kpBC ) Bki

−C 0

][
x

xr

]
+

[
Bkp

1

]
r (26)

The characteristic matrix corresponding to Equation (26) is:

H2(s) =

[
I11s − [A + BKx − kpBC ] −Bki

−C I22s𝛼 − 0

]
(27)

and according to Theorem 1 we have:

𝜓2(s) =
det (H2(s))

(s + c )𝛿
(28)

4 CONTROLLER DESIGN

To determine the controller parameters given by Equations (21)
and (25), using a PSO multi-objective optimization approach,
the parameters under certain constraints must be specified. The

two controllers, i.e. MOIF and MOPIF, involve different sets of
parameters: ∙ For MOIF controller:

X = (X1,X2,X3) = (𝛼, ki ,Kx ) (29)

∙ For MOPIF controller:

X = (X1,X2,X3,X4) = (𝛼, kp, ki ,Kx ) (30)

where 𝛼, kp, ki are scalars and Kx is a vector.
Finding the tuning of this controller gains given in Equations

(29) and (30), can be established as multi-objective optimization
problem includes three objective functions as:

Minimize f (X ) = ( f1(X ), f2(X ), f3(X )) (31)

Where:

f1(X ) = Mp

f2(X ) = ∫ ∞

t0
|e(t )|dt

f3(X ) = 𝜓( jw)

with 0 < 𝛼 < 1

(32)

where e(t ) is the control error defined as (e(t ) = r (t ) − y(t )). f1
is the overshoot (Mp) of the response to as step reference input,
knowing that Mp is desired as low as possible, while the settling
time tr is desired to be of acceptable range.

f2 is the integral absolute tracking error (eIAE) defined as:

eIAE = ∫ ∞

t0
|r (t ) − y(t )|dt (33)

The election of IAE is because it is simple and leads to
satisfactory control performance.

The function f3 allows to satisfy the frequency domain stabil-
ity condition given by Theorem 1. This ensures stability of the
closed-loop system described by Equations (22) and (26) in the
frequency domain.

Optimizing all three objectives simultaneously might not
yield a unique solution. Instead, the goal is to obtain a set of
solutions known as Pareto solutions. These solutions represent
trade-offs among the conflicting objectives, allowing for a com-
prehensive understanding of the system’s performance under
various conditions.

The flowchart illustrating the proposed algorithm is pre-
sented in Figure 3.

5 IP-C SYSTEM IMPLEMENTATION

In this section, the performance and effectiveness of the MOIF
and MOPIF controllers proposed in Sections 3 and 4, are eval-
uated in an inverted pendulum-cart shown in Figure 4. The
control of this system consists in the control of swing-up of
inverted pendulum and in the control of cart moving on a track,
via a DC motor attached at the end of the rail. Essentially, we
control two variables, the pendulum angle 𝜃 and the cart posi-
tion x. The latter is bounded by the rail length x = ±0.4 m. So,
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6 CHEBALLAH ET AL.

Start

Generate Initial Population

Run The Process Model
Equation (22) or (26) 

Compute the Parameters of controllers MOIF or MOPIF
Equation (29) or (30)

Compute the fitness function

Compute the Pbest of each particle and Gbest of Population

Update the Velocity, position, of particle

Maximum iteration

number reacted

Extrat the Pareto Population and save the Optimal Value

Compute the value of Objectives function

End

FIGURE 3 Flowchart of PSO multi-objective algorithm.

FIGURE 4 Pendulum-cart system.

the non linear model is linearized around the unstable equilib-
rium 𝜃 = 0. The linear model of the IP-C can be modelled in
the state space representation as follows [4]:{

ẋ = A x + B u x(0) = x0

y = C x
(34)

where x is the state vector as follows:

x =
[
xp ẋp 𝜃 𝜃̇

]T
(35)

In this expression xp is the cart position, ẋp is its velocity, 𝜃 is

the pendulum angle and 𝜃̇ is the angular velocity. Besides, we

TABLE 1 Parameters of IP-C system.

Parameter Notation Value

Cart mass M 2.3 kg

Pendulum mass m 0.2 kg

Pendulum half length l 0.36 m

Moment of inertia J 0.099 kg/m2

Friction coefficient of the cart wheels b 0.05 kg m2/s

Rotation friction of the pendulum d 0.005 kg m2/s

Acceleration constant g 9.81 m/s2

TABLE 2 Performance criteria of the (MOIF, MOPIF, PID, FOPID
controllers) obtained by simulation.

Controllers Mp tr (s) 𝜺(x)

MOPIF 10 4.95 0, 0047

MOIF 12,2 7,8 0, 0052

PID 57 14,58 0, 0048

FOPID 35 8,5 0, 003

have:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0
−bN

hN − m2l 2

−gm2l 2

hN − m2l 2

mld

hN − m2l 2

0 0 0 1

0
mlb

hN − m2l 2

−mgl

N
+

m3l 3g

N (hN − m2l 2 )
−d

N
+

m2l 2d

N (hN − m2l 2 )

⎤⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎣

0

N

hN − m2l 2

0

−ml

hN − m2l 2

⎤⎥⎥⎥⎥⎥⎥⎦
C =

[
1 0 0 0

0 0 1 0

]
(36)

Numerical values of all the parameters of IP-C System are given
in Table 1, and the numerical values of A and B are:

A =

⎡⎢⎢⎢⎢⎣
0 1 0 0

0 −2.1 10−5 −0.5339 0.0045

0 0 0 1

0 4.5 10−5 22.2449 −0.189

⎤⎥⎥⎥⎥⎦
,

B =

⎡⎢⎢⎢⎢⎣
0

0.4218

0

−0.970

⎤⎥⎥⎥⎥⎦

(37)

the poles of linear model (37) are:

 17518652, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cth2.12648 by U

niversité D
e N

antes, W
iley O

nline L
ibrary on [03/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHEBALLAH ET AL. 7

FIGURE 5 Convergence of f1,f2, and f3 for MOIPF.

FIGURE 6 Convergence of f1,f2, and f3 for MOIPF.

p1 = 0, p2 = 0, p3 = 4.06229, and p4 = −4.8119, thus the
system is unstable.

5.1 Simulation and experimental results

The controllers MOIF and MOPIF described in Section 3 are
implemented to test their stability and reference tracking capa-
bilities system. The MOPSO parameters are given in Table 2
as:

The MOPSO algorithm is used to searching and optimizing
the MOIF and MOPIF controllers parameters, namely respec-
tively

(𝛼, ki ,Kx ) and (𝛼, kp, ki ,Kx ).
Since the order of state matrix A of the IP-C system is n = 4,

then the vector gain Kx has the following form:

Kx =
[
Kx1

Kx2
Kx3

Kx4

]
(38)

Hence, each particle has six members (𝛼, ki ,Kx1,Kx2,Kx3
,Kx4)

attribute for MOIF controller and seven member
(𝛼, kp,Ki ,Kx1,Kx2,Kx3

,Kx4) attributed for MOPIF con-
troller, Then the dimensions of that population are 6n and 7n

for MOIF and MOPIF controllers, respectively. The optimal
parameters of the MOIF controller are:

⎧⎪⎨⎪⎩
𝛼 = 0.18

ki = 3.8

Kx =
[
2.01 17.12 110.00 14.03

] (39)

and those of the MOPIF controller are:

⎧⎪⎪⎨⎪⎪⎩

𝛼 = 0.17

ki = 2.97

kp = 4.5

Kx =
[
0.43 9.58 78.6 7.36

] (40)
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8 CHEBALLAH ET AL.

FIGURE 7 Nyquist MOIF.

FIGURE 8 Nyquist MOPIF.

by substituting the parameters of controllers MOIF and MOPIF
into Equations (23) and (27), we obtain:

H1(s) =

⎡⎢⎢⎢⎢⎢⎢⎣

s −1 0 0 0

−0.62 s − 4.76 −33.92 −4.38 −1.18

0 0 s −1 0

1.35 10.25 51.86 s + 9.61 2.55

1 0 0 0 s0.18

⎤⎥⎥⎥⎥⎥⎥⎦
(41)

and

H2(s) =

⎡⎢⎢⎢⎢⎢⎢⎣

s −1 0 0 0

1.27 s − 2.41 −24.02 −2.30 −0.92

0 0 s −1 0

−2.73 5.19 30.56 s + 5.13 1.99

1 0 0 0 s0.17

⎤⎥⎥⎥⎥⎥⎥⎦
(42)
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CHEBALLAH ET AL. 9
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FIGURE 9 Simulation results of MOIF controller.
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FIGURE 10 Simulation results of MOPIF controller.

According to Theorem 1, we have:

𝜓1(s) =
det(H1)

(s + 3)2.18
(43)

and

𝜓2(s) =
det(H2)

(s + 3)2.17
(44)

The result and the convergence of the three objective functions
given by Equation 32 are given by Figures 5 and 6 for MOIF
and MOPIF controllers.

The Nyquist plots of function (41) and (42) are given by
Figure 7 and 8 respectively.

Figures 7 and 8 show that the plots of function (41) and (42)
do not encircle the origin of the complex plane. Hence, the
fractional order system with MOIF and MOPIF controllers are
asymptotically stable. The controllers MOIF and MOPIF are
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10 CHEBALLAH ET AL.
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FIGURE 11 MOIF control result with impulse disturbance at t = 60 s.

FIGURE 12 MOIF control result with step disturbance at t = 60 s.

simulated with success in the case of an the non-linear model of
IP-C system.

The results are given by Figures 9 and 10. To assess the
robustness of both controllers, MOIF and MOPIF, simulation
runs are performed using the non-linear model of the IP-C
system. The cases of an impulse and a step disturbances, and
variations in the mass of the cart are investigated.

Figures 11–13 give the simulation results obtained with the
MOIF controller in the case of an impulse disturbance, a step

disturbance and a variation of 40% in the cart mass, respectively.
Figures 14–16 illustrate the simulation results in the case of the
MOPIF controller in response to the same disturbances. The
simulation results given by Figures 11, 12, 14, and 15 show the
dynamic behaviours of the MOIF and MOPIF controllers for
diverse scenarios. These results highlight the capability of these
controllers in handling disturbances. Furthermore, Figures 13
and 16 illustrate that, despite a significant 40% fluctuation in
cart mass, stability reigns with a slight decrease in static error.
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CHEBALLAH ET AL. 11

FIGURE 13 MOIF control result with 40% mass variation.

FIGURE 14 MOPIF control result with impulse disturbance at t = 60 s.

These results demonstrates the efficiency of the MOIF and
MOPIF controllers.

The results of the proposed method are compared with those
obtained by classical PID and fractional order FOPID con-
trollers [34], using the same algorithm MOPSO employed to
tuning the parameters of the MOIPF and MOIPF controllers.

In Figure 17, simulation results from the four controllers
(MOIPF, MOIF, PID, FOPID) are presented for set-point
tracking. Figure 18 offers a closer look between the 35th and
60th seconds, providing a detailed illustration of the overshoot
exhibited by each controller. The performance for all four con-
trollers, including overshoots (Mp), settling times (tr), and cart
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12 CHEBALLAH ET AL.

FIGURE 15 MOPIF control result with step disturbance at t = 60 s.
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FIGURE 16 MOPIF control result with 40% mass variation.

tracking position errors 𝜀(x ) are summarized in Table 2. A con-
clusion drawn from the table indicates that the position error
values are nearly identical across all four controllers. However,
the settling time values for MOIPF and MOIPF controllers
are noticeably lower compared to PID and FOPID controllers.

Furthermore, the overshoot values for MOIPF and MOIPF
controllers is more better than those of the other controllers,
indicating superior performance in this aspect.

And to demonstrate the effectiveness of this controllers, then
they are implemented in IP-C system.

 17518652, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cth2.12648 by U

niversité D
e N

antes, W
iley O

nline L
ibrary on [03/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHEBALLAH ET AL. 13

FIGURE 17 simulation results of PID-FOPID-MOIF-MOPIF controllers.

FIGURE 18 Focus on the x position of the four controllers between 35
and 60 s.

Figures 19 and 20 show the experimental results with the
same value of parameters controllers given in Equations (37)
and (38).

Once computed and simulated with the appropriate parame-
ters according to Equations (37) and (38) given previously, the
designed controllers MOIF and MOPIF are implemented on
inverted pendulum-cart system. The sampling period is fixed at
0.001 s and the fractional orders operator’s are approximated

TABLE 3 Performance criteria of the MOIF, MOPIF, and FOC
controllers.

Controllers Mp tr (s) 𝜺(x) Ūm

MOIF 14 9 3.10−4 0.1

MOPIF 4 4.15 1.10−4 0.14

FOC 28.8 7 4.10−4 0.1

with the Oustaloup’s method in frequency interval [10−1510+15]
with 15 cells.

At first, a swing up control is applied on the pendulum to
reach the unstable vertical position (𝜃 = 0 or 𝜃 = 𝜋). Once this
position is reached, the designed controller keeps the pendulum
at this position. The cart can move according to the imposed
set-point. Different changes have been considered for the set-
point. The first one is performed at t = 35 s in order to reach
xref = 0.2 m. The second set-point change occurs at t = 70 s to
attain xref = 0.2 m. Figures 19 and 20 show the results obtained
respectively with MOIF and MOPIF controllers for a set-point
tracking. We note that after the swing up of the pendulum, the
IP-C system is successfully stabilized and tracks perfectly the
imposed trajectory.

A comparative analysis involving MOIF and MOPIF con-
trollers, along with FOC from a previous study, is conducted.
Performance metrics, including overshoots (Mp), settling times
(tr), cart tracking position errors e(x ), and the mean value of
the control signal Um , are summarized in Table 3. The MOPIF
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14 CHEBALLAH ET AL.

FIGURE 19 Evolution of the position (X ),the angle (𝜃) and the control signal (Um) in the case of MOIF controller.

FIGURE 20 Evolution of the position (X ), the angle (𝜃) and the control signal (Um) in the case of MOPIF controller.

controller emerges as the optimal choice, showcasing superior
performance metrics across the board. With the lowest over-
shoot (4%), shortest rise time (4.15 s), and minimal position
error (10−4), MOPIF demonstrates enhanced stability, faster
response, and greater precision in comparison to the MOIF
controller with higher overshoot (14), longer rise time (9 s), and
larger position error (3.10−4). The FOC shares a similar control
effort with MOIF (0.1 V)but exhibits higher overshoot (28.8%)
and longer rise time (7 s), indicating a less favourable transient
response. Overall, MOPIF emerges as the preferable choice,
offering an optimal balance of dynamic response, accuracy, and
stability for the control of the IP-C system.

6 CONCLUSION

This paper introduces an innovative approach to optimize
the parameters of MOIF and MOPIF controllers using a

multi-objective PSO algorithm. The primary objective of the
optimization process is to minimize three critical perfor-
mance metrics: integral time absolute error, overshoot, and
the Buslowicz stability criterion. This optimization addresses
the unique challenges associated with asymptotic stability in
non-commensurate order systems.

The proposed controllers have been applied to stabilize
an inverted pendulum-cart system and for set-point track-
ing. A comparative simulation was conducted, involving PID
and FOPID controllers, providing valuable insights into the
superior performance of the proposed MOIF and MOPIF
controllers. The results demonstrated distinct advantages in
terms of stability and tracking precision. Numerical evaluations
underscored notable progress, indicating a significant decrease
in both overshoot and settling time. Notably, the MOPIF
controller stood out with an impressive 27% reduction in over-
shoot and a 4% improvement in settling time compared to the
FOPID controller.
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CHEBALLAH ET AL. 15

To further evaluate the controllers’ robustness, additional
simulations were carried out. These simulations specifically
examined the performance of the controllers in rejecting
impulse and step disturbances, as well as their response to vari-
ations in the cart mass. The robustness analysis sheds light on
the controllers’ ability to maintain stability and effective control
under challenging conditions.

Experimental implementation on an inverted pendulum-cart
system showcased substantial improvements in both stability
and reference tracking compared to traditional Fractional-
Order Control (FOC). Numerical assessments underscored
these advancements, revealing a significant reduction in inte-
gral time absolute error and overshoot. Notably, the MOPIF
controller exhibited a remarkable 35% decrease in overshoot,
contributing to an enhanced dynamic response.

The numerical results not only validate the effectiveness of
the proposed optimization method but also highlight tangible
benefits in terms of performance and robustness enhancement
for fractional-order controllers in dynamic systems, such as the
inverted pendulum-cart.
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